Solutions to selected problems in Brockwell and Davis

Anna Carlsund Henrik Hult

Spring 2003

This document contains solutions to selected problems in
Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Forecasting, 2nd Edition, Springer New York, 2002.

We provide solutions to most of the problems in the book that are not computer exercises. That is, you will not need a computer to solve these problems. We encourage students to come up with suggestions to improve the solutions and to report any misprints that may be found.

Contents

Chapter 1 1.1, 1.4, 1.5, 1.8, 1.11, 1.15
3
Chapter $2 \quad 2.1,2.4,2.8,2.11,2.15$ 8

Chapter 3 3.1, 3.4, 3.6, 3.7, 3.11 11
Chapter 4 4.4, 4.5, 4.6, 4.9, 4.10
14
Chapter $5 \quad 5.1,5.3,5.4,5.11 \quad 19$
$\begin{array}{ll}\text { Chapter } 6 & 6.5,6.6 \\ 23\end{array}$
Chapter 7 7.1, $7.5 \quad 25$
Chapter $8 \quad 8.7,8.9,8.13,8.14,8.15 \quad \mathbf{2 8}$
Chapter 1010.5
31

Notation: We will use the following notation.

- The indicator function

$$
\mathbf{1}_{A}(h)= \begin{cases}1 & \text { if } h \in A, \\ 0 & \text { if } h \notin A .\end{cases}
$$

- Dirac's delta function

$$
\delta(t)=\left\{\begin{array}{lll}
+\infty & \text { if } & t=0, \\
0 & \text { if } & t \neq 0,
\end{array} \quad \text { and } \int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0) .\right.
$$

Chapter 1

Problem 1.1. a) First note that

$$
\begin{aligned}
\mathbb{E}\left[(Y-c)^{2}\right] & =\mathbb{E}\left[Y^{2}-2 Y c+c^{2}\right]=\mathbb{E}\left[Y^{2}\right]-2 c \mathbb{E}[Y]+c^{2} \\
& =\mathbb{E}\left[Y^{2}\right]-2 c \mu+c^{2}
\end{aligned}
$$

Find the extreme point by differentiating,

$$
\frac{d}{d c}\left(\mathbb{E}\left[Y^{2}\right]-2 c \mu+c^{2}\right)=-2 \mu+2 c=0 \quad \Rightarrow c=\mu
$$

Since, $\frac{d^{2}}{d c^{2}}\left(\mathbb{E}\left[Y^{2}\right]-2 c \mu+c^{2}\right)=2>0$ this is a min-point.
b) We have

$$
\begin{aligned}
& \mathbb{E}\left[(Y-f(X))^{2} \mid X\right]=\mathbb{E}\left[Y^{2}-2 Y f(X)+f^{2}(X) \mid X\right] \\
& \quad=\mathbb{E}\left[Y^{2} \mid X\right]-2 f(X) \mathbb{E}[Y \mid X]+f^{2}(X)
\end{aligned}
$$

which is minimized by $f(X)=\mathbb{E}[Y \mid X]$ (take $c=f(X)$ and $\mu=\mathbb{E}[Y \mid X]$ in a).
c) We have

$$
\mathbb{E}\left[(Y-f(X))^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[(Y-f(X))^{2} \mid X\right]\right]
$$

so the result follows from b).
Problem 1.4. a) For the mean we have

$$
\mu_{X}(t)=\mathbb{E}\left[a+b Z_{t}+c Z_{t-2}\right]=a
$$

and for the autocovariance

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(a+b Z_{t+h}+c Z_{t+h-2}, a+b Z_{t}+c Z_{t-2}\right) \\
& \quad= \\
& \quad b^{2} \operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)+b c \operatorname{Cov}\left(Z_{t+h}, Z_{t-2}\right) \\
& \\
& \quad=c b \operatorname{Cov}\left(Z_{t+h-2}, Z_{t}\right)+c^{2} \operatorname{Cov}\left(Z_{t+h-2}, Z_{t-2}\right) \\
& = \\
& \quad= \begin{cases}\sigma^{2} b^{2} \mathbf{1}_{\{0\}}(h)+\sigma^{2} b c \mathbf{1}_{\{-2\}}(h)+\sigma^{2} c b \mathbf{1}_{\{2\}}(h)+\sigma^{2} c^{2} \mathbf{1}_{\{0\}}(h) \\
b c \sigma^{2} & \text { if } \left.c^{2}\right) \sigma^{2} \\
0 & \text { if }|h|=2, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Since $\mu_{X}(t)$ and $\gamma_{X}(t+h, t)$ do not depend on $t,\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary. b) For the mean we have

$$
\mu_{X}(t)=\mathbb{E}\left[Z_{1}\right] \cos (c t)+\mathbb{E}\left[Z_{2}\right] \sin (c t)=0
$$

and for the autocovariance

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right) \\
&= \operatorname{Cov}\left(Z_{1} \cos (c(t+h))+Z_{2} \sin (c(t+h)), Z_{1} \cos (c t)+Z_{2} \sin (c t)\right) \\
&= \cos (c(t+h)) \cos (c t) \operatorname{Cov}\left(Z_{1}, Z_{1}\right)+\cos (c(t+h)) \sin (c t) \operatorname{Cov}\left(Z_{1}, Z_{2}\right) \\
&+\sin (c(t+h)) \cos (c t) \operatorname{Cov}\left(Z_{1}, Z_{2}\right)+\sin (c(t+h)) \sin (c t) \operatorname{Cov}\left(Z_{2}, Z_{2}\right) \\
&= \sigma^{2}(\cos (c(t+h)) \cos (c t)+\sin (c(t+h)) \sin (c t)) \\
&= \sigma^{2} \cos (c h)
\end{aligned}
$$

where the last equality follows since $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$. Since $\mu_{X}(t)$ and $\gamma_{X}(t+h, t)$ do not depend on $t,\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary. c) For the mean we have

$$
\mu_{X}(t)=\mathbb{E}\left[Z_{t}\right] \cos (c t)+\mathbb{E}\left[Z_{t-1}\right] \sin (c t)=0
$$

and for the autocovariance

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right) \\
&= \operatorname{Cov}\left(Z_{t+h} \cos (c(t+h))+Z_{t+h-1} \sin (c(t+h)), Z_{t} \cos (c t)+Z_{t-1} \sin (c t)\right) \\
&= \cos (c(t+h)) \cos (c t) \operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)+\cos (c(t+h)) \sin (c t) \operatorname{Cov}\left(Z_{t+h}, Z_{t-1}\right) \\
&+\sin (c(t+h)) \cos (c t) \operatorname{Cov}\left(Z_{t+h-1}, Z_{t}\right) \\
&+\sin (c(t+h)) \sin (c t) \operatorname{Cov}\left(Z_{t+h-1}, Z_{t-1}\right) \\
&= \sigma^{2} \cos ^{2}(c t) \mathbf{1}_{\{0\}}(h)+\sigma^{2} \cos (c(t-1)) \sin (c t) \mathbf{1}_{\{-1\}}(h) \\
&+\sigma^{2} \sin (c(t+1)) \cos (c t) \mathbf{1}_{\{1\}}(h)+\sigma^{2} \sin ^{2}(c t) \mathbf{1}_{\{0\}}(h) \\
&= \begin{cases}\sigma^{2} \cos ^{2}(c t)+\sigma^{2} \sin ^{2}(c t)=\sigma^{2} & \text { if } h=0, \\
\sigma^{2} \cos (c(t-1)) \sin (c t) & \text { if } h=-1, \\
\sigma^{2} \cos (c t) \sin (c(t+1)) & \text { if } h=1,\end{cases}
\end{aligned}
$$

We have that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary for $c= \pm k \pi, k \in \mathbb{Z}$, since then $\gamma_{X}(t+h, t)=\sigma^{2} \mathbf{1}_{\{0\}}(h)$. For $c \neq \pm k \pi, k \in \mathbb{Z},\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not (weakly) stationary since $\gamma_{X}(t+h, t)$ depends on t.
d) For the mean we have

$$
\mu_{X}(t)=\mathbb{E}\left[a+b Z_{0}\right]=a
$$

and for the autocovariance

$$
\gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(a+b Z_{0}, a+b Z_{0}\right)=b^{2} \operatorname{Cov}\left(Z_{0}, Z_{0}\right)=\sigma^{2} b^{2}
$$

Since $\mu_{X}(t)$ and $\gamma_{X}(t+h, t)$ do not depend on $t,\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary. e) If $c=k \pi, k \in \mathbb{Z}$ then $X_{t}=(-1)^{k t} Z_{0}$ which implies that X_{t} is weakly stationary when $c=k \pi$. For $c \neq k \pi$ we have

$$
\mu_{X}(t)=\mathbb{E}\left[Z_{0}\right] \cos (c t)=0
$$

and for the autocovariance

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{0} \cos (c(t+h)), Z_{0} \cos (c t)\right) \\
& \quad=\cos (c(t+h)) \cos (c t) \operatorname{Cov}\left(Z_{0}, Z_{0}\right)=\cos (c(t+h)) \cos (c t) \sigma^{2}
\end{aligned}
$$

The process $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary when $c= \pm k \pi, k \in \mathbb{Z}$ and not (weakly) stationary when $c \neq \pm k \pi, k \in \mathbb{Z}$, see 1.4. c).
f) For the mean we have

$$
\mu_{X}(t)=\mathbb{E}\left[Z_{t} Z_{t-1}\right]=0
$$

and

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{t+h} Z_{t+h-1}, Z_{t} Z_{t-1}\right) \\
& \quad=\mathbb{E}\left[Z_{t+h} Z_{t+h-1} Z_{t} Z_{t-1}\right]= \begin{cases}\sigma^{4} & \text { if } h=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $\mu_{X}(t)$ and $\gamma_{X}(t+h, t)$ do not depend on $t,\left\{X_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary.
Problem 1.5. a) We have

$$
\begin{aligned}
\gamma_{X}(t & +h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-2}, Z_{t}+\theta Z_{t-2}\right) \\
= & \operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)+\theta \operatorname{Cov}\left(Z_{t+h}, Z_{t-2}\right)+\theta \operatorname{Cov}\left(Z_{t+h-2}, Z_{t}\right) \\
& +\theta^{2} \operatorname{Cov}\left(Z_{t+h-2}, Z_{t-2}\right) \\
= & \mathbf{1}_{\{0\}}(h)+\theta \mathbf{1}_{\{-2\}}(h)+\theta \mathbf{1}_{\{2\}}(h)+\theta^{2} \mathbf{1}_{\{0\}}(h) \\
= & \left\{\begin{array}{ll}
1+\theta^{2} & \text { if } h=0, \\
\theta & \text { if }|h|=2 .
\end{array}= \begin{cases}1.64 & \text { if } h=0, \\
0.8 & \text { if }|h|=2 .\end{cases} \right.
\end{aligned}
$$

Hence the ACVF depends only on h and we write $\gamma_{X}(h)=\gamma_{X}(t+h, h)$. The ACF is then

$$
\rho(h)=\frac{\gamma_{X}(h)}{\gamma_{X}(0)}= \begin{cases}1 & \text { if } h=0 \\ 0.8 / 1.64 \approx 0.49 & \text { if }|h|=2\end{cases}
$$

b) We have

$$
\begin{aligned}
\operatorname{Var} & \left(\frac{1}{4}\left(X_{1}+X_{2}+X_{3}+X_{4}\right)\right)=\frac{1}{16} \operatorname{Var}\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \\
= & \frac{1}{16}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+\operatorname{Var}\left(X_{4}\right)+2 \operatorname{Cov}\left(X_{1}, X_{3}\right)\right. \\
& \left.+2 \operatorname{Cov}\left(X_{2}, X_{4}\right)\right) \\
= & \frac{1}{16}\left(4 \gamma_{X}(0)+4 \gamma_{X}(2)\right)=\frac{1}{4}\left(\gamma_{X}(0)+\gamma_{X}(2)\right)=\frac{1.64+0.8}{4}=0.61
\end{aligned}
$$

c) $\theta=-0.8$ implies $\gamma_{X}(h)=-0.8$ for $|h|=2$ so

$$
\operatorname{Var}\left(\frac{1}{4}\left(X_{1}+X_{2}+X_{3}+X_{4}\right)\right)=\frac{1.64-0.8}{4}=0.21
$$

Because of the negative covariance at lag 2 the variance in c) is considerably smaller.
Problem 1.8. a) First we show that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}(0,1)$. For t even we have $\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[Z_{t}\right]=0$ and for t odd

$$
\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[\frac{Z_{t-1}^{2}-1}{\sqrt{2}}\right]=\frac{1}{\sqrt{2}} \mathbb{E}\left[Z_{t-1}^{2}-1\right]=0
$$

Next we compute the ACVF. If t is even we have $\gamma_{X}(t, t)=\mathbb{E}\left[Z_{t}^{2}\right]=1$ and if t is odd

$$
\gamma_{X}(t, t)=\mathbb{E}\left[\left(\frac{Z_{t-1}^{2}-1}{\sqrt{2}}\right)^{2}\right]=\frac{1}{2} \mathbb{E}\left[Z_{t-1}^{4}-2 Z_{t-1}^{2}+1\right]=\frac{1}{2}(3-2+1)=1
$$

If t is even we have

$$
\gamma_{X}(t+1, t)=\mathbb{E}\left[\frac{Z_{t}^{2}-1}{\sqrt{2}} Z_{t}\right]=\frac{1}{\sqrt{2}} \mathbb{E}\left[Z_{t}^{3}-Z_{t}\right]=0
$$

and if t is odd

$$
\gamma_{X}(t+1, t)=\mathbb{E}\left[Z_{t+1} \frac{Z_{t-1}^{2}-1}{\sqrt{2}}\right]=\mathbb{E}\left[Z_{t+1}\right] \mathbb{E}\left[\frac{Z_{t-1}^{2}-1}{\sqrt{2}}\right]=0
$$

Clearly $\gamma_{X}(t+h, t)=0$ for $|h| \geq 2$. Hence

$$
\gamma_{X}(t+h, h)= \begin{cases}1 & \text { if } h=0 \\ 0 & \text { otherwise }\end{cases}
$$

Thus $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}(0,1)$. If t is odd X_{t} and X_{t-1} is obviously dependent so $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not $\operatorname{IID}(0,1)$.
b) If n is odd

$$
\mathbb{E}\left[X_{n+1} \mid X_{1}, \ldots, X_{n}\right]=\mathbb{E}\left[Z_{n+1} \mid Z_{0}, Z_{2}, Z_{4} \ldots, Z_{n-1}\right]=\mathbb{E}\left[Z_{n+1}\right]=0
$$

If n is even

$$
\mathbb{E}\left[X_{n+1} \mid X_{1}, \ldots, X_{n}\right]=\mathbb{E}\left[\left.\frac{Z_{n}^{2}-1}{\sqrt{2}} \right\rvert\, Z_{0}, Z_{2}, Z_{4}, \ldots, Z_{n}\right]=\frac{Z_{n}^{2}-1}{\sqrt{2}}=\frac{X_{n}^{2}-1}{\sqrt{2}}
$$

This again shows that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not $\operatorname{IID}(0,1)$.

Problem 1.11. a) Since $a_{j}=(2 q+1)^{-1},-q \leq j \leq q$, we have

$$
\begin{aligned}
& \sum_{j=-q}^{q} a_{j} m_{t-j}=\frac{1}{2 q+1} \sum_{j=-q}^{q}\left(c_{0}+c_{1}(t-j)\right) \\
& \quad=\frac{1}{2 q+1}\left(c_{0}(2 q+1)+c_{1} \sum_{j=-q}^{q}(t-j)\right)=c_{0}+\frac{c_{1}}{2 q+1}\left(t(2 q+1)-\sum_{j=-q}^{q} j\right) \\
& \quad=c_{0}+c_{1} t-\frac{c_{1}}{2 q+1}\left(\sum_{j=1}^{q} j+\sum_{j=1}^{q}-j\right) \\
& \quad=c_{0}+c_{1} t=m_{t}
\end{aligned}
$$

b) We have

$$
\begin{aligned}
\mathbb{E}\left[A_{t}\right] & =\mathbb{E}\left[\sum_{j=-q}^{q} a_{j} Z_{t-j}\right]=\sum_{j=-q}^{q} a_{j} \mathbb{E}\left[Z_{t-j}\right]=0 \quad \text { and } \\
\operatorname{Var}\left(A_{t}\right) & =\operatorname{Var}\left(\sum_{j=-q}^{q} a_{j} Z_{t-j}\right)=\sum_{j=-q}^{q} a_{j}^{2} \operatorname{Var}\left(Z_{t-j}\right)=\frac{1}{(2 q+1)^{2}} \sum_{j=-q}^{q} \sigma^{2}=\frac{\sigma^{2}}{2 q+1}
\end{aligned}
$$

We see that the variance $\operatorname{Var}\left(A_{t}\right)$ is small for large q. Hence, the process A_{t} will be close to its mean (which is zero) for large q.
Problem 1.15. a) Put

$$
\begin{aligned}
Z_{t}= & \nabla \nabla_{12} X_{t}=(1-B)\left(1-B^{12}\right) X_{t}=(1-B)\left(X_{t}-X_{t-12}\right) \\
= & X_{t}-X_{t-12}-X_{t-1}+X_{t-13} \\
= & a+b t+s_{t}+Y_{t}-a-b(t-12)-s_{t-12}-Y_{t-12}-a-b(t-1)-s_{t-1}-Y_{t-1} \\
& \quad+a+b(t-13)+s_{t-13}+Y_{t-13} \\
= & Y_{t}-Y_{t-1}-Y_{t-12}+Y_{t-13} .
\end{aligned}
$$

We have $\mu_{Z}(t)=\mathbb{E}\left[Z_{t}\right]=0$ and

$$
\begin{aligned}
& \gamma_{Z}(t+h, t)=\operatorname{Cov}\left(Z_{t+h}, Z_{t}\right) \\
&= \operatorname{Cov}\left(Y_{t+h}-Y_{t+h-1}-Y_{t+h-12}+Y_{t+h-13}, Y_{t}-Y_{t-1}-Y_{t-12}+Y_{t-13}\right) \\
&= \gamma_{Y}(h)-\gamma_{Y}(h+1)-\gamma_{Y}(h+12)+\gamma_{Y}(h+13)-\gamma_{Y}(h-1)+\gamma_{Y}(h) \\
&+\gamma_{Y}(h+11)-\gamma_{Y}(h+12)-\gamma_{Y}(h-12)+\gamma_{Y}(h-11) \\
&+\gamma_{Y}(h)-\gamma_{Y}(h+1)+\gamma_{Y}(h-13)-\gamma_{Y}(h-12)-\gamma_{Y}(h-1)+\gamma_{Y}(h) \\
&= 4 \gamma_{Y}(h)-2 \gamma_{Y}(h+1)-2 \gamma_{Y}(h-1)+\gamma_{Y}(h+11)+\gamma_{Y}(h-11) \\
&-2 \gamma_{Y}(h+12)-2 \gamma_{Y}(h-12)+\gamma_{Y}(h+13)+\gamma_{Y}(h-13)
\end{aligned}
$$

Since $\mu_{Z}(t)$ and $\gamma_{Z}(t+h, t)$ do not depend on $t,\left\{Z_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary. b) We have $X_{t}=(a+b t) s_{t}+Y_{t}$. Hence,

$$
\begin{aligned}
Z_{t}= & \nabla_{12}^{2} X_{t}=\left(1-B^{12}\right)\left(1-B^{12}\right) X_{t}=\left(1-B^{12}\right)\left(X_{t}-X_{t-12}\right) \\
= & X_{t}-X_{t-12}-X_{t-12}+X_{t-24}=X_{t}-2 X_{t-12}+X_{t-24} \\
= & (a+b t) s_{t}+Y_{t}-2\left(a+b(t-12) s_{t-12}+Y_{t-12}\right)+(a+b(t-24)) s_{t-24}+Y_{t-24} \\
= & a\left(s_{t}-2 s_{t-12}+s_{t-24}\right)+b\left(t s_{t}-2(t-12) s_{t-12}+(t-24) s_{t-24}\right) \\
& +Y_{t}-2 Y_{t-12}+Y_{t-24} \\
= & Y_{t}-2 Y_{t-12}+Y_{t-24}
\end{aligned}
$$

Now we have $\mu_{Z}(t)=\mathbb{E}\left[Z_{t}\right]=0$ and

$$
\begin{aligned}
& \gamma_{Z}(t+h, t)=\operatorname{Cov}\left(Z_{t+h}, Z_{t}\right) \\
& \quad=\operatorname{Cov}\left(Y_{t+h}-2 Y_{t+h-12}+Y_{t+h-24}, Y_{t}-2 Y_{t-12}+Y_{t-24}\right) \\
& \quad=\gamma_{Y}(h)-2 \gamma_{Y}(h+12)+\gamma_{Y}(h+24)-2 \gamma_{Y}(h-12)+4 \gamma_{Y}(h) \\
& \quad-2 \gamma_{Y}(h+12)+\gamma_{Y}(h-24)-2 \gamma_{Y}(h-12)+\gamma_{Y}(h) \\
& \quad=6 \gamma_{Y}(h)-4 \gamma_{Y}(h+12)-4 \gamma_{Y}(h-12)+\gamma_{Y}(h+24)+\gamma_{Y}(h-24)
\end{aligned}
$$

Since $\mu_{Z}(t)$ and $\gamma_{Z}(t+h, t)$ do not depend on $t,\left\{Z_{t}: t \in \mathbb{Z}\right\}$ is (weakly) stationary.

Chapter 2

Problem 2.1. We find the best linear predictor $\hat{X}_{n+h}=a X_{n}+b$ of X_{n+h} by finding a and b such that $\mathbb{E}\left[X_{n+h}-\hat{X}_{n+h}\right]=0$ and $\mathbb{E}\left[\left(X_{n+h}-\hat{X}_{n+h}\right) X_{n}\right]=0$. We have

$$
\mathbb{E}\left[X_{n+h}-\hat{X}_{n+h}\right]=\mathbb{E}\left[X_{n+h}-a X_{n}-b\right]=\mathbb{E}\left[X_{n+h}\right]-a \mathbb{E}\left[X_{n}\right]-b=\mu(1-a)-b
$$

and

$$
\begin{aligned}
\mathbb{E}[& \left.\left(X_{n+h}-\hat{X}_{n+h}\right) X_{n}\right]=\mathbb{E}\left[\left(X_{n+h}-a X_{n}-b\right) X_{n}\right] \\
= & \mathbb{E}\left[X_{n+h} X_{n}\right]-a \mathbb{E}\left[X_{n}^{2}\right]-b \mathbb{E}\left[X_{n}\right] \\
= & \mathbb{E}\left[X_{n+h} X_{n}\right]-\mathbb{E}\left[X_{n+h}\right] \mathbb{E}\left[X_{n}\right]+\mathbb{E}\left[X_{n+h}\right] \mathbb{E}\left[X_{n}\right] \\
& -a\left(\mathbb{E}\left[X_{n}^{2}\right]-\mathbb{E}\left[X_{n}\right]^{2}+\mathbb{E}\left[X_{n}\right]^{2}\right)-b \mathbb{E}\left[X_{n}\right] \\
= & \operatorname{Cov}\left(X_{n+h}, X_{n}\right)+\mu^{2}-a\left(\operatorname{Cov}\left(X_{n}, X_{n}\right)+\mu^{2}\right)-b \mu \\
= & \gamma(h)+\mu^{2}-a\left(\gamma(0)+\mu^{2}\right)-b \mu,
\end{aligned}
$$

which implies that

$$
b=\mu(1-a), \quad a=\frac{\gamma(h)+\mu^{2}-b \mu}{\gamma(0)+\mu^{2}} .
$$

Solving this system of equations we get $a=\gamma(h) / \gamma(0)=\rho(h)$ and $b=\mu(1-\rho(h))$ i.e. $\hat{X}_{n+h}=\rho(h) X_{n}+\mu(1-\rho(h))$.

Problem 2.4. a) Put $X_{t}=(-1)^{t} Z$ where Z is random variable with $\mathbb{E}[Z]=0$ and $\operatorname{Var}(Z)=1$. Then

$$
\gamma_{X}(t+h, t)=\operatorname{Cov}\left((-1)^{t+h} Z,(-1)^{t} Z\right)=(-1)^{2 t+h} \operatorname{Cov}(Z, Z)=(-1)^{h}=\cos (\pi h)
$$

b) Recall problem 1.4 b$)$ where $X_{t}=Z_{1} \cos (c t)+Z_{2} \sin (c t)$ implies that $\gamma_{X}(h)=$ $\cos (c h)$. If we let $Z_{1}, Z_{2}, Z_{3}, Z_{4}, W$ be independent random variables with zero mean and unit variance and put

$$
X_{t}=Z_{1} \cos \left(\frac{\pi}{2} t\right)+Z_{2} \sin \left(\frac{\pi}{2} t\right)+Z_{3} \cos \left(\frac{\pi}{4} t\right)+Z_{4} \sin \left(\frac{\pi}{4} t\right)+W
$$

Then we see that $\gamma_{X}(h)=\kappa(h)$.
c) Let $\left\{Z_{t}: t \in \mathbb{Z}\right\}$ be $\mathrm{WN}\left(0, \sigma^{2}\right)$ and put $X_{t}=Z_{t}+\theta Z_{t-1}$. Then $\mathbb{E}\left[X_{t}\right]=0$ and

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, Z_{t}+\theta Z_{t-1}\right) \\
& \quad=\operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)+\theta \operatorname{Cov}\left(Z_{t+h}, Z_{t-1}\right)+\theta \operatorname{Cov}\left(Z_{t+h-1}, Z_{t}\right) \\
& \quad+\theta^{2} \operatorname{Cov}\left(Z_{t+h-1}, Z_{t-1}\right) \\
& = \begin{cases}\sigma^{2}\left(1+\theta^{2}\right) & \text { if } h=0, \\
\sigma^{2} \theta & \text { if }|h|=1, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

If we let $\sigma^{2}=1 /\left(1+\theta^{2}\right)$ and choose θ such that $\sigma^{2} \theta=0.4$, then we get $\gamma_{X}(h)=\kappa(h)$. Hence, we choose θ so that $\theta /\left(1+\theta^{2}\right)=0.4$, which implies that $\theta=1 / 2$ or $\theta=2$.

Problem 2.8. Assume that there exists a stationary solution $\left\{X_{t}: t \in \mathbb{Z}\right\}$ to

$$
X_{t}=\phi X_{t-1}+Z_{t}, \quad t=0, \pm 1, \ldots
$$

where $\left\{Z_{t}: t \in \mathbb{Z}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$ and $\left|\phi_{1}\right|=1$. Use the recursions

$$
X_{t}=\phi X_{t-1}+Z_{t}=\phi^{2} X_{t-2}+\phi Z_{t-1}+Z_{t}=\ldots=\phi^{n+1} X_{t-(n+1)}+\sum_{i=0}^{n} \phi^{i} Z_{t-i},
$$

which yields that

$$
X_{t}-\phi^{n+1} X_{t-(n+1)}=\sum_{i=0}^{n} \phi^{i} Z_{t-i} .
$$

We have that

$$
\operatorname{Var}\left(\sum_{i=0}^{n} \phi^{i} Z_{t-i}\right)=\sum_{i=0}^{n} \phi^{2 i} \operatorname{Var}\left(Z_{t-i}\right)=\sum_{i=0}^{n} \sigma^{2}=(n+1) \sigma^{2} .
$$

On the other side we have that

$$
\operatorname{Var}\left(X_{t}-\phi^{n+1} X_{t-(n+1)}\right)=2 \gamma(0)-2 \phi^{n+1} \gamma(n+1) \leq 2 \gamma(0)+2 \gamma(n+1) \leq 4 \gamma(0)
$$

This mean that $(n+1) \sigma^{2} \leq 4 \gamma(0), \forall n$. Letting $n \rightarrow \infty$ implies that $\gamma(0)=\infty$, which is a contradiction, i.e. there exists no stationary solution.
Problem 2.11. We have that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is an $\operatorname{AR(1)~process~with~mean~} \mu$ so $\left\{X_{t}: t \in \mathbb{Z}\right\}$ satisfies

$$
X_{t}-\mu=\phi\left(X_{t-1}-\mu\right)+Z_{t}, \quad\left\{Z_{t}: t \in \mathbb{Z}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right),
$$

with $\phi=0.6$ and $\sigma^{2}=2$. Since $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is $\operatorname{AR}(1)$ we have that $\gamma_{X}(h)=\frac{\phi^{|h|} \sigma^{2}}{1-\phi^{2}}$. We estimate μ by $\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$. For large values of $n \bar{X}_{n}$ is approximately normally distributed with mean μ and variance $\frac{1}{n} \sum_{|h|<\infty} \gamma(h)$ (see Section 2.4 in Brockwell and Davis). In our case the variance is

$$
\begin{aligned}
& \frac{1}{n}\left(1+2 \sum_{h=1}^{\infty} \phi^{h}\right) \frac{\sigma^{2}}{1-\phi^{2}}=\frac{1}{n}\left(1+2\left(\frac{1}{1-\phi}-1\right)\right) \frac{\sigma^{2}}{1-\phi^{2}} \\
& \quad=\frac{1}{n}\left(\frac{2}{1-\phi}-1\right) \frac{\sigma^{2}}{1-\phi^{2}}=\frac{1}{n}\left(\frac{1+\phi}{1-\phi}\right) \frac{\sigma^{2}}{1-\phi^{2}}=\frac{\sigma^{2}}{n(1-\phi)^{2}} .
\end{aligned}
$$

Hence, \bar{X}_{n} is approximately $N\left(\mu, \frac{\sigma^{2}}{n(1-\phi)^{2}}\right)$. A 95% confidence interval is given by $I=\left(\bar{x}_{n}-\lambda_{0.025} \frac{\sigma}{\sqrt{n}(1-\phi)}, \bar{x}_{n}+\lambda_{0.025} \frac{\sigma}{\sqrt{n}(1-\phi)}\right)$. Putting in the numeric values gives $I=0.271 \pm 0.69$. Since $0 \in I$ the hypothesis that $\mu=0$ can not be rejected.
Problem 2.15. Let $\hat{X}_{n+1}=P_{n} X_{n+1}=a_{0}+a_{1} X_{n}+\cdots+a_{n} X_{1}$. We may assume that $\mu_{X}(t)=0$. Otherwise we can consider $Y_{t}=X_{t}-\mu$. Let $S\left(a_{0}, a_{1}, \ldots, a_{n}\right)=$ $\mathbb{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right)^{2}\right]$ and minimize this w.r.t. $a_{0}, a_{1}, \ldots, a_{n}$.

$$
\begin{aligned}
S & \left(a_{0}, a_{1}, \ldots, a_{n}\right)=\mathbb{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right)^{2}\right] \\
\quad= & \mathbb{E}\left[\left(X_{n+1}-a_{0}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right] \\
= & a_{0}^{2}-2 a_{0} \mathbb{E}\left[X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right] \\
& \quad+\mathbb{E}\left[\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right] \\
= & a_{0}^{2}+\mathbb{E}\left[\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right] .
\end{aligned}
$$

Differentiation with respect to a_{i} gives

$$
\begin{aligned}
& \frac{\partial S}{\partial a_{0}}=2 a_{0}, \\
& \frac{\partial S}{\partial a_{i}}=-2 \mathbb{E}\left[\left(\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right) X_{n+1-i}\right], \quad i=1, \ldots, n\right.
\end{aligned}
$$

Putting the partial derivatives equal to zero we get that $S\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is minimized if

$$
\begin{aligned}
a_{0} & =0 \\
\mathbb{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right) X_{k}\right] & =0, \quad \text { for each } k=1, \ldots, n .
\end{aligned}
$$

Plugging in the expression for X_{n+1} we get that for $k=1, \ldots, n$.

$$
\begin{aligned}
0 & =\mathbb{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right) X_{k}\right] \\
& =\mathbb{E}\left[\left(\phi_{1} X_{n}+\cdots+\phi_{p} X_{n-p+1}+Z_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right) X_{k}\right]
\end{aligned}
$$

This is clearly satisfied if we let

$$
\begin{cases}a_{i}=\phi_{i}, & \text { if } 1 \leq i \leq p \\ a_{i}=0, & \text { if } i>p\end{cases}
$$

Since there is best linear predictor is unique this is the one. The mean square error is

$$
\mathbb{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right)^{2}\right]=\mathbb{E}\left[Z_{n+1}^{2}\right]=\sigma^{2}
$$

Chapter 3

Problem 3.1. We write the ARMA processes as $\phi(B) X_{t}=\theta(B) Z_{t}$. The process $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal if and only if $\phi(z) \neq 0$ for each $|z| \leq 1$ and invertible if and only if $\theta(z) \neq 0$ for each $|z| \leq 1$.
a) $\phi(z)=1+0.2 z-0.48 z^{2}=0$ is solved by $z_{1}=5 / 3$ and $z_{2}=-5 / 4$.

Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal.
$\theta(z)=1$. Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is invertible.
b) $\phi(z)=1+1.9 z+0.88 z^{2}=0$ is solved by $z_{1}=-10 / 11$ and $z_{2}=-5 / 4$.

Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not causal.
$\theta(z)=1+0.2 z+0.7 z^{2}=0$ is solved by $z_{1}=-(1-i \sqrt{69}) / 7$
and $z_{2}=-(1+i \sqrt{69}) / 7$. Since $\left|z_{1}\right|=\left|z_{2}\right|=\sqrt{70} / 7>1,\left\{X_{t}: t \in \mathbb{Z}\right\}$
is invertible.
c) $\phi(z)=1+0.6 z=0$ is solved by $z=-5 / 3$. Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal.
$\theta(z)=1+1.2 z=0$ is solved by $z=-5 / 6$. Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not invertible.
d) $\phi(z)=1+1.8 z+0.81 z^{2}=0$ is solved by $z_{1}=z_{2}=-10 / 9$.

Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal.
$\theta(z)=1$. Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is invertible.
e) $\phi(z)=1+1.6 z=0$ is solved by $z=-5 / 8$. Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is not causal.
$\theta(z)=1-0.4 z+0.04 z^{2}=0$ is solved by $z_{1}=z_{2}=5$.
Hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is invertible.
Problem 3.4. We have $X_{t}=0.8 X_{t-2}+Z_{t}$, where $\left\{Z_{t}: t \in \mathbb{Z}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$. To obtain the Yule-Walker equations we multiply each side by X_{t-k} and take expected value. Then we get

$$
\mathbb{E}\left[X_{t} X_{t-k}\right]=0.8 \mathbb{E}\left[X_{t-2} X_{t-k}\right]+\mathbb{E}\left[Z_{t} X_{t-k}\right]
$$

which gives us

$$
\begin{aligned}
& \gamma(0)=0.8 \gamma(2)+\sigma^{2} \\
& \gamma(k)=0.8 \gamma(k-2), \quad k \geq 1
\end{aligned}
$$

We use that $\gamma(k)=\gamma(-k)$. Thus, we need to solve

$$
\begin{aligned}
& \gamma(0)-0.8 \gamma(2)=\sigma^{2} \\
& \gamma(1)-0.8 \gamma(1)=0 \\
& \gamma(2)-0.8 \gamma(0)=0
\end{aligned}
$$

First we see that $\gamma(1)=0$ and therefore $\gamma(h)=0$ if h is odd. Next we solve for $\gamma(0)$ and we get $\gamma(0)=\sigma^{2}\left(1-0.8^{2}\right)^{-1}$. It follows that $\gamma(2 k)=\gamma(0) 0.8^{k}$ and hence the ACF is

$$
\rho(h)= \begin{cases}1 & h=0 \\ 0.8^{h}, & h=2 k, k= \pm 1, \pm 2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

The PACF can be computed as $\alpha(0)=1, \alpha(h)=\phi_{h h}$ where $\phi_{h h}$ comes from that the best linear predictor of X_{h+1} has the form

$$
\hat{X}_{h+1}=\sum_{i=1}^{h} \phi_{h i} X_{h+1-i}
$$

For an $\operatorname{AR}(2)$ process we have $\hat{X}_{h+1}=\phi_{1} X_{h}+\phi_{2} X_{h-1}$ where we can identify $\alpha(0)=1, \alpha(1)=0, \alpha(2)=0.8$ and $\alpha(h)=0$ for $h \geq 3$.
Problem 3.6. The ACVF for $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, Z_{t}+\theta Z_{t-1}\right) \\
& \quad=\gamma_{Z}(h)+\theta \gamma_{Z}(h+1)+\theta \gamma_{Z}(h-1)+\theta^{2} \gamma_{Z}(h) \\
& \quad= \begin{cases}\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\
\sigma^{2} \theta, & |h|=1\end{cases}
\end{aligned}
$$

On the other hand, the ACVF for $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is

$$
\begin{aligned}
& \gamma_{Y}(t+h, t)=\operatorname{Cov}\left(Y_{t+h}, Y_{t}\right)=\operatorname{Cov}\left(\tilde{Z}_{t+h}+\theta^{-1} \tilde{Z}_{t+h-1}, \tilde{Z}_{t}+\theta^{-1} \tilde{Z}_{t-1}\right) \\
& \quad=\gamma_{\tilde{Z}}(h)+\theta^{-1} \gamma_{\tilde{Z}}(h+1)+\theta^{-1} \gamma_{\tilde{Z}}(h-1)+\theta^{-2} \gamma_{\tilde{Z}}(h) \\
& \quad= \begin{cases}\sigma^{2} \theta^{2}\left(1+\theta^{-2}\right)=\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\
\sigma^{2} \theta^{2} \theta^{-1}=\sigma^{2} \theta, & |h|=1\end{cases}
\end{aligned}
$$

Hence they are equal.
Problem 3.7. First we show that $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma_{w}^{2}\right)$.

$$
\mathbb{E}\left[W_{t}\right]=\mathbb{E}\left[\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t-j}\right]=\sum_{j=0}^{\infty}(-\theta)^{-j} \mathbb{E}\left[X_{t-j}\right]=0
$$

since $\mathbb{E}\left[X_{t-j}\right]=0$ for each j. Next we compute the ACVF of $\left\{W_{t}: t \in \mathbb{Z}\right\}$ for $h \geq 0$.

$$
\begin{aligned}
& \gamma_{W}(t+h, t)=\mathbb{E}\left[W_{t+h} W_{t}\right]=\mathbb{E}\left[\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t+h-j} \sum_{k=0}^{\infty}(-\theta)^{-k} X_{t-k}\right] \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-j}(-\theta)^{-k} \mathbb{E}\left[X_{t+h-j} X_{t-k}\right]=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-j}(-\theta)^{-k} \gamma_{X}(h-j+k) \\
& =\left\{\gamma_{X}(r)=\sigma^{2}\left(1+\theta^{2}\right) \mathbf{1}_{\{0\}}(r)+\sigma^{2} \theta \mathbf{1}_{\{1\}}(|r|)\right\} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-(j+k)}\left(\sigma^{2}\left(1+\theta^{2}\right) \mathbf{1}_{\{j-k\}}(h)+\sigma^{2} \theta \mathbf{1}_{\{j-k+1\}}(h)+\sigma^{2} \theta \mathbf{1}_{\{j-k-1\}}(h)\right) \\
& =\sum_{j=h}^{\infty}(-\theta)^{-(j+j-h)} \sigma^{2}\left(1+\theta^{2}\right)+\sum_{j=h-1, j \geq 0}^{\infty}(-\theta)^{-(j+j-h+1)} \sigma^{2} \theta \\
& +\sum_{j=h+1}^{\infty}(-\theta)^{-(j+j-h-1)} \sigma^{2} \theta \\
& =\sigma^{2}\left(1+\theta^{2}\right)(-\theta)^{-h} \sum_{j=h}^{\infty}(-\theta)^{-2(j-h)}+\sigma^{2} \theta(-\theta)^{-(h-1)} \sum_{j=h-1, j \geq 0}^{\infty}(-\theta)^{-2(j-(h-1))} \\
& +\sigma^{2} \theta(-\theta)^{-(h+1)} \sum_{j=h+1}^{\infty}(-\theta)^{-2(j-(h+1))} \\
& =\sigma^{2}\left(1+\theta^{2}\right)(-\theta)^{-h} \frac{\theta^{2}}{\theta^{2}-1}+\sigma^{2} \theta(-\theta)^{-(h-1)} \frac{\theta^{2}}{\theta^{2}-1}+\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h) \\
& +\sigma^{2} \theta(-\theta)^{-(h+1)} \frac{\theta^{2}}{\theta^{2}-1} \\
& =\sigma^{2}(-\theta)^{-h} \frac{\theta^{2}}{\theta^{2}-1}\left(1+\theta^{2}-\theta^{2}-1\right)+\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h) \\
& =\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h)
\end{aligned}
$$

Hence, $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma_{w}^{2}\right)$ with $\sigma_{w}^{2}=\sigma^{2} \theta^{2}$. To continue we have that

$$
W_{t}=\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t-j}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j}
$$

with $\pi_{j}=(-\theta)^{-j}$ and $\sum_{j=0}^{\infty}\left|\pi_{j}\right|=\sum_{j=0}^{\infty} \theta^{-j}<\infty$ so $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is invertible and solves $\phi(B) X_{t}=\theta(B) W_{t}$ with $\pi(z)=\sum_{j=0}^{\infty} \pi_{j} z^{j}=\phi(z) / \theta(z)$. This implies that we must have

$$
\sum_{j=0}^{\infty} \pi_{j} z^{j}=\sum_{j=0}^{\infty}\left(-\frac{z}{\theta}\right)^{j}=\frac{1}{1+z / \theta}=\frac{\phi(z)}{\theta(z)}
$$

Hence, $\phi(z)=1$ and $\theta(z)=1+z / \theta$, i.e. $\left\{X_{t}: t \in \mathbb{Z}\right\}$ satisfies $X_{t}=W_{t}+\theta^{-1} W_{t-1}$.
Problem 3.11. The PACF can be computed as $\alpha(0)=1, \alpha(h)=\phi_{h h}$ where $\phi_{h h}$ comes from that the best linear predictor of X_{h+1} has the form

$$
\hat{X}_{h+1}=\sum_{i=1}^{h} \phi_{h i} X_{h+1-i}
$$

In particular $\alpha(2)=\phi_{22}$ in the expression

$$
\hat{X}_{3}=\phi_{21} X_{2}+\phi_{22} X_{1}
$$

The best linear predictor satisfies

$$
\operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{i}\right)=0, \quad i=1,2 .
$$

This gives us

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{1}\right)=\operatorname{Cov}\left(X_{3}-\phi_{21} X_{2}-\phi_{22} X_{1}, X_{1}\right) \\
& \quad=\operatorname{Cov}\left(X_{3}, X_{1}\right)-\phi_{21} \operatorname{Cov}\left(X_{2}, X_{1}\right)-\phi_{22} \operatorname{Cov}\left(X_{1}, X_{1}\right) \\
& \quad=\gamma(2)-\phi_{21} \gamma(1)-\phi_{22} \gamma(0)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{2}\right)=\operatorname{Cov}\left(X_{3}-\phi_{21} X_{2}-\phi_{22} X_{1}, X_{2}\right) \\
& \quad=\gamma(1)-\phi_{21} \gamma(0)-\phi_{22} \gamma(1)=0
\end{aligned}
$$

Since we have an MA(1) process it has ACVF

$$
\gamma(h)= \begin{cases}\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\ \sigma^{2} \theta, & |h|=1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we have to solve the equations

$$
\begin{aligned}
\phi_{21} \gamma(1)+\phi_{22} \gamma(0) & =0 \\
\left(1-\phi_{22}\right) \gamma(1)-\phi_{21} \gamma(0) & =0
\end{aligned}
$$

Solving this system of equations we find

$$
\phi_{22}=-\frac{\theta^{2}}{\theta^{4}+\theta^{2}+1}
$$

Chapter 4

Problem 4.4. By Corollary 4.1 .1 we know that a function $\gamma(h)$ with $\sum_{|h|<\infty}|\gamma(h)|$ is ACVF for some stationary process if and only if it is an even function and

$$
f(\lambda)=\frac{1}{2 \pi} \sum_{h=-\infty}^{\infty} e^{-i h \lambda} \gamma(h) \geq 0, \quad \text { for } \lambda \in(-\pi, \pi] .
$$

We have that $\gamma(h)$ is even, $\gamma(h)=\gamma(-h)$ and

$$
\begin{aligned}
f(\lambda) & =\frac{1}{2 \pi} \sum_{h=-3}^{3} e^{-i h \lambda} \gamma(h) \\
& =\frac{1}{2 \pi}\left(-0.25 e^{i 3 \lambda}-0.5 e^{i 2 \lambda}+1-0.5 e^{-i 2 \lambda}-0.25 e^{-i 3 \lambda}\right) \\
& =\frac{1}{2 \pi}\left(1-0.25\left(e^{i 3 \lambda}+e^{-i 3 \lambda}\right)-0.5\left(e^{i 2 \lambda}+e^{-i 2 \lambda}\right)\right) \\
& =\frac{1}{2 \pi}(1-0.5 \cos (3 \lambda)-\cos (2 \lambda))
\end{aligned}
$$

Do we have $f(\lambda) \geq 0$ on $\lambda \in(-\pi, \pi]$? The answer is NO, for instance $f(0)=$ $-1 /(4 \pi)$. Hence, $\gamma(h)$ is NOT an ACVF for a stationary time series.
Problem 4.5. Let $Z_{t}=X_{t}+Y_{t}$. First we show that $\gamma_{Z}(h)=\gamma_{X}(h)+\gamma_{Y}(h)$.

$$
\begin{aligned}
& \gamma_{Z}(t+h, t)=\operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)=\operatorname{Cov}\left(X_{t+h}+Y_{t+h}, X_{t}+Y_{t}\right) \\
& \quad=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)+\operatorname{Cov}\left(X_{t+h}, Y_{t}\right)+\operatorname{Cov}\left(Y_{t+h}, X_{t}\right)+\operatorname{Cov}\left(Y_{t+h}, Y_{t}\right) \\
& \quad=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)+\operatorname{Cov}\left(Y_{t+h}, Y_{t}\right) \\
& \quad=\gamma_{X}(t+h, t)+\gamma_{Y}(t+h, t) .
\end{aligned}
$$

We have that

$$
\gamma_{Z}(h)=\int_{(-\pi, \pi]} e^{i h \lambda} d F_{Z}(\lambda)
$$

but we also know that

$$
\begin{aligned}
& \gamma_{Z}(h)=\gamma_{X}(h)+\gamma_{Y}(h)=\int_{(-\pi, \pi]} e^{i h \lambda} d F_{X}(\lambda)+\int_{(-\pi, \pi]} e^{i h \lambda} d F_{Y}(\lambda) \\
& \quad=\int_{(-\pi, \pi]} e^{i h \lambda}\left(d F_{X}(\lambda)+d F_{Y}(\lambda)\right)
\end{aligned}
$$

Hence we have that $d F_{Z}(\lambda)=d F_{X}(\lambda)+d F_{Y}(\lambda)$, which implies that

$$
F_{Z}(\lambda)=\int_{(-\pi, \lambda]} d F_{Z}(\nu)=\int_{(-\pi, \lambda]}\left(d F_{X}(\nu)+d F_{Y}(\nu)\right)=F_{X}(\lambda)+F_{Y}(\lambda) .
$$

Problem 4.6. Since $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is MA(1)-process we have

$$
\gamma_{Y}(h)= \begin{cases}\sigma^{2}\left(1+\theta^{2}\right), & h=0, \\ \sigma^{2} \theta, & |h|=1, \\ 0, & \text { otherwise }\end{cases}
$$

By Problem 2.2 the process $S_{t}=A \cos (\pi t / 3)+B \sin (\pi t / 3)$ has ACVF $\gamma_{S}(h)=$ $\nu^{2} \cos (\pi h / 3)$. Since the processes are uncorrelated, Problem 4.5 gives that $\gamma_{X}(h)=$ $\gamma_{S}(h)+\gamma_{Y}(h)$. Moreover,

$$
\nu^{2} \cos (\pi h / 3)=\frac{\nu^{2}}{2}\left(e^{i \pi h / 3}+e^{-i \pi h / 3}\right)=\int_{-\pi}^{\pi} e^{i \lambda h} d F_{S}(\lambda)
$$

where

$$
d F_{S}(\lambda)=\frac{\nu^{2}}{2} \delta(\lambda-\pi / 3) d \lambda+\frac{\nu^{2}}{2} \delta(\lambda+\pi / 3) d \lambda
$$

This implies

$$
F_{S}(\lambda)= \begin{cases}0, & \lambda<-\pi / 3 \\ \nu^{2} / 2, & -\pi / 3 \leq \lambda<\pi / 3 \\ \nu^{2}, & \lambda \geq \pi / 3\end{cases}
$$

Furthermore we have that

$$
\begin{aligned}
& f_{Y}(\lambda)=\frac{1}{2 \pi} \sum_{h=-\infty}^{\infty} e^{-i h \lambda} \gamma_{Y}(h)=\frac{1}{2 \pi}\left(e^{i \lambda} \gamma_{Y}(-1)+\gamma_{Y}(0)+e^{-i \lambda} \gamma_{Y}(1)\right) \\
& \quad=\frac{1}{2 \pi}\left(\sigma^{2}\left(1+2.5^{2}\right)+2.5 \sigma^{2}\left(e^{i \lambda}+e^{-i \lambda}\right)\right)=\frac{\sigma^{2}}{2 \pi}(7.25+5 \cos (\lambda))
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& F_{Y}(\lambda)=\int_{-\pi}^{\lambda} f_{Y}(\xi) d \xi=\int_{-\pi}^{\lambda} \frac{\sigma^{2}}{2 \pi}(7.25+5 \cos (\xi)) d \xi=\frac{\sigma^{2}}{2 \pi}[7.25 \xi+5 \sin (\xi)]_{-\pi}^{\lambda} \\
& \quad=\frac{\sigma^{2}}{2 \pi}(7.25(\lambda+\pi)+5 \sin (\lambda))
\end{aligned}
$$

Finally we have $F_{X}(\lambda)=F_{S}(\lambda)+F_{Y}(\lambda)$.
Problem 4.9. a) We start with $\gamma_{X}(0)$,

$$
\gamma_{X}(0)=\int_{-\pi}^{\pi} e^{i 0 \lambda} f_{X}(\lambda) d \lambda=100 \int_{-\frac{\pi}{6}-0.01}^{-\frac{\pi}{6}+0.01} d \lambda+100 \int_{\frac{\pi}{6}-0.01}^{\frac{\pi}{6}+0.01} d \lambda=100 \cdot 0.04=4
$$

For $\gamma_{X}(1)$ we have,

$$
\begin{aligned}
\gamma_{X} & (1)=\int_{-\pi}^{\pi} e^{i \lambda} f_{X}(\lambda) d \lambda \\
& =100 \int_{-\frac{\pi}{6}-0.01}^{-\frac{\pi}{6}+0.01} e^{i \lambda} d \lambda+100 \int_{\frac{\pi}{6}-0.01}^{\frac{\pi}{6}+0.01} e^{i \lambda} d \lambda \\
& =100\left[\frac{e^{i \lambda}}{i}\right]_{-\frac{\pi}{6}-0.01}^{-\frac{\pi}{6}+0.01}+100\left[\frac{e^{i \lambda}}{i}\right]_{\frac{\pi}{6}-0.01}^{\frac{\pi}{6}+0.01} \\
& =\frac{100}{i}\left(e^{i\left(-\frac{\pi}{6}+0.01\right)}-e^{-i\left(\frac{\pi}{6}+0.01\right)}+e^{i\left(\frac{\pi}{6}+0.01\right)}-e^{-i\left(-\frac{\pi}{6}+0.01\right)}\right) \\
& =200\left(\sin \left(-\frac{\pi}{6}+0.01\right)+\sin \left(\frac{\pi}{6}+0.01\right)\right) \\
& =200 \sqrt{3} \sin (0.01) \approx 3.46
\end{aligned}
$$

The spectral density $f_{X}(\lambda)$ is plotted in Figure 4.9(a).
b) Let

$$
Y_{t}=\nabla_{12} X_{t}=X_{t}-X_{t-12}=\sum_{k=-\infty}^{\infty} \psi_{k} X_{t-k}
$$

with $\psi_{0}=1, \psi_{12}=-1$ and $\psi_{j}=0$ otherwise. Then we have the spectral density $f_{Y}(\lambda)=\left|\psi\left(e^{-i \lambda}\right)\right|^{2} f_{X}(\lambda)$ where

$$
\psi\left(e^{-i \lambda}\right)=\sum_{k=-\infty}^{\infty} \psi_{k} e^{-i k \lambda}=1-e^{-i 12 \lambda}
$$

Hence,

$$
\begin{aligned}
& f_{Y}(\lambda)=\left|1-e^{-12 i \lambda}\right|^{2} f_{X}(\lambda)=\left(1-e^{-12 i \lambda}\right)\left(1-e^{12 i \lambda}\right) f_{X}(\lambda) \\
& \quad=2(1-\cos (12 \lambda)) f_{X}(\lambda)
\end{aligned}
$$

The power transfer function $\left|\psi\left(e^{-i \lambda}\right)\right|^{2}$ is plotted in Figure 4.9(b) and the resulting spectral density $f_{Y}(\lambda)$ is plotted in Figure $4.9(\mathrm{c})$.
c) The variance of Y_{t} is $\gamma_{Y}(0)$ which is computed by

$$
\begin{aligned}
& \gamma_{Y}(0)=\int_{-\pi}^{\pi} f_{Y}(\lambda) d \lambda \\
&= 200 \int_{-\frac{\pi}{6}-0.01}^{-\frac{\pi}{6}+0.01}(1-\cos (12 \lambda)) d \lambda+200 \int_{\frac{\pi}{6}-0.01}^{\frac{\pi}{6}+0.01}(1-\cos (12 \lambda)) d \lambda \\
&= 200\left(\left[\lambda-\frac{\sin (12 \lambda)}{12}\right]_{-\frac{\pi}{6}-0.01}^{-\frac{\pi}{6}+0.01}+\left[\lambda-\frac{\sin (12 \lambda)}{12}\right]_{\frac{\pi}{6}-0.01}^{\frac{\pi}{6}+0.01}\right) \\
&= 200\left(0.02-\frac{\sin (12(-\pi / 6+0.01))-\sin (12(-\pi / 6-0.01))}{12}\right. \\
&\left.+0.02-\frac{\sin (12(\pi / 6+0.01))-\sin (12(\pi / 6-0.01))}{12}\right) \\
&= 200\left(0.04+\frac{\sin (2 \pi-0.12)-\sin (2 \pi+0.12)}{6}\right) \\
&= 200\left(0.04-\frac{1}{3} \sin (0.12)\right)=0.0192
\end{aligned}
$$

Problem 4.10. a) Let $\phi(z)=1-\phi z$ and $\theta(z)=1-\theta z$. Then $X_{t}=\frac{\theta(B)}{\phi(B)} Z_{t}$ and

$$
f_{X}(\lambda)=\left|\frac{\theta\left(e^{-i \lambda}\right)}{\phi\left(e^{-i \lambda}\right)}\right|^{2} f_{Z}(\lambda)=\left|\frac{\theta\left(e^{-i \lambda}\right)}{\phi\left(e^{-i \lambda}\right)}\right|^{2} \frac{\sigma^{2}}{2 \pi}
$$

For $\left\{W_{t}: t \in \mathbb{Z}\right\}$ we get

$$
f_{W}(\lambda)=\left|\frac{\tilde{\phi}\left(e^{-i \lambda}\right)}{\tilde{\theta}\left(e^{-i \lambda}\right)}\right|^{2}\left|\frac{\theta\left(e^{-i \lambda}\right)}{\phi\left(e^{-i \lambda}\right)}\right|^{2} \frac{\sigma^{2}}{2 \pi}=\frac{\left|1-\frac{1}{\phi} e^{-i \lambda}\right|^{2}\left|1-\theta e^{-i \lambda}\right|^{2}}{\left|1-\frac{1}{\theta} e^{-i \lambda}\right|^{2}\left|1-\phi e^{-i \lambda}\right|^{2}} \frac{\sigma^{2}}{2 \pi}
$$

Now note that we can write

$$
\begin{aligned}
\mid 1 & -\left.\frac{1}{\phi} e^{-i \lambda}\right|^{2}=\frac{1}{\phi^{2}}\left|\phi-e^{-i \lambda}\right|^{2}=\frac{\left|e^{i \lambda}\right|^{2}}{\phi^{2}}\left|\phi-e^{-i \lambda}\right|^{2}=\frac{1}{\phi^{2}}\left|\phi e^{i \lambda}-1\right|^{2} \\
& =\frac{1}{\phi^{2}}\left|1-\phi e^{i \lambda}\right|^{2}=\frac{1}{\phi^{2}}\left|1-\phi e^{-i \lambda}\right|^{2}
\end{aligned}
$$

Inserting this and the corresponding expression with ϕ substituted by θ in the computation above we get

$$
f_{W}(\lambda)=\frac{\frac{1}{\phi^{2}}\left|1-\phi e^{-i \lambda}\right|^{2}\left|1-\theta e^{-i \lambda}\right|^{2}}{\frac{1}{\theta^{2}}\left|1-\theta e^{-i \lambda}\right|^{2}\left|1-\phi e^{-i \lambda}\right|^{2}} \frac{\sigma^{2}}{2 \pi}=\frac{\theta^{2}}{\phi^{2}} \frac{\sigma^{2}}{2 \pi}
$$

(a) $f_{X}(\lambda)$

(b) $\left|\psi\left(e^{-i \lambda}\right)\right|^{2}$

(c) $f_{Y}(\lambda)$

Figure 1: Exercise 4.9
which is constant.
b) Since $\left\{W_{t}: t \in \mathbb{Z}\right\}$ has constant spectral density it is white noise and

$$
\sigma_{w}^{2}=\gamma_{W}(0)=\int_{-\pi}^{\pi} f_{W}(\lambda) d \lambda=\frac{\theta^{2}}{\phi^{2}} \frac{\sigma^{2}}{2 \pi} 2 \pi=\frac{\theta^{2}}{\phi^{2}} \sigma^{2} .
$$

c) From definition of $\left\{W_{t}: t \in \mathbb{Z}\right\}$ we get that $\tilde{\phi}(B) X_{t}=\tilde{\theta}(B) W_{t}$ which is a causal and invertible representation.

Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ satisfies

$$
Y_{t}-\phi_{1} Y_{t-1}-\phi_{2} Y_{t-2}=Z_{t}, \quad\left\{Z_{t}: t \in \mathbb{Z}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Multiplying this equation with Y_{t-k} and take expectation gives

$$
\gamma(k)-\phi_{1} \gamma(k-1)-\phi_{2} \gamma(k-2)= \begin{cases}\sigma^{2} & k=0 \\ 0 & k \geq 1\end{cases}
$$

We rewrite the first three equations as

$$
\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)= \begin{cases}\gamma(k) & k=1,2 \\ \gamma(0)-\sigma^{2} & k=0\end{cases}
$$

Introducing the notation

$$
\boldsymbol{\Gamma}_{2}=\left(\begin{array}{ll}
\gamma(0) & \gamma(1) \\
\gamma(1) & \gamma(0)
\end{array}\right), \boldsymbol{\gamma}_{2}=\binom{\gamma(1)}{\gamma(2)}, \boldsymbol{\phi}=\binom{\phi_{1}}{\phi_{2}}
$$

we have $\boldsymbol{\Gamma}_{2} \boldsymbol{\phi}=\boldsymbol{\gamma}_{2}$ and $\sigma^{2}-\gamma(0)-\boldsymbol{\phi}^{T} \boldsymbol{\gamma}_{2}$. We replace $\boldsymbol{\Gamma}_{2}$ by $\hat{\boldsymbol{\Gamma}}_{2}$ and $\boldsymbol{\gamma}_{2}$ by $\hat{\boldsymbol{\gamma}}_{2}$ and solve to get an estimate $\hat{\boldsymbol{\phi}}$ for $\boldsymbol{\phi}$. That is, we solve

$$
\hat{\boldsymbol{\Gamma}}_{2} \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\gamma}}_{2} \quad \hat{\sigma}^{2}=\hat{\gamma}(0)-\hat{\boldsymbol{\phi}}^{T} \hat{\boldsymbol{\gamma}}_{2}
$$

Hence

$$
\begin{aligned}
\hat{\boldsymbol{\phi}} & =\hat{\boldsymbol{\Gamma}}_{2}^{-1} \hat{\gamma}_{2}=\frac{1}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}\left(\begin{array}{cc}
\hat{\gamma}(0) & -\hat{\gamma}(1) \\
-\hat{\gamma}(1) & \hat{\gamma}(0)
\end{array}\right)\binom{\hat{\gamma}(1)}{\hat{\gamma}(2)} \\
& =\frac{1}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}\left(\begin{array}{cc}
\hat{\gamma}(0) \hat{\gamma}(1) & -\hat{\gamma}(1) \hat{\gamma}(2) \\
-\hat{\gamma}(1)^{2} & \hat{\gamma}(0) \hat{\gamma}(2)
\end{array}\right)
\end{aligned}
$$

We get that

$$
\begin{aligned}
& \hat{\phi}_{1}=\frac{(\hat{\gamma}(0)-\hat{\gamma}(2)) \hat{\gamma}(1)}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}=1.32 \\
& \hat{\phi}_{2}=\frac{\hat{\gamma}(0) \hat{\gamma}(2)-\hat{\gamma}(1)^{2}}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}=-0.634 \\
& \hat{\sigma}^{2}=\hat{\gamma}(0)-\hat{\phi}_{1} \hat{\gamma}(1)-\hat{\phi}_{2} \hat{\gamma}(2)=289.18
\end{aligned}
$$

We also have that $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\boldsymbol{\phi}, \sigma^{2} \boldsymbol{\Gamma}_{2}^{-1} / n\right)$ and approximately $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\boldsymbol{\phi}, \hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n\right)$. Here

$$
\hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n=\frac{289.18}{100}\left(\begin{array}{cc}
0.0021 & -0.0017 \\
-0.0017 & 0.0021
\end{array}\right)=\left(\begin{array}{cc}
0.0060 & -0.0048 \\
-0.0048 & 0.0060
\end{array}\right)
$$

So we have approximately $\hat{\phi}_{1} \sim N\left(\phi_{1}, 0.0060\right)$ and $\hat{\phi}_{2} \sim N\left(\phi_{2}, 0.0060\right)$ and the confidence intervals are

$$
\begin{aligned}
& I_{\phi_{1}}=\hat{\phi}_{1} \pm \lambda_{0.025} \sqrt{0.006}=1.32 \pm 0.15 \\
& I_{\phi_{2}}=\hat{\phi}_{2} \pm \lambda_{0.025} \sqrt{0.006}=-0.634 \pm 0.15
\end{aligned}
$$

Problem 5.3. a) $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal if $\phi(z) \neq 0$ for $|z| \leq 1$ so let us check for which values of ϕ this can happen. $\phi(z)=1-\phi z-\phi^{2} z^{2}$ so putting this equal to zero implies

$$
z^{2}+\frac{z}{\phi}-\frac{1}{\phi^{2}}=0 \Rightarrow z_{1}=-\frac{1-\sqrt{5}}{2 \phi} \text { and } z_{2}=-\frac{1+\sqrt{5}}{2 \phi}
$$

Furthermore $\left|z_{1}\right|>1$ if $|\phi|<(\sqrt{5}-1) / 2=0.61$ and $\left|z_{2}\right|>1$ if $|\phi|<(1+\sqrt{5}) / 2=$ 1.61. Hence, the process is causal if $|\phi|<0.61$.
b) The Yule-Walker equations are

$$
\gamma(k)-\phi \gamma(k-1)-\phi^{2} \gamma(k-2)=\left\{\begin{array}{cc}
\sigma^{2} & k=0 \\
0 & k \geq 1
\end{array}\right.
$$

Rewriting the first 3 equations and using $\gamma(k)=\gamma(-k)$ gives

$$
\begin{aligned}
& \gamma(0)-\phi \gamma(1)-\phi^{2} \gamma(2)=\sigma^{2} \\
& \gamma(1)-\phi \gamma(0)-\phi^{2} \gamma(1)=0 \\
& \gamma(2)-\phi \gamma(1)-\phi^{2} \gamma(0)=0
\end{aligned}
$$

Multiplying the third equation by ϕ^{2} and adding the first gives

$$
\begin{aligned}
-\phi^{3} \gamma(1)-\phi \gamma(1)-\phi^{4} \gamma(0)+\gamma(0) & =\sigma^{2} \\
\gamma(1)-\phi \gamma(0)-\phi^{2} \gamma(1) & =0
\end{aligned}
$$

We solve the second equation to obtain

$$
\phi=-\frac{1}{2 \rho(1)} \pm \sqrt{\frac{1}{4 \rho(1)^{2}}+1}
$$

Inserting the estimated values of $\hat{\gamma}(0)$ and $\hat{\gamma}(1)=\hat{\gamma}(0) \hat{\rho}(1)$ gives the solutions $\hat{\phi}=\{0.509,-1.965\}$ and we choose the causal solution $\hat{\phi}=0.509$. Inserting this value in the expression for σ^{2} we get

$$
\hat{\sigma}^{2}=-\hat{\phi}^{3} \hat{\gamma}(1)-\hat{\phi} \hat{\gamma}(1)-\hat{\phi}^{4} \hat{\gamma}(0)+\hat{\gamma}(0)=2.985
$$

Problem 5.4. a) Let us construct a test to see if the assumption that $\left\{X_{t}-\mu\right.$: $t \in \mathbb{Z}\}$ is $\mathrm{WN}\left(0, \sigma^{2}\right)$ is reasonable. To this end suppose that $\left\{X_{t}-\mu: t \in \mathbb{Z}\right\}$ is WN $\left(0, \sigma^{2}\right)$. Then, since $\rho(k)=0$ for $k \geq 1$ we have that $\hat{\rho}(k) \sim \operatorname{AN}(0,1 / n)$. A 95% confidence interval for $\rho(k)$ is then $I_{\rho(k)}=\hat{\rho}(k) \pm \lambda_{0.025} / \sqrt{200}$. This gives us

$$
\begin{aligned}
I_{\rho(1)} & =0.427 \pm 0.139 \\
I_{\rho(2)} & =0.475 \pm 0.139 \\
I_{\rho(3)} & =0.169 \pm 0.139
\end{aligned}
$$

Clearly $0 \notin I_{\rho(k)}$ for any of the observed $k=1,2,3$ and we conclude that it is not reasonable to assume that $\left\{X_{t}-\mu: t \in \mathbb{Z}\right\}$ is white noise.
b) We estimate the mean by $\hat{\mu}=\bar{x}_{200}=3.82$. The Yule-Walker estimates is given by

$$
\hat{\boldsymbol{\phi}}=\hat{\mathbf{R}}_{2}^{-1} \hat{\boldsymbol{\rho}}_{2}, \quad \hat{\sigma}^{2}=\hat{\gamma}(0)\left(1-\hat{\boldsymbol{\rho}}_{2}^{T} \hat{\mathbf{R}}_{2}^{-1} \hat{\boldsymbol{\rho}}_{2}\right)
$$

where

$$
\hat{\boldsymbol{\phi}}=\binom{\hat{\phi}_{1}}{\hat{\phi}_{2}}, \hat{\mathbf{R}}_{2}=\left(\begin{array}{cc}
\hat{\rho}(0) & \hat{\rho}(1) \\
\hat{\rho}(1) & \hat{\rho}(0)
\end{array}\right), \hat{\boldsymbol{\rho}}_{2}=\binom{\hat{\rho}(1)}{\hat{\rho}(2)} .
$$

Solving this system gives the estimates $\hat{\phi}_{1}=0.2742, \hat{\phi}_{2}=0.3579$ and $\hat{\sigma}^{2}=0.8199$. c) We construct a 95% confidence interval for μ to test if we can reject the hypothesis that $\mu=0$. We have that $\bar{X}_{200} \sim \mathrm{AN}(\mu, \nu / n)$ with

$$
\nu=\sum_{h=-\infty}^{\infty} \gamma(h) \approx \hat{\gamma}(-3)+\hat{\gamma}(-2)+\hat{\gamma}(-1)+\hat{\gamma}(0)+\hat{\gamma}(1)+\hat{\gamma}(2)+\hat{\gamma}(3)=3.61
$$

An approximate 95% confidence interval for μ is then

$$
I=\bar{x}_{n} \pm \lambda_{0.025} \sqrt{\nu / n}=3.82 \pm 1.96 \sqrt{3.61 / 200}=3.82 \pm 0.263
$$

Since $0 \notin I$ we reject the hypothesis that $\mu=0$.
d) We have that approximately $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\phi, \hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n\right)$. Inserting the observed values we get

$$
\frac{\hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1}}{n}=\left(\begin{array}{ll}
0.0050 & -0.0021 \\
-0.0021 & 0.0050
\end{array}\right)
$$

and hence $\hat{\phi}_{1} \sim \operatorname{AN}\left(\phi_{1}, 0.0050\right)$ and $\hat{\phi}_{2} \sim \operatorname{AN}\left(\phi_{2}, 0.0050\right)$. We get the 95% confidence intervals

$$
\begin{aligned}
& I_{\phi_{1}}=\hat{\phi}_{1} \pm \lambda_{0.025} \sqrt{0.005}=0.274 \pm 0.139 \\
& I_{\phi_{2}}=\hat{\phi}_{2} \pm \lambda_{0.025} \sqrt{0.005}=0.358 \pm 0.139
\end{aligned}
$$

e) If the data were generated from an $\operatorname{AR}(2)$ process, then the PACF would be $\alpha(0)=1, \hat{\alpha}(1)=\hat{\rho}(1)=0.427, \hat{\alpha}(2)=\hat{\phi}_{2}=0.358$ and $\hat{\alpha}(h)=0$ for $h \geq 3$.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the process were Gaussian. Then the innovations

$$
\begin{aligned}
& X_{1}-\hat{X}_{1}=X_{1} \sim N\left(0, \nu_{0}\right) \\
& X_{2}-\hat{X}_{2}=X_{2}-\phi X_{1} \sim N\left(0, \nu_{1}\right)
\end{aligned}
$$

where $\nu_{0}=\sigma^{2} r_{0}=\mathbb{E}\left[\left(X_{1}-\hat{X}_{1}\right)^{2}\right], \nu_{1}=\sigma^{2} r_{1}=\mathbb{E}\left[\left(X_{2}-\hat{X}_{2}\right)^{2}\right]$. This implies $\nu_{0}=\mathbb{E}\left[X_{1}^{2}\right]=\gamma(0), r_{0}=1 /\left(1-\phi^{2}\right)$ and $\nu_{1}=\mathbb{E}\left[\left(X_{2}-\hat{X}_{2}\right)^{2}\right]=\gamma(0)-2 \phi \gamma(1)+\phi^{2} \gamma(0)$ and hence

$$
r_{1}=\frac{\gamma(0)\left(1+\phi^{2}\right)-2 \phi \gamma(1)}{\sigma^{2}}=\frac{1+\phi^{2}-2 \phi^{2}}{1-\phi^{2}}=1
$$

Here we have used that $\gamma(1)=\sigma^{2} \phi /\left(1-\phi^{2}\right)$. Since the distribution of the innovations is normal the density for $X_{j}-\hat{X}_{j}$ is

$$
f_{X_{j}-\hat{X}_{j}}=\frac{1}{\sqrt{2 \pi \sigma^{2} r_{j-1}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2} r_{j-1}}\right)
$$

and the likelihood function is

$$
\begin{aligned}
& L\left(\phi, \sigma^{2}\right)=\prod_{j=1}^{2} f_{X_{j}-\hat{X}_{j}}=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{2} r_{0} r_{1}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{\left(x_{1}-\hat{x}_{1}\right)^{2}}{r_{0}}+\frac{\left(x_{2}-\hat{x}_{2}\right)^{2}}{r_{1}}\right)\right\} \\
& \quad=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{2} r_{0} r_{1}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{x_{1}^{2}}{r_{0}}+\frac{\left(x_{2}-\phi x_{1}\right)^{2}}{r_{1}}\right)\right\}
\end{aligned}
$$

We maximize this by taking logarithm and then differentiate:

$$
\begin{aligned}
& \log L\left(\phi, \sigma^{2}\right)=-\frac{1}{2} \log \left(4 \pi^{2} \sigma^{4} r_{0} r_{1}\right)-\frac{1}{2 \sigma^{2}}\left(\frac{x_{1}^{2}}{r_{0}}+\frac{\left(x_{2}-\phi x_{1}\right)^{2}}{r_{1}}\right) \\
& \quad=-\frac{1}{2} \log \left(4 \pi^{2} \sigma^{4} /\left(1-\phi^{2}\right)\right)-\frac{1}{2 \sigma^{2}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right) \\
& \quad=-\log (2 \pi)-\log \left(\sigma^{2}\right)+\frac{1}{2} \log \left(1-\phi^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right)
\end{aligned}
$$

Differentiating yields

$$
\begin{aligned}
& \frac{\partial l\left(\phi, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right) \\
& \frac{\partial l\left(\phi, \sigma^{2}\right)}{\partial \phi}=\frac{1}{2} \cdot \frac{-2 \phi}{1-\phi^{2}}+\frac{x_{1} x_{2}}{\sigma^{2}}
\end{aligned}
$$

Putting these expressions equal to zero gives $\sigma^{2}=\frac{1}{2}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right)$ and then after some computations $\phi=2 x_{1} x_{2} /\left(x_{1}^{2}+x_{2}^{2}\right)$. Inserting the expression for ϕ is the equation for σ gives the maximum likelihood estimators

$$
\hat{\sigma}^{2}=\frac{\left(x_{1}^{2}-x_{2}^{2}\right)^{2}}{2\left(x_{1}^{2}+x_{2}^{2}\right)} \text { and } \hat{\phi}=\frac{2 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

Chapter 6

Problem 6.5. The best linear predictor of Y_{n+1} in terms of $1, X_{0}, Y_{1}, \ldots, Y_{n}$ i.e.

$$
\hat{Y}_{n+1}=a_{0}+c X_{0}+a_{1} Y_{1}+\cdots+a_{n} Y_{n}
$$

must satisfy the orthogonality relations

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, 1\right) & =0 \\
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, X_{0}\right) & =0 \\
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, Y_{j}\right) & =0, \quad j=1, \ldots, n
\end{aligned}
$$

The second equation can be written as
$\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, X_{0}\right)=\mathbb{E}\left[\left(Y_{n+1}-a_{0}+c X_{0}+a_{1} Y_{1}+\cdots+a_{n} Y_{n}\right) X_{0}\right]=c \mathbb{E}\left[X_{0}^{2}\right]=0$
so we must have $c=0$. This does not effect the other equations since $\mathbb{E}\left[Y_{j} X_{0}\right]=0$ for each j.

Problem 6.6. Put $Y_{t}=\nabla X_{t}$. Then $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is an $\operatorname{AR}(2)$ process. We can rewrite this as $X_{t+1}=Y_{t}+X_{t-1}$. Putting $t=n+h$ and using the linearity of the projection operator P_{n} gives $P_{n} X_{n+h}=P_{n} Y_{n+h}+P_{n} X_{n+h-1}$. Since $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is $\operatorname{AR}(2)$ process we have $P_{n} Y_{n+1}=\phi_{1} Y_{n}+\phi_{2} Y_{n-1}, P_{n} Y_{n+2}=\phi_{1} P_{n} Y_{n+1}+\phi_{2} Y_{n}$ and iterating we find $P_{n} Y_{n+h}=\phi_{1} P_{n} Y_{n+h-1}+\phi_{2} P_{n} Y_{n+h-2}$. Let $\phi^{*}(z)=(1-z) \phi(z)=$ $1-\phi_{1}^{*} z-\phi_{2}^{*} z^{2}-\phi_{3}^{*} z^{3}$. Then

$$
(1-z) \phi(z)=1-\phi_{1} z-\phi_{2} z-z+\phi_{1} z^{2}+\phi_{2} z^{3}
$$

i.e. $\phi_{1}^{*}=\phi_{1}+1, \phi_{2}^{*}=\phi_{2}-\phi_{1}$ and $\phi_{3}^{*}=-\phi_{2}$. Then

$$
P_{n} X_{n+h}=\sum_{j=1}^{3} \phi_{j}^{*} X_{n+h-j}
$$

This can be verified by first noting that

$$
\begin{aligned}
P_{n} Y_{n+h} & =\phi_{1} P_{n} Y_{n+h-1}+\phi_{2} P_{n} Y_{n+h-2} \\
& =\phi_{1}\left(P_{n} X_{n+h-1}-P_{n} X_{n+h-2}\right)+\phi_{2}\left(P_{n} X_{n+h-2}-P_{n} X_{n+h-3}\right) \\
& =\phi_{1} P_{n} X_{n+h-1}+\left(\phi_{2}-\phi_{1}\right) P_{n} X_{n+h-2}-\phi_{2} P_{n} X_{n+h-3}
\end{aligned}
$$

and then

$$
\begin{aligned}
P_{n} X_{n+h} & =P_{n} Y_{n+h}+P_{n} X_{n+h-1} \\
& =\left(\phi_{1}+1\right) P_{n} X_{n+h-1}+\left(\phi_{2}-\phi_{1}\right) P_{n} X_{n+h-2}-\phi_{2} P_{n} X_{n+h-3} \\
& =\phi_{1}^{*} P_{n} X_{n+h-1}+\phi_{2}^{*} P_{n} X_{n+h-2}+\phi_{3}^{*} P_{n} X_{n+h-3} .
\end{aligned}
$$

Hence, we have

$$
g(h)=\left\{\begin{array}{cc}
\phi_{1}^{*} g(h-1)+\phi_{2}^{*} g(h-2)+\phi_{3}^{*} g(h-3), & h \geq 1 \\
X_{n+h}, & h \leq 0
\end{array}\right.
$$

We may suggest a solution of the form $g(h)=a+b \xi_{1}^{-h}+c \xi_{2}^{-h}, h>-3$ where ξ_{1} and ξ_{2} are the solutions to $\phi(z)=0$ and $g(-2)=X_{n-2}, g(-1)=X_{n-1}$ and $g(0)=X_{n}$. Let us first find the roots ξ_{1} and ξ_{2}.

$$
\phi(z)=1-0.8 z+0.25 z^{2}=1-\frac{4}{5} z+\frac{1}{4} z^{2}=0 \Rightarrow z^{2}-\frac{16}{5} z+4=0
$$

We get that $z=8 / 5 \pm \sqrt{(8 / 5)^{2}-4}=(8 \pm 6 i) / 5$. Then $\xi_{1}^{-1}=5 /(8+6 i)=\cdots=$ $0.4-0.3 i$ and $\xi_{2}^{-1}=0.4+0.3 i$. Next we find the constants a, b and c by solving

$$
\begin{aligned}
X_{n-2} & =g(-2)=a+b \xi_{1}^{-2}+c \xi_{2}^{-2} \\
X_{n-1} & =g(-1)=a+b \xi_{1}^{-1}+c \xi_{2}^{-1} \\
X_{n} & =g(0)=a+b+c
\end{aligned}
$$

Note that $(0.4-0.3 i)^{2}=0.07-0.24 i$ and $(0.4+0.3 i)^{2}=0.07+0.24 i$ so we get the equations

$$
\begin{aligned}
X_{n-2} & =a+b(0.07-0.24 i)+c(0.07+0.24 i) \\
X_{n-1} & =a+b(0.4-0.3 i)+c(0.4+0.3 i) \\
X_{n} & =a+b+c
\end{aligned}
$$

Let $a=a_{1}+a_{2} i, b=b_{1}+b_{2} i$ and $c=c_{1}+c_{2} i$. Then we split the equations into a real part and an imaginary part and get

$$
\begin{aligned}
X_{n-2} & =a_{1}+0.07 b_{1}+0.24 b_{2}+0.07 c_{1}-0.24 c_{2} \\
X_{n-1} & =a_{1}+0.4 b_{1}+0.3 b_{2}+0.4 c_{1}-0.4 c_{2} \\
X_{n} & =a_{1}+b_{1}+c_{1} \\
0 & =a_{2}+0.07 b_{2}-0.24 b_{1}+0.07 c_{2}+0.24 c_{1} \\
0 & =a_{2}+0.4 b_{2}-0.3 b_{1}+4 c_{2}+0.3 c_{1} \\
0 & =a_{2}+b_{2}+c_{2}
\end{aligned}
$$

We can write this as a matrix equation by

$$
\left(\begin{array}{cccccc}
1 & 0 & 0.07 & 0.24 & 0.07 & -0.24 \\
1 & 0 & 0.4 & 0.3 & 0.4 & -0.3 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -0.24 & 0.07 & 0.24 & 0.07 \\
0 & 1 & -0.3 & 0.4 & 0.3 & 0.4 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{c}
X_{n-2} \\
X_{n-1} \\
X_{n} \\
0 \\
0 \\
0
\end{array}\right)
$$

which has the solution $a=2.22 X_{n}-1.77 X_{n-1}+0.55 X_{n-2}, b=\bar{c}=-1.1 X_{n-2}+$ $0.88 X_{n-1}+0.22 X_{n}+\left(-2.22 X_{n-2}+3.44 X_{n-1}-1.22 X_{n}\right) i$.

Chapter 7

Problem 7.1. The problem is not very well formulated; we replace the condition $\rho_{Y}(h) \rightarrow 0$ as $h \rightarrow \infty$ by the condition that $\rho_{Y}(h)$ is strictly decreasing.

The process is stationary if $\bar{\mu}_{t}=\mathbb{E}\left[\left(X_{1, t}, X_{2, t}\right)^{T}\right]=\left(\mu_{1}, \mu_{2}\right)^{T}$ and $\Gamma(t+h, t)$ does not depend on t. We may assume that $\left\{Y_{t}\right\}$ has mean zero so that

$$
\begin{aligned}
& \mathbb{E}\left[X_{1, t}\right]=\mathbb{E}\left[Y_{t}\right]=0 \\
& \mathbb{E}\left[X_{2, t}\right]=\mathbb{E}\left[Y_{t-d}\right]=0
\end{aligned}
$$

and the covariance function is

$$
\begin{aligned}
\Gamma(t+h, t) & =\mathbb{E}\left[\left(X_{1, t+h}, X_{2, t+h}\right)^{T}\left(X_{1, t}, X_{2, t}\right)\right]=\left(\begin{array}{cc}
\mathbb{E}\left[Y_{t+h} Y_{t}\right] & \mathbb{E}\left[Y_{t+h} Y_{t-d}\right] \\
\mathbb{E}\left[Y_{t+h-d} Y_{t}\right] & \mathbb{E}\left[Y_{t+h-d} Y_{t-d}\right]
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma_{Y}(h) & \gamma_{Y}(h+d) \\
\gamma_{Y}(h-d) & \gamma_{Y}(h)
\end{array}\right)
\end{aligned}
$$

Since neither $\bar{\mu}_{t}$ or $\Gamma(t+h, t)$ depend on t, the process is stationary. We assume that $\rho_{Y}(h) \rightarrow 0$ as $h \rightarrow \infty$. Then we have that the cross-correlation

$$
\rho_{12}(h)=\frac{\gamma_{12}(h)}{\sqrt{\gamma_{11}(0) \gamma_{22}(0)}}=\frac{\gamma_{Y}(h+d)}{\gamma_{Y}(0)}=\rho_{Y}(h+d)
$$

In particular, $\rho_{12}(0)=\rho_{Y}(d)<1$ whereas $\rho_{12}(-d)=\rho_{Y}(0)=1$.
Problem 7.3. We want to estimate the cross-correlation

$$
\rho_{12}(h)=\gamma_{12}(h) / \sqrt{\gamma_{11}(0) \gamma_{22}(0)}
$$

We estimate

$$
\Gamma(h)=\left(\begin{array}{ll}
\gamma_{11}(h) & \gamma_{12}(h) \\
\gamma_{21}(h) & \gamma_{22}(h)
\end{array}\right)
$$

by

$$
\hat{\Gamma}(h)=\left\{\begin{array}{cl}
\frac{1}{n} \sum_{t=1}^{n-h}\left(\mathbf{X}_{t+h}-\overline{\mathbf{X}}_{n}\right)\left(\mathbf{X}_{t}-\overline{\mathbf{X}}_{n}\right)^{T} & 0 \leq h \leq n-1 \\
\Gamma^{T}(-h) & -n+1 \leq h<0
\end{array}\right.
$$

Then we get $\hat{\rho}_{12}(h)=\hat{\gamma}_{12}(h) / \sqrt{\hat{\gamma}_{11}(0) \hat{\gamma}_{22}(0)}$. According to Theorem 7.3.1 in Brockwell and Davis we have, for $h \neq k$, that

$$
\binom{\sqrt{n} \hat{\rho}_{12}(h)}{\sqrt{n} \hat{\rho}_{21}(h)} \sim \text { approx. } \mathrm{N}(\mathbf{0}, \Lambda)
$$

where

$$
\begin{aligned}
& \Lambda_{11}=\Lambda_{22}=\sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j) \\
& \Lambda_{12}=\Lambda_{21}=\sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j+k-h)
\end{aligned}
$$

Since $\left\{X_{1, t}\right\}$ and $\left\{X_{2, t}\right\}$ are MA(1) processes we know that their ACF's are

$$
\begin{aligned}
& \rho_{X_{1}}(h)=\left\{\begin{array}{cc}
1 & h=0 \\
0.8 /\left(1+0.8^{2}\right) & h= \pm 1
\end{array}\right. \\
& \rho_{X_{2}}(h)=\left\{\begin{array}{cc}
1 & h=0 \\
-0.6 /\left(1+0.6^{2}\right) & h= \pm 1
\end{array}\right.
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j)=\rho_{11}(-1) \rho_{22}(-1)+\rho_{11}(0) \rho_{22}(0)+\rho_{11}(1) \rho_{22}(1) \\
& \quad=\frac{0.8}{1+0.8^{2}} \cdot \frac{-0.6}{1+0.6^{2}}+1+\frac{0.8}{1+0.8^{2}} \cdot \frac{-0.6}{1+0.6^{2}} \approx 0.57
\end{aligned}
$$

For the covariance we see that $\rho_{11}(j) \neq 0$ if $j=-1,0,1$ and $\rho_{22}(j+k-h) \neq 0$ if $j+k-h=-1,0,1$. Hence, the covariance is

$$
\begin{aligned}
& \sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j+k-h)=\rho_{11}(-1) \rho_{22}(0)+\rho_{11}(0) \rho_{22}(1) \approx 0.0466, \quad \text { if } k-h=1 \\
& \sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j+k-h)=\rho_{11}(0) \rho_{22}(-1)+\rho_{11}(1) \rho_{22}(0) \approx 0.0466, \quad \text { if } k-h=-1 \\
& \sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j+k-h)=\rho_{11}(-1) \rho_{22}(1) \approx-0.2152, \quad \text { if } k-h=2 \\
& \sum_{j=-\infty}^{\infty} \rho_{11}(j) \rho_{22}(j+k-h)=\rho_{11}(1) \rho_{22}(-1) \approx-0.2152, \quad \text { if } k-h=-2 .
\end{aligned}
$$

Problem 7.5. We have $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is a causal process if $\operatorname{det}(\Phi(z)) \neq 0$ for all $|z| \leq 1$, due to Brockwell-Davis page 242. Further more we have that if $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is a causal process, then

$$
\mathbf{X}_{t}=\sum_{j=0}^{\infty} \boldsymbol{\Psi}_{j} \mathbf{Z}_{t-j}
$$

where

$$
\begin{aligned}
& \boldsymbol{\Psi}_{j}=\boldsymbol{\Theta}_{j}+\sum_{k=1}^{\infty} \mathbf{\Phi}_{k} \mathbf{\Psi}_{j-k} \\
& \boldsymbol{\Theta}_{0}=\mathbf{I} \\
& \boldsymbol{\Theta}_{j}=\mathbf{0} \quad \text { for } \quad j>q \\
& \mathbf{\Phi}_{j}=\mathbf{0} \quad \text { for } \quad j>p \\
& \mathbf{\Psi}_{j}=\mathbf{0} \quad \text { for } \quad j<0
\end{aligned}
$$

and

$$
\boldsymbol{\Gamma}(h)=\sum_{j=0}^{\infty} \boldsymbol{\Psi}_{h+j} \boldsymbol{\Sigma} \boldsymbol{\Psi}_{j}^{T}, \quad h=0, \pm 1, \pm 2, \ldots
$$

(where in this case $\boldsymbol{\Sigma}=\mathbf{I}_{2}$). We have to establish that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is a causal process and then derive $\boldsymbol{\Gamma}(h)$.

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{\Phi}(z))=\operatorname{det}\left(\mathbf{I}-z \boldsymbol{\Phi}_{1}\right)=\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\frac{z}{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
1-\frac{z}{2} & \frac{z}{2} \\
0 & 1-\frac{z}{2}
\end{array}\right]\right)=\frac{1}{4}(2-z)^{2}
\end{aligned}
$$

Which implies that $\left|z_{1}\right|=\left|z_{2}\right|=2>1$ and hence $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is a causal process. We have that $\boldsymbol{\Psi}_{j}=\boldsymbol{\Theta}_{j}+\boldsymbol{\Phi}_{1} \boldsymbol{\Psi}_{j-1}$ and

$$
\begin{aligned}
\boldsymbol{\Psi}_{0} & =\boldsymbol{\Theta}_{0}+\boldsymbol{\Phi}_{1} \boldsymbol{\Psi}_{-1}=\boldsymbol{\Theta}_{0}=\mathbf{I} \\
\boldsymbol{\Psi}_{1} & =\boldsymbol{\Theta}_{1}+\boldsymbol{\Phi}_{1} \boldsymbol{\Psi}_{0}=\boldsymbol{\Phi}_{1}^{T}+\boldsymbol{\Phi}_{1} \\
\boldsymbol{\Psi}_{n+1} & =\boldsymbol{\Phi}_{1} \boldsymbol{\Psi}_{n} \quad \text { for } \quad n \geq 1
\end{aligned}
$$

From the last equation we get that $\boldsymbol{\Psi}_{n+1}=\boldsymbol{\Phi}_{1}^{n} \boldsymbol{\Psi}_{1}=\boldsymbol{\Phi}_{1}^{n}\left(\boldsymbol{\Phi}_{1}^{T}+\boldsymbol{\Phi}_{1}\right)$ and from the definition of $\boldsymbol{\Phi}_{1}$

$$
\boldsymbol{\Phi}_{1}^{n}=\frac{1}{2^{n}}\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right] \quad\left(\boldsymbol{\Phi}_{1}^{T}+\boldsymbol{\Phi}_{1}\right)^{2}=\frac{1}{4}\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] .
$$

Assume that $h \geq 0$, then

$$
\begin{aligned}
& \boldsymbol{\Gamma}(h)=\sum_{j=0}^{\infty} \boldsymbol{\Psi}_{h+j} \boldsymbol{\Psi}_{j}^{T}=\boldsymbol{\Psi}_{h}+\sum_{j=1}^{\infty} \boldsymbol{\Psi}_{h+j} \boldsymbol{\Psi}_{j}^{T} \\
& =\mathbf{\Psi}_{h}+\sum_{j=1}^{\infty} \boldsymbol{\Phi}_{1}^{h+j-1}\left(\mathbf{\Phi}_{1}^{T}+\mathbf{\Phi}_{1}\right)\left(\mathbf{\Phi}_{1}^{j-1}\left(\mathbf{\Phi}_{1}^{T}+\mathbf{\Phi}_{1}\right)\right)^{T} \\
& =\mathbf{\Psi}_{h}+\boldsymbol{\Phi}_{1}^{h} \sum_{j=0}^{\infty} \boldsymbol{\Phi}_{1}^{j}\left(\mathbf{\Phi}_{1}^{T}+\mathbf{\Phi}_{1}\right)^{2}\left(\boldsymbol{\Phi}_{1}^{j}\right)^{T} \\
& =\boldsymbol{\Psi}_{h}+\boldsymbol{\Phi}_{1}^{h} \sum_{j=0}^{\infty} \frac{1}{2^{j}}\left[\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right] \frac{1}{4}\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \frac{1}{2^{j}}\left[\begin{array}{ll}
1 & 0 \\
j & 1
\end{array}\right] \\
& =\boldsymbol{\Psi}_{h}+\boldsymbol{\Phi}_{1}^{h} \frac{1}{4} \sum_{j=0}^{\infty} \frac{1}{2^{2 j}}\left[\begin{array}{cc}
5+8 j+5 j^{2} & 4+5 j \\
4+5 j & 5
\end{array}\right] \\
& =\boldsymbol{\Psi}_{h}+\boldsymbol{\Phi}_{1}^{h}\left[\begin{array}{cc}
94 / 27 & 17 / 9 \\
17 / 9 & 5 / 3
\end{array}\right] .
\end{aligned}
$$

We have that

$$
\boldsymbol{\Psi}_{h}= \begin{cases}\mathbf{I}, & h=0 \\ \boldsymbol{\Phi}_{1}^{h-1}\left(\boldsymbol{\Phi}_{1}^{T}+\boldsymbol{\Phi}_{1}\right), & h>0\end{cases}
$$

which gives that

$$
\boldsymbol{\Gamma}(0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
94 / 27 & 17 / 9 \\
17 / 9 & 5 / 3
\end{array}\right]=\left[\begin{array}{cc}
121 / 27 & 17 / 9 \\
17 / 9 & 8 / 3
\end{array}\right]
$$

and for $h>0$

$$
\begin{aligned}
& \boldsymbol{\Gamma}(h)=\mathbf{\Phi}_{1}^{h-1}\left(\mathbf{\Phi}_{1}^{T}+\mathbf{\Phi}_{1}\right)+\mathbf{\Phi}_{1}^{h}\left[\begin{array}{cc}
94 / 27 & 17 / 9 \\
17 / 9 & 5 / 3
\end{array}\right] \\
& \quad=\boldsymbol{\Phi}_{1}^{h-1}\left(\frac{1}{2}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
94 / 27 & 17 / 9 \\
17 / 9 & 5 / 3
\end{array}\right]\right) \\
& \quad=\frac{1}{2^{h}}\left[\begin{array}{cc}
1 & h-1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
199 / 27 & 41 / 9 \\
26 / 9 & 11 / 3
\end{array}\right]
\end{aligned}
$$

Chapter 8

Problem 8.7. First we would like to show that

$$
\mathbf{X}_{t+1}=\left[\begin{array}{ll}
1 & \theta \tag{8.1}\\
\theta & 0
\end{array}\right]\left[\begin{array}{c}
Z_{t+1} \\
Z_{t}
\end{array}\right]
$$

is a solution to

$$
\mathbf{X}_{t+1}=\left[\begin{array}{cc}
0 & 1 \tag{8.2}\\
0 & 0
\end{array}\right] \mathbf{X}_{t}+\left[\begin{array}{l}
1 \\
\theta
\end{array}\right] Z_{t+1}
$$

Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{l}
1 \\
\theta
\end{array}\right]
$$

and note that

$$
A^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Then equation (8.2) can be written as

$$
\begin{aligned}
& \mathbf{X}_{t+1}=A \mathbf{X}_{t}+B Z_{t+1}=A\left(A \mathbf{X}_{t-1}+B Z_{t}\right)+B Z_{t+1}=A^{2} \mathbf{X}_{t-1}+A B Z_{t}+B Z_{t+1} \\
& \quad=\left[\begin{array}{l}
\theta \\
0
\end{array}\right] Z_{t}+\left[\begin{array}{l}
1 \\
\theta
\end{array}\right] Z_{t+1}=\left[\begin{array}{c}
\theta Z_{t}+Z_{t+1} \\
\theta Z_{t+1}
\end{array}\right]=\left[\begin{array}{ll}
1 & \theta \\
\theta & 0
\end{array}\right]\left[\begin{array}{c}
Z_{t+1} \\
Z_{t}
\end{array}\right]
\end{aligned}
$$

and hence (8.1) is a solution to equation (8.2). Next we prove that (8.1) is a unique solution to (8.2). Let $\mathbf{X}_{t+1}^{\prime}$ be another solution to equation (8.2) and consider the difference

$$
\begin{aligned}
& \mathbf{X}_{t+1}-\mathbf{X}_{t+1}^{\prime}=A \mathbf{X}_{t}+B Z_{t+1}-A \mathbf{X}_{t}^{\prime}-B Z_{t+1}=A\left(\mathbf{X}_{t}-\mathbf{X}_{t}^{\prime}\right) \\
& \quad=A\left(A \mathbf{X}_{t-1}+B Z_{t}-A \mathbf{X}_{t-1}^{\prime}-B Z_{t}\right)=A^{2}\left(\mathbf{X}_{t-1}-\mathbf{X}_{t-1}^{\prime}\right)=\mathbf{0}
\end{aligned}
$$

since $A^{2}=\mathbf{0}$. This implies that $\mathbf{X}_{t+1}=\mathbf{X}_{t+1}^{\prime}$, i.e. (8.1) is a unique solution to (8.2). Moreover, \mathbf{X}_{t} is stationary since

$$
\mu_{\mathbf{X}}(t)=\left[\begin{array}{ll}
1 & \theta \\
\theta & 0
\end{array}\right]\left[\begin{array}{c}
\mathbb{E}\left[Z_{t}\right] \\
\mathbb{E}\left[Z_{t-1}\right]
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{\mathbf{X}}(t+h, t)=\left[\begin{array}{ll}
\gamma_{11}(t+h, t) & \gamma_{12}(t+h, t) \\
\gamma_{21}(t+h, t) & \gamma_{22}(t+h, t)
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, Z_{t}+\theta Z_{t-1}\right) & \operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, \theta Z_{t}\right) \\
\operatorname{Cov}\left(\theta Z_{t+h}, Z_{t}+\theta Z_{t-1}\right) & \operatorname{Cov}\left(\theta Z_{t+h}, \theta Z_{t}\right)
\end{array}\right] \\
& \quad=\sigma^{2}\left[\begin{array}{cc}
\left(1+\theta^{2}\right) \mathbf{1}_{\{0\}}(h)+\theta \mathbf{1}_{\{-1,1\}}(h) & \theta \mathbf{1}_{\{0\}}(h)+\theta^{2} \mathbf{1}_{\{1\}}(h) \\
\theta \mathbf{1}_{\{0\}}(h)+\theta^{2} \mathbf{1}_{\{-1\}}(h) & \theta^{2} \mathbf{1}_{\{0\}}(h)
\end{array}\right],
\end{aligned}
$$

i.e. neither of them depend on t. Now we see that

$$
Y_{t}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{X}_{t}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \theta \\
\theta & 0
\end{array}\right]\left[\begin{array}{c}
Z_{t} \\
Z_{t-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & \theta
\end{array}\right]\left[\begin{array}{c}
Z_{t} \\
Z_{t-1}
\end{array}\right]=Z_{t}+\theta Z_{t-1}
$$

which is the $\mathrm{MA}(1)$ process.

Problem 8.9. Let \mathbf{Y}_{t} consist of $\mathbf{Y}_{t, 1}$ and $\mathbf{Y}_{t, 2}$, then we can write

$$
\begin{aligned}
\mathbf{Y}_{t} & =\left[\begin{array}{l}
\mathbf{Y}_{t, 1} \\
\mathbf{Y}_{t, 1}
\end{array}\right]=\left[\begin{array}{l}
G_{1} \mathbf{X}_{t, 1}+\mathbf{W}_{t, 1} \\
G_{2} \mathbf{X}_{t, 2}+\mathbf{W}_{t, 2}
\end{array}\right]=\left[\begin{array}{l}
G_{1} \mathbf{X}_{t, 1} \\
G_{2} \mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} & \mathbf{0} \\
\mathbf{0} & G_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right] .
\end{aligned}
$$

Set

$$
G=\left[\begin{array}{cc}
G_{1} & \mathbf{0} \\
\mathbf{0} & G_{2}
\end{array}\right], \quad \mathbf{X}_{t}=\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 1}
\end{array}\right] \quad \text { and } \quad \mathbf{W}_{t}=\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right]
$$

then we have $\mathbf{Y}_{t}=G \mathbf{X}_{t}+\mathbf{W}_{t}$. Similarly we have that

$$
\begin{aligned}
& \mathbf{X}_{t+1}=\left[\begin{array}{l}
\mathbf{X}_{t+1,1} \\
\mathbf{X}_{t+1,1}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \mathbf{X}_{t, 1}+\mathbf{V}_{t, 1} \\
F_{2} \mathbf{X}_{t, 2}+\mathbf{V}_{t, 2}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \mathbf{X}_{t, 1} \\
F_{2} \mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
F_{1} & \mathbf{0} \\
\mathbf{0} & F_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right]
\end{aligned}
$$

and set

$$
F=\left[\begin{array}{cc}
F_{1} & \mathbf{0} \\
\mathbf{0} & F_{2}
\end{array}\right] \quad \text { and } \quad \mathbf{V}_{t}=\left[\begin{array}{c}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right]
$$

Finally we have the state-space representation

$$
\begin{aligned}
\mathbf{Y}_{t} & =G \mathbf{X}_{t}+\mathbf{W}_{t} \\
\mathbf{X}_{t+1} & =F \mathbf{X}_{t}+\mathbf{V}_{t}
\end{aligned}
$$

Problem 8.13. We have to solve

$$
\Omega+\sigma_{v}^{2}-\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}=\Omega
$$

which is equivalent to

$$
\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}-\sigma_{v}^{2}=0
$$

Multiplying with $\Omega+\sigma_{w}^{2}$ we get

$$
\Omega^{2}-\Omega \sigma_{v}^{2}-\sigma_{w}^{2} \sigma_{v}^{2}=0
$$

which has the solutions

$$
\Omega=\frac{1}{2} \sigma_{v}^{2} \pm \sqrt{\frac{\sigma_{v}^{4}}{4}+\sigma_{w}^{2} \sigma_{v}^{2}}=\frac{\sigma_{v}^{2} \pm \sqrt{\sigma_{v}^{4}+4 \sigma_{w}^{2} \sigma_{v}^{2}}}{2}
$$

Since $\Omega \geq 0$ we have the positive root which is the solution we wanted.
Problem 8.14. We have that

$$
\Omega_{t+1}=\Omega_{t}+\sigma_{v}^{2}-\frac{\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}
$$

and since $\sigma_{v}^{2}=\Omega^{2} /\left(\Omega+\sigma_{w}^{2}\right)$ substracting Ω yields

$$
\begin{aligned}
& \Omega_{t+1}-\Omega=\Omega_{t}+\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}-\frac{\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\Omega \\
& \quad=\frac{\Omega_{t}\left(\Omega_{t}+\sigma_{w}^{2}\right)-\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega\left(\Omega+\sigma_{w}^{2}\right)-\Omega^{2}}{\Omega+\sigma_{w}^{2}} \\
& \quad=\frac{\Omega_{t} \sigma_{w}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega \sigma_{w}^{2}}{\Omega+\sigma_{w}^{2}} \\
& \quad=\sigma_{w}^{2}\left(\frac{\Omega_{t}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega}{\Omega+\sigma_{w}^{2}}\right)
\end{aligned}
$$

This implies that

$$
\left(\Omega_{t+1}-\Omega\right)\left(\Omega_{t}-\Omega\right)=\sigma_{w}^{2}\left(\frac{\Omega_{t}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega}{\Omega+\sigma_{w}^{2}}\right)\left(\Omega_{t}-\Omega\right)
$$

Now, note that the function $f(x)=x /\left(x+\sigma_{w}^{2}\right)$ is increasing in x. Indeed, $f^{\prime}(x)=$ $\sigma_{w}^{2} /\left(x+\sigma_{w}^{2}\right)^{2}>0$. Thus we get that for $\Omega_{t}>\Omega$ both terms are >0 and for $\Omega_{t}<\Omega$ both terms are <0. Hence, $\left(\Omega_{t+1}-\Omega\right)\left(\Omega_{t}-\Omega\right) \geq 0$.

Problem 8.15. We have the equations for θ :

$$
\begin{aligned}
\theta \sigma^{2} & =-\sigma_{w}^{2} \\
\sigma^{2}\left(1+\theta^{2}\right) & =2 \sigma_{w}^{2}+\sigma_{v}^{2}
\end{aligned}
$$

From the first equation we get that $\sigma^{2}=-\sigma_{w}^{2} / \theta$ and inserting this in the second equation gives

$$
2 \sigma_{w}^{2}+\sigma_{v}^{2}=-\frac{\sigma_{w}^{2}}{\theta}\left(1+\theta^{2}\right)
$$

and multiplying by θ gives the equation

$$
\left(2 \sigma_{w}^{2}+\sigma_{v}^{2}\right) \theta+\sigma_{w}^{2}+\sigma_{w}^{2} \theta^{2}=0
$$

This can be rewritten as

$$
\theta^{2}+\theta \frac{2 \sigma_{w}^{2}+\sigma_{v}^{2}}{\sigma_{w}^{2}}+1=0
$$

which has the solution

$$
\theta=-\frac{2 \sigma_{w}^{2}+\sigma_{v}^{2}}{2 \sigma_{w}^{2}} \pm \sqrt{\frac{\left(2 \sigma_{w}^{2}+\sigma_{v}^{2}\right)^{2}}{4 \sigma_{w}^{4}}-1}=-\frac{2 \sigma_{w}^{2}+\sigma_{v}^{2} \pm \sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}}{2 \sigma_{w}^{2}}
$$

To get an invertible representation we choose the solution

$$
\theta=-\frac{2 \sigma_{w}^{2}+\sigma_{v}^{2}-\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}}{2 \sigma_{w}^{2}}
$$

To show that $\theta=-\frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+\Omega}$, recall the steady-state solution

$$
\Omega=\frac{\sigma_{v}^{2}+\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}}{2}
$$

which gives

$$
\begin{aligned}
\theta & =-\frac{2 \sigma_{w}^{2}+\sigma_{v}^{2}-\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}}{2 \sigma_{w}^{2}} \\
& =-\frac{\left(2 \sigma_{w}^{2}+\sigma_{v}^{2}-\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}\right)\left(2 \sigma_{w}^{2}+\sigma_{v}^{2}+\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}\right)}{2 \sigma_{w}^{2}\left(2 \sigma_{w}^{2}+\sigma_{v}^{2}+\sqrt{\sigma_{v}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}}\right)} \\
& =-\frac{4 \sigma_{w}^{4}+4 \sigma_{v}^{2} \sigma_{w}^{2}+\sigma_{v}^{4}-\sigma_{v}^{4}-4 \sigma_{v}^{2} \sigma_{w}^{2}}{2 \sigma_{w}^{2}\left(2 \sigma_{w}^{2}+2 \Omega\right)}=-\frac{4 \sigma_{w}^{4}}{4 \sigma_{w}^{2}\left(\sigma_{w}^{2}+\Omega\right)}=-\frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+\Omega} .
\end{aligned}
$$

Chapter 10

Problem 10.5. First a remark on existence of such a process: We assume for simplicity that $p=1$. A necessary and sufficient condition for the existence of a causal, stationary solution to the $\operatorname{ARCH}(1)$ equations with $\mathbb{E}\left[Z_{t}^{4}\right]<\infty$ is that $\alpha_{1}^{2}<$ $1 / 3$. If $p>1$ existence of a causal, stationary solution is much more complicated. Let us now proceed with the solution to the problem.

We have
$e_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} Y_{t-i}\right)=e_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} \frac{Z_{t-i}^{2}}{\alpha_{0}}\right)=\frac{e_{t}^{2}}{\alpha_{0}}\left(\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} Z_{t-i}^{2}\right)=\frac{e_{t}^{2} h_{t}}{\alpha_{0}}=\frac{Z_{t}^{2}}{\alpha_{0}}=Y_{t}$,
hence $Y_{t}=Z_{t}^{2} / \alpha_{0}$ satisfies the given equation. Let us now compute its ACVF. We assume $h \geq 1$, then

$$
\begin{aligned}
\mathbb{E}\left[Y_{t} Y_{t-h}\right] & =\mathbb{E}\left[e_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} Y_{t-i}\right) Y_{t-h}\right] \\
& =\mathbb{E}\left[e_{t}^{2}\right] \mathbb{E}\left[Y_{t-h}+\sum_{i=1}^{p} \alpha_{i} Y_{t-i} Y_{t-h}\right] \\
& =\mathbb{E}\left[Y_{t-h}\right]+\sum_{i=1}^{p} \alpha_{i} \mathbb{E}\left[Y_{t-i} Y_{t-h}\right]
\end{aligned}
$$

Since $\gamma_{Y}(h)=\operatorname{Cov}\left(Y_{t}, Y_{t-h}\right)=\mathbb{E}\left[Y_{t} Y_{t-h}\right]-\mu_{Y}^{2}$ we get

$$
\gamma_{Y}(h)+\mu_{Y}^{2}=\mu_{Y}+\sum_{i=1}^{p} \alpha_{i}\left(\gamma_{Y}(h-i)+\mu_{Y}^{2}\right)
$$

and then

$$
\gamma_{Y}(h)-\sum_{i=1}^{p} \alpha_{i} \gamma_{Y}(h-i)=\mu_{Y}+\mu_{Y}^{2}\left(\sum_{i=1}^{p} \alpha_{i}-1\right)
$$

We can compute μ_{Y} as

$$
\mu_{Y}=\mathbb{E}\left[Y_{t}\right]=\mathbb{E}\left[e_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} Y_{t-i}\right)\right]=1+\sum_{i=1}^{p} \alpha_{i} \mathbb{E}\left[Y_{t}\right]=1+\mu_{Y} \sum_{i=1}^{p} \alpha_{i}
$$

From this expression we see that $\mu_{Y}=1 /\left(1-\sum_{i=1}^{p} \alpha_{i}\right)$. This means that we have

$$
\gamma_{Y}(h)-\sum_{i=1}^{p} \alpha_{i} \gamma_{Y}(h-i)=\frac{1}{1-\sum_{i=1}^{p} \alpha_{i}}+\frac{\sum_{i=1}^{p} \alpha_{i}-1}{\left(1-\sum_{i=1}^{p} \alpha_{i}\right)^{2}}=0
$$

Dividing by $\gamma_{Y}(0)$ we find that the ACF $\rho_{Y}(h)$ satisfies

$$
\begin{aligned}
& \rho_{Y}(0)=1 \\
& \rho_{Y}(h)-\sum_{i=1}^{p} \alpha_{i} \rho_{Y}(h-i)=0, \quad h \geq 1
\end{aligned}
$$

which corresponds to the Yule-Walker equations for the ACF for an $\operatorname{AR}(p)$ process

$$
W_{t}=\alpha_{1} W_{t-1}+\cdots+\alpha_{p} W_{t-p}+Z_{t}
$$

