CALCULUSOFA SINGLE VARIABLE

LARSON HOSTETLER EDWARDS NINTH EDITION

Calculus

 of a Single Variable

 of a Single Variable}

Ninth Edition

Ron Larson
The Pennsylvania State University
The Behrend College
Bruce H. Edwards
University of Florida

Calculus of a Single Variable, Ninth Edition Larson/Edwards

VP/Editor-in-Chief: Michelle Julet
Publisher: Richard Stratton
Senior Sponsoring Editor: Cathy Cantin
Development Editor: Peter Galuardi
Associate Editor: Jeannine Lawless
Editorial Assistant: Amy Haines
Media Editor: Peter Galuardi
Senior Content Manager: Maren Kunert
Senior Marketing Manager: Jennifer Jones
Marketing Communications Manager: Mary Anne Payumo
Senior Content Project Manager, Editorial Production: Tamela Ambush
Art and Design Manager: Jill Haber
Senior Manufacturing Coordinator: Diane Gibbons
Permissions Editor: Katie Huha
Text Designer: Nesbitt Graphics
Art Editor: Larson Texts, Inc.
Senior Photo Editor: Jennifer Meyer Dare
Illustrator: Larson Texts, Inc.
Cover Designer: Harold Burch
Cover Image: © Richard Edelman/Woodstock Graphics Studio Compositor: Larson Texts, Inc.

TI is a registered trademark of Texas Instruments, Inc. Mathematica is a registered trademark of Wolfram Research, Inc. Maple is a registered trademark of Waterloo Maple, Inc.

Problems from the William Lowell Putnam Mathematical Competition reprinted with permission from the Mathematical Association of America, 1529 Eighteenth Street, NW. Washington, DC.
© 2010, 2006 Brooks/Cole, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2008933835
Student Edition:
ISBN-13: 978-0-547-20998-2
ISBN-10: 0-547-20998-3

Brooks/Cole

10 Davis Drive
Belmont, CA 94002-3098
USA

Cengage learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

Contents

A Word from the Authors viii
Textbook Features xii
ChAPTER P Preparation for Calculus 1
P. 1 Graphs and Models 2
P. 2 Linear Models and Rates of Change 10
P. 3 Functions and Their Graphs 19
P. 4 Fitting Models to Data 31
Review Exercises 37
P.S. Problem Solving 39
chapter 1 Limits and Their Properties 41
1.1 A Preview of Calculus 42
1.2 Finding Limits Graphically and Numerically 48
1.3 Evaluating Limits Analytically 59
1.4 Continuity and One-Sided Limits 70
1.5 Infinite Limits 83
SECTION PROJECT: Graphs and Limits of Trigonometric Functions 90
Review Exercises 91
P.S. Problem Solving 93
CHAPTER 2 Differentiation 95
2.1 The Derivative and the Tangent Line Problem 96
2.2 Basic Differentiation Rules and Rates of Change 107
2.3 Product and Quotient Rules and Higher-Order Derivatives 119
2.4 The Chain Rule 130
2.5 Implicit Differentiation 141
SECTION PROJECT: Optical Illusions 148
2.6 Related Rates 149
Review Exercises 158
P.S. Problem Solving 161
CHAPTER 3 Applications of Differentiation 163
3.1 Extrema on an Interval 164
3.2 Rolle's Theorem and the Mean Value Theorem 172
3.3 Increasing and Decreasing Functions and the First Derivative Test 179
SECTION PROJECT: Rainbows 189
3.4 Concavity and the Second Derivative Test 190
3.5 Limits at Infinity 198
3.6 A Summary of Curve Sketching 209
3.7 Optimization Problems 218
SECTION PROJECT: Connecticut River 228
3.8 Newton's Method 229
3.9 Differentials 235
Review Exercises 242
P.S. Problem Solving 245
CHAPTER 4 Integration 247
4.1 Antiderivatives and Indefinite Integration 248
4.2 Area 259
4.3 Riemann Sums and Definite Integrals 271
4.4 The Fundamental Theorem of Calculus 282
SECTION PROJECT: Demonstrating the Fundamental Theorem 296
4.5 Integration by Substitution 297
4.6 Numerical Integration 311
Review Exercises 318
P.S. Problem Solving 321
CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions 323
5.1 The Natural Logarithmic Function: Differentiation 324
5.2 The Natural Logarithmic Function: Integration 334
5.3 Inverse Functions 343
5.4 Exponential Functions: Differentiation and Integration 352
5.5 Bases Other Than e and Applications 362
SECTION PROJECT: Using Graphing Utilities to Estimate Slope 372
5.6 Inverse Trigonometric Functions: Differentiation 373
5.7 Inverse Trigonometric Functions: Integration 382
5.8 Hyperbolic Functions 390
SECTION PROJECT: St. Louis Arch 400
Review Exercises 401
P.S. Problem Solving 403
ChAPTER 6 Differential Equations 405
6.1 Slope Fields and Euler's Method 406
6.2 Differential Equations: Growth and Decay 415
6.3 Separation of Variables and the Logistic Equation 423
6.4 First-Order Linear Differential Equations 434
SECTION PROJECT: Weight Loss 442
Review Exercises 443
P.S. Problem Solving 445
CHAPTER 7 Applications of Integration 447
7.1 Area of a Region Between Two Curves 448
7.2 Volume: The Disk Method 458
7.3 Volume: The Shell Method 469
SECTION PROJECT: Saturn 477
7.4 Arc Length and Surfaces of Revolution 478
7.5 Work 489
SECTION PROJECT: Tidal Energy 497
7.6 Moments, Centers of Mass, and Centroids 498
7.7 Fluid Pressure and Fluid Force 509
Review Exercises 515
P.S. Problem Solving 517
CHAPTER 8 Integration Techniques, L'Hôpital's Rule, and Improper Integrals 519
8.1 Basic Integration Rules 520
8.2 Integration by Parts 527
8.3 Trigonometric Integrals 536
SECTION PROJECT: Power Lines 544
8.4 Trigonometric Substitution 545
8.5 Partial Fractions 554
8.6 Integration by Tables and Other Integration Techniques 563
8.7 Indeterminate Forms and L'Hôpital's Rule 569
8.8 Improper Integrals 580
Review Exercises 591
P.S. Problem Solving 593
chapter 9 Infinite Series 595
9.1 Sequences 596
9.2 Series and Convergence 608
SECTION PROJECT: Cantor's Disappearing Table 618
9.3 The Integral Test and p-Series 619
SECTION PROJECT: The Harmonic Series 625
9.4 Comparisons of Series 626
Section project: Solera Method 632
9.5 Alternating Series 633
9.6 The Ratio and Root Tests 641
9.7 Taylor Polynomials and Approximations 650
9.8 Power Series 661
9.9 Representation of Functions by Power Series 671
9.10 Taylor and Maclaurin Series 678
Review Exercises 690
P.S. Problem Solving 693
Chapter 10 Conics, Parametric Equations, and Polar Coordinates 695
10.1 Conics and Calculus 696
10.2 Plane Curves and Parametric Equations 711
SECTION PROJECT: Cycloids 720
10.3 Parametric Equations and Calculus 721
10.4 Polar Coordinates and Polar Graphs 731
SECTION PROJECT: Anamorphic Art 740
10.5 Area and Arc Length in Polar Coordinates 741
10.6 Polar Equations of Conics and Kepler's Laws 750
Review Exercises 758
P.S. Problem Solving 761
Appendix A Proofs of Selected Theorems A2
Appendix B Integration Tables A20
Answers to Odd-Numbered Exercises A25
Index A115
ADDITIONAL APPENDICES
Appendix C Precalculus Review (Online)
C. 1 Real Numbers and the Real Number Line
C. 2 The Cartesian Plane
C. 3 Review of Trigonometric Functions
Appendix D Rotation and the General Second-Degree Equation (Online)
Appendix E Complex Numbers (Online)
Appendix F Business and Economic Applications (Online)

A Word from the Authors

Welcome to the Ninth Edition of Calculus of a Single Variable! We are proud to offer you a new and revised version of our textbook. Much has changed since we wrote the first edition over 35 years ago. With each edition we have listened to you, our users, and have incorporated many of your suggestions for improvement.

7th

Throughout the years, our objective has always been to write in a precise, readable manner with the fundamental concepts and rules of calculus clearly defined and demonstrated. When writing for students, we strive to offer features and materials that enable mastery by all types of learners. For the instructors, we aim to provide a comprehensive teaching instrument that employs proven pedagogical techniques, freeing instructors to make the most efficient use of classroom time.

This revision brings us to a new level of change and improvement. For the past several years, we've maintained an independent website-CalcChat.com—that provides free solutions to all odd-numbered exercises in the text. Thousands of students using our textbooks have visited the site for practice and help with their homework. With the Ninth Edition, we were able to use information from CalcChat.com, including which solutions students accessed most often, to help guide the revision of the exercises. This edition of Calculus will be the first calculus textbook to use actual data from students.

We have also added a new feature called Capstone exercises to this edition. These conceptual problems synthesize key topics and provide students with a better understanding of each section's concepts. Capstone exercises are excellent for classroom discussion or test prep, and instructors may find value in integrating these problems into their review of the section. These and other new features join our time-tested pedagogy, with the goal of enabling students and instructors to make the best use of this text.

We hope you will enjoy the Ninth Edition of Calculus of a Single Variable. As always, we welcome comments and suggestions for continued improvements.

Prune kiEduards

We would like to thank the many people who have helped us at various stages of this project over the last 35 years. Their encouragement, criticisms, and suggestions have been invaluable to us.

Reviewers of the Ninth Edition Ray Cannon, Baylor University
Sadeq Elbaneh, Buffalo State College
J. Fasteen, Portland State University
Audrey Gillant, Binghamton University
Sudhir Goel, Valdosta State University
Marcia Kemen, Wentworth Institute of Technology
Ibrahima Khalil Kaba, Embry Riddle Aeronautical University
Jean-Baptiste Meilhan, University of California Riverside
Catherine Moushon, Elgin Community College
Charles Odion, Houston Community College
Greg Oman, The Ohio State University
Dennis Pence, Western Michigan University
Jonathan Prewett, University of Wyoming
Lori Dunlop Pyle, University of Central Florida
Aaron Robertson, Colgate University
Matthew D. Sosa, The Pennsylvania State University
William T. Trotter, Georgia Institute of Technology
Dr. Draga Vidakovic, Georgia State University
Jay Wiestling, Palomar College
Jianping Zhu, University of Texas at Arlington

Ninth Edition Advisory
Board Members

Jim Braselton, Georgia Southern University; Sien Deng, Northern Illinois University; Dimitar Grantcharov, University of Texas, Arlington; Dale Hughes, Johnson County Community College; Dr. Philippe B. Laval, Kennesaw State University; Kouok Law, Georgia Perimeter College, Clarkson Campus; Mara D. Neusel, Texas Tech University; Charlotte Newsom, Tidewater Community College, Virginia Beach Campus; Donald W. Orr, Miami Dade College, Kendall Campus; Jude Socrates, Pasadena City College; Betty Travis, University of Texas at San Antonio; Kuppalapalle Vajravelu, University of Central Florida

Stan Adamski, Owens Community College; Alexander Arhangelskii, Ohio University; Seth G. Armstrong, Southern Utah University; Jim Ball, Indiana State University; Marcelle Bessman, Jacksonville University; Linda A. Bolte, Eastern Washington University; James Braselton, Georgia Southern University; Harvey Braverman, Middlesex County College; Tim Chappell, Penn Valley Community College; Oiyin Pauline Chow, Harrisburg Area Community College; Julie M. Clark, Hollins University; P.S. Crooke, Vanderbilt University; Jim Dotzler, Nassau Community College; Murray Eisenberg, University of Massachusetts at Amherst; Donna Flint, South Dakota State University; Michael Frantz, University of La Verne; Sudhir Goel, Valdosta State University; Arek Goetz, San Francisco State University; Donna J. Gorton, Butler County Community College; John Gosselin, University of Georgia; Shahryar Heydari, Piedmont College; Guy Hogan, Norfolk State University; Ashok Kumar, Valdosta State University; Kevin J. Leith, Albuquerque Community College; Douglas B. Meade, University of South Carolina; Teri Murphy, University of Oklahoma; Darren Narayan, Rochester Institute of Technology; Susan A. Natale, The Ursuline School, NY; Terence H. Perciante, Wheaton College; James Pommersheim, Reed College; Leland E. Rogers, Pepperdine University; Paul Seeburger, Monroe Community College; Edith A. Silver, Mercer County Community College; Howard Speier, Chandler-Gilbert Community College; Desmond Stephens, Florida A\&M University; Jianzhong Su, University of Texas at Arlington; Patrick Ward, Illinois Central College; Diane Zych, Erie Community College

Many thanks to Robert Hostetler, The Behrend College, The Pennsylvania State University, and David Heyd, The Behrend College, The Pennsylvania State University, for their significant contributions to previous editions of this text.

A special note of thanks goes to the instructors who responded to our survey and to the over 2 million students who have used earlier editions of the text.

We would also like to thank the staff at Larson Texts, Inc., who assisted in preparing the manuscript, rendering the art package, typesetting, and proofreading the pages and supplements.

On a personal level, we are grateful to our wives, Deanna Gilbert Larson and Consuelo Edwards, for their love, patience, and support. Also, a special note of thanks goes out to R. Scott O'Neil.

If you have suggestions for improving this text, please feel free to write to us. Over the years we have received many useful comments from both instructors and students, and we value these very much.

Ron Larson
Bruce H. Edwards

Y our Course. Your Way.

Calculus Textbook Options

The Ninth Edition of Calculus is available in a variety of textbook configurations to address the different ways instructors teach-and students take-their classes.

It is available in a comprehensive three-semester version or as single-variable and multivariable versions. The book can also be customized to meet your individual needs and is available through iChapters -www.ichapters.com.

TOPICS COVERED	APPROACH			
	Late Transcendental Functions	Early Transcendental Functions	Accelerated coverage	Late Trigonometry
3-semester	Calculus 9 e	Calculus: Early Transcendental Functions 4e	Essential Calculus ESSENTIAL CALCULUS	Calculus with Late Trigonometry CALCULUS
Single Variable Only	Calculus 9e Single Variable CALCULUS OF A SINGIE VARIABLE SINGLE VARIABLE	Calculus: Early Transcendental Functions 4e Single Variable		
Multivariable	Calculus 9 e Multivariable	Calculus 9 e Multivariable		
Custom All of these textbook choices can be customized to fit the individual needs of your course.	Calculus 9 e	Calculus: Early Transcendental Functions 4e	Essential Calculus ESSENTIAL CALCULUS	Calculus with Late Trigonometry CALCULUS

Textbook Features

Tools to Build Mastery

CAPSTONES

NEW! Capstone exercises now appear in every section. These exercises synthesize the main concepts of each section and show students how the topics relate. They are often multipart problems that contain conceptual and noncomputational parts, and can be used for classroom discussion or test prep.

CAPSTONE

```
70. Use the graph of \(f^{\prime}\) shown in the figure to answer the following, given that \(f(0)=-4\)
```



```
(a) Approximate the slope of \(f\) at \(x=4\). Explain.
(b) Is it possible that \(f(2)=-1\) ? Explain.
(c) Is \(f(5)-f(4)>0\) ? Explain.
(d) Approximate the value of \(x\) where \(f\) is maximum. Explain.
(e) Approximate any intervals in which the graph of \(f\) is concave upward and any intervals in which it is concave downward. Approximate the \(x\)-coordinates of any points of inflection.
(f) Approximate the \(x\)-coordinate of the minimum of \(f^{\prime \prime}(x)\) (g) Sketch an approximate graph of \(f\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
```


WRITING ABOUT CONCEPTS

These writing exercises are questions designed to test students' understanding of basic concepts in each section. The exercises encourage students to verbalize and write answers, promoting technical communication skills that will be invaluable in their future careers.

WRITING ABOUT CONCEPTS

59. The graph of f is shown in the figure

(a) Evaluate $\int_{1}^{7} f(x) d x$.
(b) Determine the average value of f on the interval $[1,7]$.
(c) Determine the answers to parts (a) and (b) if the graph is translated two units upward.
60. If $r^{\prime}(t)$ represents the rate of growth of a dog in pounds per year, what does $r(t)$ represent? What does $\int_{2}^{6} r^{\prime}(t) d t$ represent about the dog?

STUDY TIPS

The devil is in the details. Study Tips help point out some of the troublesome common mistakes, indicate special cases that can cause confusion, or expand on important concepts. These tips provide students with valuable information, similar to what an instructor might comment on in class.

> EXAMPLE 6 Evaluation of a Definite Integral Evaluate $\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x$ using each of the following values. $$
\int_{1}^{3} x^{2} d x=\frac{26}{3}, \quad \int_{1}^{3} x d x=4, \quad \int_{1}^{3} d x=2
$$

Solution

$$
\begin{aligned}
\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x & =\int_{1}^{3}\left(-x^{2}\right) d x+\int_{1}^{3} 4 x d x+\int_{1}^{3}(-3) d x \\
& =-\int_{1}^{3} x^{2} d x+4 \int_{1}^{3} x d x-3 \int_{1}^{3} d x \\
& =-\left(\frac{26}{3}\right)+4(4)-3(2) \\
& =\frac{4}{3}
\end{aligned}
$$

EXERCISES

Practice makes perfect. Exercises are often the first place students turn to in a textbook. The authors have spent a great deal of time analyzing and revising the exercises, and the result is a comprehensive and robust set of exercises at the end of every section. A variety of exercise types and levels of difficulty are included to accommodate students with all learning styles.

In addition to the exercises in the book, 3,000 algorithmic exercises appear in the WebAssign ${ }^{\circledR}$ course that accompanies Calculus.

P.S. PROBLEM SOLVING

These sets of exercises at the end of each chapter test students' abilities with challenging, thought-provoking questions.

REVIEW EXERCISES

Review Exercises at the end of each chapter provide more practice for students. These exercise sets provide a comprehensive review of the chapter's concepts and are an excellent way for students to prepare for an exam.

Classic Calculus with Contemporary Relevance

THEOREMS

Theorems provide the conceptual framework for calculus. Theorems are clearly stated and separated from the rest of the text by boxes for quick visual reference. Key proofs often follow the theorem, and other proofs are provided in an in-text appendix.

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function f is continuous on the closed interval $[a, b]$ and F is an antiderivative of f on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

DEFINITIONS

DEFINITION OF DEFINITE INTEGRAL

If f is defined on the closed interval $[a, b]$ and the limit of Riemann sums over partitions Δ

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists (as described above), then f is said to be integrable on $[a, b]$ and the limit is denoted by

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

The limit is called the definite integral of f from a to b.
lower limit of integration, and the number b is the uppe

NOTES

Notes provide additional details about theorems, definitions, and examples. They offer additional insight, or important generalizations that students might not immediately see. Like the study tips, notes can be invaluable to students.

PROCEDURES

Formal procedures are set apart from the text for easy reference. The procedures provide students with step-by-step instructions that will help them solve problems quickly and efficiently.

To complete the change of variables in Example 5, you solved for x in terms of u. Sometimes this is very difficult. Fortunately it is not always necessary, as shown in the next example.

EXAMPLE 6 Change of Variables

Find $\int \sin ^{2} 3 x \cos 3 x d x$.
Solution Because $\sin ^{2} 3 x=(\sin 3 x)^{2}$, you can let $u=\sin 3 x$. Then
$d u=(\cos 3 x)(3) d x$.
Now, because $\cos 3 x d x$ is part of the original integral, you can write

$$
\frac{d u}{3}=\cos 3 x d x
$$

Substituting u and $d u / 3$ in the original integral yields

$$
\begin{aligned}
\int \sin ^{2} 3 x \cos 3 x d x & =\int u^{2} \frac{d u}{3} \\
& =\frac{1}{3} \int u^{2} d u \\
& =\frac{1}{3}\left(\frac{u^{3}}{3}\right)+C \\
& =\frac{1}{9} \sin ^{3} 3 x+C .
\end{aligned}
$$

You can check this by differentiating.

$$
\frac{d}{d x}\left[\frac{1}{9} \sin ^{3} 3 x\right]=\left(\frac{1}{9}\right)(3)(\sin 3 x)^{2}(\cos 3 x)(3)
$$

$$
=\sin ^{2} 3 x \cos 3 x
$$

[^0]that you have

Expanding the Experience of Calculus

CHAPTER OPENERS

Chapter Openers provide initial motivation for the upcoming chapter material. Along with a map of the chapter objectives, an important concept in the chapter is related to an application of the topic in the real world. Students are encouraged to see the real-life relevance of calculus.

EXPLORATIONS

Explorations provide students with unique challenges to study concepts that have not yet been formally covered. They allow students to learn

EXPLORATION

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is, if a function is integrable, does it have to be continuous? Explain your reasoning if a function is integ
and give examples.

Describe the relationships among continuity, differentiability, and integrability. Which is the strongest condition? Which is the weakest? Which conditions imply other conditions
 by discovery and introduce topics related to ones they are presently studying.

HISTORICAL NOTES AND BIOGRAPHIES

 By exploring topics in this way, students are encouraged to think outside the box.

Putnam Exam questions appear in selected sections and are drawn from actual Putnam Exams. These exercises will push the limits of students' understanding of calculus and provide extra challenges for motivated students.

Historical Notes provide students with background information on the foundations of

6 Differential Equations

SECTION PROJECTS

Projects appear in selected sections and more deeply explore applications related to the topics being studied. They provide an interesting and engaging way for students to work and investigate ideas collaboratively.

SECTION PROJECT

Demonstrating the Fundamental Theorem
Use a graphing utility to graph the function $y_{1}=\sin ^{2} t$ on
interval $0 \leq t \leq \pi$. Let $F(x)$ be the following function of x.
$F(x)=\int_{0}^{x} \sin ^{2} t d t$
(a) Complete the table. Explain why the values of F are increasing.

x	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$	π
$F(x)$							

Graph y and write a short parararah related to those in parts (b) and (c).

```
#sraph F.
#sraph F.

\section*{Integrated Technology for Today's World}

\section*{EXAMPLE 5 Change of Variables}

Find \(\int x \sqrt{2 x-1} d x\).
Solution As in the previous example, let \(u=2 x-1\) and obtain \(d x=d u / 2\). Because the integrand contains a factor of \(x\), you must also solve for \(x\) in terms of \(u\), as shown.
\[
u=2 x-1 \quad \square \quad x=(u+1) / 2 \quad \text { Solve for } x \text { in terms of } u
\]

Now, using substitution, you obtain
\[
\begin{aligned}
\int x \sqrt{2 x-1} d x & =\int\left(\frac{u+1}{2}\right) u^{1 / 2}\left(\frac{d u}{2}\right) \\
& =\frac{1}{4} \int\left(u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{1}{4}\left(\frac{u^{5 / 2}}{5 / 2}+\frac{u^{3 / 2}}{3 / 2}\right)+C \\
& =\frac{1}{10}(2 x-1)^{5 / 2}+\frac{1}{6}(2 x-1)^{3 / 2}+C
\end{aligned}
\]

\section*{GRAPHING TECH EXERCISES}

Understanding is often enhanced by using a graph or visualization. Graphing Tech Exercises are exercises that ask students to make use of a graphing utility to help find a solution. These exercises are marked with a special icon.


\section*{CAS EXERCISES}

NEW! Like the Graphing Tech Exercises, some exercises may best be solved using a computer algebra system. These CAS Exercises are new to this edition and are denoted by a special icon.

\section*{CAS INVESTIGATIONS}

Examples throughout the book are accompanied by CAS Investigations. These investigations are linked explorations that use a computer algebra system (e.g., Maple \({ }^{\circledR}\) ) to further explore a related example in the book. They allow students to explore calculus by manipulating functions, graphs, etc. and observing the results. (Formerly called Open Explorations)

Clope Fields In Exercises 55 and 56, (a) use a graphing utility to graph a slope field for the differential equation, (b) use integration and the given point to find the particular solution of the differential equation, and (c) graph the solution and the slope field in the same viewing window.
55. \(\frac{d y}{d x}=2 x,(-2,-2)\)
56. \(\frac{d y}{d x}=2 \sqrt{x},(4,12)\)

\section*{TECHNOLOGY}

Throughout the book, technology boxes give students a glimpse of how technology may be used to help solve problems and explore the concepts of calculus. They provide discussions of not only where technology succeeds, but also where it may fail.

\footnotetext{
TECHNOLOGY Most graphing utilities and computer algebra systems have built-in programs that can be used to approximate the value of a definite integral. Try using such a program to approximate the integral in Example 1. How close is your approximation?

When you use such a program, you need to be aware of its limitations. Often, you are given no indication of the degree of accuracy of the approximation. Other times, you may be given an approximation that is completely wrong. For instance, try using a built-in numerical integration program to evaluate
\(\int_{-1}^{2} \frac{1}{x} d x\).
Your calculator should give an error message. Does yours?
}

\section*{Additional Resources}

\section*{Student Resources}
- Student Solutions Manual—Need a leg up on your homework or help to prepare for an exam? The Student Solutions Manual contains worked-out solutions for all odd-numbered exercises in the text. It is a great resource to help you understand how to solve those tough problems.
- Notetaking Guide-This notebook organizer is designed to help you organize your notes, and provides section-by-section summaries of key topics and other helpful study tools. The Notetaking Guide is available for download on the book's website.
- WebAssign \({ }^{\circledR}\) ——The most widely used homework system in higher education, WebAssign offers instant feedback and repeatable problems, everything you could ask for in an online homework system. WebAssign's homework system lets you practice and submit homework via the web. It is easy to use and loaded with extra resources. With this edition of Larson's Calculus, there are over 3,000 algorithmic homework exercises to use for practice and review.
- DVD Lecture Series-Comprehensive, instructional lecture presentations serve a number of uses. They are great if you need to catch up after missing a class, need to supplement online or hybrid instruction, or need material for self-study or review.
■ CalcLabs with Maple \({ }^{\circledR}\) and Mathematica \({ }^{\circledR}\) — Working with Maple or Mathematica in class? Be sure to pick up one of these comprehensive manuals that will help you use each program efficiently.

■ WebAssign \({ }^{\circledR}\) —Instant feedback, grading precision, and ease of use are just three reasons why WebAssign is the most widely used homework system in higher education. WebAssign's homework delivery system lets instructors deliver, collect, grade, and record assignments via the web. With this edition of Larson's Calculus, there are over 3,000 algorithmic homework exercises to choose from. These algorithmic exercises are based on the section exercises from the textbook to ensure alignment with course goals.
- Instructor's Complete Solutions Manual-This manual contains worked-out solutions for all exercises in the text. It also contains solutions for the special features in the text such as Explorations, Section Projects, etc. It is available on the Instructor's Resource Center at the book's website.
■ Instructor's Resource Manual-This robust manual contains an abundance of resources keyed to the textbook by chapter and section, including chapter summaries and teaching strategies. New to this edition's manual are the authors' findings from CalcChat.com (see A Word from the Authors). They offer suggestions for exercises to cover in class, identify tricky exercises with tips on how best to use them, and explain what changes were made in the exercise set based on the research.
- Power Lecture-This comprehensive CD-ROM includes the Instructor's Complete Solutions Manual, PowerPoint \({ }^{\circledR}\) slides, and the computerized test bank featuring algorithmically created questions that can be used to create, deliver, and customize tests.
- Computerized Test Bank-Create, deliver, and customize tests and study guides in minutes with this easy to use assessment software on CD. The thousands of algorithmic questions in the test bank are derived from the textbook exercises, ensuring consistency between exams and the book.
- JoinIn on TurningPoint-Enhance your students' interactions with you, your lectures, and each other. Cengage Learning is now pleased to offer you book-specific content for Response Systems tailored to Larson's Calculus, allowing you to transform your classroom and assess your students' progress with instant in-class quizzes and polls.

\section*{Calculus of a Single Variable}

Ninth Edition

This page intentionally left blank

\section*{D Preparation for Calculus}

This chapter reviews several concepts that will help you prepare for your study of calculus. These concepts include sketching the graphs of equations and functions, and fitting mathematical models to data. It is important to review these concepts before moving on to calculus.

In this chapter, you should learn the following.
- How to identify the characteristics of equations and sketch their graphs. (P.1)
- How to find and graph equations of lines, including parallel and perpendicular lines, using the concept of slope. (P.2)
- How to evaluate and graph functions and their transformations. (P.3)
- How to fit mathematical models to real-life data sets. (P.4)


In 2006, China surpassed the United States as the world's biggest emitter of carbon dioxide, the main greenhouse gas. Given the carbon dioxide concentrations in the - atmosphere for several years, can older mathematical models still accurately predict future atmospheric concentrations compared with more recent models? (See Section P.1, Example 6.)


Mathematical models are commonly used to describe data sets. These models can be represented by many different types of functions, such as linear, quadratic, cubic, rational, and trigonometric functions. (See Section P.4.)

\section*{P. 1 Graphs and Models}



Graphical approach: \(3 x+y=7\)
Figure P. 1


The parabola \(y=x^{2}-2\)
Figure P. 2
- Sketch the graph of an equation.
- Find the intercepts of a graph.
- Test a graph for symmetry with respect to an axis and the origin.
- Find the points of intersection of two graphs.
- Interpret mathematical models for real-life data.

\section*{The Graph of an Equation}

In 1637 the French mathematician RnêDescartes revolutionized the study of mathematics by joining its two major fieldsalgebra and geometry. With Descartes's coordinate plane, geometric concepts could be formulated analytically and algebraic concepts could be viewed graphically. The power of this approach was such that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing calculus from multiple perspectives-graphically, analytically, and numericallyyou will increase your understanding of core concepts.

Consider the equation \(3 x+y=7\). The point \((2,1)\) is a solution point of the equation because the equation is satisfied (is true) when 2 is substituted for \(x\) and 1 is substituted for \(y\). This equation has many other solutions, such as \((1,4)\) and \((0,7)\). To find other solutions systematically, solve the original equation for \(y\).
\[
y=7-3 x \quad \text { Analytic approach }
\]

Then construct a table of values by substituting several values of \(x\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(y\) & 7 & 4 & 1 & -2 & -5 \\
\hline
\end{tabular}

\section*{Numerical approach}

From the table, you can see that \((0,7),(1,4),(2,1),(3,-2)\), and \((4,-5)\) are solutions of the original equation \(3 x+y=7\). Like many equations, this equation has an infinite number of solutions. The set of all solution points is the graph of the equation, as shown in Figure P.1.

NOTE Even though we refer to the sketch shown in Figure P. 1 as the graph of \(3 x+y=7\), it really represents only a portion of the graph. The entire graph would extend beyond the page.

In this course, you will study many sketching techniques. The simplest is point plottingthat is, you plot points until the basic shape of the graph seems apparent.

\section*{EXAMPLE 1 Sketching a Graph by Point Plotting}

Sketch the graph of \(y=x^{2}-2\).
Solution First construct a table of values. Then plot the points shown in the table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(y\) & 2 & -1 & -2 & -1 & 2 & 7 \\
\hline
\end{tabular}

Finally, connect the points with a smooth curve, as shown in Figure P.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

\section*{EXPLORATION}

\section*{Comparing Graphical and} Analytic Approaches Use a graphing utility to graph each equation. In each case, find a viewing window that shows the important characteristics of the graph.
a. \(y=x^{3}-3 x^{2}+2 x+5\)
b. \(y=x^{3}-3 x^{2}+2 x+25\)
c. \(y=-x^{3}-3 x^{2}+20 x+5\)
d. \(y=3 x^{3}-40 x^{2}+50 x-45\)
e. \(y=-(x+12)^{3}\)
f. \(y=(x-2)(x-4)(x-6)\)

A purely graphical approach to this problem would involve a simple "guess, check, and revise" strategy. What types of things do you think an analytic approach might involve? For instance, does the graph have symmetry? Does the graph have turns? If so, where are they?

As you proceed through Chapters 1, 2, and 3 of this text, you will study many new analytic tools that will help you analyze graphs of equations such as these.

One disadvantage of point plotting is that to get a good idea about the shape of a graph, you may need to plot many points. With only a few points, you could badly misrepresent the graph. For instance, suppose that to sketch the graph of
\[
y=\frac{1}{30} x\left(39-10 x^{2}+x^{4}\right)
\]
you plotted only five points: \((-3,-3),(-1,-1),(0,0),(1,1)\), and \((3,3)\), as shown in Figure P.3(a). From these five points, you might conclude that the graph is a line. This, however, is not correct. By plotting several more points, you can see that the graph is more complicated, as shown in Figure P.3(b).


Figure P. 3

TECHNOLOGY Technology has made sketching of graphs easier. Even with technology, however, it is possible to misrepresent a graph badly. For instance, each of the graphing utility screens in Figure P. 4 shows a portion of the graph of
\[
y=x^{3}-x^{2}-25
\]

From the screen on the left, you might assume that the graph is a line. From the screen on the right, however, you can see that the graph is not a line. So, whether you are sketching a graph by hand or using a graphing utility, you must realize that different "viewing windows" can produce very different views of a graph. In choosing a viewing window, your goal is to show a view of the graph that fits well in the context of the problem.


Graphing utility screens of \(y=x^{3}-x^{2}-25\)
Figure P. 4

NOTE In this text, the term graphing utility means either a graphing calculator or computer graphing software such as Maple, Mathematica, or the TI-89.



Intercepts of a graph
Figure P. 6

\section*{EXAMPLE 2 Finding \(x\) - and \(y\)-intercepts}

Find the \(x\) - and \(y\)-intercepts of the graph of \(y=x^{3}-4 x\).
Solution To find the \(x\)-intercepts, let \(y\) be zero and solve for \(x\).
\[
\begin{aligned}
x^{3}-4 x & =0 & & \text { Let } y \text { be zero. } \\
x(x-2)(x+2) & =0 & & \text { Factor. } \\
x & =0,2, \text { or }-2 & & \text { Solve for } x .
\end{aligned}
\]

Because this equation has three solutions, you can conclude that the graph has three \(x\)-intercepts:
\[
(0,0),(2,0), \text { and }(-2,0) . \quad x \text {-intercepts }
\]

To find the \(y\)-intercepts, let \(x\) be zero. Doing this produces \(y=0\). So, the \(y\)-intercept is
\(y\)-intercept
(See Figure P.6.)

TECHNOLOGY Example 2 uses an analytic approach to finding intercepts. When an analytic approach is not possible, you can use a graphical approach by finding the points at which the graph intersects the axes. Use a graphing utility to approximate the intercepts.


Figure P. 7


Origin symmetry
Figure P. 8

\section*{Symmetry of a Graph}

Kowing the symmetry of a graph before attempting to sketch it is useful because you need only half as many points to sketch the graph. The following three types of symmetry can be used to help sketch the graphs of equations (see Figure P.7).
1. A graph is symmetric with respect to the \(\boldsymbol{y}\)-axis if, whenever \((x, y)\) is a point on the graph, \((-x, y)\) is also a point on the graph. This means that the portion of the graph to the left of the \(y\)-axis is a mirror image of the portion to the right of the \(y\)-axis.
2. A graph is symmetric with respect to the \(\boldsymbol{x}\)-axis if, whenever \((x, y)\) is a point on the graph, \((x,-y)\) is also a point on the graph. This means that the portion of the graph above the \(x\)-axis is a mirror image of the portion below the \(x\)-axis.
3. A graph is symmetric with respect to the origin if, whenever \((x, y)\) is a point on the graph, \((-x,-y)\) is also a point on the graph. This means that the graph is unchanged by a rotation of \(180^{\circ}\) about the origin.

\section*{TESTS FOR SYMMETRY}
1. The graph of an equation in \(x\) and \(y\) is symmetric with respect to the \(y\)-axis if replacing \(x\) by \(-x\) yields an equivalent equation.
2. The graph of an equation in \(x\) and \(y\) is symmetric with respect to the \(x\)-axis if replacing \(y\) by \(-y\) yields an equivalent equation.
3. The graph of an equation in \(x\) and \(y\) is symmetric with respect to the origin if replacing \(x\) by \(-x\) and \(y\) by \(-y\) yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the \(y\)-axis if each term has an even exponent (or is a constant). For instance, the graph of \(y=2 x^{4}-x^{2}+2\) has symmetry with respect to the \(y\)-axis. Similarly, the graph of a polynomial has symmetry with respect to the origin if each term has an odd exponent, as illustrated in Example 3.

\section*{EXAMPLE 3 Testing for Symmetry}

Test the graph of \(y=2 x^{3}-x\) for symmetry with respect to the \(y\)-axis and to the origin.

\section*{Solution}
\(y\)-axis Symmetry:
\[
\begin{array}{ll}
y=2 x^{3}-x & \text { Write original equation. } \\
y=2(-x)^{3}-(-x) & \text { Rplace xby }-x . \\
y=-2 x^{3}+x & \\
\text { Simplify. It is not an equivalent equation. }
\end{array}
\]

Origin Symmetry:
\[
\begin{aligned}
y & =2 x^{3}-x & & \text { Write original equation. } \\
-y & =2(-x)^{3}-(-x) & & \text { Eplace by }-x \text { and by }-y . \\
-y & =-2 x^{3}+x & & \text { Simplify. } \\
y & =2 x^{3}-x & & \text { Equivalent equation }
\end{aligned}
\]

Because replacing both \(x\) by \(-x\) and \(y\) by \(-y\) yields an equivalent equation, you can conclude that the graph of \(y=2 x^{3}-x\) is symmetric with respect to the origin, as shown in Figure P.8.


Figure P. 9


Two points of intersection Figure P. 10

STUDY TIP You can check the points of intersection in Example 5 by substituting into both of the original equations or by using the intersect feature of a graphing utility.

\section*{EXAMPLE 4 Using Intercepts and Symmetry to Sketch a Graph}

Sketch the graph of \(x-y^{2}=1\).
Solution The graph is symmetric with respect to the \(x\)-axis because replacing \(y\) by \(-y\) yields an equivalent equation.
\[
\begin{aligned}
x-y^{2}=1 & \text { Write original equation. } \\
x-(-y)^{2}=1 & \text { Eplace by }-y \\
x-y^{2}=1 & \text { Equivalent equation }
\end{aligned}
\]

This means that the portion of the graph below the \(x\)-axis is a mirror image of the portion above the \(x\)-axis. To sketch the graph, first plot the \(x\)-intercept and the points above the \(x\)-axis. Then reflect in the \(x\)-axis to obtain the entire graph, as shown in Figure P.9.

TECHNOLOGY Graphing utilities are designed so that they most easily graph equations in which \(y\) is a function of \(x\) (see Section P. 3 for a definition of function). To graph other types of equations, you need to split the graph into two or more parts or you need to use a different graphing mode. For instance, to graph the equation in Example 4, you can split it into two parts.
\[
\begin{array}{ll}
y_{1}=\sqrt{x-1} & \text { Top portion of graph } \\
y_{2}=-\sqrt{x-1} & \text { Bottom portion of graph }
\end{array}
\]

\section*{Points of Intersection}

A point of intersection of the graphs of two equations is a point that satisfies both equations. You can find the point(s) of intersection of two graphs by solving their equations simultaneously.

\section*{EXAMPLE 5 Finding Points of Intersection}

Find all points of intersection of the graphs of \(x^{2}-y=3\) and \(x-y=1\).
Solution Begin by sketching the graphs of both equations on the same rectangular coordinate system, as shown in Figure P.10. Having done this, it appears that the graphs have two points of intersection. You can find these two points, as follows.
\[
\begin{aligned}
y & =x^{2}-3 & & \text { Solve first equation for } y . \\
y & =x-1 & & \text { Solve second equation for } y . \\
x^{2}-3 & =x-1 & & \text { Equate } y \text {-values. } \\
x^{2}-x-2 & =0 & & \text { Write in general form. } \\
(x-2)(x+1) & =0 & & \text { Factor. } \\
x & =2 \text { or }-1 & & \text { Solve for } x .
\end{aligned}
\]

The corresponding values of \(y\) are obtained by substituting \(x=2\) and \(x=-1\) into either of the original equations. Doing this produces two points of intersection:
\[
(2,1) \text { and }(-1,-2) . \quad \text { Points of intersection }
\]

\footnotetext{
The icon 〕indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.
}


The Mauna Loa Observatory in Hawaii has been measuring the increasing concentration of carbon dioxide in Earth's atmosphere since 1958. Carbon dioxide is the main greenhouse gas responsible for global climate warming.

NOTE The models in Example 6 were developed using a procedure called least squares regression (see Section 13.9). The quadratic and linear models have correlations given by \(r^{2}=0.997\) and \(r^{2}=0.994\), respectively. The closer \(r^{2}\) is to 1 , the "better" the model.

\section*{Mathematical Models}

Ral-life applications of mathematics often use equations as mathematical models. In developing a mathematical model to represent actual data, you should strive for two (often conflicting) goals: accuracy and simplicity. That is, you want the model to be simple enough to be workable, yet accurate enough to produce meaningful results. Section P. 4 explores these goals more completely.

\section*{EXAMPLE 6 Comparing Two Mathematical Models}

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration \(y\) (in parts per million) in Earth's atmosphere. The January readings for various years are shown in Figure P.11. In the July 1990 issue of Scientific American, these data were used to predict the carbon dioxide level in Earth's atmosphere in the year 2035, using the quadratic model
\[
y=316.2+0.70 t+0.018 t^{2} \quad \text { Quadratic model for } 1960+990 \text { data }
\]
where \(t=0\) represents 1960, as shown in Figure P.11(a).
The data shown in Figure P.11(b) represent the years 1980 through 2007 and can be modeled by
\[
y=304.1+1.64 t \quad \text { Linear model for } 1980 z 007 \text { data }
\]
where \(t=0\) represents 1960. What was the prediction given in the Scientific American article in 1990? Given the new data for 1990 through 2007, does this prediction for the year 2035 seem accurate?


\section*{Figure P. 11}

Solution To answer the first question, substitute \(t=75\) (for 2035) into the quadratic model.
\[
y=316.2+0.70(75)+0.018(75)^{2}=469.95 \quad \text { Quadratic model }
\]

So, the prediction in the Scientific American article was that the carbon dioxide concentration in Earth's atmosphere would reach about 470 parts per million in the year 2035. Using the linear model for the 19802007 data, the prediction for the year 2035 is
\[
y=304.1+1.64(75)=427.1
\]

Linear model
So, based on the linear model for 19802007, it appears that the 1990 prediction was too high.

\section*{P. 1 Exercises}

In Exercises 1-4, match the equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

1. \(y=-\frac{3}{2} x+3\)
2. \(y=\sqrt{9-x^{2}}\)
3. \(y=3-x^{2}\)
4. \(y=x^{3}-x\)

In Exercises 5-14, sketch the graph of the equation by point plotting.
5. \(y=\frac{1}{2} x+2\)
6. \(y=5-2 x\)
7. \(y=4-x^{2}\)
8. \(y=(x-3)^{2}\)
9. \(y=|x+2|\)
10. \(y=|x|-1\)
11. \(y=\sqrt{x}-6\)
12. \(y=\sqrt{x+2}\)
13. \(y=\frac{3}{x}\)
14. \(y=\frac{1}{x+2}\)

In Exercises 15 and 16, describe the viewing window that yields the figure.
15. \(y=x^{3}+4 x^{2}-3\)

16. \(y=|x|+|x-16|\)


In Exercises 17 and 18, use a graphing utility to graph the equation. Move the cursor along the curve to approximate the unknown coordinate of each solution point accurate to two decimal places.
17. \(y=\sqrt{5-x}\)
(a) \((2, y)\)
(b) \((x, 3)\)
18. \(y=x^{5}-5 x\)
(a) \((-0.5, y)\)
(b) \((x,-4)\)

In Exercises 19-28, find any intercepts.
19. \(y=2 x-5\)
20. \(y=4 x^{2}+3\)
21. \(y=x^{2}+x-2\)
22. \(y^{2}=x^{3}-4 x\)
23. \(y=x \sqrt{16-x^{2}}\)
24. \(y=(x-1) \sqrt{x^{2}+1}\)
25. \(y=\frac{2-\sqrt{x}}{5 x}\)
26. \(y=\frac{x^{2}+3 x}{(3 x+1)^{2}}\)
27. \(x^{2} y-x^{2}+4 y=0\)
28. \(y=2 x-\sqrt{x^{2}+1}\)

In Exercises 29-40, test for symmetry with respect to each axis and to the origin.
29. \(y=x^{2}-6\)
30. \(y=x^{2}-x\)
31. \(y^{2}=x^{3}-8 x\)
32. \(y=x^{3}+x\)
33. \(x y=4\)
34. \(x y^{2}=-10\)
35. \(y=4-\sqrt{x+3}\)
36. \(x y-\sqrt{4-x^{2}}=0\)
37. \(y=\frac{x}{x^{2}+1}\)
38. \(y=\frac{x^{2}}{x^{2}+1}\)
39. \(y=\left|x^{3}+x\right|\)
40. \(|y|-x=3\)

In Exercises 41-58, sketch the graph of the equation. Identify any intercepts and test for symmetry.
41. \(y=2-3 x\)
42. \(y=-\frac{3}{2} x+6\)
43. \(y=\frac{1}{2} x-4\)
44. \(y=\frac{2}{3} x+1\)
45. \(y=9-x^{2}\)
46. \(y=x^{2}+3\)
47. \(y=(x+3)^{2}\)
48. \(y=2 x^{2}+x\)
49. \(y=x^{3}+2\)
50. \(y=x^{3}-4 x\)
51. \(y=x \sqrt{x+5}\)
52. \(y=\sqrt{25-x^{2}}\)
53. \(x=y^{3}\)
54. \(x=y^{2}-4\)
55. \(y=\frac{8}{x}\)
56. \(y=\frac{10}{x^{2}+1}\)
57. \(y=6-|x|\)
58. \(y=|6-x|\)

In Exercises 59-62, use a graphing utility to graph the equation. Identify any intercepts and test for symmetry.
59. \(y^{2}-x=9\)
60. \(x^{2}+4 y^{2}=4\)
61. \(x+3 y^{2}=6\)
62. \(3 x-4 y^{2}=8\)

In Exercises 63-70, find the points of intersection of the graphs of the equations.
63. \(x+y=8\)
\(4 x-y=7\)
64. \(3 x-2 y=-4\)
\(4 x+2 y=-10\)
65. \(x^{2}+y=6\)
\[
x+y=4
\]
66. \(x=3-y^{2}\)
\(y=x-1\)

The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by use of appropriate technology.
67. \(x^{2}+y^{2}=5\)
\(x-y=1\)
69. \(y=x^{3}\)
\(y=x\)
68. \(\begin{aligned} x^{2}+y^{2} & =25 \\ -3 x+y & =15\end{aligned}\)
70. \(y=x^{3}-4 x\)
\(y=-(x+2)\)

In Exercises 71-74, use a graphing utility to find the points of intersection of the graphs. Check your results analytically.
71. \(y=x^{3}-2 x^{2}+x-1\)
72. \(y=x^{4}-2 x^{2}+1\)
\(y=-x^{2}+3 x-1\)
\(y=1-x^{2}\)
73. \(y=\sqrt{x+6}\)
74. \(y=-|2 x-3|+6\)
\(y=\sqrt{-x^{2}-4 x}\)
\(y=6-x\)
75. Modeling Data The table shows the Consumer Price Index (CPI) for selected years. (Source: Bureau of Labor Statistics)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Year & 1975 & 1980 & 1985 & 1990 & 1995 & 2000 & 2005 \\
\hline CPI & 53.8 & 82.4 & 107.6 & 130.7 & 152.4 & 172.2 & 195.3 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form \(y=a t^{2}+b t+c\) for the data. In the model, \(y\) represents the CPI and \(t\) represents the year, with \(t=5\) corresponding to 1975.
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the CPI for the year 2010.
76. Modeling Data The table shows the numbers of cellular phone subscribers (in millions) in the United States for selected years. (Source: Cellular Telecommunications and Internet Association)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Year & 1990 & 1993 & 1996 & 1999 & 2002 & 2005 \\
\hline Number & 5 & 16 & 44 & 86 & 141 & 208 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form \(y=a t^{2}+b t+c\) for the data. In the model, \(y\) represents the number of subscribers and \(t\) represents the year, with \(t=0\) corresponding to 1990 .
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the number of cellular phone subscribers in the United States in the year 2015.
77. Break-Even Point Find the sales necessary to break even ( \(R=C\) ) if the cost \(C\) of producing \(x\) units is
\(C=5.5 \sqrt{x}+10,000 \quad\) Cost equation
and the revenue \(R\) from selling \(x\) units is
\(R=3.29 x\).
Rvenue equation
78. Copper Wire The resistance \(y\) in ohms of 1000 feet of solid copper wire at \(77^{\circ} \mathrm{F}\) can be approximated by the model
\(y=\frac{10,770}{x^{2}}-0.37, \quad 5 \leq x \leq 100\)
where \(x\) is the diameter of the wire in mils ( 0.001 in .). Use a graphing utility to graph the model. If the diameter of the wire is doubled, the resistance is changed by about what factor?

\section*{WRITING ABOUT CONCEPTS}

In Exercises 79 and 80, write an equation whose graph has the indicated property. (There may be more than one correct answer.)
79. The graph has intercepts at \(x=-4, x=3\), and \(x=8\).
80. The graph has intercepts at \(x=-\frac{3}{2}, x=4\), and \(x=\frac{5}{2}\).
81. (a) Prove that if a graph is symmetric with respect to the \(x\)-axis and to the \(y\)-axis, then it is symmetric with respect to the origin. Give an example to show that the converse is not true.
(b) Prove that if a graph is symmetric with respect to one axis and to the origin, then it is symmetric with respect to the other axis.

\section*{CAPSTONE}
82. Match the equation or equations with the given characteristic.
(i) \(y=3 x^{3}-3 x\)
(ii) \(y=(x+3)^{2}\)
(iii) \(y=3 x-3\)
(iv) \(y=\sqrt[3]{x}\)
(v) \(y=3 x^{2}+3\)
(vi) \(y=\sqrt{x+3}\)
(a) Symmetric with respect to the \(y\)-axis
(b) Three \(x\)-intercepts
(c) Symmetric with respect to the \(x\)-axis
(d) \((-2,1)\) is a point on the graph
(e) Symmetric with respect to the origin
(f) Graph passes through the origin

True or False? In Exercises 83-86, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
83. If \((-4,-5)\) is a point on a graph that is symmetric with respect to the \(x\)-axis, then \((4,-5)\) is also a point on the graph.
84. If \((-4,-5)\) is a point on a graph that is symmetric with respect to the \(y\)-axis, then \((4,-5)\) is also a point on the graph.
85. If \(b^{2}-4 a c>0\) and \(a \neq 0\), then the graph of \(y=a x^{2}+b x+c\) has two \(x\)-intercepts.
86. If \(b^{2}-4 a c=0\) and \(a \neq 0\), then the graph of \(y=a x^{2}+b x+c\) has only one \(x\)-intercept.

In Exercises 87 and 88, find an equation of the graph that consists of all points \((x, y)\) having the given distance from the origin. (For a review of the Distance Formula, see Appendix C.)
87. The distance from the origin is twice the distance from \((0,3)\).
88. The distance from the origin is \(K(K \neq 1)\) times the distance from ( 2,0 ).

\section*{P. 2 Linear Models and Rates of Change}
- Find the slope of a line passing through two points.
- Write the equation of a line with a given point and slope.
- Interpret slope as a ratio or as a rate in a real-life application.
- Sketch the graph of a linear equation in slope-intercept form.
- Write equations of lines that are parallel or perpendicular to a given line.

\section*{The Slope of a Line}

\(\Delta y=y_{2}-y_{1}=\) change in \(y\) \(\Delta x=x_{2}-x_{1}=\) change in \(x\) Figure P. 12

The slope of a nonvertical line is a measure of the number of units the line rises (or falls) vertically for each unit of horizontal change from left to right. Consider the two points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) on the line in Figure P.12. As you move from left to right along this line, a vertical change of
\[
\Delta y=y_{2}-y_{1} \quad \text { Change in } y
\]
units corresponds to a horizontal change of
\[
\Delta x=x_{2}-x_{1} \quad \text { Change in } x
\]
units. ( \(\Delta\) is the Greek uppercase letter delta, and the symbols \(\Delta y\) and \(\Delta x\) are read "delta \(y\) " and "delta \(x\).")

\section*{DEFINITION OF THE SLOPE OF A LINE}

The slope \(m\) of the nonvertical line passing through \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is
\[
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad x_{1} \neq x_{2}
\]

Slope is not defined for vertical lines.

\section*{NOTE When using the formula for slope, note that}
\[
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-\left(y_{1}-y_{2}\right)}{-\left(x_{1}-x_{2}\right)}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\]

So, it does not matter in which order you subtract as long as you are consistent and both "subtracted coordinates" come from the same point.

Figure P. 13 shows four lines: one has a positive slope, one has a slope of zero, one has a negative slope, and one has an "undefined" slope. In general, the greater the absolute value of the slope of a line, the steeper the line is. For instance, in Figure P.13, the line with a slope of -5 is steeper than the line with a slope of \(\frac{1}{5}\).


If \(m\) is positive, then the line rises from left to right.


If \(m\) is zero, then the line is horizontal.


If \(m\) is negative, then the line falls from left to right.


If \(m\) is undefined, then the line is vertical.

\section*{EXPLORATION}

Investigating Equations of Lines Use a graphing utility to graph each of the linear equations. Which point is common to all seven lines? Which value in the equation determines the slope of each line?
a. \(y-4=-2(x+1)\)
b. \(y-4=-1(x+1)\)
c. \(y-4=-\frac{1}{2}(x+1)\)
d. \(y-4=0(x+1)\)
e. \(y-4=\frac{1}{2}(x+1)\)
f. \(y-4=1(x+1)\)
g. \(y-4=2(x+1)\)

Use your results to write an equation of a line passing through \((-1,4)\) with a slope of \(m\).


The line with a slope of 3 passing through the point \((1,-2)\)
Figure P. 15

\section*{Equations of Lines}

Any two points on a nonvertical line can be used to calculate its slope. This can be verified from the similar triangles shown in Figure P.14. (Rcall that the ratios of corresponding sides of similar triangles are equal.)


Any two points on a nonvertical line can be used to determine its slope.

\section*{Figure P. 14}

You can write an equation of a nonvertical line if you know the slope of the line and the coordinates of one point on the line. Suppose the slope is \(m\) and the point is \(\left(x_{1}, y_{1}\right)\). If \((x, y)\) is any other point on the line, then
\[
\frac{y-y_{1}}{x-x_{1}}=m .
\]

This equation, involving the two variables \(x\) and \(y\), can be rewritten in the form \(y-y_{1}=m\left(x-x_{1}\right)\), which is called the point-slope equation of a line.

\section*{POINT-SLOPE EQUATION OF A LINE}

An equation of the line with slope \(m\) passing through the point \(\left(x_{1}, y_{1}\right)\) is given by
\[
y-y_{1}=m\left(x-x_{1}\right) .
\]

\section*{EXAMPLE 1 Finding an Equation of a Line}

Find an equation of the line that has a slope of 3 and passes through the point \((1,-2)\).

\section*{Solution}
\[
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-2) & =3(x-1) & & \text { Substitute }-2 \text { for } y_{1}, 1 \text { for } x_{1} \text {, and } 3 \text { for } m . \\
y+2 & =3 x-3 & & \text { Simplify. } \\
y & =3 x-5 & & \text { Solve for } y .
\end{aligned}
\]
(See Figure P.15.)

NOTE Rmember that only nonvertical lines have a slope. Consequently, vertical lines cannot be written in point-slope form. For instance, the equation of the vertical line passing through the point \((1,-2)\) is \(x=1\).


Population of Colorado
Figure P. 16

\section*{Ratios and Rates of Change}

The slope of a line can be interpreted as either a ratio or a rate. If the \(x\) - and \(y\)-axes have the same unit of measure, the slope has no units and is a ratio. If the \(x\) - and \(y\)-axes have different units of measure, the slope is a rate or rate of change. In your study of calculus, you will encounter applications involving both interpretations of slope.

\section*{EXAMPLE 2 Population Growth and Engineering Design}
a. The population of Colorado was \(3,827,000\) in 1995 and \(4,665,000\) in 2005. Over this 10-year period, the average rate of change of the population was
\[
\begin{aligned}
\text { Re of change } & =\frac{\text { change in population }}{\text { change in years }} \\
& =\frac{4,665,000-3,827,000}{2005-1995} \\
& =83,800 \text { people per year. }
\end{aligned}
\]

If Colorado's population continues to increase at this same rate for the next 10 years, it will have a 2015 population of 5,503,000 (see Figure P.16). (Source: U.S. Census Bureau)
b. In tournament water-ski jumping, the ramp rises to a height of 6 feet on a raft that is 21 feet long, as shown in Figure P.17. The slope of the ski ramp is the ratio of its height (the rise) to the length of its base (the run).
\[
\begin{aligned}
\text { Slope of ramp } & =\frac{\text { rise }}{\text { run }} \quad \text { Re is vertical change, run is horizontal change. } \\
& =\frac{6 \text { feet }}{21 \text { feet }} \\
& =\frac{2}{7}
\end{aligned}
\]

In this case, note that the slope is a ratio and has no units.


Dimensions of a water-ski ramp

\section*{Figure P. 17}

The rate of change found in Example 2(a) is an average rate of change. An average rate of change is always calculated over an interval. In this case, the interval is [1995, 2005]. In Chapter 2 you will study another type of rate of change called an instantaneous rate of change.

\section*{Graphing Linear Models}

Many problems in analytic geometry can be classified in two basic categories: (1) Given a graph, what is its equation? and (2) Given an equation, what is its graph? The point-slope equation of a line can be used to solve problems in the first category. However, this form is not especially useful for solving problems in the second category. The form that is better suited to sketching the graph of a line is the slopeintercept form of the equation of a line.

\section*{THE SLOPE-INTERCEPT EQUATION OF A LINE}

The graph of the linear equation
\[
y=m x+b
\]
is a line having a slope of \(m\) and a y-intercept at \((0, b)\).

\section*{EXAMPLE 3 Sketching Lines in the Plane}

Sketch the graph of each equation.
a. \(y=2 x+1\)
b. \(y=2\)
c. \(3 y+x-6=0\)

\section*{Solution}
a. Because \(b=1\), the \(y\)-intercept is \((0,1)\). Because the slope is \(m=2\), you know that the line rises two units for each unit it moves to the right, as shown in Figure P.18(a).
b. Because \(b=2\), the \(y\)-intercept is \((0,2)\). Because the slope is \(m=0\), you know that the line is horizontal, as shown in Figure P.18(b).
c. Begin by writing the equation in slope-intercept form.
\[
\begin{aligned}
3 y+x-6 & =0 & & \text { Write original equation. } \\
3 y & =-x+6 & & \text { Isolate } y \text {-term on the left. } \\
y & =-\frac{1}{3} x+2 & & \text { Slope-intercept form }
\end{aligned}
\]

In this form, you can see that the \(y\)-intercept is \((0,2)\) and the slope is \(m=-\frac{1}{3}\). This means that the line falls one unit for every three units it moves to the right, as shown in Figure P.18(c).

(b) \(m=0\); line is horizontal

(c) \(m=-\frac{1}{3}\); line falls
(a) \(m=2\); line rises

Figure P. 18

STUDY TIP In mathematics, the phrase "if and only if" is a way of stating two implications in one statement. For instance, the first statement at the right could be rewritten as the following two implications.
a. If two distinct nonvertical lines are parallel, then their slopes are equal.
b. If two distinct nonvertical lines have equal slopes, then they are parallel.

Because the slope of a vertical line is not defined, its equation cannot be written in the slope-intercept form. However, the equation of any line can be written in the general form
\[
A x+B y+C=0
\]

General form of the equation of a line
where \(A\) and \(B\) are not both zero. For instance, the vertical line given by \(x=a\) can be represented by the general form \(x-a=0\).

\section*{SUMMARY OF EQUATIONS OF LINES}
1. General form: \(\quad A x+B y+C=0, \quad(A, B \neq 0)\)
2. Vertical line: \(x=a\)
3. Horizontal line: \(y=b\)
4. Point-slope form:
\(y-y_{1}=m\left(x-x_{1}\right)\)
5. Slope-intercept form: \(y=m x+b\)

\section*{Parallel and Perpendicular Lines}

The slope of a line is a convenient tool for determining whether two lines are parallel or perpendicular, as shown in Figure P.19. Specifically, nonvertical lines with the same slope are parallel and nonvertical lines whose slopes are negative reciprocals are perpendicular.


Parallel lines
Figure P. 19


Perpendicular lines

\section*{PARALLEL AND PERPENDICULAR LINES}
1. Two distinct nonvertical lines are parallel if and only if their slopes are equalthat is, if and only if \(\quad m_{1}=m_{2}\).
2. Two nonvertical lines are perpendicular if and only if their slopes are negative reciprocals of each otherthat is, if and only if
\[
m_{1}=-\frac{1}{m_{2}}
\]


Lines parallel and perpendicular to \(2 x-3 y=5\)
Figure P. 20

\section*{EXAMPLE 4 Finding Parallel and Perpendicular Lines}

Find the general forms of the equations of the lines that pass through the point \((2,-1)\) and are
a. parallel to the line \(2 x-3 y=5\)
b. perpendicular to the line \(2 x-3 y=5\).
(See Figure P.20.)
Solution By writing the linear equation \(2 x-3 y=5\) in slope-intercept form, \(y=\frac{2}{3} x-\frac{5}{3}\), you can see that the given line has a slope of \(m=\frac{2}{3}\).
a. The line through \((2,-1)\) that is parallel to the given line also has a slope of \(\frac{2}{3}\).
\[
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =\frac{2}{3}(x-2) & & \text { Substitute. } \\
3(y+1) & =2(x-2) & & \text { Simplify. } \\
2 x-3 y-7 & =0 & & \text { General form }
\end{aligned}
\]

Note the similarity to the original equation.
b. Using the negative reciprocal of the slope of the given line, you can determine that the slope of a line perpendicular to the given line is \(-\frac{3}{2}\). So, the line through the point \((2,-1)\) that is perpendicular to the given line has the following equation.
\[
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =-\frac{3}{2}(x-2) & & \text { Substitute. } \\
2(y+1) & =-3(x-2) & & \text { Simplify. } \\
3 x+2 y-4 & =0 & & \text { General form }
\end{aligned}
\]

TECHNOLOGY PITFALL The slope of a line will appear distorted if you use different tick-mark spacing on the \(x\) - and \(y\)-axes. For instance, the graphing calculator screens in Figures P.21(a) and P.21(b) both show the lines given by \(y=2 x\) and \(y=-\frac{1}{2} x+3\). Because these lines have slopes that are negative reciprocals, they must be perpendicular. In Figure P.21(a), however, the lines don't appear to be perpendicular because the tick-mark spacing on the \(x\)-axis is not the same as that on the \(y\)-axis. In Figure P.21(b), the lines appear perpendicular because the tick-mark spacing on the \(x\)-axis is the same as on the \(y\)-axis. This type of viewing window is said to have a square setting.

(a) Tick-mark spacing on the \(x\)-axis is not the same as tick-mark spacing on the \(y\)-axis.
Figure P. 21

(b) Tick-mark spacing on the \(x\)-axis is the same as tick-mark spacing on the \(y\)-axis.

\section*{P. 2 Exercises}

In Exercises 1-6, estimate the slope of the line from its graph. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
1.

2.

3.

4.

5.

6.


In Exercises 7 and 8, sketch the lines through the point with the indicated slopes. Make the sketches on the same set of coordinate axes.

Point
7. \((3,4)\)
(a) 1
(b) -2
(c) \(-\frac{3}{2}\)
(d) Undefined
8. \((-2,5)\)
(a) 3
(b) -3
(c) \(\frac{1}{3}\)
(d) 0

In Exercises 9-14, plot the pair of points and find the slope of the line passing through them.
9. \((3,-4),(5,2)\)
10. \((1,1),(-2,7)\)
11. \((4,6),(4,1)\)
12. \((3,-5),(5,-5)\)
13. \(\left(-\frac{1}{2}, \frac{2}{3}\right),\left(-\frac{3}{4}, \frac{1}{6}\right)\)
14. \(\left(\frac{7}{8}, \frac{3}{4}\right),\left(\frac{5}{4},-\frac{1}{4}\right)\)

In Exercises 15-18, use the point on the line and the slope of the line to find three additional points that the line passes through. (There is more than one correct answer.)
15. \(\frac{\text { Point }}{(6,2)} \quad \frac{\text { Slope }}{m=0}\)
16. \(\frac{\text { Point }}{(-4,3)}\)
Slope
17. \((1,7)\)
\(m=-3\)
18. \((-2,-2)\)
\(m\) is undefined.
\(m=2\)
19. Conveyor Design A moving conveyor is built to rise 1 meter for each 3 meters of horizontal change.
(a) Find the slope of the conveyor.
(b) Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 feet.
20. Rate of Change Each of the following is the slope of a line representing daily revenue \(y\) in terms of time \(x\) in days. Use the slope to interpret any change in daily revenue for a one-day increase in time.
(a) \(m=800\)
(b) \(m=250\)
(c) \(m=0\)
21. Modeling Data The table shows the populations \(y\) (in millions) of the United States for 2000 through 2005. The variable \(t\) represents the time in years, with \(t=0\) corresponding to 2000 . (Source: U.S. Bureau of the Census)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 282.4 & 285.3 & 288.2 & 291.1 & 293.9 & 296.6 \\
\hline
\end{tabular}
(a) Plot the data by hand and connect adjacent points with a line segment.
(b) Use the slope of each line segment to determine the year when the population increased least rapidly.
22. Modeling Data The table shows the rate \(r\) (in miles per hour) that a vehicle is traveling after \(t\) seconds.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline\(r\) & 57 & 74 & 85 & 84 & 61 & 43 \\
\hline
\end{tabular}
(a) Plot the data by hand and connect adjacent points with a line segment.
(b) Use the slope of each line segment to determine the interval when the vehicle's rate changed most rapidly. How did the rate change?

In Exercises 23-28, find the slope and the \(y\)-intercept (if possible) of the line.
23. \(y=4 x-3\)
24. \(-x+y=1\)
25. \(x+5 y=20\)
26. \(6 x-5 y=15\)
27. \(x=4\)
28. \(y=-1\)

In Exercises 29-34, find an equation of the line that passes through the point and has the indicated slope. Sketch the line.
\begin{tabular}{lllll} 
& \(\frac{\text { Point }}{}\) & \(\frac{\text { Slope }}{}\) & \multicolumn{1}{l}{\(\frac{\text { Point }}{m=\frac{3}{4}}\)} & \\
30. \((-5,-2)\) & & \(\frac{\text { Slope }}{m \text { is undefined. }}\) \\
31. \((0,3)\) & & 30) & \(m=\frac{2}{3}\) & 32. \((0,4)\)
\end{tabular}

In Exercises 35-44, find an equation of the line that passes through the points, and sketch the line.
35. \((0,0),(4,8)\)
36. \((0,0),(-1,5)\)
37. \((2,1),(0,-3)\)
38. \((-2,-2),(1,7)\)
39. \((2,8),(5,0)\)
40. \((-3,6),(1,2)\)
41. \((6,3),(6,8)\)
42. \((1,-2),(3,-2)\)
43. \(\left(\frac{1}{2}, \frac{7}{2}\right),\left(0, \frac{3}{4}\right)\)
44. \(\left(\frac{7}{8}, \frac{3}{4}\right),\left(\frac{5}{4},-\frac{1}{4}\right)\)
45. Find an equation of the vertical line with \(x\)-intercept at 3 .
46. Show that the line with intercepts \((a, 0)\) and \((0, b)\) has the following equation.
\[
\frac{x}{a}+\frac{y}{b}=1, \quad a \neq 0, b \neq 0
\]

In Exercises 47-50, use the result of Exercise 46 to write an equation of the line in general form.
47. \(x\)-intercept: \((2,0)\)
48. \(x\)-intercept: \(\left(-\frac{2}{3}, 0\right)\)
\(y\)-intercept: \((0,3)\)
\(y\)-intercept: \((0,-2)\)
49. Point on line: \((1,2)\)
\(x\)-intercept: \((a, 0)\)
\(y\)-intercept: \((0, a)\)
\((a \neq 0)\)
50. Point on line: \((-3,4)\)
\(x\)-intercept: \((a, 0)\)
\(y\)-intercept: \((0, a)\)
\((a \neq 0)\)

In Exercises 51-58, sketch a graph of the equation.
51. \(y=-3\)
52. \(x=4\)
53. \(y=-2 x+1\)
54. \(y=\frac{1}{3} x-1\)
55. \(y-2=\frac{3}{2}(x-1)\)
56. \(y-1=3(x+4)\)
57. \(2 x-y-3=0\)
58. \(x+2 y+6=0\)
59. Square Setting Use a graphing utility to graph the lines \(y=2 x-3\) and \(y=-\frac{1}{2} x+1\) in each viewing window. Compare the graphs. Do the lines appear perpendicular? Are the lines perpendicular? Explain.
(a)

(b)
\(X \min =-6\)
\(X \max =6\)
\(X \operatorname{scl}=1\)
\(Y \min =-4\)
\(Y \max =4\)
\(Y \operatorname{scl}=1\)

\section*{CAPSTONE}
60. A line is represented by the equation \(a x+b y=4\).
(a) When is the line parallel to the \(x\)-axis?
(b) When is the line parallel to the \(y\)-axis?
(c) Give values for \(a\) and \(b\) such that the line has a slope of \(\frac{5}{8}\).
(d) Give values for \(a\) and \(b\) such that the line is perpendicular to \(y=\frac{2}{5} x+3\).
(e) Give values for \(a\) and \(b\) such that the line coincides with the graph of \(5 x+6 y=8\).

In Exercises 61-66, write the general forms of the equations of the lines through the point (a) parallel to the given line and (b) perpendicular to the given line.
\begin{tabular}{lllll} 
& \begin{tabular}{ll} 
Point & Line \\
61. \((-7,-2)\) & \(x=1\)
\end{tabular} & & 62. \begin{tabular}{l} 
Point \\
\((-1,0)\)
\end{tabular} & \begin{tabular}{l} 
Line \\
63. \((2,1)\)
\end{tabular} \\
\(4 x-2 y=3\) & 64. \((-3,2)\) & \(x+y=7\) \\
65. \(\left(\frac{3}{4}, \frac{7}{8}\right)\) & \(5 x-3 y=0\) & 66. \((4,-5)\) & \(3 x+4 y=7\)
\end{tabular}

Rate of Change In Exercises 67-70, you are given the dollar value of a product in 2008 and the rate at which the value of the product is expected to change during the next 5 years. Write a linear equation that gives the dollar value \(V\) of the product in terms of the year \(t\). (Let \(t=0\) represent 2000.)
\begin{tabular}{|c|c|}
\hline 2008 Value & Rate \\
\hline 67. \(\$ 1850\) & \$250 increase per year \\
\hline 68. \(\$ 156\) & \$4.50 increase per year \\
\hline 69. \(\$ 17,200\) & \$1600 decrease per year \\
\hline 70. \(\$ 245,000\) & \$5600 decrease per year \\
\hline
\end{tabular}

In Exercises 71 and 72, use a graphing utility to graph the parabolas and find their points of intersection. Find an equation of the line through the points of intersection and graph the line in the same viewing window.
71. \(y=x^{2}\)
\(y=4 x-x^{2}\)
\[
\text { 72. } \begin{aligned}
y & =x^{2}-4 x+3 \\
y & =-x^{2}+2 x+3
\end{aligned}
\]

In Exercises 73 and 74, determine whether the points are collinear. (Three points are collinear if they lie on the same line.)
73. \((-2,1),(-1,0),(2,-2)\)
74. \((0,4),(7,-6),(-5,11)\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 75-77, find the coordinates of the point of intersection of the given segments. Explain your reasoning.

\section*{75. \\ }

Perpendicular bisectors
76.


Medians
77.


Altitudes
78. Show that the points of intersection in Exercises 75, 76, and 77 are collinear.
79. Temperature Conversion Find a linear equation that expresses the relationship between the temperature in degrees Celsius \(C\) and degrees Fahrenheit \(F\). Use the fact that water freezes at \(0^{\circ} \mathrm{C}\) \(\left(32^{\circ} \mathrm{F}\right)\) and boils at \(100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)\). Use the equation to convert \(72^{\circ} \mathrm{F}\) to degrees Celsius.
80. Reimbursed Expenses A company reimburses its sales representatives \(\$ 75\) per day for lodging and meals plus 48 фer mile driven. Write a linear equation giving the daily cost \(C\) to the company in terms of \(x\), the number of miles driven. How much does it cost the company if a sales representative drives 137 miles on a given day?
81. Career Choice An employee has two options for positions in a large corporation. One position pays \(\$ 4.50\) per hour plus an additional unit rate of \(\theta .75\) per unit produced. The other pays \(\$ 1.20\) per hour plus a unit rate of \(\$ .30\).
(a) Find linear equations for the hourly wages \(W\) in terms of \(x\), the number of units produced per hour, for each option.
(b) Use a graphing utility to graph the linear equations and find the point of intersection.
(c) Interpret the meaning of the point of intersection of the graphs in part (b). How would you use this information to select the correct option if the goal were to obtain the highest hourly wage?
82. Straight-Line Depreciation A small business purchases a piece of equipment for \(\$ 75\). After 5 years the equipment will be outdated, having no value.
(a) Write a linear equation giving the value \(y\) of the equipment in terms of the time \(x, 0 \leq x \leq 5\).
(b) Find the value of the equipment when \(x=2\).
(c) Estimate (to two-decimal-place accuracy) the time when the value of the equipment is \(\$ 00\).
83. Apartment Rental A real estate office manages an apartment complex with 50 units. When the rent is \(\$ 80\) per month, all 50 units are occupied. However, when the rent is \(\$ 25\), the average number of occupied units drops to 47 . Assume that the relationship between the monthly rent \(p\) and the demand \(x\) is linear. (Note: The term demand refers to the number of occupied units.)
(a) Write a linear equation giving the demand \(x\) in terms of the rent \(p\).
(b) Linear extrapolation Use a graphing utility to graph the demand equation and use the trace feature to predict the number of units occupied if the rent is raised to \(\$ 55\).
(c) Linear interpolation Predict the number of units occupied if the rent is lowered to \(\$ 95\). Verify graphically.
84. Modeling Data An instructor gives regular 20-point quizzes and 100-point exams in a mathematics course. Average scores for six students, given as ordered pairs \((x, y)\), where \(x\) is the average quiz score and \(y\) is the average test score, are \((18,87)\), \((10,55),(19,96),(16,79),(13,76)\), and \((15,82)\).
(a) Use the regression capabilities of a graphing utility to find the least squares regression line for the data.
(b) Use a graphing utility to plot the points and graph the regression line in the same viewing window.
(c) Use the regression line to predict the average exam score for a student with an average quiz score of 17 .
(d) Interpret the meaning of the slope of the regression line.
(e) The instructor adds 4 points to the average test score of everyone in the class. Describe the changes in the positions of the plotted points and the change in the equation of the line.
85. Tangent Line Find an equation of the line tangent to the circle \(x^{2}+y^{2}=169\) at the point \((5,12)\).
86. Tangent Line Find an equation of the line tangent to the circle \((x-1)^{2}+(y-1)^{2}=25\) at the point \((4,-3)\).

Distance In Exercises 87-92, find the distance between the point and line, or between the lines, using the formula for the distance between the point \(\left(x_{1}, y_{1}\right)\) and the line \(A x+B y+\) \(C=0\).
Distance \(=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}\)
87. Point: \((0,0)\)

Line: \(4 x+3 y=10\)
89. Point: \((-2,1)\)

Line: \(x-y-2=0\)
91. Line: \(x+y=1\)

Line: \(x+y=5\)
88. Point: \((2,3)\)

Line: \(4 x+3 y=10\)
90. Point: \((6,2)\)

Line: \(x=-1\)
92. Line: \(3 x-4 y=1\)

Line: \(3 x-4 y=10\)
93. Show that the distance between the point \(\left(x_{1}, y_{1}\right)\) and the line \(A x+B y+C=0\) is

Distance \(=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}\).
94. Write the distance \(d\) between the point \((3,1)\) and the line \(y=m x+4\) in terms of \(m\). Use a graphing utility to graph the equation. When is the distance 0 ? Explain the result geometrically.
95. Prove that the diagonals of a rhombus intersect at right angles. (A rhombus is a quadrilateral with sides of equal lengths.)
96. Prove that the figure formed by connecting consecutive midpoints of the sides of any quadrilateral is a parallelogram.
97. Prove that if the points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) lie on the same line as \(\left(x_{1}^{*}, y_{1}^{*}\right)\) and \(\left(x_{2}^{*}, y_{2}^{*}\right)\), then
\(\frac{y_{2}^{*}-y_{1}^{*}}{x_{2}^{*}-x_{1}^{*}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\).
Assume \(x_{1} \neq x_{2}\) and \(x_{1}^{*} \neq x_{2}^{*}\).
98. Prove that if the slopes of two nonvertical lines are negative reciprocals of each other, then the lines are perpendicular.

True or False? In Exercises 99 and 100, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
99. The lines represented by \(a x+b y=c_{1}\) and \(b x-a y=c_{2}\) are perpendicular. Assume \(a \neq 0\) and \(b \neq 0\).
100. It is possible for two lines with positive slopes to be perpendicular to each other.

\section*{P. 3 Functions and Their Graphs}


A real-valued function \(f\) of a real variable Figure P. 22
- Use function notation to represent and evaluate a function.
- Find the domain and range of a function.

Sketch the graph of a function.
Identify different types of transformations of functions.
Classify functions and recognize combinations of functions.

\section*{Functions and Function Notation}

A relation between two sets \(X\) and \(Y\) is a set of ordered pairs, each of the form \((x, y)\), where \(x\) is a member of \(X\) and \(y\) is a member of \(Y\). A function from \(X\) to \(Y\) is a relation between \(X\) and \(Y\) that has the property that any two ordered pairs with the same \(x\)-value also have the same \(y\)-value. The variable \(x\) is the independent variable, and the variable \(y\) is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area \(A\) of a circle is a function of the circle's radius \(r\).
\[
A=\pi r^{2} \quad A \text { is a function of } r
\]

In this case \(r\) is the independent variable and \(A\) is the dependent variable.

\section*{DEFINITION OF A REAL-VALUED FUNCTION OF A REAL VARIABLE}

Let \(X\) and \(Y\) be sets of real numbers. A real-valued function \(\boldsymbol{f}\) of a real variable \(\boldsymbol{x}\) from \(X\) to \(Y\) is a correspondence that assigns to each number \(x\) in \(X\) exactly one number \(y\) in \(Y\).

The domain of \(f\) is the set \(X\). The number \(y\) is the image of \(x\) under \(f\) and is denoted by \(f(x)\), which is called the value of \(f\) at \(\boldsymbol{x}\). The range of \(f\) is a subset of \(Y\) and consists of all images of numbers in \(X\) (see Figure P.22).

Functions can be specified in a variety of ways. In this text, however, we will concentrate primarily on functions that are given by equations involving the dependent and independent variables. For instance, the equation
\[
x^{2}+2 y=1 \quad \text { Equation in implicit form }
\]
defines \(y\), the dependent variable, as a function of \(x\), the independent variable. To evaluate this function (that is, to find the \(y\)-value that corresponds to a given \(x\)-value), it is convenient to isolate \(y\) on the left side of the equation.
\[
y=\frac{1}{2}\left(1-x^{2}\right) \quad \text { Equation in explicit form }
\]

Using \(f\) as the name of the function, you can write this equation as
\[
f(x)=\frac{1}{2}\left(1-x^{2}\right) . \quad \text { Function notation }
\]

The original equation, \(x^{2}+2 y=1\), implicitly defines \(y\) as a function of \(x\). When you solve the equation for \(y\), you are writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable as \(f(x)\) while at the same time telling you that \(x\) is the independent variable and that the function itself is " \(f\)." The symbol \(f(x)\) is read " \(f\) of \(x\)." Function notation allows you to be less wordy. Instead of asking "What is the value of \(y\) that corresponds to \(x=3\) ?" you can ask "What is \(f(3)\) ?"

STUDY TIP In calculus, it is important to specify clearly the domain of a function or expression. For instance, in Example 1(c) the two expressions
\(\frac{f(x+\Delta x)-f(x)}{\Delta x}\) and \(2 x+\Delta x\), \(\Delta x \neq 0\)
are equivalent because \(\Delta x=0\) is excluded from the domain of each expression. Without a stated domain restriction, the two expressions would not be equivalent.

In an equation that defines a function, the role of the variable \(x\) is simply that of a placeholder. For instance, the function given by
\[
f(x)=2 x^{2}-4 x+1
\]
can be described by the form
\[
f(\square)=2(\square)^{2}-4(\square)+1
\]
where parentheses are used instead of \(x\). To evaluate \(f(-2)\), simply place -2 in each set of parentheses.
\[
\begin{aligned}
f(-2) & =2(-2)^{2}-4(-2)+1 & & \text { Substitute }-2 \text { for } x . \\
& =2(4)+8+1 & & \text { Simplify. } \\
& =17 & & \text { Simplify. }
\end{aligned}
\]

NOTE Although \(f\) is often used as a convenient function name and \(x\) as the independent variable, you can use other symbols. For instance, the following equations all define the same function.
\[
\begin{aligned}
f(x) & =x^{2}-4 x+7 & & \text { Function name is } f, \text { independent variable is } x . \\
f(t) & =t^{2}-4 t+7 & & \text { Function name is } f, \text { independent variable is } t . \\
g(s) & =s^{2}-4 s+7 & & \text { Function name is } g, \text { independent variable is } s .
\end{aligned}
\]

\section*{EXAMPLE 1 Evaluating a Function}

For the function \(f\) defined by \(f(x)=x^{2}+7\), evaluate each expression.
a. \(f(3 a)\)
b. \(f(b-1)\)
c. \(\frac{f(x+\Delta x)-f(x)}{\Delta x}, \quad \Delta x \neq 0\)

\section*{Solution}
a. \(f(3 a)=(3 a)^{2}+7 \quad\) Substitute \(3 a\) for \(x\).
\[
=9 a^{2}+7 \quad \text { Simplify }
\]
b. \(f(b-1)=(b-1)^{2}+7 \quad\) Substitute \(b-1\) for \(x\).
\[
\begin{array}{ll}
=b^{2}-2 b+1+7 & \text { Expand binomial. } \\
=b^{2}-2 b+8 & \text { Simplify. }
\end{array}
\]
c. \(\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\left[(x+\Delta x)^{2}+7\right]-\left(x^{2}+7\right)}{\Delta x}\)
\[
\begin{aligned}
& =\frac{x^{2}+2 x \Delta x+(\Delta x)^{2}+7-x^{2}-7}{\Delta x} \\
& =\frac{2 x \Delta x+(\Delta x)^{2}}{\Delta x} \\
& =\frac{\Delta x(2 x+\Delta x)}{\Delta x} \\
& =2 x+\Delta x, \quad \Delta x \neq 0
\end{aligned}
\]

NOTE The expression in Example 1(c) is called a difference quotient and has a special significance in calculus. You will learn more about this in Chapter 2.

(a) The domain of \(f\) is \([1, \infty)\) and the range is \([0, \infty)\).

(b) The domain of \(f\) is all \(x\)-values such that \(x \neq \frac{\pi}{2}+n \pi\) and the range is \((-\infty, \infty)\).
Figure P. 23


The domain of \(f\) is \((-\infty, \infty)\) and the range is \([0, \infty)\).
Figure P. 24

\section*{The Domain and Range of a Function}

The domain of a function can be described explicitly, or it may be described implicitly by an equation used to define the function. The implied domain is the set of all real numbers for which the equation is defined, whereas an explicitly defined domain is one that is given along with the function. For example, the function given by
\[
f(x)=\frac{1}{x^{2}-4}, \quad 4 \leq x \leq 5
\]
has an explicitly defined domain given by \(\{x: 4 \leq x \leq 5\}\). On the other hand, the function given by
\[
g(x)=\frac{1}{x^{2}-4}
\]
has an implied domain that is the set \(\{x: x \neq \pm 2\}\).

\section*{EXAMPLE 2 Finding the Domain and Range of a Function}
a. The domain of the function
\[
f(x)=\sqrt{x-1}
\]
is the set of all \(x\)-values for which \(x-1 \geq 0\), which is the interval \([1, \infty)\). To find the range, observe that \(f(x)=\sqrt{x-1}\) is never negative. So, the range is the interval \([0, \infty)\), as indicated in Figure P.23(a).
b. The domain of the tangent function, as shown in Figure P.23(b),
\[
f(x)=\tan x
\]
is the set of all \(x\)-values such that
\[
x \neq \frac{\pi}{2}+n \pi, \quad n \text { is an integer. } \quad \text { Domain of tangent function }
\]

The range of this function is the set of all real numbers. For a review of the characteristics of this and other trigonometric functions, see Appendix C.

\section*{EXAMPLE 3 A Function Defined by More than One Equation}

Determine the domain and range of the function.
\[
f(x)= \begin{cases}1-x, & \text { if } x<1 \\ \sqrt{x-1}, & \text { if } x \geq 1\end{cases}
\]

Solution Because \(f\) is defined for \(x<1\) and \(x \geq 1\), the domain is the entire set of real numbers. On the portion of the domain for which \(x \geq 1\), the function behaves as in Example 2(a). For \(x<1\), the values of \(1-x\) are positive. So, the range of the function is the interval \([0, \infty\) ). (See Figure P.24.)

A function from \(X\) to \(Y\) is one-to-one if to each \(y\)-value in the range there corresponds exactly one \(x\)-value in the domain. For instance, the function given in Example 2(a) is one-to-one, whereas the functions given in Examples 2(b) and 3 are not one-to-one. A function from \(X\) to \(Y\) is onto if its range consists of all of \(Y\).


The graph of a function Figure P. 25


Identity function


Absolute value function
The graphs of eight basic functions Figure P. 27

\section*{The Graph of a Function}

The graph of the function \(y=f(x)\) consists of all points \((x, f(x))\), where \(x\) is in the domain of \(f\). In Figure P.25, note that
\[
\begin{aligned}
x & =\text { the directed distance from the } y \text {-axis } \\
f(x) & =\text { the directed distance from the } x \text {-axis. }
\end{aligned}
\]

A vertical line can intersect the graph of a function of \(x\) at most once. This observation provides a convenient visual test, called the Vertical Line Test, for functions of \(x\). That is, a graph in the coordinate plane is the graph of a function of \(x\) if and only if no vertical line intersects the graph at more than one point. For example, in Figure P.26(a), you can see that the graph does not define \(y\) as a function of \(x\) because a vertical line intersects the graph twice, whereas in Figures P.26(b) and (c), the graphs do define \(y\) as a function of \(x\).

(a) Not a function of \(x\)

(b) A function of \(x\)

(c) A function of \(x\)

\section*{Figure P. 26}

Figure P. 27 shows the graphs of eight basic functions. You should be able to recognize these graphs. (Graphs of the other four basic trigonometric functions are shown in Appendix C.)


Squaring function


Rational function


Cubing function


Sine function


Square root function


Cosine function

\section*{EXPLORATION}

Writing Equations for Functions
Each of the graphing utility screens below shows the graph of one of the eight basic functions shown on page 22. Each screen also shows a transformation of the graph. Describe the transformation. Then use your description to write an equation for the transformation.

a.

b.

c.

d.

\section*{Transformations of Functions}

Some families of graphs have the same basic shape. For example, compare the graph of \(y=x^{2}\) with the graphs of the four other quadratic functions shown in Figure P.28.

(a) Vertical shift upward

(c) Eflection

Figure P. 28

(b) Horizontal shift to the left

(d) Shift left, reflect, and shift upward

Each of the graphs in Figure P. 28 is a transformation of the graph of \(y=x^{2}\). The three basic types of transformations illustrated by these graphs are vertical shifts, horizontal shifts, and reflections. Function notation lends itself well to describing transformations of graphs in the plane. For instance, if \(f(x)=x^{2}\) is considered to be the original function in Figure P.28, the transformations shown can be represented by the following equations.
\[
\begin{aligned}
& y=f(x)+2 \\
& y=f(x+2) \\
& y=-f(x) \\
& y=-f(x+3)+1
\end{aligned}
\]

Vertical shift up 2 units
Horizontal shift to the left 2 units
Eflection about the -axis
Shift left 3 units, reflect about \(x\)-axis, and shift up 1 unit
\begin{tabular}{ll}
\hline BASIC TYPES OF TRANSFORMATIONS \((c>0)\) \\
\hline Original graph: & \(y=f(x)\) \\
Horizontal shift \(c\) units to the right: & \(y=f(x-c)\) \\
Horizontal shift \(c\) units to the left: & \(y=f(x+c)\) \\
Vertical shift \(c\) units downward: & \(y=f(x)-c\) \\
Vertical shift \(c\) units upward: & \(y=f(x)+c\) \\
Reflection (about the \(x\)-axis): & \(y=-f(x)\) \\
Reflection (about the \(y\)-axis): & \(y=f(-x)\) \\
Reflection (about the origin): & \(y=-f(-x)\)
\end{tabular}

- FOR FURTHER INFORMATION For more on the history of the concept of a function, see the article "Evolution of the Function Concept: A Brief Survey" by Israel Kiner in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\section*{Classifications and Combinations of Functions}

The modern notion of a function is derived from the efforts of many seventeenth- and eighteenth-century mathematicians. Of particular note was Leonhard Euler, to whom we are indebted for the function notation \(y=f(x)\). By the end of the eighteenth century, mathematicians and scientists had concluded that many real-world phenomena could be represented by mathematical models taken from a collection of functions called elementary functions. Elementary functions fall into three categories.
1. Algebraic functions (polynomial, radical, rational)
2. Trigonometric functions (sine, cosine, tangent, and so on)
3. Exponential and logarithmic functions

You can review the trigonometric functions in Appendix C. The other nonalgebraic functions, such as the inverse trigonometric functions and the exponential and logarithmic functions, are introduced in Chapter 5.

The most common type of algebraic function is a polynomial function
\[
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
\]
where \(n\) is a nonnegative integer. The numbers \(a_{i}\) are coefficients, with \(a_{n}\) the leading coefficient and \(a_{0}\) the constant term of the polynomial function. If \(a_{n} \neq 0\), then \(n\) is the degree of the polynomial function. The zero polynomial \(f(x)=0\) is not assigned a degree. It is common practice to use subscript notation for coefficients of general polynomial functions, but for polynomial functions of low degree, the following simpler forms are often used. (Note that \(a \neq 0\).)
\begin{tabular}{lll} 
Zeroth degree: & \(f(x)=a\) & Constant function \\
First degree: & \(f(x)=a x+b\) & Linear function \\
Second degree: & \(f(x)=a x^{2}+b x+c\) & Quadratic function \\
Third degree: & \(f(x)=a x^{3}+b x^{2}+c x+d\) & Cubic function
\end{tabular}

Although the graph of a nonconstant polynomial function can have several turns, eventually the graph will rise or fall without bound as \(x\) moves to the right or left. Whether the graph of
\[
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
\]
eventually rises or falls can be determined by the function's degree (odd or even) and by the leading coefficient \(a_{n}\), as indicated in Figure P.29. Note that the dashed portions of the graphs indicate that the Leading Coefficient Test determines only the right and left behavior of the graph.
\[
a_{n}>0
\]


Graphs of polynomial functions of odd degree

The Leading Coefficient Test for polynomial functions
Figure P. 29


The domain of the composite function \(f \circ g\) Figure P. 30

Just as a rational number can be written as the quotient of two integers, a rational function can be written as the quotient of two polynomials. Specifically, a function \(f\) is rational if it has the form
\[
f(x)=\frac{p(x)}{q(x)}, \quad q(x) \neq 0
\]
where \(p(x)\) and \(q(x)\) are polynomials.
Polynomial functions and rational functions are examples of algebraic functions. An algebraic function of \(x\) is one that can be expressed as a finite number of sums, differences, multiples, quotients, and radicals involving \(x^{n}\). For example, \(f(x)=\sqrt{x+1}\) is algebraic. Functions that are not algebraic are transcendental. For instance, the trigonometric functions are transcendental.

Two functions can be combined in various ways to create new functions. For example, given \(f(x)=2 x-3\) and \(g(x)=x^{2}+1\), you can form the functions shown.
\[
\begin{array}{ll}
(f+g)(x)=f(x)+g(x)=(2 x-3)+\left(x^{2}+1\right) & \text { Sum } \\
(f-g)(x)=f(x)-g(x)=(2 x-3)-\left(x^{2}+1\right) & \text { Difference } \\
(f g)(x)=f(x) g(x)=(2 x-3)\left(x^{2}+1\right) & \text { Product } \\
(f / g)(x)=\frac{f(x)}{g(x)}=\frac{2 x-3}{x^{2}+1} & \text { Quotient }
\end{array}
\]

You can combine two functions in yet another way, called composition. The resulting function is called a composite function.

\section*{DEFINITION OF COMPOSITE FUNCTION}

Let \(f\) and \(g\) be functions. The function given by \((f \circ g)(x)=f(g(x))\) is called the composite of \(f\) with \(g\). The domain of \(f \circ g\) is the set of all \(x\) in the domain of \(g\) such that \(g(x)\) is in the domain of \(f\) (see Figure P.30).

The composite of \(f\) with \(g\) may not be equal to the composite of \(g\) with \(f\).

\section*{EXAMPLE 4 Finding Composite Functions}

Given \(f(x)=2 x-3\) and \(g(x)=\cos x\), find each composite function.
a. \(f \circ g\)
b. \(g \circ f\)

\section*{Solution}
\[
\begin{aligned}
\text { a. }(f \circ g)(x) & =f(g(x)) & & \text { Definition of } f \circ g \\
& =f(\cos x) & & \text { Substitute } \cos x \text { for } g(x) . \\
& =2(\cos x)-3 & & \text { Definition of } f(x) \\
& =2 \cos x-3 & & \text { Simplify. } \\
\text { b. }(g \circ f)(x) & =g(f(x)) & & \text { Definition of } g \circ f \\
& =g(2 x-3) & & \text { Substitute } 2 x-3 \text { for } f(x) . \\
& =\cos (2 x-3) & & \text { Definition of } g(x)
\end{aligned}
\]

Note that \((f \circ g)(x) \neq(g \circ f)(x)\).

\section*{E X P L ORATION}

Use a graphing utility to graph each function. Determine whether the function is even, odd, or neither.
\[
\begin{aligned}
& f(x)=x^{2}-x^{4} \\
& g(x)=2 x^{3}+1 \\
& h(x)=x^{5}-2 x^{3}+x \\
& j(x)=2-x^{6}-x^{8} \\
& k(x)=x^{5}-2 x^{4}+x-2 \\
& p(x)=x^{9}+3 x^{5}-x^{3}+x
\end{aligned}
\]

Describe a way to identify a function as odd or even by inspecting the equation.

(a) Odd function

(b) Even function

Figure P. 31

In Section P.1, an \(x\)-intercept of a graph was defined to be a point \((a, 0)\) at which the graph crosses the \(x\)-axis. If the graph represents a function \(f\), the number \(a\) is a zero of \(f\). In other words, the zeros of a function \(f\) are the solutions of the equation \(f(x)=0\). For example, the function \(f(x)=x-4\) has a zero at \(x=4\) because \(f(4)=0\).

In Section P. 1 you also studied different types of symmetry. In the terminology of functions, a function is even if its graph is symmetric with respect to the \(y\)-axis, and is odd if its graph is symmetric with respect to the origin. The symmetry tests in Section P. 1 yield the following test for even and odd functions.

\section*{TEST FOR EVEN AND ODD FUNCTIONS}

The function \(y=f(x)\) is even if \(f(-x)=f(x)\).
The function \(y=f(x)\) is odd if \(f(-x)=-f(x)\).

NOTE Except for the constant function \(f(x)=0\), the graph of a function of \(x\) cannot have symmetry with respect to the \(x\)-axis because it then would fail the Vertical Line Test for the graph of the function.

\section*{EXAMPLE 5 Even and Odd Functions and Zeros of Functions}

Determine whether each function is even, odd, or neither. Then find the zeros of the function.
a. \(f(x)=x^{3}-x\)
b. \(g(x)=1+\cos x\)

\section*{Solution}
a. This function is odd because
\[
f(-x)=(-x)^{3}-(-x)=-x^{3}+x=-\left(x^{3}-x\right)=-f(x)
\]

The zeros of \(f\) are found as shown.
\[
\begin{aligned}
x^{3}-x & =0 & & \text { Let } f(x)=0 . \\
x\left(x^{2}-1\right)=x(x-1)(x+1) & =0 & & \text { Factor. } \\
x & =0,1,-1 & & \text { 区ros of } f
\end{aligned}
\]

See Figure P.31(a).
b. This function is even because
\[
g(-x)=1+\cos (-x)=1+\cos x=g(x) . \quad \cos (-x)=\cos (x)
\]

The zeros of \(g\) are found as shown.
\[
\begin{aligned}
1+\cos x & =0 & & \text { Let } g(x)=0 . \\
\cos x & =-1 & & \text { Subtract } 1 \text { from each side. } \\
x & =(2 n+1) \pi, n \text { is an integer. } & & \text { (ros of } g
\end{aligned}
\]

See Figure P.31(b).

NOTE Each of the functions in Example 5 is either even or odd. However, some functions, such as \(f(x)=x^{2}+x+1\), are neither even nor odd.

\section*{P. 3 Exercises}

In Exercises 1 and 2, use the graphs of \(f\) and \(g\) to answer the following.
(a) Identify the domains and ranges of \(f\) and \(g\).
(b) Identify \(f(-2)\) and \(g(3)\).
(c) For what value(s) of \(x\) is \(f(x)=g(x)\) ?
(d) Estimate the solution(s) of \(f(x)=2\).
(e) Estimate the solutions of \(g(x)=0\).
1.

2.


In Exercises 3-12, evaluate (if possible) the function at the given value(s) of the independent variable. Simplify the results.
3. \(f(x)=7 x-4\)
(a) \(f(0)\)
(b) \(f(-3)\)
(c) \(f(b)\)
(d) \(f(x-1)\)
5. \(g(x)=5-x^{2}\)
(a) \(g(0)\)
(b) \(g(\sqrt{5})\)
(c) \(g(-2)\)
(d) \(g(t-1)\)
7. \(f(x)=\cos 2 x\)
(a) \(f(0)\)
(b) \(f(-\pi / 4)\)
(c) \(f(\pi / 3)\)
9. \(f(x)=x^{3}\)
\(\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
11. \(f(x)=\frac{1}{\sqrt{x-1}}\)
\(\frac{f(x)-f(2)}{x-2}\)
12. \(f(x)=x^{3}-x\)
4. \(f(x)=\sqrt{x+5}\)
(a) \(f(-4)\)
(b) \(f(11)\)
(c) \(f(-8)\)
(d) \(f(x+\Delta x)\)
6. \(g(x)=x^{2}(x-4)\)
(a) \(g(4)\)
(b) \(g\left(\frac{3}{2}\right)\)
(c) \(g(c)\)
(d) \(g(t+4)\)
8. \(f(x)=\sin x\)
(a) \(f(\pi)\)
(b) \(f(5 \pi / 4)\)
(c) \(f(2 \pi / 3)\)
10. \(f(x)=3 x-1\)
\(\frac{f(x)-f(1)}{x-1}\)
\(\frac{f(x)-f(1)}{x-1}\)

In Exercises 13-20, find the domain and range of the function.
13. \(f(x)=4 x^{2}\)
14. \(g(x)=x^{2}-5\)
15. \(g(x)=\sqrt{6 x}\)
16. \(h(x)=-\sqrt{x+3}\)
17. \(f(t)=\sec \frac{\pi t}{4}\)
18. \(h(t)=\cot t\)
19. \(f(x)=\frac{3}{x}\)
20. \(g(x)=\frac{2}{x-1}\)

In Exercises 21-26, find the domain of the function.
21. \(f(x)=\sqrt{x}+\sqrt{1-x}\)
22. \(f(x)=\sqrt{x^{2}-3 x+2}\)
23. \(g(x)=\frac{2}{1-\cos x}\)
24. \(h(x)=\frac{1}{\sin x-\frac{1}{2}}\)
25. \(f(x)=\frac{1}{|x+3|}\)
26. \(g(x)=\frac{1}{\left|x^{2}-4\right|}\)

In Exercises 27-30, evaluate the function as indicated. Determine its domain and range.
27. \(f(x)= \begin{cases}2 x+1, & x<0 \\ 2 x+2, & x \geq 0\end{cases}\)
(a) \(f(-1)\)
(b) \(f(0)\)
(c) \(f(2)\)
(d) \(f\left(t^{2}+1\right)\)
28. \(f(x)= \begin{cases}x^{2}+2, & x \leq 1 \\ 2 x^{2}+2, & x>1\end{cases}\)
(a) \(f(-2)\)
(b) \(f(0)\)
(c) \(f(1)\)
(d) \(f\left(s^{2}+2\right)\)
29. \(f(x)= \begin{cases}|x|+1, & x<1 \\ -x+1, & x \geq 1\end{cases}\)
(a) \(f(-3)\)
(b) \(f(1)\)
(c) \(f(3)\)
(d) \(f\left(b^{2}+1\right)\)
30. \(f(x)= \begin{cases}\sqrt{x+4}, & x \leq 5 \\ (x-5)^{2}, & x>5\end{cases}\)
(a) \(f(-3)\)
(b) \(f(0)\)
(c) \(f(5)\)
(d) \(f(10)\)

In Exercises 31-38, sketch a graph of the function and find its domain and range. Use a graphing utility to verify your graph.
31. \(f(x)=4-x\)
32. \(g(x)=\frac{4}{x}\)
33. \(h(x)=\sqrt{x-6}\)
34. \(f(x)=\frac{1}{4} x^{3}+3\)
35. \(f(x)=\sqrt{9-x^{2}}\)
36. \(f(x)=x+\sqrt{4-x^{2}}\)
37. \(g(t)=3 \sin \pi t\)
38. \(h(\theta)=-5 \cos \frac{\theta}{2}\)

\section*{WRITING ABOUT CONCEPTS}
39. The graph of the distance that a student drives in a 10-minute trip to school is shown in the figure. Give a verbal description of characteristics of the student's drive to school.


\section*{WRITING ABOUT CONCEPTS (continued)}
40. A student who commutes 27 miles to attend college remembers, after driving a few minutes, that a term paper that is due has been forgotten. Driving faster than usual, the student returns home, picks up the paper, and once again starts toward school. Sketch a possible graph of the student's distance from home as a function of time.

In Exercises 41-44, use the drtical Ine ब太t to determine whether \(\boldsymbol{y}\) is a function of \(\boldsymbol{x}\). \(\boldsymbol{d}\) print an enlarged copy of the graph, go to the website www.mathgraphs.com.
41. \(x-y^{2}=0\)

42. \(\sqrt{x^{2}-4}-y=0\)

43. \(y=\left\{\begin{aligned} x+1, & x \leq 0 \\ -x+2, & x>0\end{aligned}\right.\)

44. \(x^{2}+y^{2}=4\)


In Exercises 45-48, determine whether \(y\) is a function of \(x\).
45. \(x^{2}+y^{2}=16\)
46. \(x^{2}+y=16\)
47. \(y^{2}=x^{2}-1\)
48. \(x^{2} y-x^{2}+4 y=0\)

In Exercises 49-54, use the graph of \(y=f(x)\) to match the function with its graph.

49. \(y=f(x+5)\)
50. \(y=f(x)-5\)
51. \(y=-f(-x)-2\)
52. \(y=-f(x-4)\)
53. \(y=f(x+6)+2\)
54. \(y=f(x-1)+3\)
55. Use the graph of \(f\) shown in the figure to sketch the graph of each function. To print an enlarged copy of the graph, go to the website \(w w w\).mathgraphs.com.
(a) \(f(x+3)\)
(b) \(f(x-1)\)
(c) \(f(x)+2\)
(d) \(f(x)-4\)
(e) \(3 f(x)\)
(f) \(\frac{1}{4} f(x)\)

56. Use the graph of \(f\) shown in the figure to sketch the graph of each function. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a) \(f(x-4)\)
(b) \(f(x+2)\)
(c) \(f(x)+4\)
(d) \(f(x)-1\)
(e) \(2 f(x)\)
(f) \(\frac{1}{2} f(x)\)

57. Use the graph of \(f(x)=\sqrt{x}\) to sketch the graph of each function. In each case, describe the transformation.
(a) \(y=\sqrt{x}+2\)
(b) \(y=-\sqrt{x}\)
(c) \(y=\sqrt{x-2}\)
58. Specify a sequence of transformations that will yield each graph of \(h\) from the graph of the function \(f(x)=\sin x\).
(a) \(h(x)=\sin \left(x+\frac{\pi}{2}\right)+1\)
(b) \(h(x)=-\sin (x-1)\)
59. Given \(f(x)=\sqrt{x}\) and \(g(x)=x^{2}-1\), evaluate each expression.
(a) \(f(g(1))\)
(b) \(g(f(1))\)
(c) \(g(f(0))\)
(d) \(f(g(-4))\)
(e) \(f(g(x))\)
(f) \(g(f(x))\)
60. Given \(f(x)=\sin x\) and \(g(x)=\pi x\), evaluate each expression.
(a) \(f(g(2))\)
(b) \(f\left(g\left(\frac{1}{2}\right)\right)\)
(c) \(g(f(0))\)
(d) \(g\left(f\left(\frac{\pi}{4}\right)\right)\)
(e) \(f(g(x))\)
(f) \(g(f(x))\)

In Exercises 61-64, find the composite functions ( \(f \circ g\) ) and ( \(g \circ f\) ). Wht is the domain of each composite function? He the two composite functions eqal?
61. \(f(x)=x^{2}\)
\(g(x)=\sqrt{x}\)
62. \(f(x)=x^{2}-1\)
\(g(x)=\cos x\)
63. \(f(x)=\frac{3}{x}\)
64. \(f(x)=\frac{1}{x}\)
\(g(x)=\sqrt{x+2}\)
65. Use the graphs of \(f\) and \(g\) to evaluate each expression. If the result is undefined, explain why.
(a) \((f \circ g)(3)\)
(b) \(g(f(2))\)
(c) \(g(f(5))\)
(d) \((f \circ g)(-3)\)
(e) \((g \circ f)(-1)\)
(f) \(f(g(-1))\)

66. Ripples A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius (in feet) of the outer ripple is given by \(r(t)=0.6 t\), where \(t\) is the time in seconds after the pebble strikes the water. The area of the circle is given by the function \(A(r)=\pi r^{2}\). Find and interpret \((A \circ r)(t)\).

Think About It In Exercises 67 and 68, \(F(x)=f \circ g \circ h\). Identify functions for \(f, g\), and \(h\). (Fere are many correct answers.)
67. \(F(x)=\sqrt{2 x-2}\)
68. \(F(x)=-4 \sin (1-x)\)

In Exercises 69-72, determine whether the function is even, odd, or neither. Use a graphing utility to verify your result.
69. \(f(x)=x^{2}\left(4-x^{2}\right)\)
70. \(f(x)=\sqrt[3]{x}\)
71. \(f(x)=x \cos x\)
72. \(f(x)=\sin ^{2} x\)

Think About It In Exercises 73 and 74, find the coordinates of a second point on the graph of a function \(f\) if the given point is on the graph and the function is (a) even and (b) odd.
73. \(\left(-\frac{3}{2}, 4\right)\)
74. \((4,9)\)
75. The graphs of \(f, g\), and \(h\) are shown in the figure. Decide whether each function is even, odd, or neither.


Figure for 75


Figure for 76
76. The domain of the function \(f\) shown in the figure is \(-6 \leq x \leq 6\).
(a) Complete the graph of \(f\) given that \(f\) is even.
(b) Complete the graph of \(f\) given that \(f\) is odd.

Writing Functions In Exercises 77-80, write an eqation for a function that has the given graph.
77. Line segment connecting \((-2,4)\) and \((0,-6)\)
78. Line segment connecting \((3,1)\) and \((5,8)\)
79. The bottom half of the parabola \(x+y^{2}=0\)
80. The bottom half of the circle \(x^{2}+y^{2}=36\)

In Exercises 81-84, sketch a possible graph of the situation.
81. The speed of an airplane as a function of time during a 5-hour flight
82. The height of a baseball as a function of horizontal distance during a home run
83. The amount of a certain brand of sneaker sold by a sporting goods store as a function of the price of the sneaker
84. The value of a new car as a function of time over a period of 8 years
85. Find the value of \(c\) such that the domain of
\(f(x)=\sqrt{c-x^{2}}\)
is \([-5,5]\).
86. Find all values of \(c\) such that the domain of
\(f(x)=\frac{x+3}{x^{2}+3 c x+6}\)
is the set of all real numbers.
87. Graphical Reasoning An electronically controlled thermostat is programmed to lower the temperature during the night automatically (see figure). The temperature \(T\) in degrees Celsius is given in terms of \(t\), the time in hours on a 24 -hour clock.

(a) Approximate \(T(4)\) and \(T(15)\).
(b) The thermostat is reprogrammed to produce a temperature \(H(t)=T(t-1)\). How does this change the temperature? Explain.
(c) The thermostat is reprogrammed to produce a temperature \(H(t)=T(t)-1\). How does this change the temperature? Explain.

\section*{CAPSTONE}
88. Water runs into a vase of height 30 centimeters at a constant rate. The vase is full after 5 seconds. Use this information and the shape of the vase shown to answer the questions if \(d\) is the depth of the water in centimeters and \(t\) is the time in seconds (see figure).

(a) Explain why \(d\) is a function of \(t\).
(b) Determine the domain and range of the function.
(c) Sketch a possible graph of the function.
(d) Use the graph in part (c) to approximate \(d(4)\). What does this represent?
89. Modeling Data The table shows the average numbers of acres per farm in the United States for selected years. (Source: U.S. Department of Agriculture)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Year & 1955 & 1965 & 1975 & 1985 & 1995 & 2005 \\
\hline Acreage & 258 & 340 & 420 & 441 & 438 & 444 \\
\hline
\end{tabular}
(a) Plot the data, where \(A\) is the acreage and \(t\) is the time in years, with \(t=5\) corresponding to 1955 . Sketch a freehand curve that approximates the data.
(b) Use the curve in part (a) to approximate \(A(20)\).
90. Automobile Aerodynamics The horsepower \(H\) required to overcome wind drag on a certain automobile is approximated by
\(H(x)=0.002 x^{2}+0.005 x-0.029, \quad 10 \leq x \leq 100\)
where \(x\) is the speed of the car in miles per hour.
(a) Use a graphing utility to graph \(H\).
(b) Rewrite the power function so that \(x\) represents the speed in kilometers per hour. [Find \(H(x / 1.6)\).]
91. Think About It Write the function
\(f(x)=|x|+|x-2|\)
without using absolute value signs. (For a review of absolute value, see Appendix C.)
92. Writing Use a graphing utility to graph the polynomial functions \(p_{1}(x)=x^{3}-x+1\) and \(p_{2}(x)=x^{3}-x\). How many zeros does each function have? Is there a cubic polynomial that has no zeros? Explain.
93. Prove that the function is odd.
\[
f(x)=a_{2 n+1} x^{2 n+1}+\cdots+a_{3} x^{3}+a_{1} x
\]
94. Prove that the function is even.
\(f(x)=a_{2 n} x^{2 n}+a_{2 n-2} x^{2 n-2}+\cdots+a_{2} x^{2}+a_{0}\)
95. Prove that the product of two even (or two odd) functions is even.
96. Prove that the product of an odd function and an even function is odd.
97. Volume An open box of maximum volume is to be made from a square piece of material 24 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure).

(a) Write the volume \(V\) as a function of \(x\), the length of the corner squares. What is the domain of the function?
(b) Use a graphing utility to graph the volume function and approximate the dimensions of the box that yield a maximum volume.
(c) Use the table feature of a graphing utility to verify your answer in part (b). (The first two rows of the table are shown.)
\begin{tabular}{|c|c|c|}
\hline Height, \(x\) & \begin{tabular}{c} 
Length \\
and Width
\end{tabular} & Volume, \(V\) \\
\hline 1 & \(24-2(1)\) & \(1[24-2(1)]^{2}=484\) \\
\hline 2 & \(24-2(2)\) & \(2[24-2(2)]^{2}=800\) \\
\hline
\end{tabular}
98. Length A right triangle is formed in the first quadrant by the \(x\) - and \(y\)-axes and a line through the point \((3,2)\) (see figure). Write the length \(L\) of the hypotenuse as a function of \(x\).


True or False? In Exercises 99-102, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
99. If \(f(a)=f(b)\), then \(a=b\).
100. A vertical line can intersect the graph of a function at most once.
101. If \(f(x)=f(-x)\) for all \(x\) in the domain of \(f\), then the graph of \(f\) is symmetric with respect to the \(y\)-axis.
102. If \(f\) is a function, then \(f(a x)=a f(x)\).

\section*{PUTNAM EXAM CHALLENGE}
103. Let \(R\) be the region consisting of the points \((x, y)\) of the Cartesian plane satisfying both \(|x|-|y| \leq 1\) and \(|y| \leq 1\). Sketch the region \(R\) and find its area.
104. Consider a polynomial \(f(x)\) with real coefficients having the property \(f(g(x))=g(f(x))\) for every polynomial \(g(x)\) with real coefficients. Determine and prove the nature of \(f(x)\).

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{P. 4 \\ Fitting Models to Data}
- Fit a linear model to a real-life data set.
- Fit a quadratic model to a real-life data set.
- Fit a trigonometric model to a real-life data set.

\section*{Fitting a Linear Model to Data}


A computer graphics drawing based on the pen and ink drawing of Leonardo da Vinci's famous study of human proportions, called Vitruvian Man

A basic premise of science is that much of the physical world can be described mathematically and that many physical phenomena are predictable. This scientific outlook was part of the scientific revolution that took place in Europe during the late 1500s. Two early publications connected with this revolution were On the Revolutions of the Heavenly Spheres by the Polish astronomer Nicolaus Copernicus and On the Structure of the Human Body by the Belgian anatomist Andreas Vesalius. Each of these books was published in 1543, and each broke with prior tradition by suggesting the use of a scientific method rather than unquestioned reliance on authority.

One basic technique of modern science is gathering data and then describing the data with a mathematical model. For instance, the data given in Example 1 are inspired by Leonardo da Vinci's famous drawing that indicates that a person's height and arm span are equal.

\section*{EXAMPLE 1 Fitting a Linear Model to Data}

A class of 28 people collected the following data, which represent their heights \(x\) and arm spans \(y\) (rounded to the nearest inch).
\[
\begin{aligned}
& (60,61),(65,65),(68,67),(72,73),(61,62),(63,63),(70,71), \\
& (75,74),(71,72),(62,60),(65,65),(66,68),(62,62),(72,73), \\
& (70,70),(69,68),(69,70),(60,61),(63,63),(64,64),(71,71), \\
& (68,67),(69,70),(70,72),(65,65),(64,63),(71,70),(67,67)
\end{aligned}
\]

Find a linear model to represent these data.
Solution There are different ways to model these data with an equation. The simplest would be to observe that \(x\) and \(y\) are about the same and list the model as simply \(y=x\). A more careful analysis would be to use a procedure from statistics called linear regression. (You will study this procedure in Section 13.9.) The least squares regression line for these data is
\[
y=1.006 x-0.23 . \quad \text { Least squares regression line }
\]

The graph of the model and the data are shown in Figure P.32. From this model, you can see that a person's arm span tends to be about the same as his or her height.

TECHNOLOGY Many scientific and graphing calculators have built-in least squares regression programs. Typically, you enter the data into the calculator and then run the linear regression program. The program usually displays the slope and \(y\)-intercept of the best-fitting line and the correlation coefficient \(r\). The correlation coefficient gives a measure of how well the model fits the data. The closer \(|r|\) is to 1 , the better the model fits the data. For instance, the correlation coefficient for the model in Example 1 is \(r \approx 0.97\), which indicates that the model is a good fit for the data. If the \(r\)-value is positive, the variables have a positive correlation, as in Example 1. If the \(r\)-value is negative, the variables have a negative correlation.


Scatter plot of data
Figure P. 33

\section*{Fitting a Quadratic Model to Data}

A function that gives the height \(s\) of a falling object in terms of the time \(t\) is called a position function. If air resistance is not considered, the position of a falling object can be modeled by
\[
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
\]
where \(g\) is the acceleration due to gravity, \(v_{0}\) is the initial velocity, and \(s_{0}\) is the initial height. The value of \(g\) depends on where the object is dropped. On Earth, \(g\) is approximately -32 feet per second per second, or -9.8 meters per second per second.

To discover the value of \(g\) experimentally, you could record the heights of a falling object at several increments, as shown in Example 2.

\section*{EXAMPLE 2 Fitting a Quadratic Model to Data}

A basketball is dropped from a height of about \(5 \frac{1}{4}\) feet. The height of the basketball is recorded 23 times at intervals of about 0.02 second.* The results are shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Time & 0.0 & 0.02 & 0.04 & 0.06 & 0.08 & 0.099996 \\
\hline Height & 5.23594 & 5.20353 & 5.16031 & 5.0991 & 5.02707 & 4.95146 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Time & 0.119996 & 0.139992 & 0.159988 & 0.179988 & 0.199984 & 0.219984 \\
\hline Height & 4.85062 & 4.74979 & 4.63096 & 4.50132 & 4.35728 & 4.19523 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Time & 0.23998 & 0.25993 & 0.27998 & 0.299976 & 0.319972 & 0.339961 \\
\hline Height & 4.02958 & 3.84593 & 3.65507 & 3.44981 & 3.23375 & 3.01048 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Time & 0.359961 & 0.379951 & 0.399941 & 0.419941 & 0.439941 \\
\hline Height & 2.76921 & 2.52074 & 2.25786 & 1.98058 & 1.63488 \\
\hline
\end{tabular}

Find a model to fit these data. Then use the model to predict the time when the basketball will hit the ground.

Solution Begin by drawing a scatter plot of the data, as shown in Figure P.33. From the scatter plot, you can see that the data do not appear to be linear. It does appear, however, that they might be quadratic. To check this, enter the data into a calculator or computer that has a quadratic regression program. You should obtain the model
\[
s=-15.45 t^{2}-1.302 t+5.2340 . \quad \text { Least squares regression quadratic }
\]

Using this model, you can predict the time when the basketball hits the ground by substituting 0 for \(s\) and solving the resulting equation for \(t\).
\[
\begin{array}{ll}
0=-15.45 t^{2}-1.302 t+5.2340 & \text { Let } s=0 \\
t=\frac{1.302 \pm \sqrt{(-1.302)^{2}-4(-15.45)(5.2340)}}{2(-15.45)} & \text { Quadratic Formula } \\
t \approx 0.54 & \text { Choose positive solution. }
\end{array}
\]

The solution is about 0.54 second. In other words, the basketball will continue to fall for about 0.1 second more before hitting the ground.

\footnotetext{
* Data were collected with a Texas Instruments CBL (Calculator-Based Laboratory) System.
}


The plane of Earth's orbit about the sun and its axis of rotation are not perpendicular. Instead, Earth's axis is tilted with respect to its orbit. The result is that the amount of daylight received by locations on Earth varies with the time of year. That is, it varies with the position of Earth in its orbit.


Graph of model
Figure P. 34

NOTE For a review of trigonometric functions, see Appendix C.

\section*{Fitting a Trigonometric Model to Data}

What is mathematical modeling? This is one of the questions that is asked in the book Guide to Mathematical Modelling. Here is part of the answer.*
1. Mathematical modeling consists of applying your mathematical skills to obtain useful answers to real problems.
2. Learning to apply mathematical skills is very different from learning mathematics itself.
3. Models are used in a very wide range of applications, some of which do not appear initially to be mathematical in nature.
4. Models often allow quick and cheap evaluation of alternatives, leading to optimal solutions that are not otherwise obvious.
5. There are no precise rules in mathematical modeling and no "correct" answers.
6. Modeling can be learned only by doing.

\section*{EXAMPLE 3 Fitting a Trigonometric Model to Data}

The number of hours of daylight on a given day on Earth depends on the latitude and the time of year. Here are the numbers of minutes of daylight at a location of \(20^{\circ} \mathrm{N}\) latitude on the longest and shortest days of the year: June 21, 801 minutes; December 22, 655 minutes. Use these data to write a model for the amount of daylight \(d\) (in minutes) on each day of the year at a location of \(20^{\circ} \mathrm{N}\) latitude. How could you check the accuracy of your model?

Solution Here is one way to create a model. You can hypothesize that the model is a sine function whose period is 365 days. Using the given data, you can conclude that the amplitude of the graph is \((801-655) / 2\), or 73 . So, one possible model is
\[
d=728-73 \sin \left(\frac{2 \pi t}{365}+\frac{\pi}{2}\right)
\]

In this model, \(t\) represents the number of each day of the year, with December 22 represented by \(t=0\). A graph of this model is shown in Figure P.34. To check the accuracy of this model, a weather almanac was used to find the numbers of minutes of daylight on different days of the year at the location of \(20^{\circ} \mathrm{N}\) latitude.
\begin{tabular}{|c|c|c|c|}
\hline Date & Value of \(t\) & Actual Daylight & Daylight Given by Model \\
\hline Dec 22 & 0 & 655 min & 655 min \\
\hline Jan 1 & 10 & 657 min & 656 min \\
\hline Feb 1 & 41 & 676 min & 672 min \\
\hline Mar 1 & 69 & 705 min & 701 min \\
\hline Apr 1 & 100 & 740 min & 739 min \\
\hline May 1 & 130 & 772 min & 773 min \\
\hline Jun 1 & 161 & 796 min & 796 min \\
\hline Jun 21 & 181 & 801 min & 801 min \\
\hline Jul 1 & 191 & 799 min & 800 min \\
\hline Aug 1 & 222 & 782 min & 785 min \\
\hline Sep 1 & 253 & 752 min & 754 min \\
\hline Oct 1 & 283 & 718 min & 716 min \\
\hline Nov 1 & 314 & 685 min & 681 min \\
\hline Dec 1 & 344 & 661 min & 660 min \\
\hline
\end{tabular}

You can see that the model is fairly accurate.

\footnotetext{
* Text from Dilwyn Edwards and Mike Hamson, Guide to Mathematical Modelling (Boca Raton: CRC Press, 1990), p. 4. Used by permission of the authors.
}

\section*{P. 4 Exercises}

In Exercises 1-4, a scatter plot of data is given. Determine whether the data can be modeled by a linear function, a quadratic function, or a trigonometric function, or that there appears to be no relationship between \(x\) and \(y\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
1.

2.

3.

4.

5. Carcinogens Each ordered pair gives the exposure index \(x\) of a carcinogenic substance and the cancer mortality \(y\) per 100,000 people in the population.
\((3.50,150.1),(3.58,133.1),(4.42,132.9)\),
(2.26, 116.7), (2.63, 140.7), (4.85, 165.5),
(12.65, 210.7), (7.42, 181.0), \((9.35,213.4)\)
(a) Plot the data. From the graph, do the data appear to be approximately linear?
(b) Visually find a linear model for the data. Graph the model.
(c) Use the model to approximate \(y\) if \(x=3\).
6. Quiz Scores The ordered pairs represent the scores on two consecutive 15 -point quizzes for a class of 18 students.
\((7,13),(9,7),(14,14),(15,15),(10,15),(9,7)\),
\((14,11),(14,15),(8,10),(15,9),(10,11),(9,10)\),
\((11,14),(7,14),(11,10),(14,11),(10,15),(9,6)\)
(a) Plot the data. From the graph, does the relationship between consecutive scores appear to be approximately linear?
(b) If the data appear to be approximately linear, find a linear model for the data. If not, give some possible explanations.
7. Hooke's Law Hooke's Law states that the force \(F\) required to compress or stretch a spring (within its elastic limits) is proportional to the distance \(d\) that the spring is compressed or stretched from its original length. That is, \(F=k d\), where \(k\) is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation \(d\) in centimeters of a spring when a force of \(F\) newtons is applied.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(F\) & 20 & 40 & 60 & 80 & 100 \\
\hline\(d\) & 1.4 & 2.5 & 4.0 & 5.3 & 6.6 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a linear model for the data.
(b) Use a graphing utility to plot the data and graph the model. How well does the model fit the data? Explain your reasoning.
(c) Use the model to estimate the elongation of the spring when a force of 55 newtons is applied.
8. Falling Object In an experiment, students measured the speed \(s\) (in meters per second) of a falling object \(t\) seconds after it was released. The results are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(s\) & 0 & 11.0 & 19.4 & 29.2 & 39.4 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a linear model for the data.
(b) Use a graphing utility to plot the data and graph the model. How well does the model fit the data? Explain your reasoning.
(c) Use the model to estimate the speed of the object after 2.5 seconds.
9. Energy Consumption and Gross National Product The data show the per capita energy consumptions (in millions of Btu) and the per capita gross national products (in thousands of U.S. dollars) for several countries in 2004. (Source: U.S. Census Bureau)
\begin{tabular}{|l|c|l|c|c|}
\hline Argentina & \((71,12.53)\) & & Bangladesh & \((5,1.97)\) \\
\hline Chile & \((75,10.61)\) & Ecuador & \((29,3.77)\) \\
\hline Greece & \((136,22.23)\) & & Hong Kong & \((159,31.56)\) \\
\hline Hungary & \((106,15.8)\) & & India & \((15,3.12)\) \\
\hline Mexico & \((63,9.64)\) & Poland & \((95,12.73)\) \\
\hline Portugal & \((106,19.24)\) & South Korea & \((186,20.53)\) \\
\hline Spain & \((159,24.75)\) & Turkey & \((51,7.72)\) \\
\hline United Kingdom & \((167,31.43)\) & & Venezuela & \((115,5.83)\) \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a linear model for the data. What is the correlation coefficient?
(b) Use a graphing utility to plot the data and graph the model.
(c) Interpret the graph in part (b). Use the graph to identify the four countries that differ most from the linear model.
(d) Delete the data for the four countries identified in part (c). Fit a linear model to the remaining data and give the correlation coefficient.
10. Brinell Hardness The data in the table show the Brinell hardness \(H\) of 0.35 carbon steel when hardened and tempered at temperature \(t\) (degrees Fahrenheit). (Source: Standard Handbook for Mechanical Engineers)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & 200 & 400 & 600 & 800 & 1000 & 1200 \\
\hline\(H\) & 534 & 495 & 415 & 352 & 269 & 217 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a linear model for the data.
(b) Use a graphing utility to plot the data and graph the model. How well does the model fit the data? Explain your reasoning.
(c) Use the model to estimate the hardness when \(t\) is \(500^{\circ} \mathrm{F}\).
11. Automobile Costs The data in the table show the variable costs of operating an automobile in the United States for several recent years. The functions \(y_{1}, y_{2}\), and \(y_{3}\) represent the costs in cents per mile for gas, maintenance, and tires, respectively. (Source: Bureau of Transportation Statistics)
\begin{tabular}{|c|c|c|c|}
\hline Year & \(y_{1}\) & \(y_{2}\) & \(y_{3}\) \\
\hline 0 & 5.60 & 3.30 & 1.70 \\
\hline 1 & 6.90 & 3.60 & 1.70 \\
\hline 2 & 7.90 & 3.90 & 1.80 \\
\hline 3 & 5.90 & 4.10 & 1.80 \\
\hline 4 & 7.20 & 4.10 & 1.80 \\
\hline 5 & 6.50 & 5.40 & 0.70 \\
\hline 6 & 9.50 & 4.90 & 0.70 \\
\hline 7 & 8.90 & 4.90 & 0.70 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find cubic models for \(y_{1}\) and \(y_{3}\) and a linear model for \(y_{2}\).
(b) Use a graphing utility to graph \(y_{1}, y_{2}, y_{3}\), and \(y_{1}+y_{2}+y_{3}\) in the same viewing window. Use the model to estimate the total variable cost per mile in year 12.
12. Beam Strength Students in a lab measured the breaking strength \(S\) (in pounds) of wood 2 inches thick, \(x\) inches high, and 12 inches long. The results are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 4 & 6 & 8 & 10 & 12 \\
\hline\(S\) & 2370 & 5460 & 10,310 & 16,250 & 23,860 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to fit a quadratic model to the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the model to approximate the breaking strength when \(x=2\).
13. Car Performance The time \(t\) (in seconds) required to attain a speed of \(s\) miles per hour from a standing start for a Honda Accord Hybrid is shown in the table. (Source: Car \& Driver)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(s\) & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline\(t\) & 2.5 & 3.5 & 5.0 & 6.7 & 8.7 & 11.5 & 14.4 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a quadratic model for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the graph in part (b) to state why the model is not appropriate for determining the times required to attain speeds of less than 20 miles per hour.
(d) Because the test began from a standing start, add the point \((0,0)\) to the data. Fit a quadratic model to the revised data and graph the new model.
(e) Does the quadratic model in part (d) more accurately model the behavior of the car? Explain.

\section*{CAPSTONE}
14. Health Maintenance Organizations The bar graph shows the numbers of people \(N\) (in millions) receiving care in HMOs for the years 1990 through 2004. (Source: HealthLeaders-InterStudy)

(a) Let \(t\) be the time in years, with \(t=0\) corresponding to 1990. Use the regression capabilities of a graphing utility to find linear and cubic models for the data.
(b) Use a graphing utility to graph the data and the linear and cubic models.
(c) Use the graphs in part (b) to determine which is the better model.
(d) Use a graphing utility to find and graph a quadratic model for the data. How well does the model fit the data? Explain your reasoning.
(e) Use the linear and cubic models to estimate the number of people receiving care in HMOs in the year 2007. What do you notice?
(f) Use a graphing utility to find other models for the data. Which models do you think best represent the data? Explain.
15. Car Performance A V8 car engine is coupled to a dynamometer, and the horsepower \(y\) is measured at different engine speeds \(x\) (in thousands of revolutions per minute). The results are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(y\) & 40 & 85 & 140 & 200 & 225 & 245 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a cubic model for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the model to approximate the horsepower when the engine is running at 4500 revolutions per minute.
16. Boiling Temperature The table shows the temperatures \(T\left({ }^{\circ} \mathrm{F}\right)\) at which water boils at selected pressures \(p\) (pounds per square inch). (Source: Standard Handbook for Mechanical Engineers)
\begin{tabular}{|c|c|c|c|c|}
\hline\(p\) & 5 & 10 & \(14.696(1\) atmosphere \()\) & 20 \\
\hline\(T\) & \(162.24^{\circ}\) & \(193.21^{\circ}\) & \(212.00^{\circ}\) & \(227.96^{\circ}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(p\) & 30 & 40 & 60 & 80 & 100 \\
\hline\(T\) & \(250.33^{\circ}\) & \(267.25^{\circ}\) & \(292.71^{\circ}\) & \(312.03^{\circ}\) & \(327.81^{\circ}\) \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a cubic model for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the graph to estimate the pressure required for the boiling point of water to exceed \(300^{\circ} \mathrm{F}\).
(d) Explain why the model would not be accurate for pressures exceeding 100 pounds per square inch.
17. Harmonic Motion The motion of an oscillating weight suspended by a spring was measured by a motion detector. The data collected and the approximate maximum (positive and negative) displacements from equilibrium are shown in the figure. The displacement \(y\) is measured in centimeters and the time \(t\) is measured in seconds.
(a) Is \(y\) a function of \(t\) ? Explain.
(b) Approximate the amplitude and period of the oscillations.
(c) Find a model for the data.
(d) Use a graphing utility to graph the model in part (c). Compare the result with the data in the figure.

18. Temperature The table shows the normal daily high temperatures for Miami \(M\) and Syracuse \(S\) (in degrees Fahrenheit) for month \(t\), with \(t=1\) corresponding to January. (Source: NOAA)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(M\) & 76.5 & 77.7 & 80.7 & 83.8 & 87.2 & 89.5 \\
\hline\(S\) & 31.4 & 33.5 & 43.1 & 55.7 & 68.5 & 77.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline\(M\) & 90.9 & 90.6 & 89.0 & 85.4 & 81.2 & 77.5 \\
\hline\(S\) & 81.7 & 79.6 & 71.4 & 59.8 & 47.4 & 36.3 \\
\hline
\end{tabular}
(a) A model for Miami is
\(M(t)=83.70+7.46 \sin (0.4912 t-1.95)\).
Find a model for Syracuse.
(b) Use a graphing utility to graph the data and the model for the temperatures in Miami. How well does the model fit?
(c) Use a graphing utility to graph the data and the model for the temperatures in Syracuse. How well does the model fit?
(d) Use the models to estimate the average annual temperature in each city. Which term of the model did you use? Explain.
(e) What is the period of each model? Is it what you expected? Explain.
(f) Which city has a greater variability in temperature throughout the year? Which factor of the models determines this variability? Explain.

\section*{WRITING ABOUT CONCEPTS}

In Exercises 19 and 20, describe a possible real-life situation for each data set. Then describe how a model could be used in the real-life setting.
19.

20.


\section*{PUTNAM EXAM CHALLENGE}
21. For \(i=1,2\) let \(T_{i}\) be a triangle with side lengths \(a_{i}, b_{i}, c_{i}\), and area \(A_{i}\). Suppose that \(a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}\), and that \(T_{2}\) is an acute triangle. Does it follow that \(A_{1} \leq A_{2}\) ?
This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{P REVIEW EXERCISES}

In Exercises 1-4, find the intercepts (if any).
1. \(y=5 x-8\)
2. \(y=(x-2)(x-6)\)
3. \(y=\frac{x-3}{x-4}\)
4. \(x y=4\)

In Exercises 5 and 6, check for symmetry with respect to both axes and to the origin.
5. \(x^{2} y-x^{2}+4 y=0\)
6. \(y=x^{4}-x^{2}+3\)

In Exercises 7-14, sketch the graph of the equation.
7. \(y=\frac{1}{2}(-x+3)\)
8. \(6 x-3 y=12\)
9. \(-\frac{1}{3} x+\frac{5}{6} y=1\)
10. \(0.02 x+0.15 y=0.25\)
11. \(y=9-8 x-x^{2}\)
12. \(y=6 x-x^{2}\)
13. \(y=2 \sqrt{4-x}\)
14. \(y=|x-4|-4\)

In Exercises 15 and 16, describe the viewing window of a graphing utility that yields the figure.
15. \(y=4 x^{2}-25\)

16. \(y=8 \sqrt[3]{x-6}\)


In Exercises 17 and 18, use a graphing utility to find the point(s) of intersection of the graphs of the equations.
17. \(5 x+3 y=-1\)
18. \(x-y+1=0\)
\(x-y=-5\)
\[
y-x^{2}=7
\]
19. Think About It Write an equation whose graph has intercepts at \(x=-4\) and \(x=4\) and is symmetric with respect to the origin.
20. Think About It For what value of \(k\) does the graph of \(y=k x^{3}\) pass through the point?
(a) \((1,4)\)
(b) \((-2,1)\)
(c) \((0,0)\)
(d) \((-1,-1)\)

In Exercises 21 and 22, plot the points and find the slope of the line passing through the points.
21. \(\left(\frac{3}{2}, 1\right),\left(5, \frac{5}{2}\right)\)
22. \((-7,8),(-1,8)\)

In Exercises 23 and 24, use the concept of slope to find \(t\) such that the three points are collinear.
23. \((-8,5),(0, t),(2,-1)\)
24. \((-3,3),(t,-1),(8,6)\)

In Exercises 25-28, find an equation of the line that passes through the point with the indicated slope. Sketch the line.
25. \((3,-5), \quad m=\frac{7}{4}\)
26. \((-8,1), \quad m\) is undefined.
27. \((-3,0), \quad m=-\frac{2}{3}\)
28. \((5,4), \quad m=0\)
29. Find equations of the lines passing through \((-3,5)\) and having the following characteristics.
(a) Slope of \(\frac{7}{16}\)
(b) Parallel to the line \(5 x-3 y=3\)
(c) Passing through the origin
(d) Parallel to the \(y\)-axis
30. Find equations of the lines passing through \((2,4)\) and having the following characteristics.
(a) Slope of \(-\frac{2}{3}\)
(b) Perpendicular to the line \(x+y=0\)
(c) Passing through the point \((6,1)\)
(d) Parallel to the \(x\)-axis
31. Rate of Change The purchase price of a new machine is \(\$ 2,500\), and its value will decrease by \(\$ 50\) per year. Use this information to write a linear equation that gives the value \(V\) of the machine \(t\) years after it is purchased. Find its value at the end of 3 years.
32. Break-Even Analysis A contractor purchases a piece of equipment for \(\$ 6,500\) that costs an average of \(\$ 25\) per hour for fuel and maintenance. The equipment operator is paid \(\$ 3.50\) per hour, and customers are charged \(\$ 0\) per hour.
(a) Write an equation for the cost \(C\) of operating this equipment for \(t\) hours.
(b) Write an equation for the revenue \(R\) derived from \(t\) hours of use.
(c) Find the break-even point for this equipment by finding the time at which \(R=C\).

In Exercises 33-36, sketch the graph of the equation and use the Vertical Line Test to determine whether the equation expresses \(\boldsymbol{y}\) as a function of \(\boldsymbol{x}\).
33. \(x-y^{2}=6\)
34. \(x^{2}-y=0\)
35. \(y=\frac{|x-2|}{x-2}\)
36. \(x=9-y^{2}\)
37. Evaluate (if possible) the function \(f(x)=1 / x\) at the specified values of the independent variable, and simplify the results.
(a) \(f(0)\)
(b) \(\frac{f(1+\Delta x)-f(1)}{\Delta x}\)
38. Evaluate (if possible) the function at each value of the independent variable.
\(f(x)= \begin{cases}x^{2}+2, & x<0 \\ |x-2|, & x \geq 0\end{cases}\)
(a) \(f(-4)\)
(b) \(f(0)\)
(c) \(f(1)\)
39. Find the domain and range of each function.
(a) \(y=\sqrt{36-x^{2}}\)
(b) \(y=\frac{7}{2 x-10}\)
(c) \(y= \begin{cases}x^{2}, & x<0 \\ 2-x, & x \geq 0\end{cases}\)
40. Given \(f(x)=1-x^{2}\) and \(g(x)=2 x+1\), evaluate each expression.
(a) \(f(x)-g(x)\)
(b) \(f(x) g(x)\)
(c) \(g(f(x))\)
41. Sketch (on the same set of coordinate axes) graphs of \(f\) for \(c=-2,0\), and 2 .
(a) \(f(x)=x^{3}+c\)
(b) \(f(x)=(x-c)^{3}\)
(c) \(f(x)=(x-2)^{3}+c\)
(d) \(f(x)=c x^{3}\)
42. Use a graphing utility to graph \(f(x)=x^{3}-3 x^{2}\). Use the graph to write a formula for the function \(g\) shown in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a)

(b)

43. Conjecture
(a) Use a graphing utility to graph the functions \(f, g\), and \(h\) in the same viewing window. Write a description of any similarities and differences you observe among the graphs.
Odd powers: \(f(x)=x, g(x)=x^{3}, h(x)=x^{5}\)
Even powers: \(f(x)=x^{2}, g(x)=x^{4}, h(x)=x^{6}\)
(b) Use the result in part (a) to make a conjecture about the graphs of the functions \(y=x^{7}\) and \(y=x^{8}\). Use a graphing utility to verify your conjecture.
44. Think About It Use the results of Exercise 43 to guess the shapes of the graphs of the functions \(f, g\), and \(h\). Then use a graphing utility to graph each function and compare the result with your guess.
(a) \(f(x)=x^{2}(x-6)^{2}\)
(b) \(g(x)=x^{3}(x-6)^{2}\)
(c) \(h(x)=x^{3}(x-6)^{3}\)
45. Area A wire 24 inches long is to be cut into four pieces to form a rectangle whose shortest side has a length of \(x\).
(a) Write the area \(A\) of the rectangle as a function of \(x\).
(b) Determine the domain of the function and use a graphing utility to graph the function over that domain.
(c) Use the graph of the function to approximate the maximum area of the rectangle. Make a conjecture about the dimensions that yield a maximum area.
46. Writing The following graphs give the profits \(P\) for two small companies over a period \(p\) of 2 years. Create a story to describe the behavior of each profit function for some hypothetical product the company produces.
(a)

(b)

47. Think About It What is the minimum degree of the polynomial function whose graph approximates the given graph? What sign must the leading coefficient have?
(a)

(b)

(c)

(d)

48. Stress Test A machine part was tested by bending it \(x\) centimeters 10 times per minute until the time \(y\) (in hours) of failure. The results are recorded in the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
\hline\(y\) & 61 & 56 & 53 & 55 & 48 & 35 & 36 & 33 & 44 & 23 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a linear model for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the graph to determine whether there may have been an error made in conducting one of the tests or in recording the results. If so, eliminate the erroneous point and find the model for the remaining data.
49. Harmonic Motion The motion of an oscillating weight suspended by a spring was measured by a motion detector. The data collected and the approximate maximum (positive and negative) displacements from equilibrium are shown in the figure. The displacement \(y\) is measured in feet and the time \(t\) is measured in seconds.
(a) Is \(y\) a function of \(t\) ? Explain.
(b) Approximate the amplitude and period of the oscillations.
(c) Find a model for the data.
(d) Use a graphing utility to graph the model in part (c). Compare the result with the data in the figure.


\section*{P.S. PROBLEM SOLVING}
1. Consider the circle \(x^{2}+y^{2}-6 x-8 y=0\), as shown in the figure.
(a) Find the center and radius of the circle.
(b) Find an equation of the tangent line to the circle at the point \((0,0)\).
(c) Find an equation of the tangent line to the circle at the point \((6,0)\).
(d) Where do the two tangent lines intersect?


Figure for 1


Figure for 2
2. There are two tangent lines from the point \((0,1)\) to the circle \(x^{2}+(y+1)^{2}=1\) (see figure). Find equations of these two lines by using the fact that each tangent line intersects the circle at exactly one point.
3. The Heaviside function \(H(x)\) is widely used in engineering applications.
\(H(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}\)
Sketch the graph of the Heaviside function and the graphs of the following functions by hand.
(a) \(H(x)-2\)
(b) \(H(x-2)\)
(c) \(-H(x)\)
(d) \(H(-x)\)
(e) \(\frac{1}{2} H(x)\)
(f) \(-H(x-2)+2\)


OLIVER HEAVISIDE (1850-1925)
Heaviside was a British mathematician and physicist who contributed to the field of applied mathematics, especially applications of mathematics to electrical engineering. The Heaviside function is a classic type of "on-off" function that has applications to electricity and computer science.
4. Consider the graph of the function \(f\) shown below. Use this graph to sketch the graphs of the following functions. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a) \(f(x+1)\)
(b) \(f(x)+1\)
(c) \(2 f(x)\)
(d) \(f(-x)\)
(e) \(-f(x)\)
(f) \(|f(x)|\)
(g) \(f(|x|)\)

5. A rancher plans to fence a rectangular pasture adjacent to a river. The rancher has 100 meters of fencing, and no fencing is needed along the river (see figure).
(a) Write the area \(A\) of the pasture as a function of \(x\), the length of the side parallel to the river. What is the domain of \(A\) ?
(b) Graph the area function \(A(x)\) and estimate the dimensions that yield the maximum amount of area for the pasture.
(c) Find the dimensions that yield the maximum amount of area for the pasture by completing the square.


Figure for 5


Figure for 6
6. A rancher has 300 feet of fencing to enclose two adjacent pastures.
(a) Write the total area \(A\) of the two pastures as a function of \(x\) (see figure). What is the domain of \(A\) ?
(b) Graph the area function and estimate the dimensions that yield the maximum amount of area for the pastures.
(c) Find the dimensions that yield the maximum amount of area for the pastures by completing the square.
7. You are in a boat 2 miles from the nearest point on the coast. You are to go to a point \(Q\) located 3 miles down the coast and 1 mile inland (see figure). You can row at 2 miles per hour and walk at 4 miles per hour. Write the total time \(T\) of the trip as a function of \(x\).

8. You drive to the beach at a rate of 120 kilometers per hour. On the return trip, you drive at a rate of 60 kilometers per hour. What is your average speed for the entire trip? Explain your reasoning.
9. One of the fundamental themes of calculus is to find the slope of the tangent line to a curve at a point. To see how this can be done, consider the point \((2,4)\) on the graph of \(f(x)=x^{2}\) (see figure).

(a) Find the slope of the line joining \((2,4)\) and \((3,9)\). Is the slope of the tangent line at \((2,4)\) greater than or less than this number?
(b) Find the slope of the line joining \((2,4)\) and \((1,1)\). Is the slope of the tangent line at \((2,4)\) greater than or less than this number?
(c) Find the slope of the line joining \((2,4)\) and \((2.1,4.41)\). Is the slope of the tangent line at \((2,4)\) greater than or less than this number?
(d) Find the slope of the line joining \((2,4)\) and \((2+h\), \(f(2+h))\) in terms of the nonzero number \(h\). Verify that \(h=1,-1\), and 0.1 yield the solutions to parts (a)(c) above.
(e) What is the slope of the tangent line at \((2,4)\) ? Explain how you arrived at your answer.
10. Sketch the graph of the function \(f(x)=\sqrt{x}\) and label the point \((4,2)\) on the graph.
(a) Find the slope of the line joining \((4,2)\) and \((93)\). Is the slope of the tangent line at \((4,2)\) greater than or less than this number?
(b) Find the slope of the line joining \((4,2)\) and \((1,1)\). Is the slope of the tangent line at \((4,2)\) greater than or less than this number?
(c) Find the slope of the line joining \((4,2)\) and \((4.41,2.1)\). Is the slope of the tangent line at \((4,2)\) greater than or less than this number?
(d) Find the slope of the line joining \((4,2)\) and \((4+h\), \(f(4+h)\) ) in terms of the nonzero number \(h\).
(e) What is the slope of the tangent line at the point \((4,2)\) ? Explain how you arrived at your answer.
11. Explain how you would graph the equation
\(y+|y|=x+|x|\).
Then sketch the graph.
12. A large room contains two speakers that are 3 meters apart. The sound intensity \(I\) of one speaker is twice that of the other, as shown in the figure. (To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.) Suppose the listener is free to move about the room to find those positions that receive equal amounts of sound from both speakers. Such a location satisfies two conditions: (1) the sound intensity at the listener's position is directly proportional to the sound level of a source, and (2) the sound intensity is inversely proportional to the square of the distance from the source.
(a) Find the points on the \(x\)-axis that receive equal amounts of sound from both speakers.
(b) Find and graph the equation of all locations \((x, y)\) where one could stand and receive equal amounts of sound from both speakers.


Figure for 12


Figure for 13
13. Suppose the speakers in Exercise 12 are 4 meters apart and the sound intensity of one speaker is \(k\) times that of the other, as shown in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a) Find the equation of all locations \((x, y)\) where one could stand and receive equal amounts of sound from both speakers.
(b) Graph the equation for the case \(k=3\).
(c) Describe the set of locations of equal sound as \(k\) becomes very large.
14. Let \(d_{1}\) and \(d_{2}\) be the distances from the point \((x, y)\) to the points \((-1,0)\) and \((1,0)\), respectively, as shown in the figure. Show that the equation of the graph of all points \((x, y)\) satisfying \(d_{1} d_{2}=1\) is \(\left(x^{2}+y^{2}\right)^{2}=2\left(x^{2}-y^{2}\right)\). This curve is called a lemniscate. Graph the lemniscate and identify three points on the graph.

15. Let \(f(x)=\frac{1}{1-x}\).
(a) What are the domain and range of \(f\) ?
(b) Find the composition \(f(f(x))\). What is the domain of this function?
(c) Find \(f(f(f(x)))\). What is the domain of this function?
(d) Graph \(f(f(f(x)))\). Is the graph a line? Why or why not?


\section*{Limits and Their Properties}

The limit of a function is the primary concept that distinguishes calculus from algebra and analytic geometry. The notion of a limit is fundamental to the study of calculus. Thus, it is important to acquire a good working knowledge of limits before moving on to other topics in calculus.

In this chapter, you should learn the following.
- How calculus compares with precalculus. (1.1)
- How to find limits graphically and numerically. (1.2)
■ How to evaluate limits analytically. (1.3)
- How to determine continuity at a point and on an open interval, and how to determine one-sided limits. (1.4)
- How to determine infinite limits and find vertical asymptotes. (1.5)


European Space Agency/NASA
According to NASA, the coldest place in the known universe is the Boomerang nebula. The nebula is five thousand light years from Earth and has a temperature of \(-272^{\circ}\). That is only \(1^{\circ}\) warmer than absolute zero, the coldest possible temperature. How did scientists determine that absolute zero is the "lower limit" of the temperature of matter? (See Section 1.4, Example 5.)




The limit process is a fundamental concept of calculus. One technique you can use to estimate a limit is to graph the function and then determine the behavior of the graph as the independent variable approaches a specific value. (See Section 1.2.)

STUDY TIP As you progress through this course, remember that learning calculus is just one of your goals. Your most important goal is to learn how to use calculus to model and solve real-life problems. Here are a few problemsolving strategies that may help you.
- Be sure you understand the question. What is given? What are you asked to find?
- Outline a plan. There are many approaches you could use: look for a pattern, solve a simpler problem, work backwards, draw a diagram, use technology, or any of many other approaches.
- Complete your plan. Be sure to answer the question. Verbalize your answer. For example, rather than writing the answer as \(x=4.6\), it would be better to write the answer as "The area of the region is 4.6 square meters."
- Look back at your work. Does your answer make sense? Is there a way you can check the reasonableness of your answer?
- Understand what calculus is and how it compares with precalculus. - Understand that the tangent line problem is basic to calculus. - Understand that the area problem is also basic to calculus.

\section*{What Is Calculus?}

Calculus is the mathematics of change. For instance, calculus is the mathematics of velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids, curvatures, and a variety of other concepts that have enabled scientists, engineers, and economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations, tangent lines, slopes, and so on, there is a fundamental difference between precalculus mathematics and calculus. Precalculus mathematics is more static, whereas calculus is more dynamic. Here are some examples.
- An object traveling at a constant velocity can be analyzed with precalculus mathematics. To analyze the velocity of an accelerating object, you need calculus.
- The slope of a line can be analyzed with precalculus mathematics. To analyze the slope of a curve, you need calculus.
- The curvature of a circle is constant and can be analyzed with precalculus mathematics. To analyze the variable curvature of a general curve, you need calculus.
- The area of a rectangle can be analyzed with precalculus mathematics. To analyze the area under a general curve, you need calculus.

Each of these situations involves the same general strategy-the reformulation of precalculus mathematics through the use of a limit process. So, one way to answer the question "What is calculus?" is to say that calculus is a "limit machine" that involves three stages. The first stage is precalculus mathematics, such as the slope of a line or the area of a rectangle. The second stage is the limit process, and the third stage is a new calculus formulation, such as a derivative or integral.


Some students try to learn calculus as if it were simply a collection of new formulas. This is unfortunate. If you reduce calculus to the memorization of differentiation and integration formulas, you will miss a great deal of understanding, self-confidence, and satisfaction.

On the following two pages are listed some familiar precalculus concepts coupled with their calculus counterparts. Throughout the text, your goal should be to learn how precalculus formulas and techniques are used as building blocks to produce the more general calculus formulas and techniques. Don't worry if you are unfamiliar with some of the "old formulas" listed on the following two pages-you will be reviewing all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to keep track of where you are relative to the three stages involved in the study of calculus. For example, the first three chapters break down as follows.
\begin{tabular}{ll} 
Chapter P: Preparation for Calculus & Precalculus \\
Chapter 1: Limits and Their Properties & Limit process \\
Chapter 2: Differentiation & Calculus
\end{tabular}
Value of \(f(x)\)
when \(x=c\)



The tangent line to the graph of \(f\) at \(P\) Figure 1.1


\section*{The Tangent Line Problem}

The notion of a limit is fundamental to the study of calculus. The following brief descriptions of two classic problems in calculus-the tangent line problem and the area problem-should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function \(f\) and a point \(P\) on its graph and are asked to find an equation of the tangent line to the graph at point \(P\), as shown in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the tangent line at a point \(P\) is equivalent to finding the slope of the tangent line at \(P\). You can approximate this slope by using a line through the point of tangency and a second point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If \(P(c, f(c))\) is the point of tangency and
\[
Q(c+\Delta x, f(c+\Delta x))
\]
is a second point on the graph of \(f\), the slope of the secant line through these two points can be found using precalculus and is given by
\[
m_{s e c}=\frac{f(c+\Delta x)-f(c)}{c+\Delta x-c}=\frac{f(c+\Delta x)-f(c)}{\Delta x}
\]

(a) The secant line through \((c, f(c))\) and \((c+\Delta x, f(c+\Delta x))\)

(b) As \(Q\) approaches \(P\), the secant lines approach the tangent line.

Figure 1.2

As point \(Q\) approaches point \(P\), the slopes of the secant lines approach the slope of the tangent line, as shown in Figure 1.2(b). When such a "limiting position" exists, the slope of the tangent line is said to be the limit of the slopes of the secant lines. (Much more will be said about this important calculus concept in Chapter 2.)

\section*{EXPLORATION}

The following points lie on the graph of \(f(x)=x^{2}\).
\[
\begin{aligned}
& Q_{1}(1.5, f(1.5)), \quad Q_{2}(1.1, f(1.1)), \quad Q_{3}(1.01, f(1.01)), \\
& Q_{4}(1.001, f(1.001)), \quad Q_{5}(1.0001, f(1.0001))
\end{aligned}
\]

Each successive point gets closer to the point \(P(1,1)\). Find the slopes of the secant lines through \(Q_{1}\) and \(P, Q_{2}\) and \(P\), and so on. Graph these secant lines on a graphing utility. Then use your results to estimate the slope of the tangent line to the graph of \(f\) at the point \(P\).


Area under a curve
Figure 1.3

\section*{HISTORICAL NOTE}

In one of the most astounding events ever to occur in mathematics, it was discovered that the tangent line problem and the area problem are closely related. This discovery led to the birth of calculus. You will learn about the relationship between these two problems when you study the Fundamental Theorem of Calculus in Chapter 4.

\section*{The Area Problem}

In the tangent line problem, you saw how the limit process can be applied to the slope of a line to find the slope of a general curve. A second classic problem in calculus is finding the area of a plane region that is bounded by the graphs of functions. This problem can also be solved with a limit process. In this case, the limit process is applied to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function \(y=f(x)\), the \(x\)-axis, and the vertical lines \(x=a\) and \(x=b\), as shown in Figure 1.3. You can approximate the area of the region with several rectangular regions, as shown in Figure 1.4. As you increase the number of rectangles, the approximation tends to become better and better because the amount of area missed by the rectangles decreases. Your goal is to determine the limit of the sum of the areas of the rectangles as the number of rectangles increases without bound.


Approximation using four rectangles

\section*{Figure 1.4}


Approximation using eight rectangles

\section*{E X P L ORATION}

Consider the region bounded by the graphs of \(f(x)=x^{2}, y=0\), and \(x=1\), as shown in part (a) of the figure. The area of the region can be approximated by two sets of rectangles-one set inscribed within the region and the other set circumscribed over the region, as shown in parts (b) and (c). Find the sum of the areas of each set of rectangles. Then use your results to approximate the area of the region.

(a) Bounded region

(b) Inscribed rectangles

(c) Circumscribed rectangles

\subsection*{1.1 Exercises}

In Exercises 1-5, decide whether the problem can be solved using precalculus or whether calculus is reqired. If the problem can be solved using precalculus, solve it. If the problem seems to reqire calculus, explain your reasoning and use a graphical or numerical approach to estimate the solution.
1. Find the distance traveled in 15 seconds by an object traveling at a constant velocity of 20 feet per second.
2. Find the distance traveled in 15 seconds by an object moving with a velocity of \(v(t)=20+7 \cos t\) feet per second.
3. A bicyclist is riding on a path modeled by the function \(f(x)=0.04\left(8 x-x^{2}\right)\), where \(x\) and \(f(x)\) are measured in miles. Find the rate of change of elevation at \(x=2\).


Figure for 3


Figure for 4
4. A bicyclist is riding on a path modeled by the function \(f(x)=0.08 x\), where \(x\) and \(f(x)\) are measured in miles. Find the rate of change of elevation at \(x=2\).
5. Find the area of the shaded region.
(a)

(b)

6. Secant Lines Consider the function \(f(x)=\sqrt{x}\) and the point \(P(4,2)\) on the graph of \(f\).
(a) Graph \(f\) and the secant lines passing through \(P(4,2)\) and \(Q(x, f(x))\) for \(x\)-values of 1,3 , and 5 .
(b) Find the slope of each secant line.
(c) Use the results of part (b) to estimate the slope of the tangent line to the graph of \(f\) at \(P(4,2)\). Describe how to improve your approximation of the slope.
7. Secant Lines Consider the function \(f(x)=6 x-x^{2}\) and the point \(P(2,8)\) on the graph of \(f\).
(a) Graph \(f\) and the secant lines passing through \(P(2,8)\) and \(Q(x, f(x))\) for \(x\)-values of \(3,2.5\), and 1.5.
(b) Find the slope of each secant line.
(c) Use the results of part (b) to estimate the slope of the tangent line to the graph of \(f\) at \(P(2,8)\). Describe how to improve your approximation of the slope.
8. (a) Use the rectangles in each graph to approximate the area of the region bounded by \(y=\sin x, y=0, x=0\), and \(x=\pi\).


(b) Describe how you could continue this process to obtain a more accurate approximation of the area.
9. (a) Use the rectangles in each graph to approximate the area of the region bounded by \(y=5 / x, y=0, x=1\), and \(x=5\).


(b) Describe how you could continue this process to obtain a more accurate approximation of the area.

\section*{CAPSTONE}
10. How would you describe the instantaneous rate of change of an automobile's position on the highway?

\section*{WRITING ABOUT CONCEPTS}
11. Consider the length of the graph of \(f(x)=5 / x\) from \((1,5)\) to \((5,1)\).


(a) Approximate the length of the curve by finding the distance between its two endpoints, as shown in the first figure.
(b) Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in the second figure.
(c) Describe how you could continue this process to obtain a more accurate approximation of the length of the curve.

\subsection*{1.2 Finding Limits Graphically and Numerically}


The limit of \(f(x)\) as \(x\) approaches 1 is 3 .
Figure 1.5
- Estimate a limit using a numerical or graphical approach.
- Learn different ways that a limit can fail to exist.
- Study and use a formal definition of limit.

\section*{An Introduction to Limits}

Suppose you are asked to sketch the graph of the function \(f\) given by
\[
f(x)=\frac{x^{3}-1}{x-1}, \quad x \neq 1
\]

For all values other than \(x=1\), you can use standard curve-sketching techniques. However, at \(x=1\), it is not clear what to expect. To get an idea of the behavior of the graph of \(f\) near \(x=1\), you can use two sets of \(x\)-values-one set that approaches 1 from the left and one set that approaches 1 from the right, as shown in the table.


The graph of \(f\) is a parabola that has a gap at the point \((1,3)\), as shown in Figure 1.5. Although \(x\) cannot equal 1 , you can move arbitrarily close to 1 , and as a result \(f(x)\) moves arbitrarily close to 3 . Using limit notation, you can write
\[
\lim _{x \rightarrow 1} f(x)=3 . \quad \text { This is read as "the limit of } f(x) \text { as } x \text { approaches } 1 \text { is } 3 . "
\]

This discussion leads to an informal definition of limit. If \(f(x)\) becomes arbitrarily close to a single number \(L\) as \(x\) approaches \(c\) from either side, the limit of \(f(x)\), as \(x\) approaches \(c\), is \(L\). This limit is written as
\[
\lim _{x \rightarrow c} f(x)=L
\]

\section*{E X P L O R A T I O N}

The discussion above gives an example of how you can estimate a limit numerically by constructing a table and graphically by drawing a graph. Estimate the following limit numerically by completing the table.
\[
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2}
\]
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & 1.75 & 1.9 & 1.99 & 1.999 & 2 & 2.001 & 2.01 & 2.1 & 2.25 \\
\hline\(f(x)\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) \\
\hline
\end{tabular}

Then use a graphing utility to estimate the limit graphically.


The limit of \(f(x)\) as \(x\) approaches 0 is 2 . Figure 1.6


The limit of \(f(x)\) as \(x\) approaches 2 is 1 .

\section*{Figure 1.7}

\section*{EXAMPLE 1 Estimating a Limit Numerically}

Evaluate the function \(f(x)=x /(\sqrt{x+1}-1)\) at several points near \(x=0\) and use the results to estimate the limit
\[
\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}
\]

Solution The table lists the values of \(f(x)\) for several \(x\)-values near 0 .

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & -0.01 & -0.001 & -0.0001 & 0 & 0.0001 & 0.001 & 0.01 \\
\hline\(f(x)\) & 1.99499 & 1.99950 & 1.99995 & \(?\) & 2.00005 & 2.00050 & 2.00499 \\
\hline
\end{tabular}


From the results shown in the table, you can estimate the limit to be 2 . This limit is reinforced by the graph of \(f\) (see Figure 1.6).

In Example 1, note that the function is undefined at \(x=0\) and yet \(f(x)\) appears to be approaching a limit as \(x\) approaches 0 . This often happens, and it is important to realize that the existence or nonexistence of \(f(x)\) at \(x=c\) has no bearing on the existence of the limit of \(f(x)\) as \(x\) approaches \(c\).

\section*{EXAMPLE 2 Finding a Limit}

Find the limit of \(f(x)\) as \(x\) approaches 2 , where \(f\) is defined as
\[
f(x)= \begin{cases}1, & x \neq 2 \\ 0, & x=2\end{cases}
\]

Solution Because \(f(x)=1\) for all \(x\) other than \(x=2\), you can conclude that the limit is 1 , as shown in Figure 1.7. So, you can write
\[
\lim _{x \rightarrow 2} f(x)=1
\]

The fact that \(f(2)=0\) has no bearing on the existence or value of the limit as \(x\) approaches 2 . For instance, if the function were defined as
\[
f(x)= \begin{cases}1, & x \neq 2 \\ 2, & x=2\end{cases}
\]
the limit would be the same.

So far in this section, you have been estimating limits numerically and graphically. Each of these approaches produces an estimate of the limit. In Section 1.3, you will study analytic techniques for evaluating limits. Throughout the course, try to develop a habit of using this three-pronged approach to problem solving.
1. Numerical approach Construct a table of values.
2. Graphical approach Draw a graph by hand or using technology.
3. Analytic approach Use algebra or calculus.


Figure 1.8

\(\lim _{x \rightarrow 0} f(x)\) does not exist.

\section*{Figure 1.9}

\section*{Limits That Fail to Exist}

In the next three examples you will examine some limits that fail to exist.

\section*{EXAMPLE 3 Behavior That Differs from the Right and from the Left}

Show that the limit \(\lim _{x \rightarrow 0} \frac{|x|}{x}\) does not exist.
Solution Consider the graph of the function \(f(x)=|x| / x\). From Figure 1.8 and the definition of absolute value
\[
|x|=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{aligned} \quad\right. \text { Definition of absolute value }
\]
you can see that
\[
\frac{|x|}{x}=\left\{\begin{aligned}
1, & \text { if } x>0 \\
-1, & \text { if } x<0
\end{aligned}\right.
\]

This means that no matter how close \(x\) gets to 0 , there will be both positive and negative \(x\)-values that yield \(f(x)=1\) or \(f(x)=-1\). Specifically, if \(\delta\) (the lowercase Greek letter delta) is a positive number, then for \(x\)-values satisfying the inequality \(0<|x|<\delta\), you can classify the values of \(|x| / x\) as follows.


Because \(|x| / x\) approaches a different number from the right side of 0 than it approaches from the left side, the limit \(\lim _{x \rightarrow 0}(|x| / x)\) does not exist.

\section*{EXAMPLE 4 Unbounded Behavior}

Discuss the existence of the limit \(\lim _{x \rightarrow 0} \frac{1}{x^{2}}\).
Solution Let \(f(x)=1 / x^{2}\). In Figure 1.9, you can see that as \(x\) approaches 0 from either the right or the left, \(f(x)\) increases without bound. This means that by choosing \(x\) close enough to 0 , you can force \(f(x)\) to be as large as you want. For instance, \(f(x)\) will be larger than 100 if you choose \(x\) that is within \(\frac{1}{10}\) of 0 . That is,
\[
0<|x|<\frac{1}{10} \quad \square \quad f(x)=\frac{1}{x^{2}}>100
\]

Similarly, you can force \(f(x)\) to be larger than \(1,000,000\), as follows.
\[
0<|x|<\frac{1}{1000} \quad \square \quad f(x)=\frac{1}{x^{2}}>1,000,000
\]

Because \(f(x)\) is not approaching a real number \(L\) as \(x\) approaches 0 , you can conclude that the limit does not exist.

\section*{Cexample 5 Oscillating Behavior}

Discuss the existence of the limit \(\lim _{x \rightarrow 0} \sin \frac{1}{x}\).
Solution Let \(f(x)=\sin (1 / x)\). In Figure 1.10, you can see that as \(x\) approaches 0 , \(f(x)\) oscillates between -1 and 1 . So, the limit does not exist because no matter how small you choose \(\delta\), it is possible to choose \(x_{1}\) and \(x_{2}\) within \(\delta\) units of 0 such that \(\sin \left(1 / x_{1}\right)=1\) and \(\sin \left(1 / x_{2}\right)=-1\), as shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & \(2 / \pi\) & \(2 / 3 \pi\) & \(2 / 5 \pi\) & \(2 / 7 \pi\) & \(2 / 9 \pi\) & \(2 / 11 \pi\) & \(x \rightarrow 0\) \\
\hline \(\sin (1 / x)\) & 1 & -1 & 1 & -1 & 1 & -1 & Limit does not exist. \\
\hline
\end{tabular}

\section*{COMMON TYPES OF BEHAVIOR ASSOCIATED WITH NONEXISTENCE OF A LIMIT}
1. \(f(x)\) approaches a different number from the right side of \(c\) than it approaches from the left side.
2. \(f(x)\) increases or decreases without bound as \(x\) approaches \(c\).
3. \(f(x)\) oscillates between two fixed values as \(x\) approaches \(c\).

There are many other interesting functions that have unusual limit behavior. An often cited one is the Dirichlet function
\[
f(x)= \begin{cases}0, & \text { if } x \text { is rational. } \\ 1, & \text { if } x \text { is irrational. }\end{cases}
\]

Because this function has no limit at any real number \(c\), it is not continuous at any real number \(c\). You will study continuity more closely in Section 1.4.

TECHNOLOGY PITFALL When you use a graphing utility to investigate the behavior of a function near the \(x\)-value at which you are trying to evaluate a limit, remember that you can't always trust the pictures that graphing utilities draw. If you use a graphing utility to graph the function in Example 5 over an interval containing 0, you will most likely obtain an incorrect graph such as that shown in Figure 1.11. The reason that a graphing utility can't show the correct graph is that the graph has infinitely many oscillations over any interval that contains 0 .


Incorrect graph of \(f(x)=\sin (1 / x)\).
Figure 1.11

\footnotetext{
The icon \(\begin{aligned} & \text { indicates that you will find a CAS Investigation on the book's website. The CAS }\end{aligned}\) Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.
}


The \(\varepsilon-\delta\) definition of the limit of \(f(x)\) as \(x\) approaches \(c\)
Figure 1.12

FOR FURTHER INFORMATION For
more on the introduction of rigor to calculus, see "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus" by Judith V. Grabiner in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

\section*{A Formal Definition of Limit}

Let's take another look at the informal definition of limit. If \(f(x)\) becomes arbitrarily close to a single number \(L\) as \(x\) approaches \(c\) from either side, then the limit of \(f(x)\) as \(x\) approaches \(c\) is \(L\), written as
\[
\lim _{x \rightarrow c} f(x)=L
\]

At first glance, this definition looks fairly technical. Even so, it is informal because exact meanings have not yet been given to the two phrases
" \(f(x)\) becomes arbitrarily close to \(L "\)
and
" \(x\) approaches \(c\)."
The first person to assign mathematically rigorous meanings to these two phrases was Augustin-Louis Cauchy. His \(\varepsilon-\delta\) definition of limit is the standard used today.

In Figure 1.12, let \(\varepsilon\) (the lowercase Greek letter epsilon) represent a (small) positive number. Then the phrase " \(f(x)\) becomes arbitrarily close to \(L\) " means that \(f(x)\) lies in the interval \((L-\varepsilon, L+\varepsilon)\). Using absolute value, you can write this as
\[
|f(x)-L|<\varepsilon
\]

Similarly, the phrase " \(x\) approaches \(c\) " means that there exists a positive number \(\delta\) such that \(x\) lies in either the interval \((c-\delta, c)\) or the interval \((c, c+\delta)\). This fact can be concisely expressed by the double inequality
\[
0<|x-c|<\delta
\]

The first inequality
\[
0<|x-c| \quad \text { The distance between } x \text { and } c \text { is more than } 0 \text {. }
\]
expresses the fact that \(x \neq c\). The second inequality
\[
|x-c|<\delta \quad x \text { is within } \delta \text { units of } c .
\]
says that \(x\) is within a distance \(\delta\) of \(c\).

\section*{DEFINITION OF LIMIT}

Let \(f\) be a function defined on an open interval containing \(c\) (except possibly at \(c\) ) and let \(L\) be a real number. The statement
\[
\lim _{x \rightarrow c} f(x)=L
\]
means that for each \(\varepsilon>0\) there exists a \(\delta>0\) such that if
\[
0<|x-c|<\delta, \quad \text { then } \quad|f(x)-L|<\varepsilon
\]

\section*{NOTE Throughout this text, the expression}
\[
\lim _{x \rightarrow c} f(x)=L
\]
implies two statements-the limit exists and the limit is \(L\).

Some functions do not have limits as \(x \rightarrow c\), but those that do cannot have two different limits as \(x \rightarrow c\). That is, if the limit of a function exists, it is unique (see Exercise 79).


The limit of \(f(x)\) as \(x\) approaches 3 is 1 .
Figure 1.13


The limit of \(f(x)\) as \(x\) approaches 2 is 4 .
Figure 1.14

The next three examples should help you develop a better understanding of the \(\varepsilon-\delta\) definition of limit.

\section*{EXAMPLE 6 Finding a \(\delta\) for a Given \(\varepsilon\)}

Given the limit
\[
\lim _{x \rightarrow 3}(2 x-5)=1
\]
find \(\delta\) such that \(|(2 x-5)-1|<0.01\) whenever \(0<|x-3|<\delta\).
Solution In this problem, you are working with a given value of \(\varepsilon\)-namely, \(\varepsilon=0.01\). To find an appropriate \(\delta\), notice that
\[
|(2 x-5)-1|=|2 x-6|=2|x-3|
\]

Because the inequality \(|(2 x-5)-1|<0.01\) is equivalent to \(2|x-3|<0.01\), you can choose \(\delta=\frac{1}{2}(0.01)=0.005\). This choice works because
\[
0<|x-3|<0.005
\]
implies that
\[
|(2 x-5)-1|=2|x-3|<2(0.005)=0.01
\]
as shown in Figure 1.13.

NOTE In Example 6, note that 0.005 is the largest value of \(\delta\) that will guarantee \(|(2 x-5)-1|<0.01\) whenever \(0<|x-3|<\delta\). Any smaller positive value of \(\delta\) would also work.

In Example 6, you found a \(\delta\)-value for a given \(\varepsilon\). This does not prove the existence of the limit. To do that, you must prove that you can find a \(\delta\) for any \(\varepsilon\), as shown in the next example.

\section*{EXAMPLE 7 Using the \(\varepsilon\) - \(\delta\) Definition of Limit}

Use the \(\varepsilon-\delta\) definition of limit to prove that
\[
\lim _{x \rightarrow 2}(3 x-2)=4
\]

Solution You must show that for each \(\varepsilon>0\), there exists a \(\delta>0\) such that \(|(3 x-2)-4|<\varepsilon\) whenever \(0<|x-2|<\delta\). Because your choice of \(\delta\) depends on \(\varepsilon\), you need to establish a connection between the absolute values \(|(3 x-2)-4|\) and \(|x-2|\).
\[
|(3 x-2)-4|=|3 x-6|=3|x-2|
\]

So, for a given \(\varepsilon>0\) you can choose \(\delta=\varepsilon / 3\). This choice works because
\[
0<|x-2|<\delta=\frac{\varepsilon}{3}
\]
implies that
\[
|(3 x-2)-4|=3|x-2|<3\left(\frac{\varepsilon}{3}\right)=\varepsilon
\]
as shown in Figure 1.14.

\section*{EXAMPLE 8 Using the \(\varepsilon\) - \(\delta\) Definition of Limit}


The limit of \(f(x)\) as \(x\) approaches 2 is 4 .
Figure 1.15

Use the \(\varepsilon-\delta\) definition of limit to prove that
\[
\lim _{x \rightarrow 2} x^{2}=4
\]

Solution You must show that for each \(\varepsilon>0\), there exists a \(\delta>0\) such that
\[
\left|x^{2}-4\right|<\varepsilon \text { whenever } 0<|x-2|<\delta .
\]

To find an appropriate \(\delta\), begin by writing \(\left|x^{2}-4\right|=|x-2||x+2|\). For all \(x\) in the interval \((1,3), x+2<5\) and thus \(|x+2|<5\). So, letting \(\delta\) be the minimum of \(\varepsilon / 5\) and 1 , it follows that, whenever \(0<|x-2|<\delta\), you have
\[
\left|x^{2}-4\right|=|x-2||x+2|<\left(\frac{\varepsilon}{5}\right)(5)=\varepsilon
\]
as shown in Figure 1.15.

Throughout this chapter you will use the \(\varepsilon-\delta\) definition of limit primarily to prove theorems about limits and to establish the existence or nonexistence of particular types of limits. For finding limits, you will learn techniques that are easier to use than the \(\varepsilon-\delta\) definition of limit.

\subsection*{1.2 Exercises}

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-8, complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.
1. \(\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-3 x-4}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 3.9 & 3.99 & 3.999 & 4.001 & 4.01 & 4.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
2. \(\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
3. \(\lim _{x \rightarrow 0} \frac{\sqrt{x+6}-\sqrt{6}}{x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
4. \(\lim _{x \rightarrow-5} \frac{\sqrt{4-x}-3}{x+5}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -5.1 & -5.01 & -5.001 & -4.999 & -4.99 & -4.9 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
5. \(\lim _{x \rightarrow 3} \frac{[1 /(x+1)]-(1 / 4)}{x-3}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 2.9 & 2.99 & 2.999 & 3.001 & 3.01 & 3.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
6. \(\lim _{x \rightarrow 4} \frac{[x /(x+1)]-(4 / 5)}{x-4}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 3.9 & 3.99 & 3.999 & 4.001 & 4.01 & 4.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
7. \(\lim _{x \rightarrow 0} \frac{\sin x}{x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
8. \(\lim _{x \rightarrow 0} \frac{\cos x-1}{x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}

In Exercises 9-14, create a table of values for the function and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.
9. \(\lim _{x \rightarrow 1} \frac{x-2}{x^{2}+x-6}\)
10. \(\lim _{x \rightarrow-3} \frac{x+3}{x^{2}+7 x+12}\)
11. \(\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{6}-1}\)
12. \(\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}\)
13. \(\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}\)
14. \(\lim _{x \rightarrow 0} \frac{\tan x}{\tan 2 x}\)

In Exercises 15-24, use the graph to find the limit (if it exists). If the limit does not exist, explain why.

\section*{15. \(\lim _{x \rightarrow 3}(4-x)\) \\ }
17. \(\lim _{x \rightarrow 2} f(x)\)
\(f(x)= \begin{cases}4-x, & x \neq 2 \\ 0, & x=2\end{cases}\)

19. \(\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}\)

21. \(\lim _{x \rightarrow 1} \sin \pi x\)

18. \(\lim _{x \rightarrow 1} f(x)\)
\[
f(x)= \begin{cases}x^{2}+3, & x \neq 1 \\ 2, & x=1\end{cases}
\]
16. \(\lim _{x \rightarrow 1}\left(x^{2}+3\right)\)


20. \(\lim _{x \rightarrow 5} \frac{2}{x-5}\)

22. \(\lim _{x \rightarrow 0} \sec x\)

23. \(\lim _{x \rightarrow 0} \cos \frac{1}{x}\)

24. \(\lim _{x \rightarrow \pi / 2} \tan x\)


In Exercises 25 and 26, use the graph of the function \(f\) to decide whether the value of the given qantity exists. If it does, find it. If not, explain why.
25. (a) \(f(1)\)
(b) \(\lim _{x \rightarrow 1} f(x)\)
(c) \(f(4)\)
(d) \(\lim _{x \rightarrow 4} f(x)\)

26. (a) \(f(-2)\)
(b) \(\lim _{x \rightarrow-2} f(x)\)
(c) \(f(0)\)
(d) \(\lim _{x \rightarrow 0} f(x)\)
(e) \(f(2)\)

(f) \(\lim _{x \rightarrow 2} f(x)\)
(g) \(f(4)\)
(h) \(\lim _{x \rightarrow 4} f(x)\)

In Exercises 27 and 28, use the graph of \(f\) to identify the values of \(c\) for which \(\lim _{x \rightarrow c} f(x)\) exists.
27.

28.


In Exercises 29 and 30, sktch the graph of \(f\) Then identify the values of \(\boldsymbol{c}\) for which \(\lim _{x \rightarrow c} f(x)\) exists.
29. \(f(x)= \begin{cases}x^{2}, & x \leq 2 \\ 8-2 x, & 2<x<4 \\ 4, & x \geq 4\end{cases}\)
30. \(f(x)= \begin{cases}\sin x, & x<0 \\ 1-\cos x, & 0 \leq x \leq \pi \\ \cos x, & x>\pi\end{cases}\)

In Exercises 31 and 32, sktch a graph of a function fthat satisfies the given values. (There are many correct answers.)
31. \(f(0)\) is undefined.
\(\lim _{x \rightarrow 0} f(x)=4\)
\(f(2)=6\)
\(\lim _{x \rightarrow 2} f(x)=3\)
32. \(f(-2)=0\)
\(f(2)=0\)
\(\lim _{x \rightarrow-2} f(x)=0\)
\(\lim _{x \rightarrow 2} f(x)\) does not exist.
33. Modeling Data For a long distance phone call, a hotel charges \(\$ 9.99\) for the first minute and \(\$ 0.79\) for each additional minute or fraction thereof. A formula for the cost is given by
\(C(t)=9.99-0.79 \llbracket-(t-1) \rrbracket\)
where \(t\) is the time in minutes.
(Note: \(\llbracket x \rrbracket=\) greatest integer \(n\) such that \(n \leq x\). For example, \(\llbracket 3.2 \rrbracket=3\) and \(\llbracket-1.6 \rrbracket=-2\).)
(a) Use a graphing utility to graph the cost function for \(0<t \leq 6\).
(b) Use the graph to complete the table and observe the behavior of the function as \(t\) approaches 3.5. Use the graph and the table to find
\[
\lim _{t \rightarrow 3.5} C(t) .
\]
\begin{tabular}{|l|l|l|l|c|c|c|c|}
\hline\(t\) & 3 & 3.3 & 3.4 & 3.5 & 3.6 & 3.7 & 4 \\
\hline\(C\) & & & & \(?\) & & & \\
\hline
\end{tabular}
(c) Use the graph to complete the table and observe the behavior of the function as \(t\) approaches 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(t\) & 2 & 2.5 & 2.9 & 3 & 3.1 & 3.5 & 4 \\
\hline\(C\) & & & & \(?\) & & & \\
\hline
\end{tabular}

Does the limit of \(C(t)\) as \(t\) approaches 3 exist? Explain.
34. Repeat Exercise 33 for
\[
C(t)=5.79-0.99 \llbracket-(t-1) \rrbracket .
\]
35. The graph of \(f(x)=x+1\) is shown in the figure. Find \(\delta\) such that if \(0<|x-2|<\delta\) then \(|f(x)-3|<0.4\).

36. The graph of
\(f(x)=\frac{1}{x-1}\)
is shown in the figure. Find \(\delta\) such that if \(0<|x-2|<\delta\) then \(|f(x)-1|<0.01\).

37. The graph of
\[
f(x)=2-\frac{1}{x}
\]
is shown in the figure. Find \(\delta\) such that if \(0<|x-1|<\delta\) then \(|f(x)-1|<0.1\).

38. The graph of \(f(x)=x^{2}-1\) is shown in the figure. Find \(\delta\) such that if \(0<|x-2|<\delta\) then \(|f(x)-3|<0.2\).


In Exercises 39-42, find the limit \(L\). Then find \(\delta>0\) such that \(|f(x)-L|<0.01\) whenever \(0<|x-c|<\delta\).
39. \(\lim _{x \rightarrow 2}(3 x+2)\)
40. \(\lim _{x \rightarrow 4}\left(4-\frac{x}{2}\right)\)
41. \(\lim _{x \rightarrow 2}\left(x^{2}-3\right)\)
42. \(\lim _{x \rightarrow 5}\left(x^{2}+4\right)\)

The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by use of appropriate technology.

In Exercises 43-54, find the limit \(L\). Then use the \(\boldsymbol{\varepsilon}\) - \(\delta\) definition to prove that the limit is \(L\).
43. \(\lim _{x \rightarrow 4}(x+2)\)
44. \(\lim _{x \rightarrow-3}(2 x+5)\)
45. \(\lim _{x \rightarrow-4}\left(\frac{1}{2} x-1\right)\)
46. \(\lim _{x \rightarrow 1}\left(\frac{2}{5} x+7\right)\)
47. \(\lim _{x \rightarrow 6} 3\)
48. \(\lim _{x \rightarrow 2}(-1)\)
49. \(\lim _{x \rightarrow 0} \sqrt[3]{x}\)
50. \(\lim _{x \rightarrow 4} \sqrt{x}\)
51. \(\lim _{x \rightarrow-5}|x-5|\)
52. \(\lim _{x \rightarrow 6}|x-6|\)
53. \(\lim _{x \rightarrow 1}\left(x^{2}+1\right)\)
54. \(\lim _{x \rightarrow-3}\left(x^{2}+3 x\right)\)
55. What is the limit of \(f(x)=4\) as \(x\) approaches \(\pi\) ?
56. What is the limit of \(g(x)=x\) as \(x\) approaches \(\pi\) ?

Writing In Exercises 57-60, use a graphing utility to graph the function and estimate the limit (if it exists). What is the domain of the function? an you detect a possible error in determining the domain of a function solely by analyzing the graph generated by a graphing utility? Write a short paragraph about the importance of examining a function analytically as well as graphically.
57. \(f(x)=\frac{\sqrt{x+5}-3}{x-4}\)
58. \(f(x)=\frac{x-3}{x^{2}-4 x+3}\)
\[
\lim _{x \rightarrow 4} f(x)
\]
\[
\lim _{x \rightarrow 3} f(x)
\]
59. \(f(x)=\frac{x-9}{\sqrt{x}-3}\)
\[
\lim _{x \rightarrow 9} f(x)
\]
60. \(f(x)=\frac{x-3}{x^{2}-9}\)
\[
\lim _{x \rightarrow 3} f(x)
\]

\section*{WRITING ABOUT CONCEPTS}
61. Write a brief description of the meaning of the notation \(\lim _{x \rightarrow 8} f(x)=25\).
62. The definition of limit on page 52 requires that \(f\) is a function defined on an open interval containing \(c\), except possibly at \(c\). Why is this requirement necessary?
63. Identify three types of behavior associated with the nonexistence of a limit. Illustrate each type with a graph of a function.

\section*{CAPSTONE}
64. (a) If \(f(2)=4\), can you conclude anything about the limit of \(f(x)\) as \(x\) approaches 2? Explain your reasoning.
(b) If the limit of \(f(x)\) as \(x\) approaches 2 is 4 , can you conclude anything about \(f(2)\) ? Explain your reasoning.
65. Jewelry A jeweler resizes a ring so that its inner circumference is 6 centimeters.
(a) What is the radius of the ring?
(b) If the ring's inner circumference can vary between 5.5 centimeters and 6.5 centimeters, how can the radius vary?
(c) Use the \(\varepsilon-\delta\) definition of limit to describe this situation. Identify \(\varepsilon\) and \(\delta\).
66. Sports A sporting goods manufacturer designs a golf ball having a volume of 2.48 cubic inches.
(a) What is the radius of the golf ball?
(b) If the ball's volume can vary between 2.45 cubic inches and 2.51 cubic inches, how can the radius vary?
(c) Use the \(\varepsilon-\delta\) definition of limit to describe this situation. Identify \(\varepsilon\) and \(\delta\).
67. Consider the function \(f(x)=(1+x)^{1 / x}\). Estimate the limit
\(\lim _{x \rightarrow 0}(1+x)^{1 / x}\)
by evaluating \(f\) at \(x\)-values near 0 . Sketch the graph of \(f\).
68. Consider the function
\(f(x)=\frac{|x+1|-|x-1|}{x}\).
Estimate
\(\lim _{x \rightarrow 0} \frac{|x+1|-|x-1|}{x}\)
by evaluating \(f\) at \(x\)-values near 0 . Sketch the graph of \(f\).
69. Graphical Analysis The statement
\(\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4\)
means that for each \(\varepsilon>0\) there corresponds a \(\delta>0\) such that if \(0<|x-2|<\delta\), then
\(\left|\frac{x^{2}-4}{x-2}-4\right|<\varepsilon\).
If \(\varepsilon=0.001\), then
\(\left|\frac{x^{2}-4}{x-2}-4\right|<0.001\).
Use a graphing utility to graph each side of this inequality. Use the zoom feature to find an interval \((2-\delta, 2+\delta)\) such that the graph of the left side is below the graph of the right side of the inequality.
70. Graphical Analysis The statement
\(\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x-3}\)
means that for each \(\varepsilon>0\) there corresponds a \(\delta>0\) such that if \(0<|x-3|<\delta\), then
\(\left|\frac{x^{2}-3 x}{x-3}-3\right|<\varepsilon\).
If \(\varepsilon=0.001\), then
\(\left|\frac{x^{2}-3 x}{x-3}-3\right|<0.001\).
Use a graphing utility to graph each side of this inequality. Use the zoom feature to find an interval \((3-\delta, 3+\delta)\) such that the graph of the left side is below the graph of the right side of the inequality.

True or False? In Exercises 71-74, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
71. If \(f\) is undefined at \(x=c\), then the limit of \(f(x)\) as \(x\) approaches \(c\) does not exist.
72. If the limit of \(f(x)\) as \(x\) approaches \(c\) is 0 , then there must exist a number \(k\) such that \(f(k)<0.001\).
73. If \(f(c)=L\), then \(\lim _{x \rightarrow c} f(x)=L\).
74. If \(\lim _{x \rightarrow c} f(x)=L\), then \(f(c)=L\).

In Exercises 75 and 76, consider the function \(f(x)=\sqrt{x}\).
75. Is \(\lim _{x \rightarrow 0.25} \sqrt{x}=0.5\) a true statement? Explain.
76. Is \(\lim _{x \rightarrow 0} \sqrt{x}=0\) a true statement? Explain.
77. Use a graphing utility to evaluate the limit \(\lim _{x \rightarrow 0} \frac{\sin n x}{x}\) for several values of \(n\). What do you notice?
78. Use a graphing utility to evaluate the limit \(\lim _{x \rightarrow 0} \frac{\tan n x}{x}\) for several values of \(n\). What do you notice?
79. Prove that if the limit of \(f(x)\) as \(x \rightarrow c\) exists, then the limit must be unique. [Hint: Let
\(\lim _{x \rightarrow c} f(x)=L_{1}\) and \(\quad \lim _{x \rightarrow c} f(x)=L_{2}\)
and prove that \(L_{1}=L_{2}\).]
80. Consider the line \(f(x)=m x+b\), where \(m \neq 0\). Use the \(\varepsilon-\delta\) definition of limit to prove that \(\lim _{x \rightarrow c} f(x)=m c+b\).
81. Prove that \(\lim _{x \rightarrow c} f(x)=L\) is equivalent to \(\lim _{x \rightarrow c}[f(x)-L]=0\).
82. (a) Given that
\(\lim _{x \rightarrow 0}(3 x+1)(3 x-1) x^{2}+0.01=0.01\)
prove that there exists an open interval \((a, b)\) containing 0 such that \((3 x+1)(3 x-1) x^{2}+0.01>0\) for all \(x \neq 0\) in \((a, b)\).
(b) Given that \(\lim _{x \rightarrow c} g(x)=L\), where \(L>0\), prove that there exists an open interval \((a, b)\) containing \(c\) such that \(g(x)>0\) for all \(x \neq c\) in \((a, b)\).
83. Programming Use the programming capabilities of a graphing utility to write a program for approximating \(\lim _{x \rightarrow c} f(x)\).
Assume the program will be applied only to functions whose limits exist as \(x\) approaches \(c\). Let \(y_{1}=f(x)\) and generate two lists whose entries form the ordered pairs
\(\left(c \pm[0.1]^{n}, f\left(c \pm[0.1]^{n}\right)\right)\)
for \(n=0,1,2,3\), and 4 .
84. Programming Use the program you created in Exercise 83 to approximate the limit
\[
\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4}
\]

\section*{PUTNAM EXAM CHALLENGE}
85. Inscribe a rectangle of base \(b\) and height \(h\) and an isosceles triangle of base \(b\) in a circle of radius one as shown. For what value of \(h\) do the rectangle and triangle have the same area?

86. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{1.3 Evaluating Limits Analytically}
- Evaluate a limit using properties of limits.
- Develop and use a strategy for finding limits.

Evaluate a limit using dividing out and rationalizing techniques.
- Evaluate a limit using the Squeeze Theorem.


Figure 1.16

NOTE When you encounter new notations or symbols in mathematics, be sure you know how the notations are read. For instance, the limit in Example \(1(\mathrm{c})\) is read as "the limit of \(x^{2}\) as \(x\) approaches 2 is 4 ."

\section*{Properties of Limits}

In Section 1.2, you learned that the limit of \(f(x)\) as \(x\) approaches \(c\) does not depend on the value of \(f\) at \(x=c\). It may happen, however, that the limit is precisely \(f(c)\). In such cases, the limit can be evaluated by direct substitution. That is,
\[
\lim _{x \rightarrow c} f(x)=f(c) . \quad \text { Substitute } c \text { for } x
\]

Such well-behaved functions are continuous at \(\boldsymbol{c}\). You will examine this concept more closely in Section 1.4.

\section*{THEOREM 1.1 SOME BASIC LIMITS}

Let \(b\) and \(c\) be real numbers and let \(n\) be a positive integer.
1. \(\lim _{x \rightarrow c} b=b\)
2. \(\lim _{x \rightarrow c} x=c\)
3. \(\lim _{x \rightarrow c} x^{n}=c^{n}\)

PROOF To prove Property 2 of Theorem 1.1, you need to show that for each \(\varepsilon>0\) there exists a \(\delta>0\) such that \(|x-c|<\varepsilon\) whenever \(0<|x-c|<\delta\). To do this, choose \(\delta=\varepsilon\). The second inequality then implies the first, as shown in Figure 1.16. This completes the proof. (Proofs of the other properties of limits in this section are listed in Appendix A or are discussed in the exercises.)

\section*{EXAMPLE 1 Evaluating Basic Limits}
a. \(\lim _{x \rightarrow 2} 3=3\)
b. \(\lim _{x \rightarrow-4} x=-4\)
c. \(\lim _{x \rightarrow 2} x^{2}=2^{2}=4\)

\section*{THEOREM 1.2 PROPERTIES OF LIMITS}

Let \(b\) and \(c\) be real numbers, let \(n\) be a positive integer, and let \(f\) and \(g\) be functions with the following limits.
\[
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
\]
1. Scalar multiple: \(\quad \lim _{x \rightarrow c}[b f(x)]=b L\)
2. Sum or difference: \(\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K\)
3. Product: \(\quad \lim _{x \rightarrow c}[f(x) g(x)]=L K\)
4. Quotient: \(\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}, \quad\) provided \(K \neq 0\)
5. Power: \(\quad \lim _{x \rightarrow c}[f(x)]^{n}=L^{n}\)

\section*{EXAMPLE 2 The Limit of a Polynomial}
\[
\begin{aligned}
\lim _{x \rightarrow 2}\left(4 x^{2}+3\right) & =\lim _{x \rightarrow 2} 4 x^{2}+\lim _{x \rightarrow 2} 3 & & \text { Property 2 } \\
& =4\left(\lim _{x \rightarrow 2} x^{2}\right)+\lim _{x \rightarrow 2} 3 & & \text { Property 1 } \\
& =4\left(2^{2}\right)+3 & & \text { Example 1 } \\
& =19 & & \text { Simplify. }
\end{aligned}
\]

In Example 2, note that the limit (as \(x \rightarrow 2\) ) of the polynomial function \(p(x)=4 x^{2}+3\) is simply the value of \(p\) at \(x=2\).
\[
\lim _{x \rightarrow 2} p(x)=p(2)=4\left(2^{2}\right)+3=19
\]

This direct substitution property is valid for all polynomial and rational functions with nonzero denominators.

\section*{THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS}

If \(p\) is a polynomial function and \(c\) is a real number, then
\[
\lim _{x \rightarrow c} p(x)=p(c)
\]

If \(r\) is a rational function given by \(r(x)=p(x) / q(x)\) and \(c\) is a real number such that \(q(c) \neq 0\), then
\[
\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)}
\]

\section*{EXAMPLE 3 The Limit of a Rational Function}

Find the limit: \(\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}\).
Solution Because the denominator is not 0 when \(x=1\), you can apply Theorem 1.3 to obtain
\[
\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}=\frac{1^{2}+1+2}{1+1}=\frac{4}{2}=2 .
\]

Polynomial functions and rational functions are two of the three basic types of algebraic functions. The following theorem deals with the limit of the third type of algebraic function-one that involves a radical. See Appendix A for a proof of this theorem.

\section*{THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL}

Let \(n\) be a positive integer. The following limit is valid for all \(c\) if \(n\) is odd, and is valid for \(c>0\) if \(n\) is even.
\[
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
\]

The following theorem greatly expands your ability to evaluate limits because it shows how to analyze the limit of a composite function. See Appendix A for a proof of this theorem.

\section*{THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION}

If \(f\) and \(g\) are functions such that \(\lim _{x \rightarrow c} g(x)=L\) and \(\lim _{x \rightarrow L} f(x)=f(L)\), then
\[
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L)
\]

\section*{EXAMPLE 4 The Limit of a Composite Function}
a. Because
\[
\lim _{x \rightarrow 0}\left(x^{2}+4\right)=0^{2}+4=4 \quad \text { and } \quad \lim _{x \rightarrow 4} \sqrt{x}=\sqrt{4}=2
\]
it follows that
\[
\lim _{x \rightarrow 0} \sqrt{x^{2}+4}=\sqrt{4}=2
\]
b. Because
\[
\lim _{x \rightarrow 3}\left(2 x^{2}-10\right)=2\left(3^{2}\right)-10=8 \quad \text { and } \quad \lim _{x \rightarrow 8} \sqrt[3]{x}=\sqrt[3]{8}=2
\]
it follows that
\[
\lim _{x \rightarrow 3} \sqrt[3]{2 x^{2}-10}=\sqrt[3]{8}=2
\]

You have seen that the limits of many algebraic functions can be evaluated by direct substitution. The six basic trigonometric functions also exhibit this desirable quality, as shown in the next theorem (presented without proof).

\section*{THEOREM 1.6 LIMITS OF TRIGONOMETRIC FUNCTIONS}

Let \(c\) be a real number in the domain of the given trigonometric function.
1. \(\lim _{x \rightarrow c} \sin x=\sin c\)
2. \(\lim _{x \rightarrow c} \cos x=\cos c\)
3. \(\lim _{x \rightarrow c} \tan x=\tan c\)
4. \(\lim _{x \rightarrow c} \cot x=\cot c\)
5. \(\lim _{x \rightarrow c} \sec x=\sec c\)
6. \(\lim _{x \rightarrow c} \csc x=\csc c\)

\section*{EXAMPLE 5 Limits of Trigonometric Functions}
a. \(\lim _{x \rightarrow 0} \tan x=\tan (0)=0\)
b. \(\lim _{x \rightarrow \pi}(x \cos x)=\left(\lim _{x \rightarrow \pi} x\right)\left(\lim _{x \rightarrow \pi} \cos x\right)=\pi \cos (\pi)=-\pi\)
c. \(\lim _{x \rightarrow 0} \sin ^{2} x=\lim _{x \rightarrow 0}(\sin x)^{2}=0^{2}=0\)


\(f\) and \(g\) agree at all but one point.
Figure 1.17

STUDY TIP When applying this strategy for finding a limit, remember that some functions do not have a limit (as \(x\) approaches \(c\) ). For instance, the following limit does not exist.
\[
\lim _{x \rightarrow 1} \frac{x^{3}+1}{x-1}
\]

\section*{A Strategy for Finding Limits}

On the previous three pages, you studied several types of functions whose limits can be evaluated by direct substitution. This knowledge, together with the following theorem, can be used to develop a strategy for finding limits. A proof of this theorem is given in Appendix A.

\section*{THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT}

Let \(c\) be a real number and let \(f(x)=g(x)\) for all \(x \neq c\) in an open interval containing \(c\). If the limit of \(g(x)\) as \(x\) approaches \(c\) exists, then the limit of \(f(x)\) also exists and
\[
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x) .
\]

\section*{EXAMPLE 6 Finding the Limit of a Function}

Find the limit: \(\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}\).
Solution Let \(f(x)=\left(x^{3}-1\right) /(x-1)\). By factoring and dividing out like factors, you can rewrite \(f\) as
\[
f(x)=\frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)}=x^{2}+x+1=g(x), \quad x \neq 1 .
\]

So, for all \(x\)-values other than \(x=1\), the functions \(f\) and \(g\) agree, as shown in Figure 1.17. Because \(\lim _{x \rightarrow 1} g(x)\) exists, you can apply Theorem 1.7 to conclude that \(f\) and \(g\) have the same limit at \(x=1\).
\[
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} & & \text { Factor. } \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} & & \text { Divide out like factors. } \\
& =\lim _{x \rightarrow 1}\left(x^{2}+x+1\right) & & \text { Apply Theorem 1.7. } \\
& =1^{2}+1+1 & & \text { Use direct substitution. } \\
& =3 & & \text { Simplify. }
\end{aligned}
\]

\section*{A STRATEGY FOR FINDING LIMITS}
1. Learn to recognize which limits can be evaluated by direct substitution. (These limits are listed in Theorems 1.1 through 1.6.)
2. If the limit of \(f(x)\) as \(x\) approaches \(c\) cannot be evaluated by direct substitution, try to find a function \(g\) that agrees with \(f\) for all \(x\) other than \(x=c\). [Choose \(g\) such that the limit of \(g(x)\) can be evaluated by direct substitution.]
3. Apply Theorem 1.7 to conclude analytically that
\[
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=g(c)
\]
4. Use a graph or table to reinforce your conclusion.

\(f\) is undefined when \(x=-3\).
Figure 1.18

NOTE In the solution of Example 7, be sure you see the usefulness of the Factor Theorem of Algebra. This theorem states that if \(c\) is a zero of a polynomial function, \((x-c)\) is a factor of the polynomial. So, if you apply direct substitution to a rational function and obtain
\[
r(c)=\frac{p(c)}{q(c)}=\frac{0}{0}
\]
you can conclude that \((x-c)\) must be a common factor of both \(p(x)\) and \(q(x)\).


Incorrect graph of \(f\)
Figure 1.19

\section*{Dividing Out and Rationalizing Techniques}

Two techniques for finding limits analytically are shown in Examples 7 and 8. The dividing out technique involves dividing out common factors, and the rationalizing technique involves rationalizing the numerator of a fractional expression.

\section*{Cexample 7 Dividing Out Technique}

Find the limit: \(\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}\).
Solution Although you are taking the limit of a rational function, you cannot apply Theorem 1.3 because the limit of the denominator is 0 .


Because the limit of the numerator is also 0 , the numerator and denominator have a common factor of \((x+3)\). So, for all \(x \neq-3\), you can divide out this factor to obtain
\[
f(x)=\frac{x^{2}+x-6}{x+3}=\frac{(x+3)(x-2)}{x+3}=x-2=g(x), \quad x \neq-3 .
\]

Using Theorem 1.7, it follows that
\[
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3} & =\lim _{x \rightarrow-3}(x-2) & & \text { Apply Theorem 1.7. } \\
& =-5 . & & \text { Use direct substitution. }
\end{aligned}
\]

This result is shown graphically in Figure 1.18. Note that the graph of the function \(f\) coincides with the graph of the function \(g(x)=x-2\), except that the graph of \(f\) has a gap at the point \((-3,-5)\).

In Example 7, direct substitution produced the meaningless fractional form 0/0. An expression such as \(0 / 0\) is called an indeterminate form because you cannot (from the form alone) determine the limit. When you try to evaluate a limit and encounter this form, remember that you must rewrite the fraction so that the new denominator does not have 0 as its limit. One way to do this is to divide out like factors, as shown in Example 7. A second way is to rationalize the numerator, as shown in Example 8.

TECHNOLOGY PITFALL Because the graphs of
\[
f(x)=\frac{x^{2}+x-6}{x+3} \quad \text { and } \quad g(x)=x-2
\]
differ only at the point \((-3,-5)\), a standard graphing utility setting may not distinguish clearly between these graphs. However, because of the pixel configuration and rounding error of a graphing utility, it may be possible to find screen settings that distinguish between the graphs. Specifically, by repeatedly zooming in near the point \((-3,-5)\) on the graph of \(f\), your graphing utility may show glitches or irregularities that do not exist on the actual graph. (See Figure 1.19.) By changing the screen settings on your graphing utility you may obtain the correct graph of \(f\).


The limit of \(f(x)\) as \(x\) approaches 0 is \(\frac{1}{2}\).
Figure 1.20

\section*{EXAMPLE 8 Rationalizing Technique}

Find the limit: \(\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}\).
Solution By direct substitution, you obtain the indeterminate form \(0 / 0\).
\[
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}+\begin{aligned}
& \lim _{x \rightarrow 0}(\sqrt{x+1}-1)=0 \\
& \lim _{x \rightarrow 0} x=0
\end{aligned}
\]

In this case, you can rewrite the fraction by rationalizing the numerator.
\[
\begin{aligned}
\frac{\sqrt{x+1}-1}{x} & =\left(\frac{\sqrt{x+1}-1}{x}\right)\left(\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right) \\
& =\frac{(x+1)-1}{x(\sqrt{x+1}+1)} \\
& =\frac{x}{x(\sqrt{x+1}+1)} \\
& =\frac{1}{\sqrt{x+1}+1}, \quad x \neq 0
\end{aligned}
\]

Now, using Theorem 1.7, you can evaluate the limit as shown.
\[
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1} \\
& =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
\]

A table or a graph can reinforce your conclusion that the limit is \(\frac{1}{2}\). (See Figure 1.20.)

\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -0.25 & -0.1 & -0.01 & -0.001 & 0 & 0.001 & 0.01 & 0.1 & 0.25 \\
\hline\(f(x)\) & 0.5359 & 0.5132 & 0.5013 & 0.5001 & \(?\) & 0.4999 & 0.4988 & 0.4881 & 0.4721 \\
\hline
\end{tabular}


NOTE The rationalizing technique for evaluating limits is based on multiplication by a convenient form of 1. In Example 8, the convenient form is
\[
1=\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}
\]


The Squeeze Theorem
Figure 1.21


A circular sector is used to prove Theorem 1.9.

\section*{The Squeeze Theorem}

The next theorem concerns the limit of a function that is squeezed between two other functions, each of which has the same limit at a given \(x\)-value, as shown in Figure 1.21. (The proof of this theorem is given in Appendix A.)

\section*{THEOREM 1.8 THE SQUEEZE THEOREM}

If \(h(x) \leq f(x) \leq g(x)\) for all \(x\) in an open interval containing \(c\), except possibly at \(c\) itself, and if
\[
\lim _{x \rightarrow c} h(x)=L=\lim _{x \rightarrow c} g(x)
\]
then \(\lim _{x \rightarrow c} f(x)\) exists and is equal to \(L\).

You can see the usefulness of the Squeeze Theorem (also called the Sandwich Theorem or the Pinching Theorem) in the proof of Theorem 1.9.

\section*{THEOREM 1.9 TWO SPECIAL TRIGONOMETRIC LIMITS}
1. \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)
2. \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0\)

PROOF To avoid the confusion of two different uses of \(x\), the proof is presented using the variable \(\theta\), where \(\theta\) is an acute positive angle measured in radians. Figure 1.22 shows a circular sector that is squeezed between two triangles.


Area of triangle \(\frac{\tan \theta}{2}\)
\(\geq\)
\(\geq\)
\(\geq\)
\(\geq \quad\) Area of sector

\(\frac{\theta}{2}\)

\(\geq \quad\) Area of triangle
\(\sin \theta\)

Multiplying each expression by \(2 / \sin \theta\) produces
\[
\frac{1}{\cos \theta} \geq \frac{\theta}{\sin \theta} \geq 1
\]
and taking reciprocals and reversing the inequalities yields
\[
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1
\]

Because \(\cos \theta=\cos (-\theta)\) and \((\sin \theta) / \theta=[\sin (-\theta)] /(-\theta)\), you can conclude that this inequality is valid for all nonzero \(\theta\) in the open interval \((-\pi / 2, \pi / 2)\). Finally, because \(\lim _{\theta \rightarrow 0} \cos \theta=1\) and \(\lim _{\theta \rightarrow 0} 1=1\), you can apply the Squeeze Theorem to conclude that \(\lim _{\theta \rightarrow 0}(\sin \theta) / \theta=1\). The proof of the second limit is left as an exercise (see Exercise 123).


The limit of \(f(x)\) as \(x\) approaches 0 is 1 . Figure 1.23


The limit of \(g(x)\) as \(x\) approaches 0 is 4 . Figure 1.24

\section*{EXAMPLE 9 A Limit Involving a Trigonometric Function}

Find the limit: \(\lim _{x \rightarrow 0} \frac{\tan x}{x}\).
Solution Direct substitution yields the indeterminate form \(0 / 0\). To solve this problem, you can write \(\tan x\) as \((\sin x) /(\cos x)\) and obtain
\[
\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{1}{\cos x}\right) .
\]

Now, because
\[
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1}{\cos x}=1
\]
you can obtain
\[
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x}{x} & =\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)\left(\lim _{x \rightarrow 0} \frac{1}{\cos x}\right) \\
& =(1)(1) \\
& =1 .
\end{aligned}
\]
(See Figure 1.23.)

\section*{EXAMPLE 10 A Limit Involving a Trigonometric Function}

Find the limit: \(\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}\).
Solution Direct substitution yields the indeterminate form \(0 / 0\). To solve this problem, you can rewrite the limit as
\[
\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=4\left(\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}\right) . \quad \text { Multiply and divide by } 4
\]

Now, by letting \(y=4 x\) and observing that \(x \rightarrow 0\) if and only if \(y \rightarrow 0\), you can write
\[
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 4 x}{x} & =4\left(\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}\right) \\
& =4\left(\lim _{y \rightarrow 0} \frac{\sin y}{y}\right) \\
& =4(1) \\
& =4
\end{aligned}
\]
\[
=4(1) \quad \text { Apply Theorem 1.9(1) }
\]
(See Figure 1.24.)

TECHNOLOGY Use a graphing utility to confirm the limits in the examples and in the exercise set. For instance, Figures 1.23 and 1.24 show the graphs of
\[
f(x)=\frac{\tan x}{x} \quad \text { and } \quad g(x)=\frac{\sin 4 x}{x}
\]

Note that the first graph appears to contain the point \((0,1)\) and the second graph appears to contain the point \((0,4)\), which lends support to the conclusions obtained in Examples 9 and 10.

\subsection*{1.3 Exercises}

In Exercises 1-4, use a graphing utility to graph the function and visually estimate the limits.
1. \(h(x)=-x^{2}+4 x\)
2. \(g(x)=\frac{12(\sqrt{x}-3)}{x-9}\)
(a) \(\lim _{x \rightarrow 4} h(x)\)
(a) \(\lim _{x \rightarrow 4} g(x)\)
(b) \(\lim _{x \rightarrow-1} h(x)\)
(b) \(\lim _{x \rightarrow 0} g(x)\)
3. \(f(x)=x \cos x\)
(a) \(\lim _{x \rightarrow 0} f(x)\)
(b) \(\lim _{x \rightarrow \pi / 3} f(x)\)
4. \(f(t)=t|t-4|\)
(a) \(\lim _{t \rightarrow 4} f(t)\)
(b) \(\lim _{t \rightarrow-1} f(t)\)

In Exercises 5-22, find the limit.
5. \(\lim x^{3}\)
6. \(\lim _{x \rightarrow-2} x^{4}\)
7. \(\lim _{x \rightarrow 0}(2 x-1)\)
8. \(\lim _{x \rightarrow-3}(3 x+2)\)
9. \(\lim _{x \rightarrow-3}\left(x^{2}+3 x\right)\)
10. \(\lim _{x \rightarrow 1}\left(-x^{2}+1\right)\)
11. \(\lim _{x \rightarrow-3}\left(2 x^{2}+4 x+1\right)\)
12. \(\lim _{x \rightarrow 1}\left(3 x^{3}-2 x^{2}+4\right)\)
13. \(\lim _{x \rightarrow 3} \sqrt{x+1}\)
14. \(\lim _{x \rightarrow 4} \sqrt[3]{x+4}\)
15. \(\lim _{x \rightarrow-4}(x+3)^{2}\)
16. \(\lim _{x \rightarrow 0}(2 x-1)^{3}\)
17. \(\lim _{x \rightarrow 2} \frac{1}{x}\)
18. \(\lim _{x \rightarrow-3} \frac{2}{x+2}\)
19. \(\lim _{x \rightarrow 1} \frac{x}{x^{2}+4}\)
20. \(\lim _{x \rightarrow 1} \frac{2 x-3}{x+5}\)
21. \(\lim _{x \rightarrow 7} \frac{3 x}{\sqrt{x+2}}\)
22. \(\lim _{x \rightarrow 2} \frac{\sqrt{x+2}}{x-4}\)

In Exercises 23-26, find the limits.
23. \(f(x)=5-x, g(x)=x^{3}\)
(a) \(\lim _{x \rightarrow 1} f(x)\)
(b) \(\lim _{x \rightarrow 4} g(x)\)
(c) \(\lim _{x \rightarrow 1} g(f(x))\)
24. \(f(x)=x+7, g(x)=x^{2}\)
(a) \(\lim _{x \rightarrow-3} f(x)\)
(b) \(\lim _{x \rightarrow 4} g(x)\)
(c) \(\lim _{x \rightarrow-3} g(f(x))\)
25. \(f(x)=4-x^{2}, g(x)=\sqrt[{\sqrt[x]{x \rightarrow 4}}]{x+1}\)
(a) \(\lim _{x \rightarrow 1} f(x)\)
(b) \(\lim _{x \rightarrow 3} g(x)\)
(c) \(\lim _{x \rightarrow 1} g(f(x))\)
26. \(f(x)=2 x^{2}-3 x+1, g(x)=\sqrt[3]{x+6}\)
(a) \(\lim _{x \rightarrow 4} f(x)\)
(b) \(\lim _{x \rightarrow 21} g(x)\)
(c) \(\lim _{x \rightarrow 4} g(f(x))\)

In Exercises 27-36, find the limit of the trigonometric function.
27. \(\lim _{x \rightarrow \pi / 2} \sin x\)
28. \(\lim _{x \rightarrow \pi} \tan x\)
29. \(\lim _{x \rightarrow 1} \cos \frac{\pi x}{3}\)
30. \(\lim _{x \rightarrow 2} \sin \frac{\pi x}{2}\)
31. \(\lim _{x \rightarrow 0} \sec 2 x\)
32. \(\lim _{x \rightarrow \pi} \cos 3 x\)
33. \(\lim _{x \rightarrow 5 \pi / 6} \sin x\)
34. \(\lim _{x \rightarrow 5 \pi / 3} \cos x\)
35. \(\lim _{x \rightarrow 3} \tan \left(\frac{\pi x}{4}\right)\)
36. \(\lim _{x \rightarrow 7} \sec \left(\frac{\pi x}{6}\right)\)

In Exercises 37-40, use the information to evaluate the limits.
37. \(\lim _{x \rightarrow c} f(x)=3\)
38. \(\lim _{x \rightarrow c} f(x)=\frac{3}{2}\)
\(\lim _{x \rightarrow c} g(x)=2\)
\(\lim _{x \rightarrow c} g(x)=\frac{1}{2}\)
(a) \(\lim _{x \rightarrow c}[5 g(x)]\)
(a) \(\lim _{x \rightarrow c}[4 f(x)]\)
(b) \(\lim _{x \rightarrow c}[f(x)+g(x)]\)
(b) \(\lim _{x \rightarrow c}[f(x)+g(x)]\)
(c) \(\lim _{x \rightarrow c}[f(x) g(x)]\)
(c) \(\lim _{x \rightarrow c}[f(x) g(x)]\)
(d) \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}\)
(d) \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}\)
39. \(\lim _{x \rightarrow c} f(x)=4\)
(a) \(\lim _{x \rightarrow c}[f(x)]^{3}\)
40. \(\lim _{x \rightarrow c} f(x)=27\)
(a) \(\lim _{x \rightarrow c} \sqrt[3]{f(x)}\)
(b) \(\lim _{x \rightarrow c} \sqrt{f(x)}\)
(b) \(\lim _{x \rightarrow c} \frac{f(x)}{18}\)
(c) \(\lim _{x \rightarrow c}[3 f(x)]\)
(c) \(\lim _{x \rightarrow c}[f(x)]^{2}\)
(d) \(\lim _{x \rightarrow c}[f(x)]^{3 / 2}\)
(d) \(\lim _{x \rightarrow c}[f(x)]^{2 / 3}\)

In Exercises 41-44, use the graph to determine the limit visually (if it exists). Write a simpler function that agrees with the given function at all but one point.
41. \(g(x)=\frac{x^{2}-x}{x}\)
42. \(h(x)=\frac{-x^{2}+3 x}{x}\)

(a) \(\lim _{x \rightarrow 0} g(x)\)
(b) \(\lim _{x \rightarrow-1} g(x)\)
43. \(g(x)=\frac{x^{3}-x}{x-1}\)

(a) \(\lim _{x \rightarrow 1} g(x)\)
(b) \(\lim _{x \rightarrow-1} g(x)\)
(a) \(\lim _{x \rightarrow 2} h(x)\)
(b) \(\lim _{x \rightarrow 0} h(x)\)
44. \(f(x)=\frac{x}{x^{2}-x}\)

(a) \(\lim _{x \rightarrow 1} f(x)\)
(b) \(\lim _{x \rightarrow 0} f(x)\)
(a) \(\lim _{x \rightarrow 1} f(x)\)
(b) \(\lim _{x \rightarrow 0} f(x)\)


In Exercises 45-48, find the limit of the function (if it exists). Write a simpler function that agrees with the given function at all but one point. Use a graphing utility to confirm your result.
45. \(\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}\)
46. \(\lim _{x \rightarrow-1} \frac{2 x^{2}-x-3}{x+1}\)
47. \(\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}\)
48. \(\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}\)

In Exercises 49-64, find the limit (if it exists).
49. \(\lim _{x \rightarrow 0} \frac{x}{x^{2}-x}\)
50. \(\lim _{x \rightarrow 0} \frac{3 x}{x^{2}+2 x}\)
51. \(\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}\)
52. \(\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-9}\)
53. \(\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}-9}\)
54. \(\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x^{2}-2 x-8}\)
55. \(\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}\)
56. \(\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}\)
57. \(\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}\)
58. \(\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}\)
59. \(\lim _{x \rightarrow 0} \frac{[1 /(3+x)]-(1 / 3)}{x}\)
60. \(\lim _{x \rightarrow 0} \frac{[1 /(x+4)]-(1 / 4)}{x}\)
61. \(\lim _{\Delta x \rightarrow 0} \frac{2(x+\Delta x)-2 x}{\Delta x}\)
62. \(\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}\)
63. \(\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-2(x+\Delta x)+1-\left(x^{2}-2 x+1\right)}{\Delta x}\)
64. \(\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x}\)

In Exercises 65-76, determine the limit of the trigonometric function (if it exists).
65. \(\lim _{x \rightarrow 0} \frac{\sin x}{5 x}\)
66. \(\lim _{x \rightarrow 0} \frac{3(1-\cos x)}{x}\)
67. \(\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{2}}\)
68. \(\lim _{\theta \rightarrow 0} \frac{\cos \theta \tan \theta}{\theta}\)
69. \(\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}\)
70. \(\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x}\)
71. \(\lim _{h \rightarrow 0} \frac{(1-\cos h)^{2}}{h}\)
72. \(\lim _{\phi \rightarrow \pi} \phi \sec \phi\)
73. \(\lim _{x \rightarrow \pi / 2} \frac{\cos x}{\cot x}\)
74. \(\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\sin x-\cos x}\)
75. \(\lim _{t \rightarrow 0} \frac{\sin 3 t}{2 t}\)
76. \(\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x} \quad\left[\right.\) Hint: Find \(\left.\lim _{x \rightarrow 0}\left(\frac{2 \sin 2 x}{2 x}\right)\left(\frac{3 x}{3 \sin 3 x}\right).\right]\)

Graphical, Numerical, and Analytic Analysis In Exercises 77-84, use a graphing utility to graph the function and estimate the limit. Use a table to reinforce your conclusion. Then find the limit by analytic methods.
77. \(\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}\)
78. \(\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{x-16}\)
79. \(\lim _{x \rightarrow 0} \frac{[1 /(2+x)]-(1 / 2)}{x}\)
80. \(\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}\)
81. \(\lim _{t \rightarrow 0} \frac{\sin 3 t}{t}\)
82. \(\lim _{x \rightarrow 0} \frac{\cos x-1}{2 x^{2}}\)
83. \(\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}\)
84. \(\lim _{x \rightarrow 0} \frac{\sin x}{\sqrt[3]{x}}\)

In Exercises 85-88, find \(\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\).
85. \(f(x)=3 x-2\)
86. \(f(x)=\sqrt{x}\)
87. \(f(x)=\frac{1}{x+3}\)
88. \(f(x)=x^{2}-4 x\)

In Exercises 89 and 90, use the Geeze Theorem to find \(\lim _{x \rightarrow c} f(x)\).
89. \(c=0\)
\(4-x^{2} \leq f(x) \leq 4+x^{2}\)
90. \(c=a\)
\[
b-|x-a| \leq f(x) \leq b+|x-a|
\]

In Exercises 91-96, use a graphing utility to graph the given function and the eqations \(y=|x|\) and \(y=-|x|\) in the same viewing window. Using the graphs to observe the Geeze Theorem visually, find \(\lim _{x \rightarrow 0} f(x)\).
91. \(f(x)=x \cos x\)
92. \(f(x)=|x \sin x|\)
93. \(f(x)=|x| \sin x\)
94. \(f(x)=|x| \cos x\)
95. \(f(x)=x \sin \frac{1}{x}\)
96. \(h(x)=x \cos \frac{1}{x}\)

\section*{WRITING ABOUT CONCEPTS}
97. In the context of finding limits, discuss what is meant by two functions that agree at all but one point.
98. Give an example of two functions that agree at all but one point.
99. What is meant by an indeterminate form?
100. In your own words, explain the Squeeze Theorem.
101. Writing Use a graphing utility to graph
\[
f(x)=x, \quad g(x)=\sin x, \quad \text { and } \quad h(x)=\frac{\sin x}{x}
\]
in the same viewing window. Compare the magnitudes of \(f(x)\) and \(g(x)\) when \(x\) is close to 0 . Use the comparison to write a short paragraph explaining why
\(\lim _{x \rightarrow 0} h(x)=1\).
102. Writing Use a graphing utility to graph
\[
f(x)=x, g(x)=\sin ^{2} x, \text { and } h(x)=\frac{\sin ^{2} x}{x}
\]
in the same viewing window. Compare the magnitudes of \(f(x)\) and \(g(x)\) when \(x\) is close to 0 . Use the comparison to write a short paragraph explaining why \(\lim _{x \rightarrow 0} h(x)=0\).
Free-Falling Object In Exercises 103 and 104, use the position function \(s(t)=-16 t^{2}+500\), which gives the height (in feet) of an object that has fallen for tseconds from a height of \(\mathbf{5 0 0}\) feet. The velocity at time \(t=a\) seconds is given by
\(\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}\).
103. If a construction worker drops a wrench from a height of 500 feet, how fast will the wrench be falling after 2 seconds?
104. If a construction worker drops a wrench from a height of 500 feet, when will the wrench hit the ground? At what velocity will the wrench impact the ground?

Free-Falling Object In Exercises 105 and 106, use the position function \(s(t)=-4.9 t^{2}+200\), which gives the height (in meters) of an objet that has fallen from a height of 200 meters. The velocity at time \(t=a\) seconds is given by
\(\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}\).
105. Find the velocity of the object when \(t=3\).
106. At what velocity will the object impact the ground?
107. Find two functions \(f\) and \(g\) such that \(\lim _{x \rightarrow 0} f(x)\) and \(\lim _{x \rightarrow 0} g(x)\) do not exist, but \(\lim _{x \rightarrow 0}[f(x)+g(x)]\) does exist.
108. Prove that if \(\lim _{x \rightarrow c} f(x)\) exists and \(\lim _{x \rightarrow c}[f(x)+g(x)]\) does not exist, then \(\lim _{x \rightarrow c} g(x)\) does not exist.
109. Prove Property 1 of Theorem 1.1.
110. Prove Property 3 of Theorem 1.1. (You may use Property 3 of Theorem 1.2.)
111. Prove Property 1 of Theorem 1.2.
112. Prove that if \(\lim _{x \rightarrow c} f(x)=0\), then \(\lim _{x \rightarrow c}|f(x)|=0\).
113. Prove that if \(\lim _{x \rightarrow c} f(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim _{x \rightarrow c} f(x) g(x)=0\).
114. (a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0\), then \(\lim _{x \rightarrow c} f(x)=0\).
(Note: This is the converse of Exercise 112.)
(b) Prove that if \(\lim _{x \rightarrow c} f(x)=L\), then \(\lim _{x \rightarrow c}|f(x)|=|L|\).
[Hint: Use the inequality \(\| f(x)|-|L| \leq|f(x)-L|\).
115. Think About It Find a function \(f\) to show that the converse of Exercise 114(b) is not true. [Hint: Find a function \(f\) such that \(\lim _{x \rightarrow c}|f(x)|=|L|\) but \(\lim _{x \rightarrow c} f(x)\) does not exist.]

\section*{CAPSTONE}
116. Let \(f(x)=\left\{\begin{array}{ll}3, & x \neq 2 \\ 5, & x=2\end{array}\right.\). Find \(\lim _{x \rightarrow 2} f(x)\).

True or False? In Exercises 117-122, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
117. \(\lim _{x \rightarrow 0} \frac{|x|}{x}=1\)
118. \(\lim _{x \rightarrow \pi} \frac{\sin x}{x}=1\)
119. If \(f(x)=g(x)\) for all real numbers other than \(x=0\), and \(\lim _{x \rightarrow 0} f(x)=L\), then \(\lim _{x \rightarrow 0} g(x)=L\).
120. If \(\lim _{x \rightarrow c} f(x)=L\), then \(f(c)=L\).
121. \(\lim _{x \rightarrow 2} f(x)=3\), where \(f(x)= \begin{cases}3, & x \leq 2 \\ 0, & x>2\end{cases}\)
122. If \(f(x)<g(x)\) for all \(x \neq a\), then
\(\lim _{x \rightarrow a} f(x)<\lim _{x \rightarrow a} g(x)\).
123. Prove the second part of Theorem 1.9.
\(\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0\)
124. Let \(f(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ 1, & \text { if } x \text { is irrational }\end{cases}\)
and
\(g(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ x, & \text { if } x \text { is irrational } .\end{cases}\)
Find (if possible) \(\lim _{x \rightarrow 0} f(x)\) and \(\lim _{x \rightarrow 0} g(x)\).
125. Graphical Reasoning \(\operatorname{Consider} f(x)=\frac{\sec x-1}{x^{2}}\).
(a) Find the domain of \(f\).
(b) Use a graphing utility to graph \(f\). Is the domain of \(f\) obvious from the graph? If not, explain.
(c) Use the graph of \(f\) to approximate \(\lim _{x \rightarrow 0} f(x)\).
(d) Confirm your answer to part (c) analytically.
126. Approximation
(a) Find \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\).
(b) Use your answer to part (a) to derive the approximation \(\cos x \approx 1-\frac{1}{2} x^{2}\) for \(x\) near 0 .
(c) Use your answer to part (b) to approximate \(\cos (0.1)\).
(d) Use a calculator to approximate \(\cos (0.1)\) to four decimal places. Compare the result with part (c).
127. Think About It When using a graphing utility to generate a table to approximate \(\lim _{x \rightarrow 0}[(\sin x) / x]\), a student concluded that the limit was 0.01745 rather than 1 . Determine the probable cause of the error.

\subsection*{1.4 Continuity and One-Sided Limits}
- Determine continuity at a point and continuity on an open interval.
- Determine one-sided limits and continuity on a closed interval.
- Use properties of continuity.
- Understand and use the Intermediate Value Theorem.

\section*{EXPLORATION}

Informally, you might say that a function is continuous on an open interval if its graph can be drawn with a pencil without lifting the pencil from the paper. Use a graphing utility to graph each function on the given interval. From the graphs, which functions would you say are continuous on the interval? Do you think you can trust the results you obtained graphically? Explain your reasoning.

Function
a. \(y=x^{2}+1\)

Interval
b. \(y=\frac{1}{x-2}\)
\((-3,3)\)
\((-3,3)\)
c. \(y=\frac{\sin x}{x}\)
\((-\pi, \pi)\)
d. \(y=\frac{x^{2}-4}{x+2}\)
\((-3,3)\)
e. \(y=\left\{\begin{array}{ll}2 x-4, & x \leq 0 \\ x+1, & x>0\end{array} \quad(-3,3)\right.\)

\section*{Continuity at a Point and on an Open Interval}

In mathematics, the term continuous has much the same meaning as it has in everyday usage. Informally, to say that a function \(f\) is continuous at \(x=c\) means that there is no interruption in the graph of \(f\) at \(c\). That is, its graph is unbroken at \(c\) and there are no holes, jumps, or gaps. Figure 1.25 identifies three values of \(x\) at which the graph of \(f\) is not continuous. At all other points in the interval \((a, b)\), the graph of \(f\) is uninterrupted and continuous.




Three conditions exist for which the graph of \(f\) is not continuous at \(x=c\).
Figure 1.25

In Figure 1.25, it appears that continuity at \(x=c\) can be destroyed by any one of the following conditions.
1. The function is not defined at \(x=c\).
2. The limit of \(f(x)\) does not exist at \(x=c\).
3. The limit of \(f(x)\) exists at \(x=c\), but it is not equal to \(f(c)\).

If none of the three conditions above is true, the function \(f\) is called continuous at \(\boldsymbol{c}\), as indicated in the following important definition.

\section*{DEFINITION OF CONTINUITY}

Continuity at a Point: A function \(f\) is continuous at \(\boldsymbol{c}\) if the following three conditions are met.
1. \(f(c)\) is defined.
2. \(\lim _{x \rightarrow c} f(x)\) exists.
3. \(\lim _{x \rightarrow c} f(x)=f(c)\)

Continuity on an Open Interval: A function is continuous on an open
interval \((\boldsymbol{a}, \boldsymbol{b})\) if it is continuous at each point in the interval. A function that is continuous on the entire real line \((-\infty, \infty)\) is everywhere continuous.

(a) Removable discontinuity

(b) Nonremovable discontinuity

(c) Removable discontinuity

Figure 1.26

STUDY TIP Some people may refer to the function in Example 1(a) as "discontinuous." We have found that this terminology can be confusing. Rather than saying that the function is discontinuous, we prefer to say that it has a discontinuity at \(x=0\).

Consider an open interval \(I\) that contains a real number \(c\). If a function \(f\) is defined on \(I\) (except possibly at \(c\) ), and \(f\) is not continuous at \(c\), then \(f\) is said to have a discontinuity at \(c\). Discontinuities fall into two categories: removable and nonremovable. A discontinuity at \(c\) is called removable if \(f\) can be made continuous by appropriately defining (or redefining) \(f(c)\). For instance, the functions shown in Figures 1.26(a) and (c) have removable discontinuities at \(c\) and the function shown in Figure 1.26(b) has a nonremovable discontinuity at \(c\).

\section*{EXAMPLE 1 Continuity of a Function}

Discuss the continuity of each function.
a. \(f(x)=\frac{1}{x}\)
b. \(g(x)=\frac{x^{2}-1}{x-1}\)
c. \(h(x)= \begin{cases}x+1, & x \leq 0 \\ x^{2}+1, & x>0\end{cases}\)
d. \(y=\sin x\)

\section*{Solution}
a. The domain of \(f\) is all nonzero real numbers. From Theorem 1.3, you can conclude that \(f\) is continuous at every \(x\)-value in its domain. At \(x=0, f\) has a nonremovable discontinuity, as shown in Figure 1.27(a). In other words, there is no way to define \(f(0)\) so as to make the function continuous at \(x=0\).
b. The domain of \(g\) is all real numbers except \(x=1\). From Theorem 1.3, you can conclude that \(g\) is continuous at every \(x\)-value in its domain. At \(x=1\), the function has a removable discontinuity, as shown in Figure 1.27(b). If \(g(1)\) is defined as 2, the "newly defined" function is continuous for all real numbers.
c. The domain of \(h\) is all real numbers. The function \(h\) is continuous on \((-\infty, 0)\) and \((0, \infty)\), and, because \(\lim _{x \rightarrow 0} h(x)=1, h\) is continuous on the entire real line, as shown in Figure 1.27(c).
d. The domain of \(y\) is all real numbers. From Theorem 1.6, you can conclude that the function is continuous on its entire domain, \((-\infty, \infty)\), as shown in Figure 1.27(d).


(a) Limit from right

(b) Limit from left

Figure 1.28


The limit of \(f(x)\) as \(x\) approaches -2 from the right is 0 .
Figure 1.29


Greatest integer function
Figure 1.30

\section*{One-Sided Limits and Continuity on a Closed Interval}

To understand continuity on a closed interval, you first need to look at a different type of limit called a one-sided limit. For example, the limit from the right (or right-hand limit) means that \(x\) approaches \(c\) from values greater than \(c\) [see Figure 1.28(a)]. This limit is denoted as
\[
\lim _{x \rightarrow c^{+}} f(x)=L
\]

Limit from the right

Similarly, the limit from the left (or left-hand limit) means that \(x\) approaches \(c\) from values less than \(c\) [see Figure 1.28(b)]. This limit is denoted as
\[
\lim _{x \rightarrow c^{-}} f(x)=L
\]

Limit from the left

One-sided limits are useful in taking limits of functions involving radicals. For instance, if \(n\) is an even integer,
\[
\lim _{x \rightarrow 0^{+}} \sqrt[n]{x}=0
\]

\section*{EXAMPLE 2 A One-Sided Limit}

Find the limit of \(f(x)=\sqrt{4-x^{2}}\) as \(x\) approaches -2 from the right.
Solution As shown in Figure 1.29, the limit as \(x\) approaches -2 from the right is
\[
\lim _{x \rightarrow-2^{+}} \sqrt{4-x^{2}}=0
\]

One-sided limits can be used to investigate the behavior of step functions. One common type of step function is the greatest integer function \(\llbracket x \rrbracket\), defined by
\[
\llbracket x \rrbracket=\text { greatest integer } n \text { such that } n \leq x . \quad \text { Greatest integer function }
\]

For instance, \(\llbracket 2.5 \rrbracket=2\) and \(\llbracket-2.5 \rrbracket=-3\).

\section*{EXAMPLE 3 The Greatest Integer Function}

Find the limit of the greatest integer function \(f(x)=\llbracket x \rrbracket\) as \(x\) approaches 0 from the left and from the right.

Solution As shown in Figure 1.30, the limit as \(x\) approaches 0 from the left is given by
\[
\lim _{x \rightarrow 0^{-}} \llbracket x \rrbracket=-1
\]
and the limit as \(x\) approaches 0 from the right is given by
\[
\lim _{x \rightarrow 0^{+}} \llbracket x \rrbracket=0
\]

The greatest integer function has a discontinuity at zero because the left and right limits at zero are different. By similar reasoning, you can see that the greatest integer function has a discontinuity at any integer \(n\).


Continuous function on a closed interval Figure 1.31

\(f\) is continuous on \([-1,1]\).
Figure 1.32

When the limit from the left is not equal to the limit from the right, the (twosided) limit does not exist. The next theorem makes this more explicit. The proof of this theorem follows directly from the definition of a one-sided limit.

\section*{THEOREM 1.10 THE EXISTENCE OF A LIMIT}

Let \(f\) be a function and let \(c\) and \(L\) be real numbers. The limit of \(f(x)\) as \(x\) approaches \(c\) is \(L\) if and only if
\[
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
\]

The concept of a one-sided limit allows you to extend the definition of continuity to closed intervals. Basically, a function is continuous on a closed interval if it is continuous in the interior of the interval and exhibits one-sided continuity at the endpoints. This is stated formally as follows.

\section*{DEFINITION OF CONTINUITY ON A CLOSED INTERVAL}

A function \(f\) is continuous on the closed interval \([\boldsymbol{a}, \boldsymbol{b}]\) if it is continuous on the open interval \((a, b)\) and
\[
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
\]

The function \(f\) is continuous from the right at \(a\) and continuous from the left at \(b\) (see Figure 1.31).

Similar definitions can be made to cover continuity on intervals of the form \((a, b]\) and \([a, b)\) that are neither open nor closed, or on infinite intervals. For example, the function
\[
f(x)=\sqrt{x}
\]
is continuous on the infinite interval \([0, \infty)\), and the function
\[
g(x)=\sqrt{2-x}
\]
is continuous on the infinite interval \((-\infty, 2]\).

\section*{EXAMPLE 4 Continuity on a Closed Interval}

Discuss the continuity of \(f(x)=\sqrt{1-x^{2}}\).
Solution The domain of \(f\) is the closed interval \([-1,1]\). At all points in the open interval \((-1,1)\), the continuity of \(f\) follows from Theorems 1.4 and 1.5. Moreover, because
\[
\lim _{x \rightarrow-1^{+}} \sqrt{1-x^{2}}=0=f(-1) \quad \text { Continuous from the right }
\]
and
\[
\lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}}=0=f(1) \quad \text { Continuous from the left }
\]
you can conclude that \(f\) is continuous on the closed interval \([-1,1]\), as shown in Figure 1.32.


The volume of hydrogen gas depends on its temperature.
Figure 1.33


In 2003, researchers at the Massachusetts Institute of Technology used lasers and evaporation to produce a supercold gas in which atoms overlap. This gas is called a Bose-Einstein condensate. They measured a temperature of about 450 pK (picokelvin), or approximately \(-273.14999999955^{\circ} \mathrm{C}\). (Source: Science magazine, September 12, 2003)

The next example shows how a one-sided limit can be used to determine the value of absolute zero on the Kelvin scale.

\section*{EXAMPLE 5 Charles's Law and Absolute Zero}

On the Kelvin scale, absolute zero is the temperature 0 K . Although temperatures very close to 0 K have been produced in laboratories, absolute zero has never been attained. In fact, evidence suggests that absolute zero cannot be attained. How did scientists determine that 0 K is the "lower limit" of the temperature of matter? What is absolute zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French physicist Jacques Charles (1746-1823). Charles discovered that the volume of gas at a constant pressure increases linearly with the temperature of the gas. The table illustrates this relationship between volume and temperature. To generate the values in the table, one mole of hydrogen is held at a constant pressure of one atmosphere. The volume \(V\) is approximated and is measured in liters, and the temperature \(T\) is measured in degrees Celsius.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(T\) & -40 & -20 & 0 & 20 & 40 & 60 & 80 \\
\hline\(V\) & 19.1482 & 20.7908 & 22.4334 & 24.0760 & 25.7186 & 27.3612 & 29.0038 \\
\hline
\end{tabular}

The points represented by the table are shown in Figure 1.33. Moreover, by using the points in the table, you can determine that \(T\) and \(V\) are related by the linear equation
\[
V=0.08213 T+22.4334 \quad \text { or } \quad T=\frac{V-22.4334}{0.08213}
\]

By reasoning that the volume of the gas can approach 0 (but can never equal or go below 0 ), you can determine that the "least possible temperature" is given by
\[
\begin{array}{rlr}
\lim _{V \rightarrow 0^{+}} T & =\lim _{V \rightarrow 0^{+}} \frac{V-22.4334}{0.08213} \\
& =\frac{0-22.4334}{0.08213} & \\
& \approx-273.15 & \text { Use direct substitution. }
\end{array}
\]

So, absolute zero on the Kelvin scale ( 0 K ) is approximately \(-273.15^{\circ}\) on the Celsius scale.

The following table shows the temperatures in Example 5 converted to the Fahrenheit scale. Try repeating the solution shown in Example 5 using these temperatures and volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(T\) & -40 & -4 & 32 & 68 & 104 & 140 & 176 \\
\hline\(V\) & 19.1482 & 20.7908 & 22.4334 & 24.0760 & 25.7186 & 27.3612 & 29.0038 \\
\hline
\end{tabular}

NOTE Charles's Law for gases (assuming constant pressure) can be stated as
\[
V=R T \quad \text { Charles's Law }
\]
where \(V\) is volume, \(R\) is a constant, and \(T\) is temperature. In the statement of this law, what property must the temperature scale have?


\section*{Properties of Continuity}

In Section 1.3, you studied several properties of limits. Each of those properties yields a corresponding property pertaining to the continuity of a function. For instance, Theorem 1.11 follows directly from Theorem 1.2. (A proof of Theorem 1.11 is given in Appendix A.)

\section*{THEOREM 1.11 PROPERTIES OF CONTINUITY}

If \(b\) is a real number and \(f\) and \(g\) are continuous at \(x=c\), then the following functions are also continuous at \(c\).
1. Scalar multiple: \(b f\)
2. Sum or difference: \(f \pm g\)
3. Product: \(f g\)
4. Quotient: \(\frac{f}{g}, \quad\) if \(g(c) \neq 0\)

The following types of functions are continuous at every point in their domains.
1. Polynomial: \(\quad p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\)
2. Rational:
\(r(x)=\frac{p(x)}{q(x)}, \quad q(x) \neq 0\)
3. Radical: \(\quad f(x)=\sqrt[n]{x}\)
4. Trigonometric: \(\sin x, \cos x, \tan x, \cot x, \sec x, \csc x\)

By combining Theorem 1.11 with this summary, you can conclude that a wide variety of elementary functions are continuous at every point in their domains.

\section*{EXAMPLE 6 Applying Properties of Continuity}

By Theorem 1.11, it follows that each of the functions below is continuous at every point in its domain.
\[
f(x)=x+\sin x, \quad f(x)=3 \tan x, \quad f(x)=\frac{x^{2}+1}{\cos x}
\]

The next theorem, which is a consequence of Theorem 1.5, allows you to determine the continuity of composite functions such as
\[
f(x)=\sin 3 x, \quad f(x)=\sqrt{x^{2}+1}, \quad f(x)=\tan \frac{1}{x}
\]

\section*{THEOREM 1.12 CONTINUITY OF A COMPOSITE FUNCTION}

If \(g\) is continuous at \(c\) and \(f\) is continuous at \(g(c)\), then the composite function given by \((f \circ g)(x)=f(g(x))\) is continuous at \(c\).
(PROOF By the definition of continuity, \(\lim _{x \rightarrow c} g(x)=g(c)\) and \(\lim _{x \rightarrow g(c)} f(x)=f(g(c))\). Apply Theorem 1.5 with \(L=g(c)\) to obtain \(\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(g(c))\). So, \((f \circ g)=f(g(x))\) is continuous at \(c\).

\section*{EXAMPLE 7 Testing for Continuity}

Describe the interval(s) on which each function is continuous.
a. \(f(x)=\tan x\)
b. \(g(x)= \begin{cases}\sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}\)
c. \(h(x)= \begin{cases}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}\)

\section*{Solution}
a. The tangent function \(f(x)=\tan x\) is undefined at
\[
x=\frac{\pi}{2}+n \pi, \quad n \text { is an integer. }
\]

At all other points it is continuous. So, \(f(x)=\tan x\) is continuous on the open intervals
\[
\ldots,\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right),\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right), \ldots
\]
as shown in Figure 1.34(a).
b. Because \(y=1 / x\) is continuous except at \(x=0\) and the sine function is continuous for all real values of \(x\), it follows that \(y=\sin (1 / x)\) is continuous at all real values except \(x=0\). At \(x=0\), the limit of \(g(x)\) does not exist (see Example 5, Section 1.2). So, \(g\) is continuous on the intervals \((-\infty, 0)\) and \((0, \infty)\), as shown in Figure 1.34(b).
c. This function is similar to the function in part (b) except that the oscillations are damped by the factor \(x\). Using the Squeeze Theorem, you obtain
\[
-|x| \leq x \sin \frac{1}{x} \leq|x|, \quad x \neq 0
\]
and you can conclude that
\[
\lim _{x \rightarrow 0} h(x)=0
\]

So, \(h\) is continuous on the entire real line, as shown in Figure 1.34(c).

(a) \(f\) is continuous on each open interval in its domain.

(b) \(g\) is continuous on \((-\infty, 0)\) and \((0, \infty)\).

(c) \(h\) is continuous on the entire real line

\section*{The Intermediate Value Theorem}

Theorem 1.13 is an important theorem concerning the behavior of functions that are continuous on a closed interval.

\section*{THEOREM 1.13 INTERMEDIATE VALUE THEOREM}

If \(f\) is continuous on the closed interval \([a, b], f(a) \neq f(b)\), and \(k\) is any number between \(f(a)\) and \(f(b)\), then there is at least one number \(c\) in \([a, b]\) such that
\(f(c)=k\).

NOTE The Intermediate Value Theorem tells you that at least one number \(c\) exists, but it does not provide a method for finding \(c\). Such theorems are called existence theorems. By referring to a text on advanced calculus, you will find that a proof of this theorem is based on a property of real numbers called completeness. The Intermediate Value Theorem states that for a continuous function \(f\), if \(x\) takes on all values between \(a\) and \(b, f(x)\) must take on all values between \(f(a)\) and \(f(b)\).

As a simple example of the application of this theorem, consider a person's height. Suppose that a girl is 5 feet tall on her thirteenth birthday and 5 feet 7 inches tall on her fourteenth birthday. Then, for any height \(h\) between 5 feet and 5 feet 7 inches, there must have been a time \(t\) when her height was exactly \(h\). This seems reasonable because human growth is continuous and a person's height does not abruptly change from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number \(c\) in the closed interval \([a, b]\). There may, of course, be more than one number \(c\) such that \(f(c)=k\), as shown in Figure 1.35. A function that is not continuous does not necessarily exhibit the intermediate value property. For example, the graph of the function shown in Figure 1.36 jumps over the horizontal line given by \(y=k\), and for this function there is no value of \(c\) in \([a, b]\) such that \(f(c)=k\).

\(f\) is continuous on \([a, b]\). [There exist three \(c\) 's such that \(f(c)=k\).]
Figure 1.35

\(f\) is not continuous on \([a, b]\).
[There are no \(c\) 's such that \(f(c)=k\).]
Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a function that is continuous on a closed interval. Specifically, if \(f\) is continuous on \([a, b]\) and \(f(a)\) and \(f(b)\) differ in sign, the Intermediate Value Theorem guarantees the existence of at least one zero of \(f\) in the closed interval \([a, b]\).

\(f\) is continuous on \([0,1]\) with \(f(0)<0\) and \(f(1)>0\).
Figure 1.37

\section*{EXAMPLE 8 An Application of the Intermediate Value Theorem}

Use the Intermediate Value Theorem to show that the polynomial function \(f(x)=x^{3}+2 x-1\) has a zero in the interval \([0,1]\).
Solution Note that \(f\) is continuous on the closed interval [ 0,1 ]. Because
\[
f(0)=0^{3}+2(0)-1=-1 \quad \text { and } \quad f(1)=1^{3}+2(1)-1=2
\]
it follows that \(f(0)<0\) and \(f(1)>0\). You can therefore apply the Intermediate Value Theorem to conclude that there must be some \(c\) in \([0,1]\) such that
\[
f(c)=0 \quad f \text { has a zero in the closed interval }[0,1] .
\]
as shown in Figure 1.37.
The bisection method for approximating the real zeros of a continuous function is similar to the method used in Example 8. If you know that a zero exists in the closed interval \([a, b]\), the zero must lie in the interval \([a,(a+b) / 2]\) or \([(a+b) / 2, b]\). From the sign of \(f([a+b] / 2)\), you can determine which interval contains the zero. By repeatedly bisecting the interval, you can "close in" on the zero of the function.

TECHNOLOGY You can also use the zoom feature of a graphing utility to approximate the real zeros of a continuous function. By repeatedly zooming in on the point where the graph crosses the \(x\)-axis, and adjusting the \(x\)-axis scale, you can approximate the zero of the function to any desired accuracy. The zero of \(x^{3}+2 x-1\) is approximately 0.453 , as shown in Figure 1.38.


Figure 1.38 Zooming in on the zero of \(f(x)=x^{3}+2 x-1\)

\subsection*{1.4 Exercises}

In Exercises 1-6, use the graph to determine the limit, and discuss the continuity of the function.
(a) \(\lim _{x \rightarrow c^{+}} f(x)\)
(b) \(\lim _{x \rightarrow c^{-}} f(x)\)
(c) \(\lim _{x \rightarrow c} f(x)\)
1.

2.

3.

4.

5.

6.


In Exercises 7-26, find the limit (if it exists). If it does not exist, explain why.
7. \(\lim _{x \rightarrow 8^{+}} \frac{1}{x+8}\)
8. \(\lim _{x \rightarrow 5^{-}}-\frac{3}{x+5}\)
9. \(\lim _{x \rightarrow 5^{+}} \frac{x-5}{x^{2}-25}\)
10. \(\lim _{x \rightarrow 2^{+}} \frac{2-x}{x^{2}-4}\)
11. \(\lim _{x \rightarrow-3^{-}} \frac{x}{\sqrt{x^{2}-9}}\)
12. \(\lim _{x \rightarrow 9^{-}} \frac{\sqrt{x}-3}{x-9}\)
13. \(\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}\)
14. \(\lim _{x \rightarrow 10^{+}} \frac{|x-10|}{x-10}\)
15. \(\lim _{\Delta x \rightarrow 0^{-}} \frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x}\)
16. \(\lim _{\Delta x \rightarrow 0^{+}} \frac{(x+\Delta x)^{2}+x+\Delta x-\left(x^{2}+x\right)}{\Delta x}\)
17. \(\lim _{x \rightarrow 3^{-}} f(x)\), where \(f(x)= \begin{cases}\frac{x+2}{2}, & x \leq 3 \\ \frac{12-2 x}{3}, & x>3\end{cases}\)
18. \(\lim _{x \rightarrow 2} f(x)\), where \(f(x)= \begin{cases}x^{2}-4 x+6, & x<2 \\ -x^{2}+4 x-2, & x \geq 2\end{cases}\)
19. \(\lim _{x \rightarrow 1} f(x)\), where \(f(x)= \begin{cases}x^{3}+1, & x<1 \\ x+1, & x \geq 1\end{cases}\)
20. \(\lim _{x \rightarrow 1^{+}} f(x)\), where \(f(x)= \begin{cases}x, & x \leq 1 \\ 1-x, & x>1\end{cases}\)
21. \(\lim _{x \rightarrow \pi} \cot x\)
22. \(\lim _{x \rightarrow \pi / 2} \sec x\)
23. \(\lim _{x \rightarrow 4^{-}}(5 \llbracket x \rrbracket-7)\)
24. \(\lim _{x \rightarrow 2^{+}}(2 x-\llbracket x \rrbracket)\)
25. \(\lim _{x \rightarrow 3}(2-\llbracket-x \rrbracket)\)
26. \(\lim _{x \rightarrow 1}\left(1-\llbracket-\frac{x}{2} \rrbracket\right)\)

In Exercises 27-30, discuss the continuity of each function.
27. \(f(x)=\frac{1}{x^{2}-4}\)
28. \(f(x)=\frac{x^{2}-1}{x+1}\)

29. \(f(x)=\frac{1}{2} \llbracket x \rrbracket+x\)
30. \(f(x)= \begin{cases}x, & x<1 \\ 2, & x=1 \\ 2 x-1, & x>1\end{cases}\)



In Exercises 31-34, discuss the continuity of the function on the closed interval.

> Function Interval
31. \(g(x)=\sqrt{49-x^{2}} \quad[-7,7]\)
32. \(f(t)=3-\sqrt{9-t^{2}} \quad[-3,3]\)
33. \(f(x)=\left\{\begin{array}{ll}3-x, & x \leq 0 \\ 3+\frac{1}{2} x, & x>0\end{array} \quad[-1,4]\right.\)
34. \(g(x)=\frac{1}{x^{2}-4}\)

In Exercises 35-60, find the \(x\)-values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable?
35. \(f(x)=\frac{6}{x}\)
36. \(f(x)=\frac{3}{x-2}\)
37. \(f(x)=x^{2}-9\)
39. \(f(x)=\frac{1}{4-x^{2}}\)
41. \(f(x)=3 x-\cos x\)
38. \(f(x)=x^{2}-2 x+1\)
40. \(f(x)=\frac{1}{x^{2}+1}\)
43. \(f(x)=\frac{x}{x^{2}-x}\)
42. \(f(x)=\cos \frac{\pi x}{2}\)
45. \(f(x)=\frac{x}{x^{2}+1}\)
46. \(f(x)=\frac{x-6}{x^{2}-36}\)
47. \(f(x)=\frac{x+2}{x^{2}-3 x-10}\)
48. \(f(x)=\frac{x-1}{x^{2}+x-2}\)
49. \(f(x)=\frac{|x+7|}{x+7}\)
50. \(f(x)=\frac{|x-8|}{x-8}\)
51. \(f(x)= \begin{cases}x, & x \leq 1 \\ x^{2}, & x>1\end{cases}\)
52. \(f(x)= \begin{cases}-2 x+3, & x<1 \\ x^{2}, & x \geq 1\end{cases}\)
53. \(f(x)= \begin{cases}\frac{1}{2} x+1, & x \leq 2 \\ 3-x, & x>2\end{cases}\)
54. \(f(x)= \begin{cases}-2 x, & x \leq 2 \\ x^{2}-4 x+1, & x>2\end{cases}\)
55. \(f(x)= \begin{cases}\tan \frac{\pi x}{4}, & |x|<1 \\ x, & |x| \geq 1\end{cases}\)
56. \(f(x)= \begin{cases}\csc \frac{\pi x}{6}, & |x-3| \leq 2 \\ 2, & |x-3|>2\end{cases}\)
57. \(f(x)=\csc 2 x\)
58. \(f(x)=\tan \frac{\pi x}{2}\)
59. \(f(x)=\llbracket x-8 \rrbracket\)
60. \(f(x)=5-\llbracket x \rrbracket\)

In Exercises 61 and 62, use a graphing utility to graph the function. From the graph, estimate
\(\lim _{x \rightarrow 0^{+}} f(x) \quad\) and \(\quad \lim _{x \rightarrow 0^{-}} f(x)\).
Is the function continuous on the entire real line? Explain.
61. \(f(x)=\frac{\left|x^{2}-4\right| x}{x+2}\)
62. \(f(x)=\frac{\left|x^{2}+4 x\right|(x+2)}{x+4}\)

In Exercises 63-68, find the constant \(a\), or the constants \(a\) and \(b\), such that the function is continuous on the entire real line.
63. \(f(x)= \begin{cases}3 x^{2}, & x \geq 1 \\ a x-4, & x<1\end{cases}\)
64. \(f(x)= \begin{cases}3 x^{3}, & x \leq 1 \\ a x+5, & x>1\end{cases}\)
65. \(f(x)= \begin{cases}x^{3}, & x \leq 2 \\ a x^{2}, & x>2\end{cases}\)
66. \(g(x)= \begin{cases}\frac{4 \sin x}{x}, & x<0 \\ a-2 x, & x \geq 0\end{cases}\)
67. \(f(x)= \begin{cases}2, & x \leq-1 \\ a x+b, & -1<x<3 \\ -2, & x \geq 3\end{cases}\)
68. \(g(x)= \begin{cases}\frac{x^{2}-a^{2}}{x-a}, & x \neq a \\ 8, & x=a\end{cases}\)

In Exercises 69-72, discuss the continuity of the composite function \(h(x)=f(g(x))\).
69. \(f(x)=x^{2}\)
70. \(f(x)=\frac{1}{\sqrt{x}}\)
\[
g(x)=x-1
\]
\(g(x)=x-1\)
71. \(f(x)=\frac{1}{x-6}\)
\(g(x)=x^{2}+5\)
72. \(f(x)=\sin x\)
\(g(x)=x^{2}\)

In Exercises 73-76, use a graphing utility to graph the function. Use the graph to determine any \(x\)-values at which the function is not continuous.
73. \(f(x)=\llbracket x \rrbracket-x\)
74. \(h(x)=\frac{1}{x^{2}-x-2}\)
75. \(g(x)= \begin{cases}x^{2}-3 x, & x>4 \\ 2 x-5, & x \leq 4\end{cases}\)
76. \(f(x)= \begin{cases}\frac{\cos x-1}{x}, & x<0 \\ 5 x, & x \geq 0\end{cases}\)

In Exercises 77-80, describe the interval(s) on which the function is continuous.
77. \(f(x)=\frac{x}{x^{2}+x+2}\)

79. \(f(x)=\sec \frac{\pi x}{4}\)

78. \(f(x)=x \sqrt{x+3}\)

80. \(f(x)=\frac{x+1}{\sqrt{x}}\)


Writing In Exercises 81 and 82, use a graphing utility to graph the function on the interval \([-4,4]\). Does the graph of the function appear to be continuous on this interval? Is the function continuous on \([-4,4]\) ? Write a short paragraph about the importance of examining a function analytically as well as graphically.
81. \(f(x)=\frac{\sin x}{x}\)
82. \(f(x)=\frac{x^{3}-8}{x-2}\)

Writing In Exercises 83-86, explain why the function has a zero in the given interval.

Function

\section*{Interval}
83. \(f(x)=\frac{1}{12} x^{4}-x^{3}+4\) [1, 2]
84. \(f(x)=x^{3}+5 x-3\)
85. \(f(x)=x^{2}-2-\cos x\)
\([0, \pi]\)
86. \(f(x)=-\frac{5}{x}+\tan \left(\frac{\pi x}{10}\right)\)
\([1,4]\)

In Exercises 87-90, use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval \([0,1]\). Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places.
87. \(f(x)=x^{3}+x-1\)
88. \(f(x)=x^{3}+5 x-3\)
89. \(g(t)=2 \cos t-3 t\)
90. \(h(\theta)=1+\theta-3 \tan \theta\)

In Exercises 91-94, verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem.
91. \(f(x)=x^{2}+x-1, \quad[0,5], \quad f(c)=11\)
92. \(f(x)=x^{2}-6 x+8, \quad[0,3], \quad f(c)=0\)
93. \(f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4\)
94. \(f(x)=\frac{x^{2}+x}{x-1},\left[\frac{5}{2}, 4\right], \quad f(c)=6\)

\section*{WRITING ABOUT CONCEPTS}
95. State how continuity is destroyed at \(x=c\) for each of the following graphs.
(a)

(b)

(c)

(d)

96. Sketch the graph of any function \(f\) such that
\(\lim _{x \rightarrow 3^{+}} f(x)=1 \quad\) and \(\quad \lim _{x \rightarrow 3^{-}} f(x)=0\).
Is the function continuous at \(x=3\) ? Explain.
97. If the functions \(f\) and \(g\) are continuous for all real \(x\), is \(f+g\) always continuous for all real \(x\) ? Is \(f / g\) always continuous for all real \(x\) ? If either is not continuous, give an example to verify your conclusion.

\section*{CAPSTONE}
98. Describe the difference between a discontinuity that is removable and one that is nonremovable. In your explanation, give examples of the following descriptions.
(a) A function with a nonremovable discontinuity at \(x=4\)
(b) A function with a removable discontinuity at \(x=-4\)
(c) A function that has both of the characteristics described in parts (a) and (b)

True or False? In Exercises 99-102, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
99. If \(\lim _{x \rightarrow c} f(x)=L\) and \(f(c)=L\), then \(f\) is continuous at \(c\).
100. If \(f(x)=g(x)\) for \(x \neq c\) and \(f(c) \neq g(c)\), then either \(f\) or \(g\) is not continuous at \(c\).
101. A rational function can have infinitely many \(x\)-values at which it is not continuous.
102. The function \(f(x)=|x-1| /(x-1)\) is continuous on \((-\infty, \infty)\).
103. Swimming Pool Every day you dissolve 28 ounces of chlorine in a swimming pool. The graph shows the amount of chlorine \(f(t)\) in the pool after \(t\) days.


Estimate and interpret \(\lim _{t \rightarrow 4^{-}} f(t)\) and \(\lim _{t \rightarrow 4^{+}} f(t)\).
104. Think About It Describe how the functions
\(f(x)=3+\llbracket x \rrbracket\)
and
\(g(x)=3-\llbracket-x \rrbracket\)
differ.
105. Telephone Charges A long distance phone service charges \(\$ 0.40\) for the first 10 minutes and \(\$ 0.05\) for each additional minute or fraction thereof. Use the greatest integer function to write the cost \(C\) of a call in terms of time \(t\) (in minutes). Sketch the graph of this function and discuss its continuity.
106. Inventory Management The number of units in inventory in a small company is given by
\(N(t)=25\left(2 \llbracket \frac{t+2}{2} \rrbracket-t\right)\)
where \(t\) is the time in months. Sketch the graph of this function and discuss its continuity. How often must this company replenish its inventory?
107. Déjà Vu At 8:00 A.m. on Saturday a man begins running up the side of a mountain to his weekend campsite (see figure). On Sunday morning at 8:00 A.M. he runs back down the mountain. It takes him 20 minutes to run up, but only 10 minutes to run down. At some point on the way down, he realizes that he passed the same place at exactly the same time on Saturday. Prove that he is correct. [Hint: Let \(s(t)\) and \(r(t)\) be the position functions for the runs up and down, and apply the Intermediate Value Theorem to the function \(f(t)=s(t)-r(t)\).]

108. Volume Use the Intermediate Value Theorem to show that for all spheres with radii in the interval [5, 8], there is one with a volume of 1500 cubic centimeters.
109. Prove that if \(f\) is continuous and has no zeros on \([a, b]\), then either
\(f(x)>0\) for all \(x\) in \([a, b]\) or \(f(x)<0\) for all \(x\) in \([a, b]\).
110. Show that the Dirichlet function
\(f(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ 1, & \text { if } x \text { is irrational }\end{cases}\)
is not continuous at any real number.
111. Show that the function
\(f(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ k x, & \text { if } x \text { is irrational }\end{cases}\)
is continuous only at \(x=0\). (Assume that \(k\) is any nonzero real number.)
112. The signum function is defined by
\[
\operatorname{sgn}(x)= \begin{cases}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{cases}
\]

Sketch a graph of \(\operatorname{sgn}(x)\) and find the following (if possible).
(a) \(\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)\)
(b) \(\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)\)
(c) \(\lim _{x \rightarrow 0} \operatorname{sgn}(x)\)
113. Modeling Data The table lists the speeds \(S\) (in feet per second) of a falling object at various times \(t\) (in seconds).
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline\(t\) & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline\(S\) & 0 & 48.2 & 53.5 & 55.2 & 55.9 & 56.2 & 56.3 \\
\hline
\end{tabular}
(a) Create a line graph of the data.
(b) Does there appear to be a limiting speed of the object? If there is a limiting speed, identify a possible cause.
114. Creating Models A swimmer crosses a pool of width \(b\) by swimming in a straight line from \((0,0)\) to \((2 b, b)\). (See figure.)

(a) Let \(f\) be a function defined as the \(y\)-coordinate of the point on the long side of the pool that is nearest the swimmer at any given time during the swimmer's crossing of the pool. Determine the function \(f\) and sketch its graph. Is \(f\) continuous? Explain.
(b) Let \(g\) be the minimum distance between the swimmer and the long sides of the pool. Determine the function \(g\) and sketch its graph. Is \(g\) continuous? Explain.
115. Find all values of \(c\) such that \(f\) is continuous on \((-\infty, \infty)\).
\(f(x)= \begin{cases}1-x^{2}, & x \leq c \\ x, & x>c\end{cases}\)
116. Prove that for any real number \(y\) there exists \(x\) in \((-\pi / 2, \pi / 2)\) such that \(\tan x=y\).
117. Let \(f(x)=\left(\sqrt{x+c^{2}}-c\right) / x, c>0\). What is the domain of \(f\) ? How can you define \(f\) at \(x=0\) in order for \(f\) to be continuous there?
118. Prove that if \(\lim _{\Delta x \rightarrow 0} f(c+\Delta x)=f(c)\), then \(f\) is continuous at \(c\).
119. Discuss the continuity of the function \(h(x)=x \llbracket x \rrbracket\).
120. (a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a, b]\). If \(f_{1}(a)<f_{2}(a)\) and \(f_{1}(b)>f_{2}(b)\), prove that there exists \(c\) between \(a\) and \(b\) such that \(f_{1}(c)=f_{2}(c)\).
(b) Show that there exists \(c\) in \(\left[0, \frac{\pi}{2}\right]\) such that \(\cos x=x\). Use a graphing utility to approximate \(c\) to three decimal places.

\section*{PUTNAM EXAM CHALLENGE}
121. Prove or disprove: if \(x\) and \(y\) are real numbers with \(y \geq 0\) and \(y(y+1) \leq(x+1)^{2}\), then \(y(y-1) \leq x^{2}\).
122. Determine all polynomials \(P(x)\) such that \(P\left(x^{2}+1\right)=(P(x))^{2}+1\) and \(P(0)=0\).
These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{1.5 Infinite Limits}
- Determine infinite limits from the left and from the right.
- Find and sketch the vertical asymptotes of the graph of a function.

\section*{Infinite Limits}

\(f(x)\) increases and decreases without bound as \(x\) approaches 2 .
Figure 1.39


Infinite limits
Figure 1.40

Let \(f\) be the function given by \(3 /(x-2)\). From Figure 1.39 and the table, you can see that \(f(x)\) decreases without bound as \(x\) approaches 2 from the left, and \(f(x)\) increases without bound as \(x\) approaches 2 from the right. This behavior is denoted as
\[
\lim _{x \rightarrow 2^{-}} \frac{3}{x-2}=-\infty \quad f(x) \text { decreases without bound as } x \text { approaches } 2 \text { from the left. }
\]
and
\[
\lim _{x \rightarrow 2^{+}} \frac{3}{x-2}=\infty \quad f(x) \text { increases without bound as } x \text { approaches } 2 \text { from the right. }
\]

\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & 1.5 & 1.9 & 1.99 & 1.999 & 2 & 2.001 & 2.01 & 2.1 & 2.5 \\
\hline\(f(x)\) & -6 & -30 & -300 & -3000 & \(?\) & 3000 & 300 & 30 & 6 \\
\hline
\end{tabular}
\(f(x)\) decreases without bound.


A limit in which \(f(x)\) increases or decreases without bound as \(x\) approaches \(c\) is called an infinite limit.

\section*{DEFINITION OF INFINITE LIMITS}

Let \(f\) be a function that is defined at every real number in some open interval containing \(c\) (except possibly at \(c\) itself). The statement
\[
\lim _{x \rightarrow c} f(x)=\infty
\]
means that for each \(M>0\) there exists a \(\delta>0\) such that \(f(x)>M\) whenever \(0<|x-c|<\delta\) (see Figure 1.40). Similarly, the statement
\(\lim _{x \rightarrow c} f(x)=-\infty\)
means that for each \(N<0\) there exists a \(\delta>0\) such that \(f(x)<N\) whenever \(0<|x-c|<\delta\).

To define the infinite limit from the left, replace \(0<|x-c|<\delta\) by \(c-\delta<x<c\). To define the infinite limit from the right, replace \(0<|x-c|<\delta\) by \(c<x<c+\delta\).

Be sure you see that the equal sign in the statement \(\lim f(x)=\infty\) does not mean that the limit exists! On the contrary, it tells you how the limit fails to exist by denoting the unbounded behavior of \(f(x)\) as \(x\) approaches \(c\).

\section*{EXPLORATION}

Use a graphing utility to graph each function. For each function, analytically find the single real number \(c\) that is not in the domain. Then graphically find the limit (if it exists) of \(f(x)\) as \(x\) approaches \(c\) from the left and from the right.
a. \(f(x)=\frac{3}{x-4}\)
b. \(f(x)=\frac{1}{2-x}\)
c. \(f(x)=\frac{2}{(x-3)^{2}}\)
d. \(f(x)=\frac{-3}{(x+2)^{2}}\)

NOTE If the graph of a function \(f\) has a vertical asymptote at \(x=c\), then \(f\) is not continuous at \(c\).

\section*{EXAMPLE 1 Determining Infinite Limits from a Graph}

Determine the limit of each function shown in Figure 1.41 as \(x\) approaches 1 from the left and from the right.

(a)

(b)

Each graph has an asymptote at \(x=1\).
Figure 1.41

\section*{Solution}
a. When \(x\) approaches 1 from the left or the right, \((x-1)^{2}\) is a small positive number. Thus, the quotient \(1 /(x-1)^{2}\) is a large positive number and \(f(x)\) approaches infinity from each side of \(x=1\). So, you can conclude that
\[
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty . \quad \text { Limit from each side is infinity. }
\]

Figure 1.41(a) confirms this analysis.
b. When \(x\) approaches 1 from the left, \(x-1\) is a small negative number. Thus, the quotient \(-1 /(x-1)\) is a large positive number and \(f(x)\) approaches infinity from the left of \(x=1\). So, you can conclude that
\[
\lim _{x \rightarrow 1^{-}} \frac{-1}{x-1}=\infty . \quad \quad \text { Limit from the left side is infinity. }
\]

When \(x\) approaches 1 from the right, \(x-1\) is a small positive number. Thus, the quotient \(-1 /(x-1)\) is a large negative number and \(f(x)\) approaches negative infinity from the right of \(x=1\). So, you can conclude that
\[
\lim _{x \rightarrow 1^{+}} \frac{-1}{x-1}=-\infty . \quad \text { Limit from the right side is negative infinity. }
\]

Figure 1.41(b) confirms this analysis.

\section*{Vertical Asymptotes}

If it were possible to extend the graphs in Figure 1.41 toward positive and negative infinity, you would see that each graph becomes arbitrarily close to the vertical line \(x=1\). This line is a vertical asymptote of the graph of \(f\). (You will study other types of asymptotes in Sections 3.5 and 3.6.)

\section*{DEFINITION OF VERTICAL ASYMPTOTE}

If \(f(x)\) approaches infinity (or negative infinity) as \(x\) approaches \(c\) from the right or the left, then the line \(x=c\) is a vertical asymptote of the graph of \(f\).

In Example 1, note that each of the functions is a quotient and that the vertical asymptote occurs at a number at which the denominator is 0 (and the numerator is not 0 ). The next theorem generalizes this observation. (A proof of this theorem is given in Appendix A.)

\section*{THEOREM 1.14 VERTICAL ASYMPTOTES}

Let \(f\) and \(g\) be continuous on an open interval containing \(c\). If \(f(c) \neq 0\), \(g(c)=0\), and there exists an open interval containing \(c\) such that \(g(x) \neq 0\) for all \(x \neq c\) in the interval, then the graph of the function given by
\[
h(x)=\frac{f(x)}{g(x)}
\]
has a vertical asymptote at \(x=c\).

(a)

(b)

(c)

Functions with vertical asymptotes
Figure 1.42

\section*{EXAMPLE 2 Finding Vertical Asymptotes}

Determine all vertical asymptotes of the graph of each function.
a. \(f(x)=\frac{1}{2(x+1)}\)
b. \(f(x)=\frac{x^{2}+1}{x^{2}-1}\)
c. \(f(x)=\cot x\)

\section*{Solution}
a. When \(x=-1\), the denominator of
\[
f(x)=\frac{1}{2(x+1)}
\]
is 0 and the numerator is not 0 . So, by Theorem 1.14 , you can conclude that \(x=-1\) is a vertical asymptote, as shown in Figure 1.42(a).
b. By factoring the denominator as
\[
f(x)=\frac{x^{2}+1}{x^{2}-1}=\frac{x^{2}+1}{(x-1)(x+1)}
\]
you can see that the denominator is 0 at \(x=-1\) and \(x=1\). Moreover, because the numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude that the graph of \(f\) has two vertical asymptotes, as shown in Figure 1.42(b).
c. By writing the cotangent function in the form
\[
f(x)=\cot x=\frac{\cos x}{\sin x}
\]
you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all values of \(x\) such that \(\sin x=0\) and \(\cos x \neq 0\), as shown in Figure 1.42(c). So, the graph of this function has infinitely many vertical asymptotes. These asymptotes occur at \(x=n \pi\), where \(n\) is an integer.

Theorem 1.14 requires that the value of the numerator at \(x=c\) be nonzero. If both the numerator and the denominator are 0 at \(x=c\), you obtain the indeterminate form \(0 / 0\), and you cannot determine the limit behavior at \(x=c\) without further investigation, as illustrated in Example 3.

\(f(x)\) increases and decreases without bound as \(x\) approaches -2 .
Figure 1.43

\(f\) has a vertical asymptote at \(x=1\).
Figure 1.44

\section*{EXAMPLE 3 A Rational Function with Common Factors}

Determine all vertical asymptotes of the graph of
\[
f(x)=\frac{x^{2}+2 x-8}{x^{2}-4}
\]

Solution Begin by simplifying the expression, as shown.
\[
\begin{aligned}
f(x) & =\frac{x^{2}+2 x-8}{x^{2}-4} \\
& =\frac{(x+4)(x-2)}{(x+2)(x-2)} \\
& =\frac{x+4}{x+2}, \quad x \neq 2
\end{aligned}
\]

At all \(x\)-values other than \(x=2\), the graph of \(f\) coincides with the graph of \(g(x)=(x+4) /(x+2)\). So, you can apply Theorem 1.14 to \(g\) to conclude that there is a vertical asymptote at \(x=-2\), as shown in Figure 1.43. From the graph, you can see that
\[
\lim _{x \rightarrow-2^{-}} \frac{x^{2}+2 x-8}{x^{2}-4}=-\infty \quad \text { and } \quad \lim _{x \rightarrow-2^{+}} \frac{x^{2}+2 x-8}{x^{2}-4}=\infty .
\]

Note that \(x=2\) is not a vertical asymptote.

\section*{EXAMPLE 4 Determining Infinite Limits}

Find each limit.
\[
\lim _{x \rightarrow 1^{-}} \frac{x^{2}-3 x}{x-1} \text { and } \lim _{x \rightarrow 1^{+}} \frac{x^{2}-3 x}{x-1}
\]

Solution Because the denominator is 0 when \(x=1\) (and the numerator is not zero), you know that the graph of
\[
f(x)=\frac{x^{2}-3 x}{x-1}
\]
has a vertical asymptote at \(x=1\). This means that each of the given limits is either \(\infty\) or \(-\infty\). You can determine the result by analyzing \(f\) at values of \(x\) close to 1 , or by using a graphing utility. From the graph of \(f\) shown in Figure 1.44, you can see that the graph approaches \(\infty\) from the left of \(x=1\) and approaches \(-\infty\) from the right of \(x=1\). So, you can conclude that
\[
\lim _{x \rightarrow 1^{-}} \frac{x^{2}-3 x}{x-1}=\infty \quad \text { The limit from the left is infinity. }
\]
and
\[
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-3 x}{x-1}=-\infty . \quad \text { The limit from the right is negative infinity. }
\]

TECHNOLOGY PITFALL When using a graphing calculator or graphing software, be careful to interpret correctly the graph of a function with a vertical asymptotegraphing utilities often have difficulty drawing this type of graph.

\section*{THEOREM 1.15 PROPERTIES OF INFINITE LIMITS}

Let \(c\) and \(L\) be real numbers and let \(f\) and \(g\) be functions such that
\[
\lim _{x \rightarrow c} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L
\]
1. Sum or difference: \(\lim _{x \rightarrow c}[f(x) \pm g(x)]=\infty\)
2. Product: \(\quad \lim _{x \rightarrow c}[f(x) g(x)]=\infty, \quad L>0\)
\[
\lim _{x \rightarrow c}[f(x) g(x)]=-\infty, \quad L<0
\]
3. Qtient: \(\quad \lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0\)

Similar properties hold for one-sided limits and for functions for which the limit of \(f(x)\) as \(x\) approaches \(c\) is \(-\infty\).

PROOF To show that the limit of \(f(x)+g(x)\) is infinite, choose \(M>0\). You then need to find \(\delta>0\) such that
\[
[f(x)+g(x)]>M
\]
whenever \(0<|x-c|<\delta\). For simplicity's sake, you can assume \(L\) is positive. Let \(M_{1}=M+1\). Because the limit of \(f(x)\) is infinite, there exists \(\delta_{1}\) such that \(f(x)>M_{1}\) whenever \(0<|x-c|<\delta_{1}\). Also, because the limit of \(g(x)\) is \(L\), there exists \(\delta_{2}\) such that \(|g(x)-L|<1\) whenever \(0<|x-c|<\delta_{2}\). By letting \(\delta\) be the smaller of \(\delta_{1}\) and \(\delta_{2}\), you can conclude that \(0<|x-c|<\delta\) implies \(f(x)>M+1\) and \(|g(x)-L|<1\). The second of these two inequalities implies that \(g(x)>L-1\), and, adding this to the first inequality, you can write
\[
f(x)+g(x)>(M+1)+(L-1)=M+L>M
\]

So, you can conclude that
\[
\lim _{x \rightarrow c}[f(x)+g(x)]=\infty .
\]

The proofs of the remaining properties are left as exercises (see Exercise 78).

\section*{EXAMPLE 5 Determining Limits}
a. Because \(\lim _{x \rightarrow 0} 1=1\) and \(\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty\), you can write
\[
\lim _{x \rightarrow 0}\left(1+\frac{1}{x^{2}}\right)=\infty . \quad \text { Property } 1, \text { Theorem } 1.15
\]
b. Because \(\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right)=2\) and \(\lim _{x \rightarrow 1^{-}}(\cot \pi x)=-\infty\), you can write
\[
\lim _{x \rightarrow 1^{-}} \frac{x^{2}+1}{\cot \pi x}=0 . \quad \text { Property 3, Theorem } 1.15
\]
c. Because \(\lim _{x \rightarrow 0^{+}} 3=3\) and \(\lim _{x \rightarrow 0^{+}} \cot x=\infty\), you can write
\[
\lim _{x \rightarrow 0^{+}} 3 \cot x=\infty . \quad \text { Property 2, Theorem } 1.15
\]

\subsection*{1.5 Exercises}

In Exercises 1-4, determine whether \(f(x)\) approaches \(\infty\) or \(-\infty\) as \(x\) approaches 4 from the left and from the right.
1. \(f(x)=\frac{1}{x-4}\)
2. \(f(x)=\frac{-1}{x-4}\)
3. \(f(x)=\frac{1}{(x-4)^{2}}\)
4. \(f(x)=\frac{-1}{(x-4)^{2}}\)

In Exercises 5-8, determine whether \(f(x)\) approaches \(\infty\) or \(-\infty\) as \(x\) approaches \(\mathbf{- 2}\) from the left and from the right.
5. \(f(x)=2\left|\frac{x}{x^{2}-4}\right|\)
6. \(f(x)=\frac{1}{x+2}\)


8. \(f(x)=\sec \frac{\pi x}{4}\)



Numerical and Graphical Analysis In Exercises 9-12, determine whether \(f(x)\) approaches \(\infty\) or \(-\infty\) as \(x\) approaches -3 from the left and from the right by completing the table. Use a graphing utility to graph the function to confirm your answer.
\begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & -3.5 & -3.1 & -3.01 & -3.001 \\
\hline\(f(x)\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & -2.999 & -2.99 & -2.9 & -2.5 \\
\hline\(f(x)\) & & & & \\
\hline
\end{tabular}
9. \(f(x)=\frac{1}{x^{2}-9}\)
10. \(f(x)=\frac{x}{x^{2}-9}\)
11. \(f(x)=\frac{x^{2}}{x^{2}-9}\)
12. \(f(x)=\sec \frac{\pi x}{6}\)

In Exercises 13-32, find the vertical asymptotes (if any) of the graph of the function.
13. \(f(x)=\frac{1}{x^{2}}\)
14. \(f(x)=\frac{4}{(x-2)^{3}}\)
15. \(f(x)=\frac{x^{2}}{x^{2}-4}\)
16. \(f(x)=\frac{-4 x}{x^{2}+4}\)
17. \(g(t)=\frac{t-1}{t^{2}+1}\)
18. \(h(s)=\frac{2 s-3}{s^{2}-25}\)
19. \(h(x)=\frac{x^{2}-2}{x^{2}-x-2}\)
20. \(g(x)=\frac{2+x}{x^{2}(1-x)}\)
21. \(T(t)=1-\frac{4}{t^{2}}\)
22. \(g(x)=\frac{\frac{1}{2} x^{3}-x^{2}-4 x}{3 x^{2}-6 x-24}\)
23. \(f(x)=\frac{3}{x^{2}+x-2}\)
24. \(f(x)=\frac{4 x^{2}+4 x-24}{x^{4}-2 x^{3}-9 x^{2}+18 x}\)
25. \(g(x)=\frac{x^{3}+1}{x+1}\)
26. \(h(x)=\frac{x^{2}-4}{x^{3}+2 x^{2}+x+2}\)
27. \(f(x)=\frac{x^{2}-2 x-15}{x^{3}-5 x^{2}+x-5}\)
28. \(h(t)=\frac{t^{2}-2 t}{t^{4}-16}\)
29. \(f(x)=\tan \pi x\)
30. \(f(x)=\sec \pi x\)
31. \(s(t)=\frac{t}{\sin t}\)
32. \(g(\theta)=\frac{\tan \theta}{\theta}\)

In Exercises 33-36, determine whether the graph of the function has a vertical asymptote or a removable discontinuity at \(x=-1\). Graph the function using a graphing utility to confirm your answer.
33. \(f(x)=\frac{x^{2}-1}{x+1}\)
34. \(f(x)=\frac{x^{2}-6 x-7}{x+1}\)
35. \(f(x)=\frac{x^{2}+1}{x+1}\)
36. \(f(x)=\frac{\sin (x+1)}{x+1}\)

In Exercises 37-54, find the limit (if it exists).
37. \(\lim _{x \rightarrow-1^{+}} \frac{1}{x+1}\)
38. \(\lim _{x \rightarrow 1^{-}} \frac{-1}{(x-1)^{2}}\)
39. \(\lim _{x \rightarrow 2^{+}} \frac{x}{x-2}\)
40. \(\lim _{x \rightarrow 1^{+}} \frac{2+x}{1-x}\)
41. \(\lim _{x \rightarrow 1^{+}} \frac{x^{2}}{(x-1)^{2}}\)
42. \(\lim _{x \rightarrow 4^{-}} \frac{x^{2}}{x^{2}+16}\)
43. \(\lim _{x \rightarrow-3^{-}} \frac{x+3}{x^{2}+x-6}\)
44. \(\lim _{x \rightarrow(-1 / 2)^{+}} \frac{6 x^{2}+x-1}{4 x^{2}-4 x-3}\)
45. \(\lim _{x \rightarrow 1} \frac{x-1}{\left(x^{2}+1\right)(x-1)}\)
46. \(\lim _{x \rightarrow 3} \frac{x-2}{x^{2}}\)
47. \(\lim _{x \rightarrow 0^{-}}\left(1+\frac{1}{x}\right)\)
49. \(\lim _{x \rightarrow 0^{+}} \frac{2}{\sin x}\)
51. \(\lim _{x \rightarrow \pi} \frac{\sqrt{x}}{\csc x}\)
48. \(\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{1}{x}\right)\)
50. \(\lim _{x \rightarrow(\pi / 2)^{+}} \frac{-2}{\cos x}\)
53. \(\lim _{x \rightarrow 1 / 2} x \sec \pi x\)
52. \(\lim _{x \rightarrow 0} \frac{x+2}{\cot x}\)
54. \(\lim _{x \rightarrow 1 / 2} x^{2} \tan \pi x\)

In Exercises 55-58, use a graphing utility to graph the function and determine the one-sided limit.
55. \(f(x)=\frac{x^{2}+x+1}{x^{3}-1}\)
56. \(f(x)=\frac{x^{3}-1}{x^{2}+x+1}\)
\(\lim _{x \rightarrow 1^{+}} f(x)\)
\[
\lim _{x \rightarrow 1^{-}} f(x)
\]
57. \(f(x)=\frac{1}{x^{2}-25}\)
58. \(f(x)=\sec \frac{\pi x}{8}\)
\(\lim _{x \rightarrow 5^{-}} f(x)\)
\(\lim _{x \rightarrow 4^{+}} f(x)\)

\section*{WRITING ABOUT CONCEPTS}
59. In your own words, describe the meaning of an infinite limit. Is \(\infty\) a real number?
60. In your own words, describe what is meant by an asymptote of a graph.
61. Write a rational function with vertical asymptotes at \(x=6\) and \(x=-2\), and with a zero at \(x=3\).
62. Does the graph of every rational function have a vertical asymptote? Explain.
63. Use the graph of the function \(f\) (see figure) to sketch the graph of \(g(x)=1 / f(x)\) on the interval [-2,3]. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.


\section*{CAPSTONE}
64. Given a polynomial \(p(x)\), is it true that the graph of the function given by \(f(x)=\frac{p(x)}{x-1}\) has a vertical asymptote at \(x=1\) ? Why or why not?
65. Relativity According to the theory of relativity, the mass \(m\) of a particle depends on its velocity \(v\). That is,
\(m=\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}\)
where \(m_{0}\) is the mass when the particle is at rest and \(c\) is the speed of light. Find the limit of the mass as \(v\) approaches \(c^{-}\).
66. Boyle's Law For a quantity of gas at a constant temperature, the pressure \(P\) is inversely proportional to the volume \(V\). Find the limit of \(P\) as \(V \rightarrow 0^{+}\).
67. Rate of Change A patrol car is parked 50 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of \(\frac{1}{2}\) revolution per second. The rate at which the light beam moves along the wall is \(r=50 \pi \sec ^{2} \theta \mathrm{ft} / \mathrm{sec}\).
(a) Find the rate \(r\) when \(\theta\) is \(\pi / 6\).
(b) Find the rate \(r\) when \(\theta\) is \(\pi / 3\).
(c) Find the limit of \(r\) as \(\theta \rightarrow(\pi / 2)^{-}\).


Figure for 67


Figure for 68
68. Rate of Change A 25 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of
\(r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} / \mathrm{sec}\)
where \(x\) is the distance between the base of the ladder and the house.
(a) Find the rate \(r\) when \(x\) is 7 feet.
(b) Find the rate \(r\) when \(x\) is 15 feet.
(c) Find the limit of \(r\) as \(x \rightarrow 25^{-}\).
69. Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour.
(a) Verify that \(y=\frac{25 x}{x-25}\). What is the domain?
(b) Complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & 30 & 40 & 50 & 60 \\
\hline\(y\) & & & & \\
\hline
\end{tabular}

Are the values of \(y\) different than you expected? Explain.
(c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\)and interpret its meaning.
70. Numerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power of \(x\) in the denominator is greater than 3 ?
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\
\hline\(f(x)\) & & & & & & & \\
\hline
\end{tabular}
(a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\)
(b) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{2}}\)
(c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\)
(d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
71. Numerical and Graphical Analysis Consider the shaded region outside the sector of a circle of radius 10 meters and inside a right triangle (see figure).

(a) Write the area \(A=f(\theta)\) of the region as a function of \(\theta\). Determine the domain of the function.
(b) Use a graphing utility to complete the table and graph the function over the appropriate domain.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(\theta\) & 0.3 & 0.6 & 0.9 & 1.2 & 1.5 \\
\hline\(f(\boldsymbol{\theta})\) & & & & & \\
\hline
\end{tabular}
(c) Find the limit of \(A\) as \(\theta \rightarrow(\pi / 2)^{-}\).
72. Numerical and Graphical Reasoning A crossed belt connects a 20 -centimeter pulley ( \(10-\mathrm{cm}\) radius) on an electric motor with a 40 -centimeter pulley ( \(20-\mathrm{cm}\) radius) on a saw arbor (see figure). The electric motor runs at 1700 revolutions per minute.

(a) Determine the number of revolutions per minute of the saw.
(b) How does crossing the belt affect the saw in relation to the motor?
(c) Let \(L\) be the total length of the belt. Write \(L\) as a function of \(\phi\), where \(\phi\) is measured in radians. What is the domain of the function? (Hint: Add the lengths of the straight sections of the belt and the length of the belt around each pulley.)
(d) Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(\phi\) & 0.3 & 0.6 & 0.9 & 1.2 & 1.5 \\
\hline\(L\) & & & & & \\
\hline
\end{tabular}
(e) Use a graphing utility to graph the function over the appropriate domain.
(f) Find \(\lim _{\phi \rightarrow(\pi / 2)^{-}} L\). Use a geometric argument as the basis of a second method of finding this limit.
(g) Find \(\lim _{\phi \rightarrow 0^{+}} L\).

True or False? In Exercises 73-76, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
73. The graph of a rational function has at least one vertical asymptote.
74. The graphs of polynomial functions have no vertical asymptotes.
75. The graphs of trigonometric functions have no vertical asymptotes.
76. If \(f\) has a vertical asymptote at \(x=0\), then \(f\) is undefined at \(x=0\).
77. Find functions \(f\) and \(g\) such that \(\lim _{x \rightarrow c} f(x)=\infty\) and \(\lim _{x \rightarrow c} g(x)=\infty\) but \(\lim _{x \rightarrow c}[f(x)-g(x)] \neq 0\).
78. Prove the difference, product, and quotient properties in Theorem 1.15.
79. Prove that if \(\lim _{x \rightarrow c} f(x)=\infty\), then \(\lim _{x \rightarrow c} \frac{1}{f(x)}=0\).
80. Prove that if \(\lim _{x \rightarrow c} \frac{1}{f(x)}=0\), then \(\lim _{x \rightarrow c} f(x)\) does not exist.

Infinite Limits In Exercises 81 and 82, use the \(\varepsilon\) - \(\delta\) definition of infinite limits to prove the statement.
81. \(\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=\infty\)
82. \(\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty\)

\section*{SECTION PROJECT}

\section*{Graphs and Limits of Trigonometric Functions}

Recall from Theorem 1.9 that the limit of \(f(x)=(\sin x) / x\) as \(x\) approaches 0 is 1 .
(a) Use a graphing utility to graph the function \(f\) on the interval \(-\pi \leq x \leq \pi\). Explain how the graph helps confirm this theorem.
(b) Explain how you could use a table of values to confirm the value of this limit numerically.
(c) Graph \(g(x)=\sin x\) by hand. Sketch a tangent line at the point \((0,0)\) and visually estimate the slope of this tangent line.
(d) Let \((x, \sin x)\) be a point on the graph of \(g\) near \((0,0)\), and write a formula for the slope of the secant line joining \((x, \sin x)\) and \((0,0)\). Evaluate this formula at \(x=0.1\) and \(x=0.01\). Then find the exact slope of the tangent line to \(g\) at the point \((0,0)\).
(e) Sketch the graph of the cosine function \(h(x)=\cos x\). What is the slope of the tangent line at the point \((0,1)\) ? Use limits to find this slope analytically.
(f) Find the slope of the tangent line to \(k(x)=\tan x\) at \((0,0)\).

\section*{1 REVIEW EXERCISES}

In Exercises 1 and 2, determine whether the problem can be solved using precalculus or if calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, explain your reasoning. Use a graphical or numerical approach to estimate the solution.
1. Find the distance between the points \((1,1)\) and \((3,9)\) along the curve \(y=x^{2}\).
2. Find the distance between the points \((1,1)\) and \((3,9)\) along the line \(y=4 x-3\).

In Exercises 3 and 4, complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
3. \(\lim _{x \rightarrow 0} \frac{[4 /(x+2)]-2}{x}\)
4. \(\lim _{x \rightarrow 0} \frac{4(\sqrt{x+2}-\sqrt{2})}{x}\)

In Exercises 5-8, find the limit \(L\). Then use the \(\boldsymbol{\varepsilon}-\delta\) definition to prove that the limit is \(L\).
5. \(\lim _{x \rightarrow 1}(x+4)\)
6. \(\lim _{x \rightarrow 9} \sqrt{x}\)
7. \(\lim _{x \rightarrow 2}\left(1-x^{2}\right)\)
8. \(\lim _{x \rightarrow 5} 9\)

In Exercises 9 and 10, use the graph to determine each limit.
9. \(h(x)=\frac{4 x-x^{2}}{x}\)
10. \(g(x)=\frac{-2 x}{x-3}\)

(a) \(\lim _{x \rightarrow 0} h(x) \quad\) (b) \(\lim _{x \rightarrow-1} h(x)\)
(a) \(\lim _{x \rightarrow 3} g(x)\)
(b) \(\lim _{x \rightarrow 0} g(x)\)

In Exercises 11-26, find the limit (if it exists).
11. \(\lim _{x \rightarrow 6}(x-2)^{2}\)
12. \(\lim _{x \rightarrow 7}(10-x)^{4}\)
13. \(\lim _{t \rightarrow 4} \sqrt{t+2}\)
14. \(\lim _{y \rightarrow 4} 3|y-1|\)
15. \(\lim _{t \rightarrow-2} \frac{t+2}{t^{2}-4}\)
16. \(\lim _{t \rightarrow 3} \frac{t^{2}-9}{t-3}\)
17. \(\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}\)
18. \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}\)
19. \(\lim _{x \rightarrow 0} \frac{[1 /(x+1)]-1}{x}\)
20. \(\lim _{s \rightarrow 0} \frac{(1 / \sqrt{1+s})-1}{s}\)
21. \(\lim _{x \rightarrow-5} \frac{x^{3}+125}{x+5}\)
22. \(\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{3}+8}\)
23. \(\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}\)
24. \(\lim _{x \rightarrow \pi / 4} \frac{4 x}{\tan x}\)
25. \(\lim _{\Delta x \rightarrow 0} \frac{\sin [(\pi / 6)+\Delta x]-(1 / 2)}{\Delta x}\)
[Hint: \(\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi\) ]
26. \(\lim _{\Delta x \rightarrow 0} \frac{\cos (\pi+\Delta x)+1}{\Delta x}\)
[Hint: \(\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi]\)
In Exercises 27-30, evaluate the limit given \(\lim _{x \rightarrow c} f(x)=-\frac{3}{4}\) and \(\lim _{x \rightarrow c} g(x)=\frac{2}{3}\).
27. \(\lim _{x \rightarrow c}[f(x) g(x)]\)
28. \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}\)
29. \(\lim _{x \rightarrow c}[f(x)+2 g(x)]\)
30. \(\lim _{x \rightarrow c}[f(x)]^{2}\)

Numerical, Graphical, and Analytic Analysis In Exercises 31 and 32, consider
\(\lim _{x \rightarrow 1^{+}} f(x)\).
(a) Complete the table to estimate the limit.
(b) Use a graphing utility to graph the function and use the graph to estimate the limit.
(c) Rationalize the numerator to find the exact value of the limit analytically.
\begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & 1.1 & 1.01 & 1.001 & 1.0001 \\
\hline\(f(x)\) & & & & \\
\hline
\end{tabular}
31. \(f(x)=\frac{\sqrt{2 x+1}-\sqrt{3}}{x-1}\)
32. \(f(x)=\frac{1-\sqrt[3]{x}}{x-1}\)
\[
\left[\text { Hint: } a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]
\]

Free-Falling Object In Exercises 33 and 34, use the position function \(s(t)=-4.9 t^{2}+250\), which gives the height (in meters) of an object that has fallen from a height of 250 meters. The velocity at time \(t=a\) seconds is given by
\(\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}\).
33. Find the velocity of the object when \(t=4\).
34. At what velocity will the object impact the ground?

In Exercises 35-40, find the limit (if it exists). If the limit does not exist, explain why.
35. \(\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}\)
36. \(\lim _{x \rightarrow 4} \llbracket x-1 \rrbracket\)
37. \(\lim _{x \rightarrow 2} f(x)\), where \(f(x)= \begin{cases}(x-2)^{2}, & x \leq 2 \\ 2-x, & x>2\end{cases}\)
38. \(\lim _{x \rightarrow 1^{+}} g(x)\), where \(g(x)= \begin{cases}\sqrt{1-x}, & x \leq 1 \\ x+1, & x>1\end{cases}\)
39. \(\lim _{t \rightarrow 1} h(t)\), where \(h(t)= \begin{cases}t^{3}+1, & t<1 \\ \frac{1}{2}(t+1), & t \geq 1\end{cases}\)
40. \(\lim _{s \rightarrow-2} f(s)\), where \(f(s)= \begin{cases}-s^{2}-4 s-2, & s \leq-2 \\ s^{2}+4 s+6, & s>-2\end{cases}\)

In Exercises 41-52, determine the intervals on which the function is continuous.
41. \(f(x)=-3 x^{2}+7\)
42. \(f(x)=x^{2}-\frac{2}{x}\)
43. \(f(x)=\llbracket x+3 \rrbracket\)
44. \(f(x)=\frac{3 x^{2}-x-2}{x-1}\)
45. \(f(x)= \begin{cases}\frac{3 x^{2}-x-2}{x-1}, & x \neq 1 \\ 0, & x=1\end{cases}\)
46. \(f(x)= \begin{cases}5-x, & x \leq 2 \\ 2 x-3, & x>2\end{cases}\)
47. \(f(x)=\frac{1}{(x-2)^{2}}\)
48. \(f(x)=\sqrt{\frac{x+1}{x}}\)
49. \(f(x)=\frac{3}{x+1}\)
50. \(f(x)=\frac{x+1}{2 x+2}\)
51. \(f(x)=\csc \frac{\pi x}{2}\)
52. \(f(x)=\tan 2 x\)
53. Determine the value of \(c\) such that the function is continuous on the entire real line.
\(f(x)= \begin{cases}x+3, & x \leq 2 \\ c x+6, & x>2\end{cases}\)
54. Determine the values of \(b\) and \(c\) such that the function is continuous on the entire real line.
\(f(x)= \begin{cases}x+1, & 1<x<3 \\ x^{2}+b x+c, & |x-2| \geq 1\end{cases}\)
55. Use the Intermediate Value Theorem to show that \(f(x)=2 x^{3}-3\) has a zero in the interval [1, 2].
56. Delivery Charges The cost of sending an overnight package from New York to Atlanta is \(\$ 2.80\) for the first pound and \(\$ .50\) for each additional pound or fraction thereof. Use the greatest integer function to create a model for the cost \(C\) of overnight delivery of a package weighing \(x\) pounds. Use a graphing utility to graph the function and discuss its continuity.
57. Let \(f(x)=\frac{x^{2}-4}{|x-2|}\). Find each limit (if possible).
(a) \(\lim _{x \rightarrow 2^{-}} f(x)\)
(b) \(\lim _{x \rightarrow 2^{+}} f(x)\)
(c) \(\lim _{x \rightarrow 2} f(x)\)
58. Let \(f(x)=\sqrt{x(x-1)}\).
(a) Find the domain of \(f\).
(b) Find \(\lim _{x \rightarrow 0^{-}} f(x)\).
(c) Find \(\lim _{x \rightarrow 1^{+}} f(x)\).

In Exercises 59-62, find the vertical asymptotes (if any) of the graph of the function.
59. \(g(x)=1+\frac{2}{x}\)
60. \(h(x)=\frac{4 x}{4-x^{2}}\)
61. \(f(x)=\frac{8}{(x-10)^{2}}\)
62. \(f(x)=\csc \pi x\)

\section*{In Exercises 63-74, find the one-sided limit (if it exists).}
63. \(\lim _{x \rightarrow-2^{-}} \frac{2 x^{2}+x+1}{x+2}\)
64. \(\lim _{x \rightarrow(1 / 2)^{+}} \frac{x}{2 x-1}\)
65. \(\lim _{x \rightarrow-1^{+}} \frac{x+1}{x^{3}+1}\)
66. \(\lim _{x \rightarrow-1^{-}} \frac{x+1}{x^{4}-1}\)
67. \(\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x+1}{x-1}\)
68. \(\lim _{x \rightarrow-1^{+}} \frac{x^{2}-2 x+1}{x+1}\)
69. \(\lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x^{3}}\right)\)
70. \(\lim _{x \rightarrow 2^{-}} \frac{1}{\sqrt[3]{x^{2}-4}}\)
71. \(\lim _{x \rightarrow 0^{+}} \frac{\sin 4 x}{5 x}\)
72. \(\lim _{x \rightarrow 0^{+}} \frac{\sec x}{x}\)
73. \(\lim _{x \rightarrow 0^{+}} \frac{\csc 2 x}{x}\)
74. \(\lim _{x \rightarrow 0^{-}} \frac{\cos ^{2} x}{x}\)
75. Environment A utility company burns coal to generate electricity. The cost \(C\) in dollars of removing \(p \%\) of the air pollutants in the stack emissions is
\(C=\frac{80,000 p}{100-p}, \quad 0 \leq p<100\).
Find the costs of removing (a) \(15 \%\) (b) \(50 \%\) and (c) \(90 \% \mathrm{f}\) the pollutants. (d) Find the limit of \(C\) as \(p \rightarrow 100^{-}\).
76. The function \(f\) is defined as shown.
\(f(x)=\frac{\tan 2 x}{x}, \quad x \neq 0\)
(a) Find \(\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}\) (if it exists).
(b) Can the function \(f\) be defined at \(x=0\) such that it is continuous at \(x=0\) ?

\section*{P.S. PROBLEM SOLVING}
1. Let \(P(x, y)\) be a point on the parabola \(y=x^{2}\) in the first quadrant. Consider the triangle \(\triangle P A O\) formed by \(P, A(0,1)\), and the origin \(O(0,0)\), and the triangle \(\triangle P B O\) formed by \(P, B(1,0)\), and the origin.

(a) Write the perimeter of each triangle in terms of \(x\).
(b) Let \(r(x)\) be the ratio of the perimeters of the two triangles,
\[
r(x)=\frac{\text { Perimeter } \triangle P A O}{\text { Perimeter } \triangle P B O} .
\]

Complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 4 & 2 & 1 & 0.1 & 0.01 \\
\hline Perimeter \(\triangle \boldsymbol{P} A O\) & & & & & \\
\hline Perimeter \(\triangle \boldsymbol{P B O}\) & & & & & \\
\hline\(r(x)\) & & & & & \\
\hline
\end{tabular}
(c) Calculate \(\lim _{x \rightarrow 0^{+}} r(x)\).
2. Let \(P(x, y)\) be a point on the parabola \(y=x^{2}\) in the first quadrant. Consider the triangle \(\triangle P A O\) formed by \(P, A(0,1)\), and the origin \(O(0,0)\), and the triangle \(\triangle P B O\) formed by \(P, B(1,0)\), and the origin.

(a) Write the area of each triangle in terms of \(x\).
(b) Let \(a(x)\) be the ratio of the areas of the two triangles,
\(a(x)=\frac{\text { Area } \triangle P B O}{\text { Area } \triangle P A O}\).
Complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 4 & 2 & 1 & 0.1 & 0.01 \\
\hline Area \(\triangle \boldsymbol{P A O}\) & & & & & \\
\hline Area \(\triangle \boldsymbol{P B O}\) & & & & & \\
\hline\(a(x)\) & & & & & \\
\hline
\end{tabular}
(c) Calculate \(\lim _{x \rightarrow 0^{+}} a(x)\).
3. (a) Find the area of a regular hexagon inscribed in a circle of radius 1 . How close is this area to that of the circle?
(b) Find the area \(A_{n}\) of an \(n\)-sided regular polygon inscribed in a circle of radius 1 . Write your answer as a function of \(n\).
(c) Complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 6 & 12 & 24 & 48 & 96 \\
\hline\(A_{n}\) & & & & & \\
\hline
\end{tabular}
(d) What number does \(A_{n}\) approach as \(n\) gets larger and larger?


Figure for 3


Figure for 4
4. Let \(P(3,4)\) be a point on the circle \(x^{2}+y^{2}=25\).
(a) What is the slope of the line joining \(P\) and \(O(0,0)\) ?
(b) Find an equation of the tangent line to the circle at \(P\).
(c) Let \(Q(x, y)\) be another point on the circle in the first quadrant. Find the slope \(m_{x}\) of the line joining \(P\) and \(Q\) in terms of \(x\).
(d) Calculate \(\lim _{x \rightarrow 3} m_{x}\). How does this number relate to your answer in part (b)?
5. Let \(P(5,-12)\) be a point on the circle \(x^{2}+y^{2}=169\).

(a) What is the slope of the line joining \(P\) and \(O(0,0)\) ?
(b) Find an equation of the tangent line to the circle at \(P\).
(c) Let \(Q(x, y)\) be another point on the circle in the fourth quadrant. Find the slope \(m_{x}\) of the line joining \(P\) and \(Q\) in terms of \(x\).
(d) Calculate \(\lim _{x \rightarrow 5} m_{x}\). How does this number relate to your answer in part (b)?
6. Find the values of the constants \(a\) and \(b\) such that
\(\lim _{x \rightarrow 0} \frac{\sqrt{a+b x}-\sqrt{3}}{x}=\sqrt{3}\).
7. Consider the function \(f(x)=\frac{\sqrt{3+x^{1 / 3}}-2}{x-1}\).
(a) Find the domain of \(f\).
(b) Use a graphing utility to graph the function.
(c) Calculate \(\lim _{x \rightarrow-27^{+}} f(x)\).
(d) Calculate \(\lim _{x \rightarrow 1} f(x)\).
8. Determine all values of the constant \(a\) such that the following function is continuous for all real numbers.
\(f(x)= \begin{cases}\frac{a x}{\tan x}, & x \geq 0 \\ a^{2}-2, & x<0\end{cases}\)
9. Consider the graphs of the four functions \(g_{1}, g_{2}, g_{3}\), and \(g_{4}\).





For each given condition of the function \(f\), which of the graphs could be the graph of \(f\) ?
(a) \(\lim _{x \rightarrow 2} f(x)=3\)
(b) \(f\) is continuous at 2 .
(c) \(\lim _{x \rightarrow 2^{-}} f(x)=3\)
10. Sketch the graph of the function \(f(x)=\llbracket \frac{1}{x} \rrbracket\).
(a) Evaluate \(f\left(\frac{1}{4}\right), f(3)\), and \(f(1)\).
(b) Evaluate the limits \(\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x), \lim _{x \rightarrow 0^{-}} f(x)\), and
\(\lim _{x \rightarrow 0^{+}} f(x)\).
(c) Discuss the continuity of the function.
11. Sketch the graph of the function \(f(x)=\llbracket x \rrbracket+\llbracket-x \rrbracket\).
(a) Evaluate \(f(1), f(0), f\left(\frac{1}{2}\right)\), and \(f(-2.7)\).
(b) Evaluate the limits \(\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)\), and \(\lim _{x \rightarrow \frac{1}{2}} f(x)\).
(c) Discuss the continuity of the function.
12. To escape Earth's gravitational field, a rocket must be launched with an initial velocity called the escape velocity. A rocket launched from the surface of Earth has velocity \(v\) (in miles per second) given by
\(v=\sqrt{\frac{2 G M}{r}+v_{0}^{2}-\frac{2 G M}{R}} \approx \sqrt{\frac{192,000}{r}+v_{0}^{2}-48}\)
where \(v_{0}\) is the initial velocity, \(r\) is the distance from the rocket to the center of Earth, \(G\) is the gravitational constant, \(M\) is the mass of Earth, and \(R\) is the radius of Earth (approximately 4000 miles).
(a) Find the value of \(v_{0}\) for which you obtain an infinite limit for \(r\) as \(v\) approaches zero. This value of \(v_{0}\) is the escape velocity for Earth.
(b) A rocket launched from the surface of the moon has velocity \(v\) (in miles per second) given by
\[
v=\sqrt{\frac{1920}{r}+v_{0}^{2}-2.17}
\]

Find the escape velocity for the moon.
(c) A rocket launched from the surface of a planet has velocity \(v\) (in miles per second) given by
\(v=\sqrt{\frac{10,600}{r}+v_{0}^{2}-6.99}\).
Find the escape velocity for this planet. Is the mass of this planet larger or smaller than that of Earth? (Assume that the mean density of this planet is the same as that of Earth.)
13. For positive numbers \(a<b\), the pulse function is defined as \(P_{a, b}(x)=H(x-a)-H(x-b)= \begin{cases}0, & x<a \\ 1, & a \leq x<b \\ 0, & x \geq b\end{cases}\)
where \(H(x)=\left\{\begin{array}{ll}1, & x \geq 0 \\ 0, & x<0\end{array}\right.\) is the Heaviside function.
(a) Sketch the graph of the pulse function.
(b) Find the following limits:
(i) \(\lim _{x \rightarrow a^{+}} P_{a, b}(x)\)
(ii) \(\lim _{x \rightarrow a^{-}} P_{a, b}(x)\)
(iii) \(\lim _{x \rightarrow b^{+}} P_{a, b}(x)\)
(iv) \(\lim _{x \rightarrow b^{-}} P_{a, b}(x)\)
(c) Discuss the continuity of the pulse function.
(d) Why is
\[
U(x)=\frac{1}{b-a} P_{a, b}(x)
\]
called the unit pulse function?
14. Let \(a\) be a nonzero constant. Prove that if \(\lim _{x \rightarrow 0} f(x)=L\), then \(\lim _{x \rightarrow 0} f(a x)=L\). Show by means of an example that \(a\) must be nonzero.


\section*{Differentiation}

In this chapter you will study one of the most important processes of calculusdifferentiation. In each section, you will learn new methods and rules for finding derivatives of functions. Then you will apply these rules to find such things as velocity, acceleration, and the rates of change of two or more related variables.

In this chapter, you should learn the following.
- How to find the derivative of a function using the limit definition and understand the relationship between differentiability and continuity. (2.1)
- How to find the derivative of a function using basic differentiation rules. (2.2)
- How to find the derivative of a function using the Product Rule and the @otient Rule. (2.3)
- How to find the derivative of a function using the Chain Rule and the General Power Rule. (2.4)
- How to find the derivative of a function using implicit differentiation. (2.5)

■ How to find a related rate. (2.6)


Al Bello/Getty Images
When jumping from a platform, a diver's velocity is briefly positive because of the upward movement, but then becomes negative when falling. How can you use calculus to determine the velocity of a diver at impact? (See Section 2.2, Example 10.)


To approximate the slope of a tangent line to a graph at a given point, find the slope of the secant line through the given point and a second point on the graph. As the second point approaches the given point, the approximation tends to become more accurate. (See Section 2.1.)

\subsection*{2.1 The Derivative and the Tangent Line Problem}


Tangent line to a circle
Figure 2.1
- Find the slope of the tangent line to a curve at a point.
- Use the limit definition to find the derivative of a function.
- Understand the relationship between differentiability and continuity.

\section*{The Tangent Line Problem}

Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century.
1. The tangent line problem (Section 1.1 and this section)
2. The velocity and acceleration problem (Sections 2.2 and 2.3)
3. The minimum and maximum problem (Section 3.1)
4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although partial solutions to this problem were given by Pierre de Fermat (1601-1665), René Descartes (1596-1650), Christian Huygens (1629-1695), and Isaac Barrow (1630-1677), credit for the first general solution is usually given to Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716). Newton's work on this problem stemmed from his interest in optics and light refraction.

What does it mean to say that a line is tangent to a curve at a point? For a circle, the tangent line at a point \(P\) is the line that is perpendicular to the radial line at point \(P\), as shown in Figure 2.1.

For a general curve, however, the problem is more difficult. For example, how would you define the tangent lines shown in Figure 2.2? You might say that a line is tangent to a curve at a point \(P\) if it touches, but does not cross, the curve at point \(P\). This definition would work for the first curve shown in Figure 2.2, but not for the second. Or you might say that a line is tangent to a curve if the line touches or intersects the curve at exactly one point. This definition would work for a circle but not for more general curves, as the third curve in Figure 2.2 shows.




Tangent line to a curve at a point
Figure 2.2

\section*{E X P L ORATION}

Identifying a Tangent Line Use a graphing utility to graph the function \(f(x)=2 x^{3}-4 x^{2}+3 x-5\). On the same screen, graph \(y=x-5\), \(y=2 x-5\), and \(y=3 x-5\). Which of these lines, if any, appears to be tangent to the graph of \(f\) at the point \((0,-5)\) ? Explain your reasoning.


The secant line through \((c, f(c))\) and \((c+\Delta x, f(c+\Delta x))\)
Figure 2.3

\section*{THE TANGENT LINE PROBLEM \\ In 1637, mathematician René Descartes stated this about the tangent line problem: \\ "And I dare say that this is not only the most useful and general problem in geometry that I know, but even that I ever desire to know."}

Essentially, the problem of finding the tangent line at a point \(P\) boils down to the problem of finding the slope of the tangent line at point \(P\). You can approximate this slope using a secant line* through the point of tangency and a second point on the curve, as shown in Figure 2.3. If \((c, f(c))\) is the point of tangency and \((c+\Delta x, f(c+\Delta x))\) is a second point on the graph of \(f\), the slope of the secant line through the two points is given by substitution into the slope formula
\[
\begin{array}{rlr}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m_{\text {sec }} & =\frac{f(c+\Delta x)-f(c)}{(c+\Delta x)-c} & \frac{\text { Change in } y}{\text { Change in } x} \\
m_{\mathrm{sec}} & =\frac{f(c+\Delta x)-f(c)}{\Delta x} & \text { Slope of secant line }
\end{array}
\]

The right-hand side of this equation is a difference quotient. The denominator \(\Delta x\) is the change in \(\boldsymbol{x}\), and the numerator \(\Delta y=f(c+\Delta x)-f(c)\) is the change in \(\boldsymbol{y}\).

The beauty of this procedure is that you can obtain more and more accurate approximations of the slope of the tangent line by choosing points closer and closer to the point of tangency, as shown in Figure 2.4.


Tangent line approximations
Figure 2.4

\section*{DEFINITION OF TANGENT LINE WITH SLOPE \(m\)}

If \(f\) is defined on an open interval containing \(c\), and if the limit
\[
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m
\]
exists, then the line passing through \((c, f(c))\) with slope \(m\) is the tangent line to the graph of \(f\) at the point \((c, f(c))\).

The slope of the tangent line to the graph of \(f\) at the point \((c, f(c))\) is also called the slope of the graph of \(f\) at \(x=c\).

\footnotetext{
* This use of the word secant comes from the Latin secare, meaning to cut, and is not a reference to the trigonometric function of the same name.
}


The slope of \(f\) at \((2,1)\) is \(m=2\).
Figure 2.5


The slope of \(f\) at any point \((c, f(c))\) is \(m=2 c\).
Figure 2.6

\section*{EXAMPLE 1 The Slope of the Graph of a Linear Function}

Find the slope of the graph of
\[
f(x)=2 x-3
\]
at the point \((2,1)\).
Solution To find the slope of the graph of \(f\) when \(c=2\), you can apply the definition of the slope of a tangent line, as shown.
\[
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{[2(2+\Delta x)-3]-[2(2)-3]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{4+2 \Delta x-3-4+3}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} 2 \\
& =2
\end{aligned}
\]

The slope of \(f\) at \((c, f(c))=(2,1)\) is \(m=2\), as shown in Figure 2.5.

NOTE In Example 1, the limit definition of the slope of \(f\) agrees with the definition of the slope of a line as discussed in Section P.2.

The graph of a linear function has the same slope at any point. This is not true of nonlinear functions, as shown in the following example.

\section*{EXAMPLE 2 Tangent Lines to the Graph of a Nonlinear Function}

Find the slopes of the tangent lines to the graph of
\[
f(x)=x^{2}+1
\]
at the points \((0,1)\) and \((-1,2)\), as shown in Figure 2.6.
Solution Let \((c, f(c))\) represent an arbitrary point on the graph of \(f\). Then the slope of the tangent line at \((c, f(c))\) is given by
\[
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\left[(c+\Delta x)^{2}+1\right]-\left(c^{2}+1\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{c^{2}+2 c(\Delta x)+(\Delta x)^{2}+1-c^{2}-1}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 c(\Delta x)+(\Delta x)^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(2 c+\Delta x) \\
& =2 c .
\end{aligned}
\]

So, the slope at any point \((c, f(c))\) on the graph of \(f\) is \(m=2 c\). At the point \((0,1)\), the slope is \(m=2(0)=0\), and at \((-1,2)\), the slope is \(m=2(-1)=-2\).

NOTE In Example 2, note that \(c\) is held constant in the limit process (as \(\Delta x \rightarrow 0\) ).


The graph of \(f\) has a vertical tangent line at (c,f(c)).
Figure 2.7

\section*{FOR FURTHER INFORMATION}

For more information on the crediting of mathematical discoveries to the first "discoverers," see the article "Mathematical Firsts-Who Done It?" by Richard H. Williams and Roy D Mazzagatti in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

The definition of a tangent line to a curve does not cover the possibility of a vertical tangent line. For vertical tangent lines, you can use the following definition. If \(f\) is continuous at \(c\) and
\[
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=\infty \quad \text { or } \quad \lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=-\infty
\]
the vertical line \(x=c\) passing through \((c, f(c))\) is a vertical tangent line to the graph of \(f\). For example, the function shown in Figure 2.7 has a vertical tangent line at \((c, f(c))\). If the domain of \(f\) is the closed interval \([a, b]\), you can extend the definition of a vertical tangent line to include the endpoints by considering continuity and limits from the right (for \(x=a\) ) and from the left (for \(x=b\) ).

\section*{The Derivative of a Function}

You have now arrived at a crucial point in the study of calculus. The limit used to define the slope of a tangent line is also used to define one of the two fundamental operations of calculus-differentiation.

\section*{DEFINITION OF THE DERIVATIVE OF A FUNCTION}

The derivative of \(f\) at \(x\) is given by
\(f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\)
provided the limit exists. For all \(x\) for which this limit exists, \(f^{\prime}\) is a function of \(x\).

Be sure you see that the derivative of a function of \(x\) is also a function of \(x\). This "new" function gives the slope of the tangent line to the graph of \(f\) at the point \((x, f(x))\), provided that the graph has a tangent line at this point.

The process of finding the derivative of a function is called differentiation. A function is differentiable at \(x\) if its derivative exists at \(x\) and is differentiable on an open interval \((\boldsymbol{a}, \boldsymbol{b})\) if it is differentiable at every point in the interval.

In addition to \(f^{\prime}(x)\), which is read as " \(f\) prime of \(x\)," other notations are used to denote the derivative of \(y=f(x)\). The most common are
\[
f^{\prime}(x), \quad \frac{d y}{d x}, \quad y^{\prime}, \quad \frac{d}{d x}[f(x)], \quad D_{x}[y] .
\]

Notation for derivatives

The notation \(d y / d x\) is read as "the derivative of \(y\) with respect to \(x\) " or simply " \(d y\), \(d x\)." Using limit notation, you can write
\[
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =f^{\prime}(x) .
\end{aligned}
\]

STUDY TIP When using the definition to find a derivative of a function, the key is to rewrite the difference quotient so that \(\Delta x\) does not occur as a factor of the denominator.


The slope of \(f\) at \((x, f(x)), x>0\), is \(m=1 /(2 \sqrt{x})\).
Figure 2.8

\section*{EXAMPLE 3 Finding the Derivative by the Limit Process}

Find the derivative of \(f(x)=x^{3}+2 x\).
Solution
\[
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \text { Definition of derivative } \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}+2(x+\Delta x)-\left(x^{3}+2 x\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}+2 x+2 \Delta x-x^{3}-2 x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}+2 \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x\left[3 x^{2}+3 x \Delta x+(\Delta x)^{2}+2\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[3 x^{2}+3 x \Delta x+(\Delta x)^{2}+2\right] \\
& =3 x^{2}+2
\end{aligned}
\]

Remember that the derivative of a function \(f\) is itself a function, which can be used to find the slope of the tangent line at the point \((x, f(x))\) on the graph of \(f\).

\section*{EXAMPLE 4 Using the Derivative to Find the Slope at a Point}

Find \(f^{\prime}(x)\) for \(f(x)=\sqrt{x}\). Then find the slopes of the graph of \(f\) at the points \((1,1)\) and \((4,2)\). Discuss the behavior of \(f\) at \((0,0)\).
Solution Use the procedure for rationalizing numerators, as discussed in Section 1.3.
\[
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left(\frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}\right)\left(\frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}}\right) \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}, x>0
\end{aligned}
\]

At the point \((1,1)\), the slope is \(f^{\prime}(1)=\frac{1}{2}\). At the point \((4,2)\), the slope is \(f^{\prime}(4)=\frac{1}{4}\). See Figure 2.8. At the point \((0,0)\), the slope is undefined. Moreover, the graph of \(f\) has a vertical tangent line at \((0,0)\).

\footnotetext{
The icon 〕indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.
}

In many applications, it is convenient to use a variable other than \(x\) as the independent variable, as shown in Example 5.

\section*{CeXAMPLE 5 Finding the Derivative of a Function}

Find the derivative with respect to \(t\) for the function \(y=2 / t\).
Solution Considering \(y=f(t)\), you obtain
\[
\begin{aligned}
\frac{d y}{d t} & =\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t} & & \text { Definition of derivative } \\
& =\lim _{\Delta t \rightarrow 0} \frac{\frac{2}{t+\Delta t}-\frac{2}{t}}{\Delta t} & & f(t+\Delta t)=2 /(t+\Delta t) \text { and } f(t)=2 / t \\
& =\lim _{\Delta t \rightarrow 0} \frac{\frac{2 t-2(t+\Delta t)}{t(t+\Delta t)}}{\Delta t} & & \text { Combine fractions in numerator. } \\
& =\lim _{\Delta t \rightarrow 0} \frac{-2 \Delta t}{\Delta t(t)(t+\Delta t)} & & \text { Divide out common factor of } \Delta t . \\
& =\lim _{\Delta t \rightarrow 0} \frac{-2}{t(t+\Delta t)} & & \text { Simplify. } \\
& =-\frac{2}{t^{2}} & & \text { Evaluate limit as } \Delta t \rightarrow 0 .
\end{aligned}
\]

TECHNOLOGY A graphing utility can be used to reinforce the result given in Example 5. For instance, using the formula \(d y / d t=-2 / t^{2}\), you know that the slope of the graph of \(y=2 / t\) at the point \((1,2)\) is \(m=-2\). Using the point-slope form, you can find that the equation of the tangent line to the graph at \((1,2)\) is
\[
y-2=-2(t-1) \quad \text { or } \quad y=-2 t+4
\]
as shown in Figure 2.9.

\section*{Differentiability and Continuity}

The following alternative limit form of the derivative is useful in investigating the relationship between differentiability and continuity. The derivative of \(f\) at \(c\) is
\[
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { Alternative form of derivative }
\]
provided this limit exists (see Figure 2.10). (A proof of the equivalence of this form is given in Appendix A.) Note that the existence of the limit in this alternative form requires that the one-sided limits
\[
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \quad \text { and } \quad \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
\]
exist and are equal. These one-sided limits are called the derivatives from the left and from the right, respectively. It follows that \(f\) is differentiable on the closed interval \([\boldsymbol{a}, \boldsymbol{b}]\) if it is differentiable on \((a, b)\) and if the derivative from the right at \(a\) and the derivative from the left at \(b\) both exist.


The greatest integer function is not differentiable at \(x=0\), because it is not continuous at \(x=0\).
Figure 2.11

\(f\) is not differentiable at \(x=2\), because the derivatives from the left and from the right are not equal.
Figure 2.12

\(f\) is not differentiable at \(x=0\), because \(f\) has a vertical tangent line at \(x=0\).
Figure 2.13

If a function is not continuous at \(x=c\), it is also not differentiable at \(x=c\). For instance, the greatest integer function
\[
f(x)=\llbracket x \rrbracket
\]
is not continuous at \(x=0\), and so it is not differentiable at \(x=0\) (see Figure 2.11). You can verify this by observing that
\[
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{\llbracket x \rrbracket-0}{x}=\infty \quad \quad \text { Derivative from the left }
\]
and
\[
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\llbracket x \rrbracket-0}{x}=0 . \quad \text { Derivative from the right }
\]

Although it is true that differentiability implies continuity (as shown in Theorem 2.1 on the next page), the converse is not true. That is, it is possible for a function to be continuous at \(x=c\) and not differentiable at \(x=c\). Examples 6 and 7 illustrate this possibility.

\section*{Cexample 6 A Graph with a Sharp Turn}

The function
\[
f(x)=|x-2|
\]
shown in Figure 2.12 is continuous at \(x=2\). However, the one-sided limits
\[
\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{|x-2|-0}{x-2}=-1 \quad \text { Derivative from the left }
\]
and
\[
\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{|x-2|-0}{x-2}=1 \quad \text { Derivative from the right }
\]
are not equal. So, \(f\) is not differentiable at \(x=2\) and the graph of \(f\) does not have a tangent line at the point \((2,0)\).

\section*{EXAMPLE 7 A Graph with a Vertical Tangent Line}

The function
\[
f(x)=x^{1 / 3}
\]
is continuous at \(x=0\), as shown in Figure 2.13. However, because the limit
\[
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{x^{1 / 3}-0}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{x^{2 / 3}} \\
& =\infty
\end{aligned}
\]
is infinite, you can conclude that the tangent line is vertical at \(x=0\). So, \(f\) is not differentiable at \(x=0\).

From Examples 6 and 7, you can see that a function is not differentiable at a point at which its graph has a sharp turn or a vertical tangent line.

TECHNOLOGY Some graphing utilities, such as Maple, Mathematica, and the TI-89, perform symbolic differentiation. Others perform numerical differentiation by finding values of derivatives using the formula
\[
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}
\]
where \(\Delta x\) is a small number such as 0.001. Can you see any problems with this definition? For instance, using this definition, what is the value of the derivative of \(f(x)=|x|\) when \(x=0\) ?

\section*{THEOREM 2.1 DIFFERENTIABILITY IMPLIES CONTINUITY}

If \(f\) is differentiable at \(x=c\), then \(f\) is continuous at \(x=c\).

PROOF You can prove that \(f\) is continuous at \(x=c\) by showing that \(f(x)\) approaches \(f(c)\) as \(x \rightarrow c\). To do this, use the differentiability of \(f\) at \(x=c\) and consider the following limit.
\[
\begin{aligned}
\lim _{x \rightarrow c}[f(x)-f(c)] & =\lim _{x \rightarrow c}\left[(x-c)\left(\frac{f(x)-f(c)}{x-c}\right)\right] \\
& =\left[\lim _{x \rightarrow c}(x-c)\right]\left[\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}\right] \\
& =(0)\left[f^{\prime}(c)\right] \\
& =0
\end{aligned}
\]

Because the difference \(f(x)-f(c)\) approaches zero as \(x \rightarrow c\), you can conclude that \(\lim _{x \rightarrow c} f(x)=f(c)\). So, \(f\) is continuous at \(x=c\).

The following statements summarize the relationship between continuity and differentiability.
1. If a function is differentiable at \(x=c\), then it is continuous at \(x=c\). So, differentiability implies continuity.
2. It is possible for a function to be continuous at \(x=c\) and not be differentiable at \(x=c\). So, continuity does not imply differentiability (see Example 6).

\subsection*{2.1 Exercises}

In Exercises 1 and 2, estimate the slope of the graph at the points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\).
1. (a)

(b)

2. (a)

(b)


In Exercises 3 and 4, use the graph shown in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

3. Identify or sketch each of the quantities on the figure.
(a) \(f(1)\) and \(f(4)\)
(b) \(f(4)-f(1)\)
(c) \(y=\frac{f(4)-f(1)}{4-1}(x-1)+f(1)\)
4. Insert the proper inequality symbol ( \(<\) or \(>\) ) between the given quantities.
(a) \(\frac{f(4)-f(1)}{4-1} \square \frac{f(4)-f(3)}{4-3}\)
(b) \(\frac{f(4)-f(1)}{4-1} \square f^{\prime}(1)\)

In Exercises 5-10, find the slope of the tangent line to the graph of the function at the given point.
5. \(f(x)=3-5 x, \quad(-1,8)\)
6. \(g(x)=\frac{3}{2} x+1, \quad(-2,-2)\)
7. \(g(x)=x^{2}-9\),
\((2,-5)\)
8. \(g(x)=6-x^{2},(1,5)\)
9. \(f(t)=3 t-t^{2}\)
\((0,0)\)
10. \(h(t)=t^{2}+3, \quad(-2,7)\)

In Exercises 11-24, find the derivative by the limit process.
11. \(f(x)=7\)
12. \(g(x)=-3\)
13. \(f(x)=-10 x\)
14. \(f(x)=3 x+2\)
15. \(h(s)=3+\frac{2}{3} s\)
16. \(f(x)=8-\frac{1}{5} x\)
17. \(f(x)=x^{2}+x-3\)
18. \(f(x)=2-x^{2}\)
19. \(f(x)=x^{3}-12 x\)
20. \(f(x)=x^{3}+x^{2}\)
21. \(f(x)=\frac{1}{x-1}\)
22. \(f(x)=\frac{1}{x^{2}}\)
23. \(f(x)=\sqrt{x+4}\)
24. \(f(x)=\frac{4}{\sqrt{x}}\)

In Exercises 25-32, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.
25. \(f(x)=x^{2}+3, \quad(1,4)\)
26. \(f(x)=x^{2}+3 x+4, \quad(-2,2)\)
27. \(f(x)=x^{3}, \quad(2,8)\)
28. \(f(x)=x^{3}+1, \quad(1,2)\)
29. \(f(x)=\sqrt{x}, \quad(1,1)\)
30. \(f(x)=\sqrt{x-1}, \quad(5,2)\)
31. \(f(x)=x+\frac{4}{x}, \quad(4,5)\)
32. \(f(x)=\frac{1}{x+1}\),

In Exercises 33-38, find an equation of the line that is tangent to the graph of \(f\) and parallel to the given line.
\begin{tabular}{|c|c|}
\hline Function & Line \\
\hline 33. \(f(x)=x^{2}\) & \(2 x-y+1=0\) \\
\hline 34. \(f(x)=2 x^{2}\) & \(4 x+y+3=0\) \\
\hline 35. \(f(x)=x^{3}\) & \(3 x-y+1=0\) \\
\hline 36. \(f(x)=x^{3}+2\) & \(3 x-y-4=0\) \\
\hline 37. \(f(x)=\frac{1}{\sqrt{x}}\) & \(x+2 y-6=0\) \\
\hline 38. \(f(x)=\frac{1}{\sqrt{x-1}}\) & \(x+2 y+7=0\) \\
\hline
\end{tabular}

In Exercises 39-42, the graph of \(f\) is given. Select the graph of \(f^{\prime}\).
39.

40.

41.

(a)

(c)

42.

(b)

(d)

43. The tangent line to the graph of \(y=g(x)\) at the point \((4,5)\) passes through the point \((7,0)\). Find \(g(4)\) and \(g^{\prime}(4)\).
44. The tangent line to the graph of \(y=h(x)\) at the point \((-1,4)\) passes through the point \((3,6)\). Find \(h(-1)\) and \(h^{\prime}(-1)\).

\section*{WRITING ABOUT CONCEPTS}

In Exercises 45-50, sketch the graph of \(f^{\prime}\). Explain how you found your answer.
45.

47.

46.

48.


\section*{WRITING ABOUT CONCEPTS (continued)}
49.

50.

51. Sketch a graph of a function whose derivative is always negative. Explain how you found your answer.
52. Sketch a graph of a function whose derivative is always positive. Explain how you found your answer.

In Exercises 53-56, the limit represents \(f^{\prime}(c)\) for a function \(f\) and a number \(c\). Find \(f\) and \(c\).
53. \(\lim _{\Delta x \rightarrow 0} \frac{[5-3(1+\Delta x)]-2}{\Delta x}\)
54. \(\lim _{\Delta x \rightarrow 0} \frac{(-2+\Delta x)^{3}+8}{\Delta x}\)
55. \(\lim _{x \rightarrow 6} \frac{-x^{2}+36}{x-6}\)
56. \(\lim _{x \rightarrow 9} \frac{2 \sqrt{x}-6}{x-9}\)

In Exercises 57-59, identify a function \(f\) that has the given characteristics. Then sketch the function.
57. \(f(0)=2\);
\[
\text { 58. } \begin{aligned}
f(0) & =4 ; f^{\prime}(0) \\
f^{\prime}(x) & <0 \text { for } x<0 ; \\
f^{\prime}(x) & >0 \text { for } x>0
\end{aligned}
\]
\(f^{\prime}(x)=-3,-\infty<x<\infty\)
59. \(f(0)=0 ; f^{\prime}(0)=0 ; f^{\prime}(x)>0\) for \(x \neq 0\)
60. Assume that \(f^{\prime}(c)=3\). Find \(f^{\prime}(-c)\) if (a) \(f\) is an odd function and if (b) \(f\) is an even function.

In Exercises 61 and 62, find equations of the two tangent lines to the graph of \(f\) that pass through the indicated point.
61. \(f(x)=4 x-x^{2}\)
62. \(f(x)=x^{2}\)


63. Graphical Reasoning Use a graphing utility to graph each function and its tangent lines at \(x=-1, x=0\), and \(x=1\). Based on the results, determine whether the slopes of tangent lines to the graph of a function at different values of \(x\) are always distinct.
(a) \(f(x)=x^{2}\)
(b) \(g(x)=x^{3}\)

\section*{CAPSTONE}
64. The figure shows the graph of \(g^{\prime}\).

(a) \(g^{\prime}(0)=\)
(b) \(g^{\prime}(3)=\)
(c) What can you conclude about the graph of \(g\) knowing that \(g^{\prime}(1)=-\frac{8}{3}\) ?
(d) What can you conclude about the graph of \(g\) knowing that \(g^{\prime}(-4)=\frac{7}{3}\) ?
(e) Is \(g(6)-g(4)\) positive or negative? Explain.
(f) Is it possible to find \(g(2)\) from the graph? Explain.
65. Graphical Analysis Consider the function \(f(x)=\frac{1}{2} x^{2}\).
(a) Use a graphing utility to graph the function and estimate the values of \(f^{\prime}(0), f^{\prime}\left(\frac{1}{2}\right), f^{\prime}(1)\), and \(f^{\prime}(2)\).
(b) Use your results from part (a) to determine the values of \(f^{\prime}\left(-\frac{1}{2}\right), f^{\prime}(-1)\), and \(f^{\prime}(-2)\).
(c) Sketch a possible graph of \(f^{\prime}\).
(d) Use the definition of derivative to find \(f^{\prime}(x)\).
66. Graphical Analysis Consider the function \(f(x)=\frac{1}{3} x^{3}\).
(a) Use a graphing utility to graph the function and estimate the values of \(f^{\prime}(0), f^{\prime}\left(\frac{1}{2}\right), f^{\prime}(1), f^{\prime}(2)\), and \(f^{\prime}(3)\).
(b) Use your results from part (a) to determine the values of \(f^{\prime}\left(-\frac{1}{2}\right), f^{\prime}(-1), f^{\prime}(-2)\), and \(f^{\prime}(-3)\).
(c) Sketch a possible graph of \(f^{\prime}\).
(d) Use the definition of derivative to find \(f^{\prime}(x)\).

Graphical Reasoning In Exercises 67 and 68, use a graphing utility to graph the functions \(f\) and \(g\) in the same viewing window where
\(g(x)=\frac{f(x+0.01)-f(x)}{0.01}\).
Label the graphs and describe the relationship between them.
67. \(f(x)=2 x-x^{2}\)
68. \(f(x)=3 \sqrt{x}\)

In Exercises 69 and 70, evaluate \(f(2)\) and \(f(2.1)\) and use the results to approximate \(f^{\prime}(2)\).
69. \(f(x)=x(4-x)\)
70. \(f(x)=\frac{1}{4} x^{3}\)

Graphical Reasoning In Exercises 71 and 72, use a graphing utility to graph the function and its derivative in the same viewing window. Label the graphs and describe the relationship between them.
71. \(f(x)=\frac{1}{\sqrt{x}}\)
72. \(f(x)=\frac{x^{3}}{4}-3 x\)

In Exercises 73-82, use the alternative form of the derivative to find the derivative at \(x=c\) (if it exists).
73. \(f(x)=x^{2}-5, \quad c=3\)
74. \(g(x)=x(x-1), c=1\)
75. \(f(x)=x^{3}+2 x^{2}+1, \quad c=-2\)
76. \(f(x)=x^{3}+6 x, c=2\)
77. \(g(x)=\sqrt{|x|}, c=0\)
78. \(f(x)=2 / x, \quad c=5\)
79. \(f(x)=(x-6)^{2 / 3}, \quad c=6\)
80. \(g(x)=(x+3)^{1 / 3}, \quad c=-3\)
81. \(h(x)=|x+7|, \quad c=-7\)
82. \(f(x)=|x-6|, \quad c=6\)

In Exercises 83-88, describe the \(x\)-values at which \(f\) is differentiable.
83. \(f(x)=\frac{2}{x-3}\)
84. \(f(x)=\left|x^{2}-9\right|\)

85. \(f(x)=(x+4)^{2 / 3}\)

86. \(f(x)=\frac{x^{2}}{x^{2}-4}\)

87. \(f(x)=\sqrt{x-1}\)

88. \(f(x)= \begin{cases}x^{2}-4, & x \leq 0 \\ 4-x^{2}, & x>0\end{cases}\)


Graphical Analysis In Exercises 89-92, use a graphing utility to graph the function and find the \(x\)-values at which \(f\) is differentiable.
89. \(f(x)=|x-5|\)
90. \(f(x)=\frac{4 x}{x-3}\)
91. \(f(x)=x^{2 / 5}\)
92. \(f(x)= \begin{cases}x^{3}-3 x^{2}+3 x, & x \leq 1 \\ x^{2}-2 x, & x>1\end{cases}\)

In Exercises 93-96, find the derivatives from the left and from the right at \(x=1\) (if they exist). Is the function differentiable at \(x=1\) ?
93. \(f(x)=|x-1|\)
94. \(f(x)=\sqrt{1-x^{2}}\)
95. \(f(x)= \begin{cases}(x-1)^{3}, & x \leq 1 \\ (x-1)^{2}, & x>1\end{cases}\)
96. \(f(x)= \begin{cases}x, & x \leq 1 \\ x^{2}, & x>1\end{cases}\)

In Exercises 97 and 98, determine whether the function is differentiable at \(x=2\).
97. \(f(x)= \begin{cases}x^{2}+1, & x \leq 2 \\ 4 x-3, & x>2\end{cases}\)
98. \(f(x)= \begin{cases}\frac{1}{2} x+1, & x<2 \\ \sqrt{2 x}, & x \geq 2\end{cases}\)
99. Graphical Reasoning A line with slope \(m\) passes through the point \((0,4)\) and has the equation \(y=m x+4\).
(a) Write the distance \(d\) between the line and the point \((3,1)\) as a function of \(m\).
(b) Use a graphing utility to graph the function \(d\) in part (a). Based on the graph, is the function differentiable at every value of \(m\) ? If not, where is it not differentiable?
100. Conjecture Consider the functions \(f(x)=x^{2}\) and \(g(x)=x^{3}\).
(a) Graph \(f\) and \(f^{\prime}\) on the same set of axes.
(b) Graph \(g\) and \(g^{\prime}\) on the same set of axes.
(c) Identify a pattern between \(f\) and \(g\) and their respective derivatives. Use the pattern to make a conjecture about \(h^{\prime}(x)\) if \(h(x)=x^{n}\), where \(n\) is an integer and \(n \geq 2\).
(d) Find \(f^{\prime}(x)\) if \(f(x)=x^{4}\). Compare the result with the conjecture in part (c). Is this a proof of your conjecture? Explain.

True or False? In Exercises 101-104, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
101. The slope of the tangent line to the differentiable function \(f\) at the point \((2, f(2))\) is \(\frac{f(2+\Delta x)-f(2)}{\Delta x}\).
102. If a function is continuous at a point, then it is differentiable at that point.
103. If a function has derivatives from both the right and the left at a point, then it is differentiable at that point.
104. If a function is differentiable at a point, then it is continuous at that point.
105. Let \(f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.\) and \(g(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.\).

Show that \(f\) is continuous, but not differentiable, at \(x=0\). Show that \(g\) is differentiable at 0 , and find \(g^{\prime}(0)\).
106. Writing Use a graphing utility to graph the two functions \(f(x)=x^{2}+1\) and \(g(x)=|x|+1\) in the same viewing window. Use the zoom and trace features to analyze the graphs near the point \((0,1)\). What do you observe? Which function is differentiable at this point? Write a short paragraph describing the geometric significance of differentiability at a point.

\subsection*{2.2 Basic Differentiation Rules and Rates of Change}


Notice that the Constant Rule is equivalent to saying that the slope of a horizontal line is 0 . This demonstrates the relationship between slope and derivative.
Figure 2.14
- Find the derivative of a function using the Constant Rule.
- Find the derivative of a function using the Power Rule.
- Find the derivative of a function using the Constant Multiple Rule.
- Find the derivative of a function using the Sum and Difference Rules.
- Find the derivatives of the sine function and of the cosine function.

Use derivatives to find rates of change.

\section*{The Constant Rule}

In Section 2.1 you used the limit definition to find derivatives. In this and the next two sections you will be introduced to several "differentiation rules" that allow you to find derivatives without the direct use of the limit definition.

\section*{THEOREM 2.2 THE CONSTANT RULE}

The derivative of a constant function is 0 . That is, if \(c\) is a real number, then
\[
\frac{d}{d x}[c]=0
\]
(See Figure 2.14.)

PROOF Let \(f(x)=c\). Then, by the limit definition of the derivative,
\[
\begin{aligned}
\frac{d}{d x}[c] & =f^{\prime}(x) \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{c-c}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} 0=0 .
\end{aligned}
\]

\section*{EXAMPLE 1 Using the Constant Rule}

\section*{Function}
a. \(y=7\)
b. \(f(x)=0\)
c. \(s(t)=-3\)
d. \(y=k \pi^{2}, k\) is constant

\section*{Derivative}
\[
d y / d x=0
\]
\[
f^{\prime}(x)=0
\]
\[
s^{\prime}(t)=0
\]
\[
y^{\prime}=0
\]

\section*{EXPLORATION}

Writing a Conjecture Use the definition of the derivative given in Section 2.1 to find the derivative of each function. What patterns do you see? Use your results to write a conjecture about the derivative of \(f(x)=x^{n}\).
a. \(f(x)=x^{1}\)
b. \(f(x)=x^{2}\)
c. \(f(x)=x^{3}\)
d. \(f(x)=x^{4}\)
e. \(f(x)=x^{1 / 2}\)
f. \(f(x)=x^{-1}\)

NOTE From Example 7 in Section 2.1, you know that the function \(f(x)=x^{1 / 3}\) is defined at \(x=0\), but is not differentiable at \(x=0\). This is because \(x^{-2 / 3}\) is not defined on an interval containing 0 .

\section*{The Power Rule}

Before proving the next rule, it is important to review the procedure for expanding a binomial.
\[
\begin{aligned}
& (x+\Delta x)^{2}=x^{2}+2 x \Delta x+(\Delta x)^{2} \\
& (x+\Delta x)^{3}=x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}
\end{aligned}
\]

The general binomial expansion for a positive integer \(n\) is
\[
(x+\Delta x)^{n}=x^{n}+n x^{n-1}(\Delta x)+\underbrace{\frac{n(n-1) x^{n-2}}{2}(\Delta x)^{2}+\cdots+(\Delta x)^{n}}_{(\Delta x)^{2} \text { is a factor of these terms. }} .
\]

This binomial expansion is used in proving a special case of the Power Rule.

\section*{THEOREM 2.3 THE POWER RULE}

If \(n\) is a rational number, then the function \(f(x)=x^{n}\) is differentiable and
\[
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} .
\]

For \(f\) to be differentiable at \(x=0, n\) must be a number such that \(x^{n-1}\) is defined on an interval containing 0 .

PROOF If \(n\) is a positive integer greater than 1 , then the binomial expansion produces
\[
\begin{aligned}
\frac{d}{d x}\left[x^{n}\right] & =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x^{n}+n x^{n-1}(\Delta x)+\frac{n(n-1) x^{n-2}}{2}(\Delta x)^{2}+\cdots+(\Delta x)^{n}-x^{n}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[n x^{n-1}+\frac{n(n-1) x^{n-2}}{2}(\Delta x)+\cdots+(\Delta x)^{n-1}\right] \\
& =n x^{n-1}+0+\cdots+0 \\
& =n x^{n-1} .
\end{aligned}
\]

This proves the case for which \(n\) is a positive integer greater than 1 . You will prove the case for \(n=1\). Example 7 in Section 2.3 proves the case for which \(n\) is a negative integer. In Exercise 76 in Section 2.5 you are asked to prove the case for which \(n\) is rational. (In Section 5.5, the Power Rule will be extended to cover irrational values of \(n\).)

When using the Power Rule, the case for which \(n=1\) is best thought of as a separate differentiation rule. That is,
\[
\frac{d}{d x}[x]=1 . \quad \text { Power Rule when } n=1
\]

This rule is consistent with the fact that the slope of the line \(y=x\) is 1 , as shown in Figure 2.15.

\section*{EXAMPLE 2 Using the Power Rule}

\section*{Derivative}
a. \(f(x)=x^{3}\)
b. \(g(x)=\sqrt[3]{x}\)
c. \(y=\frac{1}{x^{2}}\)
\[
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& g^{\prime}(x)=\frac{d}{d x}\left[x^{1 / 3}\right]=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \\
& \frac{d y}{d x}=\frac{d}{d x}\left[x^{-2}\right]=(-2) x^{-3}=-\frac{2}{x^{3}}
\end{aligned}
\]

In Example 2(c), note that before differentiating, \(1 / x^{2}\) was rewritten as \(x^{-2}\). Rewriting is the first step in many differentiation problems.
\[
\begin{aligned}
& \text { Given: } \\
& y=\frac{1}{x^{2}}
\end{aligned} \square \begin{aligned}
& \text { Rewrite: } \\
& y=x^{-2}
\end{aligned} \square \begin{aligned}
& \text { Differentiate: } \\
& \frac{d y}{d x}=(-2) x^{-3}
\end{aligned} \square \square \begin{aligned}
& \text { Simplify: } \\
& \frac{d y}{d x}=-\frac{2}{x^{3}}
\end{aligned}
\]

\section*{EXAMPLE 3 Finding the Slope of a Graph}

Find the slope of the graph of \(f(x)=x^{4}\) when
a. \(x=-1\)
b. \(x=0\)
c. \(x=1\).

Solution The slope of a graph at a point is the value of the derivative at that point. The derivative of \(f\) is \(f^{\prime}(x)=4 x^{3}\).
a. When \(x=-1\), the slope is \(f^{\prime}(-1)=4(-1)^{3}=-4\). Slope is negative.
b. When \(x=0\), the slope is \(f^{\prime}(0)=4(0)^{3}=0 . \quad\) Slope is zero.
c. When \(x=1\), the slope is \(f^{\prime}(1)=4(1)^{3}=4\). Slope is positive.

See Figure 2.16.

\section*{CeXAMPLE 4 Finding an Equation of a Tangent Line}

Find an equation of the tangent line to the graph of \(f(x)=x^{2}\) when \(x=-2\).
Solution To find the point on the graph of \(f\), evaluate the original function at \(x=-2\).
\[
(-2, f(-2))=(-2,4) \quad \text { Point on graph }
\]

To find the slope of the graph when \(x=-2\), evaluate the derivative, \(f^{\prime}(x)=2 x\), at \(x=-2\).
\[
m=f^{\prime}(-2)=-4 \quad \text { Slope of graph at }(-2,4)
\]

Now, using the point-slope form of the equation of a line, you can write
\[
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-4 & =-4[x-(-2)] & & \text { Substitute for } y_{1}, m, \text { and } x_{1} . \\
y & =-4 x-4 . & & \text { Simplify. }
\end{aligned}
\]

See Figure 2.17.

\section*{The Constant Multiple Rule}

\section*{THEOREM 2.4 THE CONSTANT MULTIPLE RULE}

If \(f\) is a differentiable function and \(c\) is a real number, then \(c f\) is also differentiable and \(\frac{d}{d x}[c f(x)]=c f^{\prime}(x)\).

PROOF
\[
\begin{array}{rlr}
\frac{d}{d x}[c f(x)] & =\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} & \\
& =\lim _{\Delta x \rightarrow 0} c\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right] & \\
& =c\left[\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x i t i o n ~ o f ~ d e r i v a t i v e ~}{\Delta x}-f(x)\right. \\
& =c f^{\prime}(x) &
\end{array} \quad \text { Apply Theorem 1.2. }
\]

Informally, the Constant Multiple Rule states that constants can be factored out of the differentiation process, even if the constants appear in the denominator.
\[
\begin{aligned}
\frac{d}{d x}[c f(x)] & =c \frac{d}{d x}\left[\frac{1}{d}(x)\right]=c f^{\prime}(x) \\
\frac{d}{d x}\left[\frac{f(x)}{c}\right] & =\frac{d}{d x}\left[\left(\frac{1}{c}\right) f(x)\right] \\
& =\left(\frac{1}{c}\right) \frac{d}{d x}\left[{ }^{\prime} f(x)\right]=\left(\frac{1}{c}\right) f^{\prime}(x)
\end{aligned}
\]

\section*{EXAMPLE 5 Using the Constant Multiple Rule}

\section*{Function}
a. \(y=\frac{2}{x}\)
b. \(f(t)=\frac{4 t^{2}}{5}\)
c. \(y=2 \sqrt{x}\)
d. \(y=\frac{1}{2 \sqrt[3]{x^{2}}}\)
e. \(y=-\frac{3 x}{2}\)

Derivative
\(\frac{d y}{d x}=\frac{d}{d x}\left[2 x^{-1}\right]=2 \frac{d}{d x}\left[x^{-1}\right]=2(-1) x^{-2}=-\frac{2}{x^{2}}\)
\(f^{\prime}(t)=\frac{d}{d t}\left[\frac{4}{5} t^{2}\right]=\frac{4}{5} \frac{d}{d t}\left[t^{2}\right]=\frac{4}{5}(2 t)=\frac{8}{5} t\)
\(\frac{d y}{d x}=\frac{d}{d x}\left[2 x^{1 / 2}\right]=2\left(\frac{1}{2} x^{-1 / 2}\right)=x^{-1 / 2}=\frac{1}{\sqrt{x}}\)
\(\frac{d y}{d x}=\frac{d}{d x}\left[\frac{1}{2} x^{-2 / 3}\right]=\frac{1}{2}\left(-\frac{2}{3}\right) x^{-5 / 3}=-\frac{1}{3 x^{5 / 3}}\)
\(y^{\prime}=\frac{d}{d x}\left[-\frac{3}{2} x\right]=-\frac{3}{2}(1)=-\frac{3}{2}\)

The Constant Multiple Rule and the Power Rule can be combined into one rule. The combination rule is
\[
\frac{d}{d x}\left[c x^{n}\right]=c n x^{n-1}
\]

\section*{EXAMPLE 6 Using Parentheses When Differentiating}

Original Function
a. \(y=\frac{5}{2 x^{3}}\)
b. \(y=\frac{5}{(2 x)^{3}}\)
c. \(y=\frac{7}{3 x^{-2}}\)
d. \(y=\frac{7}{(3 x)^{-2}}\)

Rewrite
\(y=\frac{5}{2}\left(x^{-3}\right)\)
\(y=\frac{5}{8}\left(x^{-3}\right)\)
\(y=\frac{7}{3}\left(x^{2}\right)\)
\(y=63\left(x^{2}\right)\)

Differentiate
Simplify
\(y^{\prime}=\frac{5}{2}\left(-3 x^{-4}\right)\)
\(y^{\prime}=-\frac{15}{2 x^{4}}\)
\(y^{\prime}=\frac{5}{8}\left(-3 x^{-4}\right)\)
\(y^{\prime}=-\frac{15}{8 x^{4}}\)
\(y^{\prime}=\frac{7}{3}(2 x)\)
\(y^{\prime}=\frac{14 x}{3}\)
\(y^{\prime}=63(2 x)\)
\(y^{\prime}=126 x\)

\section*{The Sum and Difference Rules}

\section*{THEOREM 2.5 THE SUM AND DIFFERENCE RULES}

The sum (or difference) of two differentiable functions \(f\) and \(g\) is itself differentiable. Moreover, the derivative of \(f+g(\) or \(f-g\) ) is the sum (or difference) of the derivatives of \(f\) and \(g\).
\[
\begin{array}{ll}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) & \text { Sum Rule } \\
\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x) & \text { Difference Rule }
\end{array}
\]

PROOF A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule can be proved in a similar way.)
\[
\begin{aligned}
\frac{d}{d x}[f(x)+g(x)] & =\lim _{\Delta x \rightarrow 0} \frac{[f(x+\Delta x)+g(x+\Delta x)]-[f(x)+g(x)]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)+g(x+\Delta x)-f(x)-g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}+\frac{g(x+\Delta x)-g(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
\]

The Sum and Difference Rules can be extended to any finite number of functions. For instance, if \(F(x)=f(x)+g(x)-h(x)\), then \(F^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)-h^{\prime}(x)\).

\section*{EXAMPLE 7 Using the Sum and Difference Rules}

\section*{Function}
a. \(f(x)=x^{3}-4 x+5\)
b. \(g(x)=-\frac{x^{4}}{2}+3 x^{3}-2 x\)

Derivative
\[
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-4 \\
& g^{\prime}(x)=-2 x^{3}+9 x^{2}-2
\end{aligned}
\]

\section*{FQ FURTER INBAIID For}
the outline of a geometric proof of the derivatives of the sine and cosine functions, see the article "The Spider's Spacewalk Derivation of \(\sin ^{\prime}\) and \(\cos ^{\prime \prime} "\) by Tim Hesterberg in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

The derivative of the sine function is the cosine function.
Figure 2.18

\section*{Derivatives of the Sine and Cosine Functions}

In Section 1.3, you studied the following limits.
\[
\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x}=1 \quad \text { and } \quad \lim _{\Delta x \rightarrow 0} \frac{1-\cos \Delta x}{\Delta x}=0
\]

These two limits can be used to prove differentiation rules for the sine and cosine functions. (The derivatives of the other four trigonometric functions are discussed in Section 2.3.)

\section*{THEOREM 2.6 DERIVATIVES OF SINE AND COSINE FUNCTIONS}
\[
\frac{d}{d x}[\sin x]=\cos x \quad \frac{d}{d x}[\cos x]=-\sin x
\]

\section*{PROOF}
\[
\begin{aligned}
\frac{d}{d x}[\sin x] & =\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin x}{\Delta x} \quad \text { Definition of derivative } \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin x \cos \Delta x+\cos x \sin \Delta x-\sin x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos x \sin \Delta x-(\sin x)(1-\cos \Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[(\cos x)\left(\frac{\sin \Delta x}{\Delta x}\right)-(\sin x)\left(\frac{1-\cos \Delta x}{\Delta x}\right)\right] \\
& =\cos x\left(\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x}\right)-\sin x\left(\lim _{\Delta x \rightarrow 0} \frac{1-\cos \Delta x}{\Delta x}\right) \\
& =(\cos x)(1)-(\sin x)(0) \\
& =\cos x
\end{aligned}
\]

This differentiation rule is shown graphically in Figure 2.18. Note that for each \(x\), the slope of the sine curve is equal to the value of the cosine. The proof of the second rule is left as an exercise (see Exercise 120).

\section*{CEXAMPLE 8 Derivatives Involving Sines and Cosines}

\section*{Function}
a. \(y=2 \sin x\)
b. \(y=\frac{\sin x}{2}=\frac{1}{2} \sin x\)
c. \(y=x+\cos x\)

Derivative
\[
\begin{aligned}
& y^{\prime}=2 \cos x \\
& y^{\prime}=\frac{1}{2} \cos x=\frac{\cos x}{2} \\
& y^{\prime}=1-\sin x
\end{aligned}
\]

TECHNOLOGY A graphing utility can provide insight into the interpretation of a derivative. For instance, Figure 2.19 shows the graphs of
\[
y=a \sin x
\]
for \(a=\frac{1}{2}, 1, \frac{3}{2}\), and 2. Estimate the slope of each graph at the point \((0,0)\). Then verify your estimates analytically by evaluating the derivative of each function when \(x=0\).


\section*{Rates of Change}

You have seen how the derivative is used to determine slope. The derivative can also be used to determine the rate of change of one variable with respect to another. Applications involving rates of change occur in a wide variety of fields. A few examples are population growth rates, production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving in a straight line. In such problems, it is customary to use either a horizontal or a vertical line with a designated origin to represent the line of motion. On such lines, movement to the right (or upward) is considered to be in the positive direction, and movement to the left (or downward) is considered to be in the negative direction.

The function \(s\) that gives the position (relative to the origin) of an object as a function of time \(t\) is called a position function. If, over a period of time \(\Delta t\), the object changes its position by the amount \(\Delta s=s(t+\Delta t)-s(t)\), then, by the familiar formula
\[
\text { Rate }=\frac{\text { distance }}{\text { time }}
\]
the average velocity is
\[
\frac{\text { Change in distance }}{\text { Change in time }}=\frac{\Delta s}{\Delta t} .
\]

\section*{Average velocity}

\section*{EXAMPLE 9 Finding Average Velocity of a Falling Object}

If a billiard ball is dropped from a height of 100 feet, its height \(s\) at time \(t\) is given by the position function
\[
s=-16 t^{2}+100 \quad \text { Position function }
\]
where \(s\) is measured in feet and \(t\) is measured in seconds. Find the average velocity over each of the following time intervals.
a. \([1,2]\)
b. \([1,1.5]\)
c. \([1,1.1]\)

\section*{Solution}
a. For the interval [1, 2], the object falls from a height of \(s(1)=-16(1)^{2}+100=84\) feet to a height of \(s(2)=-16(2)^{2}+100=36\) feet. The average velocity is
\[
\frac{\Delta s}{\Delta t}=\frac{36-84}{2-1}=\frac{-48}{1}=-48 \text { feet per second. }
\]
b. For the interval \([1,1.5\) ], the object falls from a height of 84 feet to a height of 64 feet. The average velocity is
\[
\frac{\Delta s}{\Delta t}=\frac{64-84}{1.5-1}=\frac{-20}{0.5}=-40 \text { feet per second. }
\]
c. For the interval \([1,1.1]\), the object falls from a height of 84 feet to a height of 80.64 feet. The average velocity is
\[
\frac{\Delta s}{\Delta t}=\frac{80.64-84}{1.1-1}=\frac{-3.36}{0.1}=-33.6 \text { feet per second. }
\]

Note that the average velocities are negative, indicating that the object is moving downward.


The average velocity between \(t_{1}\) and \(t_{2}\) is the slope of the secant line, and the instantaneous velocity at \(t_{1}\) is the slope of the tangent line.
Figure 2.20


Velocity is positive when an object is rising, and is negative when an object is falling. Notice that the diver moves upward for the first half-second because the velocity is positive for \(0<t<\frac{1}{2}\). When the velocity is 0 , the diver has reached the maximum height of the dive.
Figure 2.21

Suppose that in Example 9 you wanted to find the instantaneous velocity (or simply the velocity) of the object when \(t=1\). Just as you can approximate the slope of the tangent line by calculating the slope of the secant line, you can approximate the velocity at \(t=1\) by calculating the average velocity over a small interval \([1,1+\Delta t]\) (see Figure 2.20). By taking the limit as \(\Delta t\) approaches zero, you obtain the velocity when \(t=1\). Try doing this-you will find that the velocity when \(t=1\) is -32 feet per second.

In general, if \(s=s(t)\) is the position function for an object moving along a straight line, the velocity of the object at time \(t\) is
\[
v(t)=\lim _{\Delta t \rightarrow 0} \frac{s(t+\Delta t)-s(t)}{\Delta t}=s^{\prime}(t) \quad \quad \text { Velocity function }
\]

In other words, the velocity function is the derivative of the position function. Velocity can be negative, zero, or positive. The speed of an object is the absolute value of its velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence of gravity can be represented by the equation
\[
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
\]

Position function
where \(s_{0}\) is the initial height of the object, \(v_{0}\) is the initial velocity of the object, and \(g\) is the acceleration due to gravity. On Earth, the value of \(g\) is approximately -32 feet per second per second or -9.8 meters per second per second.

\section*{EXAMPLE 10 Using the Derivative to Find Velocity}

At time \(t=0\), a diver jumps from a platform diving board that is 32 feet above the water (see Figure 2.21). The position of the diver is given by
\[
s(t)=-16 t^{2}+16 t+32 \quad \text { Position function }
\]
where \(s\) is measured in feet and \(t\) is measured in seconds.
a. When does the diver hit the water?
b. What is the diver's velocity at impact?

\section*{Solution}
a. To find the time \(t\) when the diver hits the water, let \(s=0\) and solve for \(t\).
\[
\begin{aligned}
-16 t^{2}+16 t+32 & =0 & & \text { Set position function equal to } 0 . \\
-16(t+1)(t-2) & =0 & & \text { Factor. } \\
t & =-1 \text { or } 2 & & \text { Solve for } t
\end{aligned}
\]

Because \(t \geq 0\), choose the positive value to conclude that the diver hits the water at \(t=2\) seconds.
b. The velocity at time \(t\) is given by the derivative \(s^{\prime}(t)=-32 t+16\). So, the velocity at time \(t=2\) is
\[
s^{\prime}(2)=-32(2)+16=-48 \text { feet per second. }
\]

\subsection*{2.2 Exercises}

In Exercises 1 and 2, use the graph to estimate the slope of the tangent line to \(y=x^{n}\) at the point \((1,1)\). drify your answer analytically. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
1. (a) \(y=x^{1 / 2}\)

2. (a) \(y=x^{-1 / 2}\)

(b) \(y=x^{3}\)

(b) \(y=x^{-1}\)


In Exercises 3-24, use the rules of differentiation to find the derivative of the function.
3. \(y=12\)
4. \(f(x)=-9\)
5. \(y=x^{7}\)
6. \(y=x^{16}\)
7. \(y=\frac{1}{x^{5}}\)
8. \(y=\frac{1}{x^{8}}\)
9. \(f(x)=\sqrt[5]{x}\)
10. \(g(x)=\sqrt[4]{x}\)
11. \(f(x)=x+11\)
12. \(g(x)=3 x-1\)
13. \(f(t)=-2 t^{2}+3 t-6\)
14. \(y=t^{2}+2 t-3\)
15. \(g(x)=x^{2}+4 x^{3}\)
16. \(y=8-x^{3}\)
17. \(s(t)=t^{3}+5 t^{2}-3 t+8\)
18. \(f(x)=2 x^{3}-x^{2}+3 x\)
19. \(y=\frac{\pi}{2} \sin \theta-\cos \theta\)
20. \(g(t)=\pi \cos t\)
21. \(y=x^{2}-\frac{1}{2} \cos x\)
22. \(y=7+\sin x\)
23. \(y=\frac{1}{x}-3 \sin x\)
24. \(y=\frac{5}{(2 x)^{3}}+2 \cos x\)

In Exercises 25-30, complete the table.
\begin{tabular}{|c|c|c|c|}
\hline Original Function & Rewrite & Differentiate & Simplify \\
\hline 25. \(y=\frac{5}{2 x^{2}}\) & & & \\
\hline 26. \(y=\frac{2}{3 x^{2}}\) & & & \\
\hline 27. \(y=\frac{6}{(5 x)^{3}}\) & & & \\
\hline
\end{tabular}
\(\begin{array}{llll}\quad \frac{\text { Original Function }}{} & \text { Rewrite } & \text { Differentiate } & \text { Simplify } \\ \text { 28. } y=\frac{\pi}{(3 x)^{2}} & \square & \square & \square \\ \text { 29. } y=\frac{\sqrt{x}}{x} & & & \\ \text { 30. } y=\frac{4}{x^{-3}} & & & \end{array}\)
In Exercises 31-38, find the slope of the graph of the function at the given point. Use the derivative feature of a graphing utility to confirm your results.
\begin{tabular}{ll}
\(\frac{\text { Function }}{}\) & Point \\
31. \(f(x)=\frac{8}{x^{2}}\) & \((2,2)\) \\
32. \(f(t)=3-\frac{3}{5 t}\) & \(\left(\frac{3}{5}, 2\right)\) \\
33. \(f(x)=-\frac{1}{2}+\frac{7}{5} x^{3}\) & \(\left(0,-\frac{1}{2}\right)\) \\
34. \(y=3 x^{3}-10\) & \((0,14)\) \\
35. \(y=(4 x+1)^{2}\) & \((5,0)\) \\
36. \(f(x)=3(5-x)^{2}\) & \((0,0)\) \\
37. \(f(\theta)=4 \sin \theta-\theta\) & \((\pi, 7)\)
\end{tabular}

In Exercises 39-54, find the derivative of the function.
39. \(f(x)=x^{2}+5-3 x^{-2}\)
40. \(f(x)=x^{2}-3 x-3 x^{-2}\)
41. \(g(t)=t^{2}-\frac{4}{t^{3}}\)
42. \(f(x)=x+\frac{1}{x^{2}}\)
43. \(f(x)=\frac{4 x^{3}+3 x^{2}}{x}\)
44. \(f(x)=\frac{x^{3}-6}{x^{2}}\)
45. \(f(x)=\frac{x^{3}-3 x^{2}+4}{x^{2}}\)
46. \(h(x)=\frac{2 x^{2}-3 x+1}{x}\)
47. \(y=x\left(x^{2}+1\right)\)
48. \(y=3 x\left(6 x-5 x^{2}\right)\)
49. \(f(x)=\sqrt{x}-6 \sqrt[3]{x}\)
50. \(f(x)=\sqrt[3]{x}+\sqrt[5]{x}\)
51. \(h(s)=s^{4 / 5}-s^{2 / 3}\)
52. \(f(t)=t^{2 / 3}-t^{1 / 3}+4\)
53. \(f(x)=6 \sqrt{x}+5 \cos x\)
54. \(f(x)=\frac{2}{\sqrt[3]{x}}+3 \cos x\)

In Exercises 55-58, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.
\begin{tabular}{ll}
\multicolumn{1}{l}{\(\frac{\text { Function }}{}\)} & \\
55. \(y=x^{4}-3 x^{2}+2\) & \\
56. \(y=x^{3}+x\) & \\
57. \(f(x)=\frac{2}{\sqrt[4]{x^{3}}}\) & \\
58. \(y=\left(x^{2}+2 x\right)(x+1)\) & \((1,2)\) \\
5 \()\) & \((1,6)\)
\end{tabular}

In Exercises 59-64, determine the point(s) (if any) at which the graph of the function has a horizontal tangent line.
59. \(y=x^{4}-2 x^{2}+3\)
60. \(y=x^{3}+x\)
61. \(y=\frac{1}{x^{2}}\)
62. \(y=x^{2}+9\)
63. \(y=x+\sin x, \quad 0 \leq x<2 \pi\)
64. \(y=\sqrt{3} x+2 \cos x, \quad 0 \leq x<2 \pi\)

In Exercises 65-70, find \(k\) such that the line is tangent to the graph of the function.
65. \(\frac{\text { Function }}{f(x)=x^{2}-k x}\)
\[
\begin{aligned}
& \text { Line } \\
& \hline y=5 x-4 \\
& y=-6 x+1 \\
& y=-\frac{3}{4} x+3 \\
& y=x+4 \\
& y=x+1 \\
& y=4 x-1
\end{aligned}
\]
66. \(f(x)=k-x^{2}\)
67. \(f(x)=\frac{k}{x}\)
68. \(f(x)=k \sqrt{x}\)
69. \(f(x)=k x^{3}\)
70. \(f(x)=k x^{4}\)
71. Sketch the graph of a function \(f\) such that \(f^{\prime}>0\) for all \(x\) and the rate of change of the function is decreasing.

\section*{CAPSTONE}
72. Use the graph of \(f\) to answer each question. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) Between which two consecutive points is the average rate of change of the function greatest?
(b) Is the average rate of change of the function between \(A\) and \(B\) greater than or less than the instantaneous rate of change at \(B\) ?
(c) Sketch a tangent line to the graph between \(C\) and \(D\) such that the slope of the tangent line is the same as the average rate of change of the function between \(C\) and \(D\).

\section*{WRITING ABOUT CONCEPTS}

In Exercises 73 and 74, the relationship between \(f\) and \(g\) is given. Explain the relationship between \(f^{\prime}\) and \(g^{\prime}\).
73. \(g(x)=f(x)+6\)
74. \(g(x)=-5 f(x)\)

\section*{WRITING ABOUT CONCEPTS (continued)}

In Exercises 75 and 76, the graphs of a function \(f\) and its derivative \(f^{\prime}\) are shown on the same set of coordinate axes. Label the graphs as \(f\) or \(f^{\prime}\) and write a short paragraph stating the criteria you used in making your selection. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
75.

76.

77. Sketch the graphs of \(y=x^{2}\) and \(y=-x^{2}+6 x-5\), and sketch the two lines that are tangent to both graphs. Find equations of these lines.
78. Show that the graphs of the two equations \(y=x\) and \(y=1 / x\) have tangent lines that are perpendicular to each other at their point of intersection.
79. Show that the graph of the function
\(f(x)=3 x+\sin x+2\)
does not have a horizontal tangent line.
80. Show that the graph of the function
\(f(x)=x^{5}+3 x^{3}+5 x\)
does not have a tangent line with a slope of 3 .
In Exercises 81 and 82, find an equation of the tangent line to the graph of the function \(f\) through the point \(\left(x_{0}, y_{0}\right)\) not on the graph. To find the point of tangency \((x, y)\) on the graph of \(f\), solve the equation
\(f^{\prime}(x)=\frac{y_{0}-y}{x_{0}-x}\).
81. \(f(x)=\sqrt{x}\)
82. \(f(x)=\frac{2}{x}\)
\(\left(x_{0}, y_{0}\right)=(-4,0)\)
\[
\left(x_{0}, y_{0}\right)=(5,0)
\]
83. Linear Approximation Use a graphing utility, with a square window setting, to zoom in on the graph of
\(f(x)=4-\frac{1}{2} x^{2}\)
to approximate \(f^{\prime}(1)\). Use the derivative to find \(f^{\prime}(1)\).
84. Linear Approximation Use a graphing utility, with a square window setting, to zoom in on the graph of
\(f(x)=4 \sqrt{x}+1\)
to approximate \(f^{\prime}(4)\). Use the derivative to find \(f^{\prime}(4)\).
85. Linear Approximation Consider the function \(f(x)=x^{3 / 2}\) with the solution point \((4,8)\).
(a) Use a graphing utility to graph \(f\). Use the zoom feature to obtain successive magnifications of the graph in the neighborhood of the point \((4,8)\). After zooming in a few times, the graph should appear nearly linear. Use the trace feature to determine the coordinates of a point near \((4,8)\). Find an equation of the secant line \(S(x)\) through the two points.
(b) Find the equation of the line
\[
T(x)=f^{\prime}(4)(x-4)+f(4)
\]
tangent to the graph of \(f\) passing through the given point. Why are the linear functions \(S\) and \(T\) nearly the same?
(c) Use a graphing utility to graph \(f\) and \(T\) on the same set of coordinate axes. Note that \(T\) is a good approximation of \(f\) when \(x\) is close to 4 . What happens to the accuracy of the approximation as you move farther away from the point of tangency?
(d) Demonstrate the conclusion in part (c) by completing the table.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(\Delta x\) & -3 & -2 & -1 & -0.5 & -0.1 & 0 \\
\hline\(f(4+\Delta x)\) & & & & & & \\
\hline\(T(4+\Delta x)\) & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(\Delta x\) & 0.1 & 0.5 & 1 & 2 & 3 \\
\hline\(f(4+\Delta x)\) & & & & & \\
\hline\(T(4+\Delta x)\) & & & & & \\
\hline
\end{tabular}
86. Linear Approximation Repeat Exercise 85 for the function \(f(x)=x^{3}\) where \(T(x)\) is the line tangent to the graph at the point \((1,1)\). Explain why the accuracy of the linear approximation decreases more rapidly than in Exercise 85.

True or False? In Exercises 87-92, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
87. If \(f^{\prime}(x)=g^{\prime}(x)\), then \(f(x)=g(x)\).
88. If \(f(x)=g(x)+c\), then \(f^{\prime}(x)=g^{\prime}(x)\).
89. If \(y=\pi^{2}\), then \(d y / d x=2 \pi\).
90. If \(y=x / \pi\), then \(d y / d x=1 / \pi\).
91. If \(g(x)=3 f(x)\), then \(g^{\prime}(x)=3 f^{\prime}(x)\).
92. If \(f(x)=1 / x^{n}\), then \(f^{\prime}(x)=1 /\left(n x^{n-1}\right)\).

In Exercises 93-96, find the average rate of change of the function over the given interval. ©mpare this average rate of change with the instantaneous rates of change at the endpoints of the interval.
93. \(f(t)=4 t+5, \quad[1,2]\)
94. \(f(t)=t^{2}-7, \quad[3,3.1]\)
95. \(f(x)=\frac{-1}{x}, \quad[1,2]\)
96. \(f(x)=\sin x, \quad\left[0, \frac{\pi}{6}\right]\)

Vertical Motion In Exercises 97 and 98, use the position function \(s(t)=-16 t^{2}+v_{0} t+s_{0}\) for free-falling obegcts.
97. A silver dollar is dropped from the top of a building that is 1362 feet tall.
(a) Determine the position and velocity functions for the coin.
(b) Determine the average velocity on the interval [1, 2].
(c) Find the instantaneous velocities when \(t=1\) and \(t=2\).
(d) Find the time required for the coin to reach ground level.
(e) Find the velocity of the coin at impact.
98. A ball is thrown straight down from the top of a 220 -foot building with an initial velocity of -22 feet per second. What is its velocity after 3 seconds? What is its velocity after falling 108 feet?

Vertical Motion In Exercises 99 and 100, use the position function \(s(t)=-4.9 t^{2}+v_{0} t+s_{0}\) for free-falling obẹcts.
99. A projectile is shot upward from the surface of Earth with an initial velocity of 120 meters per second. What is its velocity after 5 seconds? After 10 seconds?
100. To estimate the height of a building, a stone is dropped from the top of the building into a pool of water at ground level. How high is the building if the splash is seen 5.6 seconds after the stone is dropped?

Think About It In Exercises 101 and 102, the graph of a position function is shown. It represents the distance in miles that a person drives during a 10-minute trip to work. AKe a sketch of the corresponding velocity function.
101.

102.


Think About It In Exercises 103 and 104, the graph of a velocity function is shown. It represents the velocity in miles per hour during a 10 -minute drive to work. aife a sketch of the corresponding position function.
103.

104.

105. Modeling Data The stopping distance of an automobile, on dry, level pavement, traveling at a speed \(v\) (kilometers per hour) is the distance \(R\) (meters) the car travels during the reaction time of the driver plus the distance \(B\) (meters) the car travels after the brakes are applied (see figure). The table shows the results of an experiment.

(a) Use the regression capabilities of a graphing utility to find a linear model for reaction time distance.
(b) Use the regression capabilities of a graphing utility to find a quadratic model for braking distance.
(c) Determine the polynomial giving the total stopping distance \(T\).
(d) Use a graphing utility to graph the functions \(R, B\), and \(T\) in the same viewing window.
(e) Find the derivative of \(T\) and the rates of change of the total stopping distance for \(v=40, v=80\), and \(v=100\).
(f) Use the results of this exercise to draw conclusions about the total stopping distance as speed increases.
106. Fuel Cost A car is driven 15,000 miles a year and gets \(x\) miles per gallon. Assume that the average fuel cost is \(\$ 2.76\) per gallon. Find the annual cost of fuel \(C\) as a function of \(x\) and use this function to complete the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & 10 & 15 & 20 & 25 & 30 & 35 & 40 \\
\hline\(C\) & & & & & & & \\
\hline\(d C / d x\) & & & & & & & \\
\hline
\end{tabular}

Who would benefit more from a one-mile-per-gallon increase in fuel efficiency-the driver of a car that gets 15 miles per gallon or the driver of a car that gets 35 miles per gallon? Explain.
107. Volume The volume of a cube with sides of length \(s\) is given by \(V=s^{3}\). Find the rate of change of the volume with respect to \(s\) when \(s=6\) centimeters.
108. Area The area of a square with sides of length \(s\) is given by \(A=s^{2}\). Find the rate of change of the area with respect to \(s\) when \(s=6\) meters.
109. Velocity Verify that the average velocity over the time interval \(\left[t_{0}-\Delta t, t_{0}+\Delta t\right]\) is the same as the instantaneous velocity at \(t=t_{0}\) for the position function
\(s(t)=-\frac{1}{2} a t^{2}+c\).
110. Inventory Management The annual inventory \(\operatorname{cost} C\) for a manufacturer is
\(C=\frac{1,008,000}{Q}+6.3 Q\)
where \(Q\) is the order size when the inventory is replenished. Find the change in annual cost when \(Q\) is increased from 350 to 351 , and compare this with the instantaneous rate of change when \(Q=350\).
111. Writing The number of gallons \(N\) of regular unleaded gasoline sold by a gasoline station at a price of \(p\) dollars per gallon is given by \(N=f(p)\).
(a) Describe the meaning of \(f^{\prime}(2.979)\).
(b) Is \(f^{\prime}(2.979)\) usually positive or negative? Explain.
112. Newton's Law of Cooling This law states that the rate of change of the temperature of an object is proportional to the difference between the object's temperature \(T\) and the temperature \(T_{a}\) of the surrounding medium. Write an equation for this law.
113. Find an equation of the parabola \(y=a x^{2}+b x+c\) that passes through \((0,1)\) and is tangent to the line \(y=x-1\) at \((1,0)\).
114. Let \((a, b)\) be an arbitrary point on the graph of \(y=1 / x\), \(x>0\). Prove that the area of the triangle formed by the tangent line through \((a, b)\) and the coordinate axes is 2 .
115. Find the tangent line(s) to the curve \(y=x^{3}-9 x\) through the point \((1,-9)\).
116. Find the equation(s) of the tangent line(s) to the parabola \(y=x^{2}\) through the given point.
(a) \((0, a)\)
(b) \((a, 0)\)

Are there any restrictions on the constant \(a\) ?
In Exercises 117 and 118, find \(a\) and \(b\) such that \(f\) is differentiable everywhere.
117. \(f(x)= \begin{cases}a x^{3}, & x \leq 2 \\ x^{2}+b, & x>2\end{cases}\)
118. \(f(x)= \begin{cases}\cos x, & x<0 \\ a x+b, & x \geq 0\end{cases}\)
119. Where are the functions \(f_{1}(x)=|\sin x|\) and \(f_{2}(x)=\sin |x|\) differentiable?
120. Prove that \(\frac{d}{d x}[\cos x]=-\sin x\).

\section*{- FQ FURTER INBMIID}

For a geometric interpretation of the derivatives of trigonometric functions, see the article "Sines and Cosines of the Times" by Victor J. Katz in Math Horizons. To view this article, go to the website www.matharticles.com.

\subsection*{2.3 Product and Quotient Rules and Higher-Order Derivatives}
- Find the derivative of a function using the Product Rule.
- Find the derivative of a function using the Quotient Rule.
- Find the derivative of a trigonometric function.
- Find a higher-order derivative of a function.

\section*{The Product Rule}

In Section 2.2 you learned that the derivative of the sum of two functions is simply the sum of their derivatives. The rules for the derivatives of the product and quotient of two functions are not as simple.

\section*{THEOREM 2.7 THE PRODUCT RULE}

The product of two differentiable functions \(f\) and \(g\) is itself differentiable. Moreover, the derivative of \(f g\) is the first function times the derivative of the second, plus the second function times the derivative of the first.
\[
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\]

The advantage of this form is that it generalizes easily to products of three or more factors.
NOTE A version of the Product Rule that some people prefer is
\[
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\]

NOTE The proof of the Product Rule for products of more than two factors is left as an exercise (see Exercise 141).
\[
\begin{aligned}
\frac{d}{d x}[f(x) g(x)] & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[f(x+\Delta x) \frac{g(x+\Delta x)-g(x)}{\Delta x}+g(x) \frac{f(x+\Delta x)-f(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[f(x+\Delta x) \frac{g(x+\Delta x)-g(x)}{\Delta x}\right]+\lim _{\Delta x \rightarrow 0}\left[g(x) \frac{f(x+\Delta x)-f(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} g(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
\]

Note that \(\lim _{\Delta x \rightarrow 0} f(x+\Delta x)=f(x)\) because \(f\) is given to be differentiable and therefore is continuous.

The Product Rule can be extended to cover products involving more than two factors. For example, if \(f, g\), and \(h\) are differentiable functions of \(x\), then
\[
\frac{d}{d x}[f(x) g(x) h(x)]=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)
\]

For instance, the derivative of \(y=x^{2} \sin x \cos x\) is
\[
\begin{aligned}
\frac{d y}{d x} & =2 x \sin x \cos x+x^{2} \cos x \cos x+x^{2} \sin x(-\sin x) \\
& =2 x \sin x \cos x+x^{2}\left(\cos ^{2} x-\sin ^{2} x\right)
\end{aligned}
\]

\section*{THE PRODUCT RULE}

When Leibniz originally wrote a formula for the Product Rule, he was motivated by the expression
\[
(x+d x)(y+d y)-x y
\]
from which he subtracted \(d x d y\) (as being negligible) and obtained the differential form \(x d y+y d x\). This derivation resulted in the traditional form of the Product Rule. (Source: The History of Mathematics by David M. Burton)

NOTE In Example 3, notice that you use the Product Rule when both factors of the product are variable, and you use the Constant Multiple Rule when one of the factors is a constant.

The derivative of a product of two functions is not (in general) given by the product of the derivatives of the two functions. To see this, try comparing the product of the derivatives of \(f(x)=3 x-2 x^{2}\) and \(g(x)=5+4 x\) with the derivative in Example 1 .

\section*{EXAMPLE 1 Using the Product Rule}

Find the derivative of \(h(x)=\left(3 x-2 x^{2}\right)(5+4 x)\).
Solution
\[
\begin{aligned}
h^{\prime}(x) & =\overbrace{\left(3 x-2 x^{2}\right)}^{\text {First }} \overbrace{\frac{d}{d x}[5+4 x]}^{\begin{array}{c}
\text { Derivative } \\
\text { ocond }
\end{array}}+\overbrace{(5+4 x)}^{\text {Second }} \overbrace{\frac{d}{d x}\left[3 x-2 x^{2}\right]}^{\begin{array}{c}
\text { Derivative } \\
\text { of first }
\end{array}} \quad \text { Apply Product Rule. } \\
& =\left(3 x-2 x^{2}\right)(4)+(5+4 x)(3-4 x) \\
& =\left(12 x-8 x^{2}\right)+\left(15-8 x-16 x^{2}\right) \\
& =-24 x^{2}+4 x+15
\end{aligned}
\]

In Example 1, you have the option of finding the derivative with or without the Product Rule. To find the derivative without the Product Rule, you can write
\[
\begin{aligned}
D_{x}\left[\left(3 x-2 x^{2}\right)(5+4 x)\right] & =D_{x}\left[-8 x^{3}+2 x^{2}+15 x\right] \\
& =-24 x^{2}+4 x+15
\end{aligned}
\]

In the next example, you must use the Product Rule.

\section*{EXAMPLE 2 Using the Product Rule}

Find the derivative of \(y=3 x^{2} \sin x\).
Solution
\[
\begin{aligned}
\frac{d}{d x}\left[3 x^{2} \sin x\right] & =3 x^{2} \frac{d}{d x}[\sin x]+\sin x \frac{d}{d x}\left[3 x^{2}\right] \quad \text { Apply Product Rule. } \\
& =3 x^{2} \cos x+(\sin x)(6 x) \\
& =3 x^{2} \cos x+6 x \sin x \\
& =3 x(x \cos x+2 \sin x)
\end{aligned}
\]

\section*{EXAMPLE 3 Using the Product Rule}

Find the derivative of \(y=2 x \cos x-2 \sin x\).
Solution
\[
\begin{aligned}
\frac{d y}{d x} & =\overbrace{(2 x)\left(\frac{d}{d x}[\cos x]\right)+(\cos x)\left(\frac{d}{d x}[2 x]\right)}^{\text {Product Rule }}-\overbrace{2 \frac{d}{d x}[\sin x]}^{\text {Constant Multiple Rule }} \\
& =(2 x)(-\sin x)+(\cos x)(2)-2(\cos x) \\
& =-2 x \sin x
\end{aligned}
\]

\section*{The Quotient Rule}

\section*{THEOREM 2.8 THE QUOTIENT RULE}

The quotient \(f / g\) of two differentiable functions \(f\) and \(g\) is itself differentiable at all values of \(x\) for which \(g(x) \neq 0\). Moreover, the derivative of \(f / g\) is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.
\[
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}, \quad g(x) \neq 0
\]
(PR00F As with the proof of Theorem 2.7, the key to this proof is subtracting and adding the same quantity.
\[
\begin{aligned}
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] & =\lim _{\Delta x \rightarrow 0} \frac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{g(x) f(x+\Delta x)-f(x) g(x+\Delta x)}{\Delta x g(x) g(x+\Delta x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{g(x) f(x+\Delta x)-f(x) g(x)+f(x) g(x)-f(x) g(x+\Delta x)}{\Delta x g(x) g(x+\Delta x)} \\
& =\frac{\lim _{\Delta x \rightarrow 0} \frac{g(x)[f(x+\Delta x)-f(x)]}{\Delta x}-\lim _{\Delta x \rightarrow 0} \frac{f(x)[g(x+\Delta x)-g(x)]}{\Delta x}}{\lim _{\Delta x \rightarrow 0}[g(x) g(x+\Delta x)]} \\
& =\frac{g(x)\left[\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\right]-f(x)\left[\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}\right]}{\lim _{\Delta x \rightarrow 0}[g(x) g(x+\Delta x)]} \\
& =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
\]

Note that \(\lim _{\Delta x \rightarrow 0} g(x+\Delta x)=g(x)\) because \(g\) is given to be differentiable and therefore is continuous.

\section*{EXAMPLE 4 Using the Quotient Rule}

Find the derivative of \(y=\frac{5 x-2}{x^{2}+1}\).
Solution
\[
\begin{aligned}
\frac{d}{d x}\left[\frac{5 x-2}{x^{2}+1}\right] & =\frac{\left(x^{2}+1\right) \frac{d}{d x}[5 x-2]-(5 x-2) \frac{d}{d x}\left[x^{2}+1\right]}{\left(x^{2}+1\right)^{2}} \quad \text { Apply Quotient Rule. } \\
& =\frac{\left(x^{2}+1\right)(5)-(5 x-2)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(5 x^{2}+5\right)-\left(10 x^{2}-4 x\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{-5 x^{2}+4 x+5}{\left(x^{2}+1\right)^{2}}
\end{aligned}
\]


The line \(y=1\) is tangent to the graph of \(f(x)\) at the point \((-1,1)\).
Figure 2.23

NOTE To see the benefit of using the Constant Multiple Rule for some quotients, try using the Quotient Rule to differentiate the functions in Example 6-you should obtain the same results, but with more work.

Note the use of parentheses in Example 4. A liberal use of parentheses is recommended for all types of differentiation problems. For instance, with the Quotient Rule, it is a good idea to enclose all factors and derivatives in parentheses, and to pay special attention to the subtraction required in the numerator.

When differentiation rules were introduced in the preceding section, the need for rewriting before differentiating was emphasized. The next example illustrates this point with the Quotient Rule.

\section*{EXAMPLE 5 Rewriting Before Differentiating}

Find an equation of the tangent line to the graph of \(f(x)=\frac{3-(1 / x)}{x+5}\) at \((-1,1)\).
Solution Begin by rewriting the function.
\[
\begin{array}{rlrl}
f(x) & =\frac{3-(1 / x)}{x+5} & & \text { Write original function. } \\
& =\frac{x\left(3-\frac{1}{x}\right)}{x(x+5)} & & \text { Multiply numerator and denominator by } x . \\
& =\frac{3 x-1}{x^{2}+5 x} & & \text { Rewrite. } \\
f^{\prime}(x) & =\frac{\left(x^{2}+5 x\right)(3)-(3 x-1)(2 x+5)}{\left(x^{2}+5 x\right)^{2}} & \text { Quotient Rule } \\
& =\frac{\left(3 x^{2}+15 x\right)-\left(6 x^{2}+13 x-5\right)}{\left(x^{2}+5 x\right)^{2}} & &
\end{array}
\]

To find the slope at \((-1,1)\), evaluate \(f^{\prime}(-1)\).
\[
f^{\prime}(-1)=0 \quad \text { Slope of graph at }(-1,1)
\]

Then, using the point-slope form of the equation of a line, you can determine that the equation of the tangent line at \((-1,1)\) is \(y=1\). See Figure 2.23.

Not every quotient needs to be differentiated by the Quotient Rule. For example, each quotient in the next example can be considered as the product of a constant times a function of \(x\). In such cases it is more convenient to use the Constant Multiple Rule.

\section*{EXAMPLE 6 Using the Constant Multiple Rule}

Original Function
a. \(y=\frac{x^{2}+3 x}{6}\)
b. \(y=\frac{5 x^{4}}{8}\)
c. \(y=\frac{-3\left(3 x-2 x^{2}\right)}{7 x}\)
d. \(y=\frac{9}{5 x^{2}}\)

Differentiate
\(y^{\prime}=\frac{1}{6}(2 x+3)\)
Simplify
\(y^{\prime}=\frac{2 x+3}{6}\)
\(y^{\prime}=\frac{5}{8}\left(4 x^{3}\right) \quad y^{\prime}=\frac{5}{2} x^{3}\)
\(y^{\prime}=-\frac{3}{7}(-2)\)
\(y^{\prime}=\frac{6}{7}\)
\(y^{\prime}=\frac{9}{5}\left(-2 x^{-3}\right)\)
\(y^{\prime}=-\frac{18}{5 x^{3}}\)

In Section 2.2, the Power Rule was proved only for the case in which the exponent \(n\) is a positive integer greater than 1 . The next example extends the proof to include negative integer exponents.

\section*{EXAMPLE 7 Proof of the Power Rule (Negative Integer Exponents)}

If \(n\) is a negative integer, there exists a positive integer \(k\) such that \(n=-k\). So, by the Quotient Rule, you can write
\[
\begin{array}{rlr}
\frac{d}{d x}\left[x^{n}\right] & =\frac{d}{d x}\left[\frac{1}{x^{k}}\right] & \\
& =\frac{x^{k}(0)-(1)\left(k x^{k-1}\right)}{\left(x^{k}\right)^{2}} & \\
& =\frac{0-k x^{k-1}}{x^{2 k}} & \\
& =-k x^{-k-1} & \\
& =n x^{n-1} . & n=-k
\end{array}
\]

So, the Power Rule
\[
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
\]

Power Rule
is valid for any integer. In Exercise 76 in Section 2.5, you are asked to prove the case for which \(n\) is any rational number.

\section*{Derivatives of Trigonometric Functions}

Knowing the derivatives of the sine and cosine functions, you can use the Quotient Rule to find the derivatives of the four remaining trigonometric functions.

\section*{THEOREM 2.9 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS}
\[
\begin{aligned}
\frac{d}{d x}[\tan x] & =\sec ^{2} x & \frac{d}{d x}[\cot x] & =-\csc ^{2} x \\
\frac{d}{d x}[\sec x] & =\sec x \tan x & \frac{d}{d x}[\csc x] & =-\csc x \cot x
\end{aligned}
\]
(PROOF Considering \(\tan x=(\sin x) /(\cos x)\) and applying the Quotient Rule, you obtain
\[
\begin{aligned}
\frac{d}{d x}[\tan x] & =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x} \quad \text { Apply Quotient Rule. } \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
\]

The proofs of the other three parts of the theorem are left as an exercise (see Exercise 89).

NOTE Because of trigonometric identities, the derivative of a trigonometric function can take many forms. This presents a challenge when you are trying to match your answers to those given in the back of the text.

Function
a. \(y=x-\tan x\)
b. \(y=x \sec x\)

Derivative
\[
\begin{aligned}
\frac{d y}{d x} & =1-\sec ^{2} x \\
y^{\prime} & =x(\sec x \tan x)+(\sec x)(1) \\
& =(\sec x)(1+x \tan x)
\end{aligned}
\]

\section*{EXAMPLE 9 Different Forms of a Derivative}

Differentiate both forms of \(y=\frac{1-\cos x}{\sin x}=\csc x-\cot x\).

\section*{Solution}

First form: \(y=\frac{1-\cos x}{\sin x}\)
\[
\begin{aligned}
y^{\prime} & =\frac{(\sin x)(\sin x)-(1-\cos x)(\cos x)}{\sin ^{2} x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x-\cos x}{\sin ^{2} x} \\
& =\frac{1-\cos x}{\sin ^{2} x}
\end{aligned}
\]

Second form: \(\quad y=\csc x-\cot x\)
\[
y^{\prime}=-\csc x \cot x+\csc ^{2} x
\]

To show that the two derivatives are equal, you can write
\[
\begin{aligned}
\frac{1-\cos x}{\sin ^{2} x} & =\frac{1}{\sin ^{2} x}-\left(\frac{1}{\sin x}\right)\left(\frac{\cos x}{\sin x}\right) \\
& =\csc ^{2} x-\csc x \cot x .
\end{aligned}
\]

The summary below shows that much of the work in obtaining a simplified form of a derivative occurs after differentiating. Note that two characteristics of a simplified form are the absence of negative exponents and the combining of like terms.
\begin{tabular}{|l|c|c|}
\hline & \(f^{\prime}(x)\) After Differentiating & \(f^{\prime}(x)\) After Simplifying \\
\hline Example 1 & \(\left(3 x-2 x^{2}\right)(4)+(5+4 x)(3-4 x)\) & \(-24 x^{2}+4 x+15\) \\
\hline Example 3 & \((2 x)(-\sin x)+(\cos x)(2)-2(\cos x)\) & \(-2 x \sin x\) \\
\hline Example 4 & \(\frac{\left(x^{2}+1\right)(5)-(5 x-2)(2 x)}{\left(x^{2}+1\right)^{2}}\) & \(\frac{-5 x^{2}+4 x+5}{\left(x^{2}+1\right)^{2}}\) \\
\hline Example 5 & \(\frac{\left(x^{2}+5 x\right)(3)-(3 x-1)(2 x+5)}{\left(x^{2}+5 x\right)^{2}}\) & \(\frac{-3 x^{2}+2 x+5}{\left(x^{2}+5 x\right)^{2}}\) \\
\hline Example 9 & \(\frac{(\sin x)(\sin x)-(1-\cos x)(\cos x)}{\sin ^{2} x}\) & \(\frac{1-\cos x}{\sin ^{2} x}\) \\
\hline
\end{tabular}

NOTE The second derivative of \(f\) is the derivative of the first derivative of \(f\).


The moon's mass is \(7.349 \times 10^{22}\) kilograms, and Earth's mass is \(5.976 \times 10^{24}\) kilograms. The moon's radius is 1737 kilometers, and Earth's radius is 6378 kilometers. Because the gravitational force on the surface of a planet is directly proportional to its mass and inversely proportional to the square of its radius, the ratio of the gravitational force on Earth to the gravitational force on the moon is
\[
\frac{\left(5.976 \times 10^{24}\right) / 6378^{2}}{\left(7.349 \times 10^{22}\right) / 1737^{2}} \approx 6.0
\]

\section*{Higher-Order Derivatives}

Just as you can obtain a velocity function by differentiating a position function, you can obtain an acceleration function by differentiating a velocity function. Another way of looking at this is that you can obtain an acceleration function by differentiating a position function twice.
\[
\begin{aligned}
s(t) & \text { Position function } \\
v(t)=s^{\prime}(t) & \text { Velocity function } \\
a(t)=v^{\prime}(t)=s^{\prime \prime}(t) & \text { Acceleration function }
\end{aligned}
\]

The function given by \(a(t)\) is the second derivative of \(s(t)\) and is denoted by \(s^{\prime \prime}(t)\).
The second derivative is an example of a higher-order derivative. You can define derivatives of any positive integer order. For instance, the third derivative is the derivative of the second derivative. Higher-order derivatives are denoted as follows.

First derivative: \(\quad y^{\prime}, \quad f^{\prime}(x), \quad \frac{d y}{d x}, \quad \frac{d}{d x}[f(x)], \quad D_{x}[y]\)
Second derivative: \(y^{\prime \prime}, \quad f^{\prime \prime}(x)\),
\[
\frac{d^{2} y}{d x^{2}}, \quad \frac{d^{2}}{d x^{2}}[f(x)], \quad D_{x}^{2}[y]
\]

Third derivative: \(\quad y^{\prime \prime \prime}, \quad f^{\prime \prime \prime}(x), \quad \frac{d^{3} y}{d x^{3}}, \quad \frac{d^{3}}{d x^{3}}[f(x)], \quad D_{x}^{3}[y]\)
Fourth derivative: \(y^{(4)}, \quad f^{(4)}(x), \quad \frac{d^{4} y}{d x^{4}}, \quad \frac{d^{4}}{d x^{4}}[f(x)], \quad D_{x}^{4}[y]\)
\(\vdots\)
nth derivative: \(\quad y^{(n)}, \quad f^{(n)}(x), \quad \frac{d^{n} y}{d x^{n}}, \quad \frac{d^{n}}{d x^{n}}[f(x)], \quad D_{x}^{n}[y]\)

\section*{EXAMPLE 10 Finding the Acceleration Due to Gravity}

Because the moon has no atmosphere, a falling object on the moon encounters no air resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer fall at the same rate on the moon. The position function for each of these falling objects is given by
\[
s(t)=-0.81 t^{2}+2
\]
where \(s(t)\) is the height in meters and \(t\) is the time in seconds. What is the ratio of Earth's gravitational force to the moon's?

Solution To find the acceleration, differentiate the position function twice.
\[
\begin{aligned}
s(t) & =-0.81 t^{2}+2 & & \text { Position function } \\
s^{\prime}(t) & =-1.62 t & & \text { Velocity function } \\
s^{\prime \prime}(t) & =-1.62 & & \text { Acceleration function }
\end{aligned}
\]

So, the acceleration due to gravity on the moon is -1.62 meters per second per second. Because the acceleration due to gravity on Earth is -9.8 meters per second per second, the ratio of Earth's gravitational force to the moon's is
\[
\begin{aligned}
\frac{\text { Earth's gravitational force }}{\text { Moon's gravitational force }} & =\frac{-9.8}{-1.62} \\
& \approx 6.0
\end{aligned}
\]

\subsection*{2.3 Exercises}

In Exercises 1-6, use the Product Rule to differentiate the function.
1. \(g(x)=\left(x^{2}+3\right)\left(x^{2}-4 x\right)\)
2. \(f(x)=(6 x+5)\left(x^{3}-2\right)\)
3. \(h(t)=\sqrt{t}\left(1-t^{2}\right)\)
4. \(g(s)=\sqrt{s}\left(s^{2}+8\right)\)
5. \(f(x)=x^{3} \cos x\)
6. \(g(x)=\sqrt{x} \sin x\)

In Exercises 7-12, use the Quotient Rule to differentiate the function.
7. \(f(x)=\frac{x}{x^{2}+1}\)
8. \(g(t)=\frac{t^{2}+4}{5 t-3}\)
9. \(h(x)=\frac{\sqrt{x}}{x^{3}+1}\)
10. \(h(s)=\frac{s}{\sqrt{s}-1}\)
11. \(g(x)=\frac{\sin x}{x^{2}}\)
12. \(f(t)=\frac{\cos t}{t^{3}}\)

In Exercises 13-18, find \(f^{\prime}(x)\) and \(f^{\prime}(c)\).
13. \(\frac{\text { Function }}{f(x)=\left(x^{3}+4 x\right)\left(3 x^{2}+2 x-5\right)}\)
\[
\frac{\text { Value of } c}{c=0}
\]
14. \(f(x)=\left(x^{2}-2 x+1\right)\left(x^{3}-1\right)\)
\[
c=1
\]
15. \(f(x)=\frac{x^{2}-4}{x-3}\)
\[
c=1
\]
16. \(f(x)=\frac{x+5}{x-5}\)
\(c=4\)
17. \(f(x)=x \cos x\)
\(c=\frac{\pi}{4}\)
18. \(f(x)=\frac{\sin x}{x}\)
\(c=\frac{\pi}{6}\)

In Exercises 19-24, complete the table without using the Quotient Rule.


In Exercises 25-38, find the derivative of the algebraic function.
25. \(f(x)=\frac{4-3 x-x^{2}}{x^{2}-1}\)
26. \(f(x)=\frac{x^{3}+5 x+3}{x^{2}-1}\)
27. \(f(x)=x\left(1-\frac{4}{x+3}\right)\)
28. \(f(x)=x^{4}\left(1-\frac{2}{x+1}\right)\)
29. \(f(x)=\frac{3 x-1}{\sqrt{x}}\)
30. \(f(x)=\sqrt[3]{x}(\sqrt{x}+3)\)
31. \(h(s)=\left(s^{3}-2\right)^{2}\)
32. \(h(x)=\left(x^{2}-1\right)^{2}\)
33. \(f(x)=\frac{2-\frac{1}{x}}{x-3}\)
34. \(g(x)=x^{2}\left(\frac{2}{x}-\frac{1}{x+1}\right)\)
35. \(f(x)=\left(2 x^{3}+5 x\right)(x-3)(x+2)\)
36. \(f(x)=\left(x^{3}-x\right)\left(x^{2}+2\right)\left(x^{2}+x-1\right)\)
37. \(f(x)=\frac{x^{2}+c^{2}}{x^{2}-c^{2}}, \quad c\) is a constant
38. \(f(x)=\frac{c^{2}-x^{2}}{c^{2}+x^{2}}, \quad c\) is a constant

In Exercises 39-54, find the derivative of the trigonometric function.
39. \(f(t)=t^{2} \sin t\)
40. \(f(\theta)=(\theta+1) \cos \theta\)
41. \(f(t)=\frac{\cos t}{t}\)
42. \(f(x)=\frac{\sin x}{x^{3}}\)
43. \(f(x)=-x+\tan x\)
44. \(y=x+\cot x\)
45. \(g(t)=\sqrt[4]{t}+6 \csc t\)
46. \(h(x)=\frac{1}{x}-12 \sec x\)
47. \(y=\frac{3(1-\sin x)}{2 \cos x}\)
48. \(y=\frac{\sec x}{x}\)
49. \(y=-\csc x-\sin x\)
50. \(y=x \sin x+\cos x\)
51. \(f(x)=x^{2} \tan x\)
52. \(f(x)=\sin x \cos x\)
53. \(y=2 x \sin x+x^{2} \cos x\)
54. \(h(\theta)=5 \theta \sec \theta+\theta \tan \theta\)

CAS In Exercises 55-58, use a computer algebra system to differentiate the function.
55. \(g(x)=\left(\frac{x+1}{x+2}\right)(2 x-5)\)
56. \(f(x)=\left(\frac{x^{2}-x-3}{x^{2}+1}\right)\left(x^{2}+x+1\right)\)
57. \(g(\theta)=\frac{\theta}{1-\sin \theta}\)
58. \(f(\theta)=\frac{\sin \theta}{1-\cos \theta}\)

In Exercises 59-62, evaluate the derivative of the function at the given point. Use a graphing utility to verify your result.

Function
59. \(y=\frac{1+\csc x}{1-\csc x}\)

\section*{Point}
\(\left(\frac{\pi}{6},-3\right)\)
60. \(f(x)=\tan x \cot x\) \((1,1)\)
61. \(h(t)=\frac{\sec t}{t}\) \(\left(\pi,-\frac{1}{\pi}\right)\)
62. \(f(x)=\sin x(\sin x+\cos x)\)

In Exercises 63-68, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.
63. \(f(x)=\left(x^{3}+4 x-1\right)(x-2), \quad(1,-4)\)
64. \(f(x)=(x+3)\left(x^{2}-2\right), \quad(-2,2)\)
65. \(f(x)=\frac{x}{x+4}, \quad(-5,5)\)
66. \(f(x)=\frac{(x-1)}{(x+1)}, \quad\left(2, \frac{1}{3}\right)\)
67. \(f(x)=\tan x, \quad\left(\frac{\pi}{4}, 1\right)\)
68. \(f(x)=\sec x,\left(\frac{\pi}{3}, 2\right)\)

Famous Curves In Exercises 69-72, find an equation of the tangent line to the graph at the given point. (The graphs in Exercises 69 and 70 are called Witches of Agnesi. The graphs in Exercises 71 and 72 are called serpentines.)
69.

70.

71.

72.


In Exercises 73-76, determine the point(s) at which the graph of the function has a horizontal tangent line.
73. \(f(x)=\frac{2 x-1}{x^{2}}\)
74. \(f(x)=\frac{x^{2}}{x^{2}+1}\)
75. \(f(x)=\frac{x^{2}}{x-1}\)
76. \(f(x)=\frac{x-4}{x^{2}-7}\)
77. Tangent Lines Find equations of the tangent lines to the graph of \(f(x)=(x+1) /(x-1)\) that are parallel to the line \(2 y+x=6\). Then graph the function and the tangent lines.
78. Tangent Lines Find equations of the tangent lines to the graph of \(f(x)=x /(x-1)\) that pass through the point \((-1,5)\). Then graph the function and the tangent lines.

In Exercises 79 and 80, verify that \(f^{\prime}(x)=g^{\prime}(x)\), and explain the relationship between \(f\) and \(g\).
79. \(f(x)=\frac{3 x}{x+2}, g(x)=\frac{5 x+4}{x+2}\)
80. \(f(x)=\frac{\sin x-3 x}{x}, g(x)=\frac{\sin x+2 x}{x}\)

In Exercises 81 and 82, use the graphs of \(f\) and \(g\). Let \(p(x)=f(x) g(x)\) and \(q(x)=f(x) / g(x)\).
81. (a) Find \(p^{\prime}(1)\).
(b) Find \(q^{\prime}(4)\).

82. (a) Find \(p^{\prime}(4)\).
(b) Find \(q^{\prime}(7)\).

83. Area The length of a rectangle is given by \(6 t+5\) and its height is \(\sqrt{t}\), where \(t\) is time in seconds and the dimensions are in centimeters. Find the rate of change of the area with respect to time.
84. Volume The radius of a right circular cylinder is given by \(\sqrt{t+2}\) and its height is \(\frac{1}{2} \sqrt{t}\), where \(t\) is time in seconds and the dimensions are in inches. Find the rate of change of the volume with respect to time.
85. Inventory Replenishment The ordering and transportation cost \(C\) for the components used in manufacturing a product is
\(C=100\left(\frac{200}{x^{2}}+\frac{x}{x+30}\right), \quad x \geq 1\)
where \(C\) is measured in thousands of dollars and \(x\) is the order size in hundreds. Find the rate of change of \(C\) with respect to \(x\) when (a) \(x=10\), (b) \(x=15\), and (c) \(x=20\). What do these rates of change imply about increasing order size?
86. Boyle's Law This law states that if the temperature of a gas remains constant, its pressure is inversely proportional to its volume. Use the derivative to show that the rate of change of the pressure is inversely proportional to the square of the volume.
87. Population Growth A population of 500 bacteria is introduced into a culture and grows in number according to the equation
\(P(t)=500\left(1+\frac{4 t}{50+t^{2}}\right)\)
where \(t\) is measured in hours. Find the rate at which the population is growing when \(t=2\).
88. Gravitational Force Newton's Law of Universal Gravitation states that the force \(F\) between two masses, \(m_{1}\) and \(m_{2}\), is
\(F=\frac{G m_{1} m_{2}}{d^{2}}\)
where \(G\) is a constant and \(d\) is the distance between the masses. Find an equation that gives an instantaneous rate of change of \(F\) with respect to \(d\). (Assume that \(m_{1}\) and \(m_{2}\) represent moving points.)
89. Prove the following differentiation rules.
(a) \(\frac{d}{d x}[\sec x]=\sec x \tan x\)
(b) \(\frac{d}{d x}[\csc x]=-\csc x \cot x\)
(c) \(\frac{d}{d x}[\cot x]=-\csc ^{2} x\)
90. Rate of Change Determine whether there exist any values of \(x\) in the interval \([0,2 \pi)\) such that the rate of change of \(f(x)=\sec x\) and the rate of change of \(g(x)=\csc x\) are equal.
91. Modeling Data The table shows the quantities \(q\) (in millions) of personal computers shipped in the United States and the values \(v\) (in billions of dollars) of these shipments for the years 1999 through 2004. The year is represented by \(t\), with \(t=9\) corresponding to 1999. (Source: U.S. Census Bureau)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Year, \(t\) & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline\(q\) & 19.6 & 15.9 & 14.6 & 12.9 & 15.0 & 15.8 \\
\hline\(v\) & 26.8 & 22.6 & 18.9 & 16.2 & 14.7 & 15.3 \\
\hline
\end{tabular}
(a) Use a graphing utility to find cubic models for the quantity of personal computers shipped \(q(t)\) and the value \(v(t)\) of the personal computers.
(b) Graph each model found in part (a).
(c) Find \(A=v(t) / q(t)\), then graph \(A\). What does this function represent?
(d) Interpret \(A^{\prime}(t)\) in the context of these data.
92. Satellites When satellites observe Earth, they can scan only part of Earth's surface. Some satellites have sensors that can measure the angle \(\theta\) shown in the figure. Let \(h\) represent the satellite's distance from Earth's surface and let \(r\) represent Earth's radius.

(a) Show that \(h=r(\csc \theta-1)\).
(b) Find the rate at which \(h\) is changing with respect to \(\theta\) when \(\theta=30^{\circ}\). (Assume \(r=3960\) miles.)

In Exercises 93-100, find the second derivative of the function.
93. \(f(x)=x^{4}+2 x^{3}-3 x^{2}-x\)
94. \(f(x)=8 x^{6}-10 x^{5}+5 x^{3}\)
95. \(f(x)=4 x^{3 / 2}\)
96. \(f(x)=x+32 x^{-2}\)
97. \(f(x)=\frac{x}{x-1}\)
98. \(f(x)=\frac{x^{2}+2 x-1}{x}\)
99. \(f(x)=x \sin x\)
100. \(f(x)=\sec x\)

In Exercises 101-104, find the given higher-order derivative.
101. \(f^{\prime}(x)=x^{2}, \quad f^{\prime \prime}(x)\)
102. \(f^{\prime \prime}(x)=2-\frac{2}{x}, \quad f^{\prime \prime \prime}(x)\)
103. \(f^{\prime \prime \prime}(x)=2 \sqrt{x}, \quad f^{(4)}(x)\)
104. \(f^{(4)}(x)=2 x+1, \quad f^{(6)}(x)\)

In Exercises 105-108, use the given information to find \(f^{\prime}(2)\).
\(g(2)=3 \quad\) and \(\quad g^{\prime}(2)=-2\)
\(h(2)=-1 \quad\) and \(\quad h^{\prime}(2)=4\)
105. \(f(x)=2 g(x)+h(x)\)
106. \(f(x)=4-h(x)\)
107. \(f(x)=\frac{g(x)}{h(x)}\)
108. \(f(x)=g(x) h(x)\)

\section*{WRITING ABOUT CONCEPTS}
109. Sketch the graph of a differentiable function \(f\) such that \(f(2)=0, f^{\prime}<0\) for \(-\infty<x<2\), and \(f^{\prime}>0\) for \(2<x<\infty\). Explain how you found your answer.
110. Sketch the graph of a differentiable function \(f\) such that \(f>0\) and \(f^{\prime}<0\) for all real numbers \(x\). Explain how you found your answer.

In Exercises 111 and 112, the graphs of \(f, f^{\prime}\), and \(f^{\prime \prime}\) are shown on the same set of coordinate axes. Identify each graph. Explain your reasoning. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
111.

112.


In Exercises 113-116, the graph of \(f\) is shown. Sketch the graphs of \(f^{\prime}\) and \(f^{\prime \prime}\). To print an enlarged copy of the graph, go to the website \(w w\) w.mathgraphs.com.
113.

114.


117. Acceleration The velocity of an object in meters per second is \(v(t)=36-t^{2}, 0 \leq t \leq 6\). Find the velocity and acceleration of the object when \(t=3\). What can be said about the speed of the object when the velocity and acceleration have opposite signs?
118. Acceleration An automobile's velocity starting from rest is \(v(t)=\frac{100 t}{2 t+15}\)
where \(v\) is measured in feet per second. Find the acceleration at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.
119. Stopping Distance A car is traveling at a rate of 66 feet per second ( 45 miles per hour) when the brakes are applied. The position function for the car is \(s(t)=-8.25 t^{2}+66 t\), where \(s\) is measured in feet and \(t\) is measured in seconds. Use this function to complete the table, and find the average velocity during each time interval.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(s(t)\) & & & & & \\
\hline\(v(t)\) & & & & & \\
\hline\(a(t)\) & & & & & \\
\hline
\end{tabular}

\section*{CAPSTONE}
120. Particle Motion The figure shows the graphs of the position, velocity, and acceleration functions of a particle.
(a) Copy the graphs of the functions shown. Identify each graph. Explain your reasoning. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(b) On your sketch, identify
 when the particle speeds up and when it slows down. Explain your reasoning.

Finding a Pattern In Exercises 121 and 122, develop a general rule for \(f^{(n)}(x)\) given \(f(x)\).
121. \(f(x)=x^{n}\)
122. \(f(x)=\frac{1}{x}\)
123. Finding a Pattern Consider the function \(f(x)=g(x) h(x)\).
(a) Use the Product Rule to generate rules for finding \(f^{\prime \prime}(x)\), \(f^{\prime \prime \prime}(x)\), and \(f^{(4)}(x)\).
(b) Use the results of part (a) to write a general rule for \(f^{(n)}(x)\).
124. Finding a Pattern Develop a general rule for \([x f(x)]^{(n)}\) where \(f\) is a differentiable function of \(x\).

In Exercises 125 and 126, find the derivatives of the function \(f\) for \(n=1,2,3\), and 4 . Use the results to write a general rule for \(f^{\prime}(x)\) in terms of \(n\).
125. \(f(x)=x^{n} \sin x\)
126. \(f(x)=\frac{\cos x}{x^{n}}\)

Differential Equations In Exercises 127-130, verify that the function satisfies the differential equation.

Function
127. \(y=\frac{1}{x}, x>0\)
128. \(y=2 x^{3}-6 x+10\)
129. \(y=2 \sin x+3\)
130. \(y=3 \cos x+\sin x\)

Differential Equation
\[
x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}=0
\]
\[
-y^{\prime \prime \prime}-x y^{\prime \prime}-2 y^{\prime}=-24 x^{2}
\]
\[
y^{\prime \prime}+y=3
\]
\[
y^{\prime \prime}+y=0
\]

True or False? In Exercises 131-136, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
131. If \(y=f(x) g(x)\), then \(d y / d x=f^{\prime}(x) g^{\prime}(x)\).
132. If \(y=(x+1)(x+2)(x+3)(x+4)\), then \(d^{5} y / d x^{5}=0\).
133. If \(f^{\prime}(c)\) and \(g^{\prime}(c)\) are zero and \(h(x)=f(x) g(x)\), then \(h^{\prime}(c)=0\).
134. If \(f(x)\) is an \(n\) th-degree polynomial, then \(f^{(n+1)}(x)=0\).
135. The second derivative represents the rate of change of the first derivative.
136. If the velocity of an object is constant, then its acceleration is zero.
137. Find a second-degree polynomial \(f(x)=a x^{2}+b x+c\) such that its graph has a tangent line with slope 10 at the point \((2,7)\) and an \(x\)-intercept at \((1,0)\).
138. Consider the third-degree polynomial
\(f(x)=a x^{3}+b x^{2}+c x+d, \quad a \neq 0\).
Determine conditions for \(a, b, c\), and \(d\) if the graph of \(f\) has (a) no horizontal tangents, (b) exactly one horizontal tangent, and (c) exactly two horizontal tangents. Give an example for each case.
139. Find the derivative of \(f(x)=x|x|\). Does \(f^{\prime \prime}(0)\) exist?
140. Think About It Let \(f\) and \(g\) be functions whose first and second derivatives exist on an interval \(I\). Which of the following formulas is (are) true?
(a) \(f g^{\prime \prime}-f^{\prime \prime} g=\left(f g^{\prime}-f^{\prime} g\right)^{\prime}\)
(b) \(f g^{\prime \prime}+f^{\prime \prime} g=(f g)^{\prime \prime}\)
141. Use the Product Rule twice to prove that if \(f, g\), and \(h\) are differentiable functions of \(x\), then
\(\frac{d}{d x}[f(x) g(x) h(x)]=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)\).

\subsection*{2.4 The Chain Rule}


Axle 1: \(y\) revolutions per minute
Axle 2: \(u\) revolutions per minute Axle 3: \(x\) revolutions per minute Figure 2.24
- Find the derivative of a composite function using the Chain Rule.
- Find the derivative of a function using the General Power Rule.
- Simplify the derivative of a function using algebra.
- Find the derivative of a trigonometric function using the Chain Rule.

\section*{The Chain Rule}

This text has yet to discuss one of the most powerful differentiation rules-the Chain Rule. This rule deals with composite functions and adds a surprising versatility to the rules discussed in the two previous sections. For example, compare the functions shown below. Those on the left can be differentiated without the Chain Rule, and those on the right are best differentiated with the Chain Rule.
\[
\begin{array}{ll}
\text { Without the Chain Rule } & \text { With the Chain Rule } \\
\cline { 1 - 3 } \begin{array}{l}
y=x^{2}+1
\end{array} & \begin{array}{l}
y=\sqrt{x^{2}+1} \\
y=\sin x
\end{array} \\
y=3 x+2 & y=\sin 6 x \\
y=x+\tan x & y=x+\tan x^{2}
\end{array}
\]

Basically, the Chain Rule states that if \(y\) changes \(d y / d u\) times as fast as \(u\), and \(u\) changes \(d u / d x\) times as fast as \(x\), then \(y\) changes \((d y / d u)(d u / d x)\) times as fast as \(x\).

\section*{EXAMPLE 1 The Derivative of a Composite Function}

A set of gears is constructed, as shown in Figure 2.24, such that the second and third gears are on the same axle. As the first axle revolves, it drives the second axle, which in turn drives the third axle. Let \(y, u\), and \(x\) represent the numbers of revolutions per minute of the first, second, and third axles, respectively. Find \(d y / d u, d u / d x\), and \(d y / d x\), and show that
\[
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
\]

Solution Because the circumference of the second gear is three times that of the first, the first axle must make three revolutions to turn the second axle once. Similarly, the second axle must make two revolutions to turn the third axle once, and you can write
\[
\frac{d y}{d u}=3 \quad \text { and } \quad \frac{d u}{d x}=2 .
\]

Combining these two results, you know that the first axle must make six revolutions to turn the third axle once. So, you can write
\[
\begin{aligned}
& \frac{d y}{d x}=\begin{array}{l}
\text { Rate of change of first axle } \\
\text { with respect to second axle }
\end{array} \\
&=\frac{d y}{d u} \cdot \frac{d u}{d x}=3 \cdot 2=6 \\
&=\begin{array}{l}
\text { Rate of change of second axle } \\
\text { with respect to third axle }
\end{array} \\
& \begin{array}{l}
\text { Rate of change of first axle } \\
\text { with respect to third axle }
\end{array}
\end{aligned}
\]

In other words, the rate of change of \(y\) with respect to \(x\) is the product of the rate of change of \(y\) with respect to \(u\) and the rate of change of \(u\) with respect to \(x\).

\section*{EXPLORATION}

Using the Chain Rule Each of the following functions can be differentiated using rules that you studied in Sections 2.2 and 2.3. For each function, find the derivative using those rules. Then find the derivative using the Chain Rule. Compare your results. Which method is simpler?
a. \(\frac{2}{3 x+1}\)
b. \((x+2)^{3}\)
c. \(\sin 2 x\)

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated below.

\section*{THEOREM 2.10 THE CHAIN RULE}

If \(y=f(u)\) is a differentiable function of \(u\) and \(u=g(x)\) is a differentiable function of \(x\), then \(y=f(g(x))\) is a differentiable function of \(x\) and
\[
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
\]
or, equivalently,
\[
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
\]

PROOF Let \(h(x)=f(g(x))\). Then, using the alternative form of the derivative, you need to show that, for \(x=c\),
\[
h^{\prime}(c)=f^{\prime}(g(c)) g^{\prime}(c)
\]

An important consideration in this proof is the behavior of \(g\) as \(x\) approaches \(c\). A problem occurs if there are values of \(x\), other than \(c\), such that \(g(x)=g(c)\). Appendix A shows how to use the differentiability of \(f\) and \(g\) to overcome this problem. For now, assume that \(g(x) \neq g(c)\) for values of \(x\) other than \(c\). In the proofs of the Product Rule and the Quotient Rule, the same quantity was added and subtracted to obtain the desired form. This proof uses a similar technique-multiplying and dividing by the same (nonzero) quantity. Note that because \(g\) is differentiable, it is also continuous, and it follows that \(g(x) \rightarrow g(c)\) as \(x \rightarrow c\).
\[
\begin{aligned}
h^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{x-c} \\
& =\lim _{x \rightarrow c}\left[\frac{f(g(x))-f(g(c))}{g(x)-g(c)} \cdot \frac{g(x)-g(c)}{x-c}\right], \quad g(x) \neq g(c) \\
& =\left[\lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{g(x)-g(c)}\right]\left[\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}\right] \\
& =f^{\prime}(g(c)) g^{\prime}(c)
\end{aligned}
\]

When applying the Chain Rule, it is helpful to think of the composite function \(f \circ g\) as having two parts-an inner part and an outer part.


The derivative of \(y=f(u)\) is the derivative of the outer function (at the inner function u) times the derivative of the inner function.
\[
y^{\prime}=f^{\prime}(u) \cdot u^{\prime}
\]

STUDY TIP You could also solve the problem in Example 3 without using the Chain Rule by observing that
\[
y=x^{6}+3 x^{4}+3 x^{2}+1
\]
and
\[
y^{\prime}=6 x^{5}+12 x^{3}+6 x
\]

Verify that this is the same as the derivative in Example 3. Which method would you use to find
\[
\frac{d}{d x}\left(x^{2}+1\right)^{50} ?
\]

\section*{EXAMPLE 2 Decomposition of a Composite Function}
\(y=f(g(x))\)
a. \(y=\frac{1}{x+1}\)
b. \(y=\sin 2 x\)
c. \(y=\sqrt{3 x^{2}-x+1}\)
d. \(y=\tan ^{2} x\)
\(\qquad\) \(\underline{y=f(u)}\)
\(y=\frac{1}{u}\)
\(u=x+1\)
\(u=2 x\)
\(y=\sin u\)
\(u=3 x^{2}-x+1\)
\(u=\tan x\)
\(y=\sqrt{u}\)
\(y=u^{2}\)

\section*{EXAMPLE 3 Using the Chain Rule}

Find \(d y / d x\) for \(y=\left(x^{2}+1\right)^{3}\).
Solution For this function, you can consider the inside function to be \(u=x^{2}+1\). By the Chain Rule, you obtain
\[
\frac{d y}{d x}=\underbrace{3\left(x^{2}+1\right)^{2}}_{\frac{d y}{d u}} \underbrace{2 x)}_{\frac{d u}{d x}}=6 x\left(x^{2}+1\right)^{2} .
\]

\section*{The General Power Rule}

The function in Example 3 is an example of one of the most common types of composite functions, \(y=[u(x)]^{n}\). The rule for differentiating such functions is called the General Power Rule, and it is a special case of the Chain Rule.

\section*{THEOREM 2.11 THE GENERAL POWER RULE}

If \(y=[u(x)]^{n}\), where \(u\) is a differentiable function of \(x\) and \(n\) is a rational number, then
\[
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
\]
or, equivalently,
\[
\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}
\]
(PROOF Because \(y=u^{n}\), you apply the Chain Rule to obtain
\[
\begin{aligned}
\frac{d y}{d x} & =\left(\frac{d y}{d u}\right)\left(\frac{d u}{d x}\right) \\
& =\frac{d}{d u}\left[u^{n}\right] \frac{d u}{d x}
\end{aligned}
\]

By the (Simple) Power Rule in Section 2.2, you have \(D_{u}\left[u^{n}\right]=n u^{n-1}\), and it follows that
\[
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x} .
\]
\(f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}\)

\(f^{\prime}(x)=\frac{4 x}{3 \sqrt[3]{x^{2}-1}}\)
The derivative of \(f\) is 0 at \(x=0\) and is undefined at \(x= \pm 1\).
Figure 2.25

NOTE Try differentiating the function in Example 6 using the Quotient Rule. You should obtain the same result, but using the Quotient Rule is less efficient than using the General Power Rule.

\section*{EXAMPLE 4 Applying the General Power Rule}

Find the derivative of \(f(x)=\left(3 x-2 x^{2}\right)^{3}\).
Solution Let \(u=3 x-2 x^{2}\). Then
\[
f(x)=\left(3 x-2 x^{2}\right)^{3}=u^{3}
\]
and, by the General Power Rule, the derivative is
\[
\begin{array}{rlr}
f^{\prime}(x) & =3\left(3 x-2 x^{2}\right)^{2} \overbrace{\frac{d}{d x}\left[3 x-2 x^{2}\right]}^{n} \overbrace{}^{u^{n-1}} & \\
& =3\left(3 x-2 x^{2}\right)^{2}(3-4 x) . & \text { Apply General Power Rule. } \\
& \text { Differentiate } 3 x-2 x^{2} .
\end{array}
\]

\section*{EXAMPLE 5 Differentiating Functions Involving Radicals}

Find all points on the graph of \(f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}\) for which \(f^{\prime}(x)=0\) and those for which \(f^{\prime}(x)\) does not exist.

Solution Begin by rewriting the function as
\[
f(x)=\left(x^{2}-1\right)^{2 / 3}
\]

Then, applying the General Power Rule (with \(u=x^{2}-1\) ) produces
\[
\begin{aligned}
f^{\prime}(x) & =\frac{2}{3} \overbrace{\left(x^{2}-1\right)^{-1 / 3}(2 x)}^{n} \overbrace{}^{u^{\prime}} \overbrace{\text { Apply General Power Rule. }}^{u^{\prime}} \\
& =\frac{4 x}{3 \sqrt[3]{x^{2}-1}} . \quad \text { Write in radical form. }
\end{aligned}
\]

So, \(f^{\prime}(x)=0\) when \(x=0\) and \(f^{\prime}(x)\) does not exist when \(x= \pm 1\), as shown in Figure 2.25.

\section*{EXAMPLE 6 Differentiating Quotients with Constant Numerators}

Differentiate \(g(t)=\frac{-7}{(2 t-3)^{2}}\).
Solution Begin by rewriting the function as
\[
g(t)=-7(2 t-3)^{-2}
\]

Then, applying the General Power Rule produces
\[
\begin{array}{rlr}
g^{\prime}(t) & =\underbrace{}_{\begin{array}{l}
\text { Constant } \\
\text { Multiple Rule } \\
-7)
\end{array} \overbrace{(-2)}^{n} \overbrace{(2 t-3)^{-3}(2)}^{u^{n-1}} \overbrace{}^{u^{\prime}}} \quad \begin{array}{l}
\text { Apply General Power Rule. } \\
\\
\end{array}=28(2 t-3)^{-3} \\
& =\frac{28}{(2 t-3)^{3}} . & \text { Simplify. }
\end{array}
\]

\section*{Simplifying Derivatives}

The next three examples illustrate some techniques for simplifying the "raw derivatives" of functions involving products, quotients, and composites.

\section*{EXAMPLE 7 Simplifying by Factoring Out the Least Powers}
\[
\begin{aligned}
f(x) & =x^{2} \sqrt{1-x^{2}} & & \text { Original function } \\
& =x^{2}\left(1-x^{2}\right)^{1 / 2} & & \text { Rewrite. } \\
f^{\prime}(x) & =x^{2} \frac{d}{d x}\left[\left(1-x^{2}\right)^{1 / 2}\right]+\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x}\left[x^{2}\right] & & \text { Product Rule } \\
& =x^{2}\left[\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x)\right]+\left(1-x^{2}\right)^{1 / 2}(2 x) & & \text { General Power Rule } \\
& =-x^{3}\left(1-x^{2}\right)^{-1 / 2}+2 x\left(1-x^{2}\right)^{1 / 2} & & \text { Simplify. } \\
& =x\left(1-x^{2}\right)^{-1 / 2}\left[-x^{2}(1)+2\left(1-x^{2}\right)\right] & & \text { Factor. } \\
& =\frac{x\left(2-3 x^{2}\right)}{\sqrt{1-x^{2}}} & & \text { Simplify. }
\end{aligned}
\]

\section*{EXAMPLE 8 Simplifying the Derivative of a Quotient}

TECHNOLOGY Symbolic differentiation utilities are capable of differentiating very complicated functions. Often, however, the result is given in unsimplified form. If you have access to such a utility, use it to find the derivatives of the functions given in Examples 7, 8, and 9. Then compare the results with those given in these examples.
\[
\begin{aligned}
f(x) & =\frac{x}{\sqrt[3]{x^{2}+4}} & & \text { Original functi } \\
& =\frac{x}{\left(x^{2}+4\right)^{1 / 3}} & & \text { Rewrite. } \\
f^{\prime}(x) & =\frac{\left(x^{2}+4\right)^{1 / 3}(1)-x(1 / 3)\left(x^{2}+4\right)^{-2 / 3}(2 x)}{\left(x^{2}+4\right)^{2 / 3}} & & \text { Quotient Rule } \\
& =\frac{1}{3}\left(x^{2}+4\right)^{-2 / 3}\left[\frac{3\left(x^{2}+4\right)-\left(2 x^{2}\right)(1)}{\left(x^{2}+4\right)^{2 / 3}}\right] & & \text { Factor. } \\
& =\frac{x^{2}+12}{3\left(x^{2}+4\right)^{4 / 3}} & & \text { Simplify. }
\end{aligned}
\]

\section*{EXAMPLE 9 Simplifying the Derivative of a Power}
\[
y=\left(\frac{3 x-1}{x^{2}+3}\right)^{2}
\]

Original function
\[
\begin{array}{rlr}
y^{\prime} & =2 \overbrace{\left(\frac{3 x-1}{x^{2}+3}\right)}^{\overbrace{\frac{d}{d x}\left[\frac{3 x-1}{x^{2}+3}\right]}^{u^{n-1}} \overbrace{}^{u^{\prime}}} & \\
& =\left[\frac{2(3 x-1)}{x^{2}+3}\right]\left[\frac{\left(x^{2}+3\right)(3)-(3 x-1)(2 x)}{\left(x^{2}+3\right)^{2}}\right] & \text { General Power Rule } \\
& =\frac{2(3 x-1)\left(3 x^{2}+9-6 x^{2}+2 x\right)}{\left(x^{2}+3\right)^{3}} & \text { Quotient Rule } \\
& =\frac{2(3 x-1)\left(-3 x^{2}+2 x+9\right)}{\left(x^{2}+3\right)^{3}} & \text { Sultiply. } \\
& \text { Simplify. }
\end{array}
\]

\section*{Trigonometric Functions and the Chain Rule}

The "Chain Rule versions" of the derivatives of the six trigonometric functions are as follows.
\[
\begin{aligned}
\frac{d}{d x}[\sin u] & =(\cos u) u^{\prime} & \frac{d}{d x}[\cos u] & =-(\sin u) u^{\prime} \\
\frac{d}{d x}[\tan u] & =\left(\sec ^{2} u\right) u^{\prime} & \frac{d}{d x}[\cot u] & =-\left(\csc ^{2} u\right) u^{\prime} \\
\frac{d}{d x}[\sec u] & =(\sec u \tan u) u^{\prime} & \frac{d}{d x}[\csc u] & =-(\csc u \cot u) u^{\prime}
\end{aligned}
\]

\section*{EXAMPLE 10 Applying the Chain Rule to Trigonometric Functions}
\(\overbrace{}^{u} \overbrace{}^{\cos u} \overbrace{}^{u^{\prime}}\)
a. \(y=\sin 2 x\)
\(y^{\prime}=\cos 2 x \frac{d}{d x}[2 x]=(\cos 2 x)(2)=2 \cos 2 x\)
b. \(y=\cos (x-1) \quad y^{\prime}=-\sin (x-1)\)
c. \(y=\tan 3 x \quad y^{\prime}=3 \sec ^{2} 3 x\)

Be sure that you understand the mathematical conventions regarding parentheses and trigonometric functions. For instance, in Example 10(a), \(\sin 2 x\) is written to mean \(\sin (2 x)\).

\section*{EXAMPLE 11 Parentheses and Trigonometric Functions}
a. \(y=\cos 3 x^{2}=\cos \left(3 x^{2}\right)\)
\(y^{\prime}=\left(-\sin 3 x^{2}\right)(6 x)=-6 x \sin 3 x^{2}\)
b. \(y=(\cos 3) x^{2}\) \(y^{\prime}=(\cos 3)(2 x)=2 x \cos 3\)
c. \(y=\cos (3 x)^{2}=\cos \left(9 x^{2}\right)\)
\(y^{\prime}=\left(-\sin 9 x^{2}\right)(18 x)=-18 x \sin 9 x^{2}\)
d. \(y=\cos ^{2} x=(\cos x)^{2}\)
\(y^{\prime}=2(\cos x)(-\sin x)=-2 \cos x \sin x\)
e. \(y=\sqrt{\cos x}=(\cos x)^{1 / 2}\)
\(y^{\prime}=\frac{1}{2}(\cos x)^{-1 / 2}(-\sin x)=-\frac{\sin x}{2 \sqrt{\cos x}}\)

To find the derivative of a function of the form \(k(x)=f(g(h(x)))\), you need to apply the Chain Rule twice, as shown in Example 12.

\section*{EXAMPLE 12 Repeated Application of the Chain Rule}
\[
\begin{aligned}
f(t) & =\sin ^{3} 4 t & & \text { Original function } \\
& =(\sin 4 t)^{3} & & \text { Rewrite. } \\
f^{\prime}(t) & =3(\sin 4 t)^{2} \frac{d}{d t}[\sin 4 t] & & \text { Apply Chain Rule once. } \\
& =3(\sin 4 t)^{2}(\cos 4 t) \frac{d}{d t}[4 t] & & \text { Apply Chain Rule a second time. } \\
& =3(\sin 4 t)^{2}(\cos 4 t)(4) & & \\
& =12 \sin ^{2} 4 t \cos 4 t & & \text { Simplify. }
\end{aligned}
\]


Figure 2.26

STUDY TIP To become skilled at differentiation, you should memorize each rule in words, not symbols. As an aid to memorization, note that the cofunctions (cosine, cotangent, and cosecant) require a negative sign as part of their derivatives.

\section*{EXAMPLE 13 Tangent Line of a Trigonometric Function}

Find an equation of the tangent line to the graph of
\[
f(x)=2 \sin x+\cos 2 x
\]
at the point \((\pi, 1)\), as shown in Figure 2.26. Then determine all values of \(x\) in the interval \((0,2 \pi)\) at which the graph of \(f\) has a horizontal tangent.
Solution Begin by finding \(f^{\prime}(x)\).
\[
\begin{aligned}
f(x) & =2 \sin x+\cos 2 x & & \text { Write original function. } \\
f^{\prime}(x) & =2 \cos x+(-\sin 2 x)(2) & & \text { Apply Chain Rule to } \cos 2 x . \\
& =2 \cos x-2 \sin 2 x & & \text { Simplify. }
\end{aligned}
\]

To find the equation of the tangent line at \((\pi, 1)\), evaluate \(f^{\prime}(\pi)\).
\[
\begin{aligned}
f^{\prime}(\pi) & =2 \cos \pi-2 \sin 2 \pi & & \text { Substitute. } \\
& =-2 & & \text { Slope of graph at }(\pi, 1)
\end{aligned}
\]

Now, using the point-slope form of the equation of a line, you can write
\[
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-1 & =-2(x-\pi) & & \text { Substitute for } y_{1}, m \text {, and } x_{1} . \\
y & =1-2 x+2 \pi . & & \text { Equation of tangent line at }(\pi, 1)
\end{aligned}
\]

You can then determine that \(f^{\prime}(x)=0\) when \(x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}\), and \(\frac{3 \pi}{2}\). So, \(f\) has horizontal tangents at \(x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}\), and \(\frac{3 \pi}{2}\).

This section concludes with a summary of the differentiation rules studied so far.

\section*{SUMMARY OF DIFFERENTIATION RULES}

General Differentiation Rules

\section*{Functions}

Derivatives of Algebraic

Derivatives of Trigonometric Functions

\section*{Chain Rule}

Let \(f, g\), and \(u\) be differentiable functions of \(x\).

Constant Multiple Rule:
\(\frac{d}{d x}[c f]=c f^{\prime}\)
Product Rule:
\(\frac{d}{d x}[f g]=f g^{\prime}+g f^{\prime}\)
Constant Rule:
\(\frac{d}{d x}[c]=0\)
\(\frac{d}{d x}[\sin x]=\cos x\)
\(\frac{d}{d x}[\cos x]=-\sin x\)
Chain Rule:
\(\frac{d}{d x}[f(u)]=f^{\prime}(u) u^{\prime}\)

> Sum or Difference Rule:
\(\frac{d}{d x}[f \pm g]=f^{\prime} \pm g^{\prime}\)

> Quotient Rule:
> \(\frac{d}{d x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}\)
(Simple) Power Rule:
\(\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}, \quad \frac{d}{d x}[x]=1\)
\(\frac{d}{d x}[\tan x]=\sec ^{2} x \quad \frac{d}{d x}[\sec x]=\sec x \tan x\)
\(\frac{d}{d x}[\cot x]=-\csc ^{2} x \quad \frac{d}{d x}[\csc x]=-\csc x \cot x\)
General Power Rule:
\(\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}\)

\subsection*{2.4 Exercises}

In Exercises 1-6, complete the table.
\(\begin{aligned} & \frac{y}{}=f(g(x)) \\ & \text { 1. } y=(5 x-8)^{4} \\ & \text { 2. } y=\frac{1}{\sqrt{x+1}} \\ & \text { 3. } y=\sqrt{x^{3}-7} \\ & \text { 4. } y=3 \tan \left(\pi x^{2}\right) \\ & \text { 5. } y=\csc ^{3} x \\ & \text { 6. } y=\sin \frac{y x}{2}\end{aligned}\)
In Exercises 7-36, find the derivative of the function.
7. \(y=(4 x-1)^{3}\)
8. \(y=2\left(6-x^{2}\right)^{5}\)
9. \(g(x)=3(4-9 x)^{4}\)
10. \(f(t)=(9 t+2)^{2 / 3}\)
11. \(f(t)=\sqrt{5-t}\)
12. \(g(x)=\sqrt{9-4 x}\)
13. \(y=\sqrt[3]{6 x^{2}+1}\)
14. \(g(x)=\sqrt{x^{2}-2 x+1}\)
15. \(y=2 \sqrt[4]{9-x^{2}}\)
16. \(f(x)=-3 \sqrt[4]{2-9 x}\)
17. \(y=\frac{1}{x-2}\)
18. \(s(t)=\frac{1}{t^{2}+3 t-1}\)
19. \(f(t)=\left(\frac{1}{t-3}\right)^{2}\)
20. \(y=-\frac{5}{(t+3)^{3}}\)
21. \(y=\frac{1}{\sqrt{x+2}}\)
22. \(g(t)=\sqrt{\frac{1}{t^{2}-2}}\)
23. \(f(x)=x^{2}(x-2)^{4}\)
24. \(f(x)=x(3 x-9)^{3}\)
25. \(y=x \sqrt{1-x^{2}}\)
26. \(y=\frac{1}{2} x^{2} \sqrt{16-x^{2}}\)
27. \(y=\frac{x}{\sqrt{x^{2}+1}}\)
28. \(y=\frac{x}{\sqrt{x^{4}+4}}\)
29. \(g(x)=\left(\frac{x+5}{x^{2}+2}\right)^{2}\)
30. \(h(t)=\left(\frac{t^{2}}{t^{3}+2}\right)^{2}\)
31. \(f(v)=\left(\frac{1-2 v}{1+v}\right)^{3}\)
32. \(g(x)=\left(\frac{3 x^{2}-2}{2 x+3}\right)^{3}\)
33. \(f(x)=\left(\left(x^{2}+3\right)^{5}+x\right)^{2}\)
34. \(g(x)=\left(2+\left(x^{2}+1\right)^{4}\right)^{3}\)
35. \(f(x)=\sqrt{2+\sqrt{2+\sqrt{x}}}\)
36. \(g(t)=\sqrt{\sqrt{t+1}+1}\)

CAS In Exercises 37-42, use a computer algebra system to find the derivative of the function. Then use the utility to graph the function and its derivative on the same set of coordinate axes. Describe the behavior of the function that corresponds to any zeros of the graph of the derivative.
37. \(y=\frac{\sqrt{x}+1}{x^{2}+1}\)
38. \(y=\sqrt{\frac{2 x}{x+1}}\)
39. \(y=\sqrt{\frac{x+1}{x}}\)
40. \(g(x)=\sqrt{x-1}+\sqrt{x+1}\)
41. \(y=\frac{\cos \pi x+1}{x}\)
42. \(y=x^{2} \tan \frac{1}{x}\)

In Exercises 43 and 44, find the slope of the tangent line to the sine function at the origin. Compare this value with the number of complete cycles in the interval \([0,2 \pi]\). What can you conclude about the slope of the sine function \(\sin a x\) at the origin?
43. (a)

(b)

44. (a)

(b)


In Exercises 45-66, find the derivative of the function.
45. \(y=\cos 4 x\)
46. \(y=\sin \pi x\)
47. \(g(x)=5 \tan 3 x\)
48. \(h(x)=\sec x^{2}\)
49. \(y=\sin (\pi x)^{2}\)
50. \(y=\cos (1-2 x)^{2}\)
51. \(h(x)=\sin 2 x \cos 2 x\)
53. \(f(x)=\frac{\cot x}{\sin x}\)
52. \(g(\theta)=\sec \left(\frac{1}{2} \theta\right) \tan \left(\frac{1}{2} \theta\right)\)
55. \(y=4 \sec ^{2} x\)
54. \(g(v)=\frac{\cos v}{\csc v}\)
57. \(f(\theta)=\tan ^{2} 5 \theta\)
56. \(g(t)=5 \cos ^{2} \pi t\)
59. \(f(\theta)=\frac{1}{4} \sin ^{2} 2 \theta\)
58. \(g(\theta)=\cos ^{2} 8 \theta\)
61. \(f(t)=3 \sec ^{2}(\pi t-1)\)
60. \(h(t)=2 \cot ^{2}(\pi t+2)\)
63. \(y=\sqrt{x}+\frac{1}{4} \sin (2 x)^{2}\)
62. \(y=3 x-5 \cos (\pi x)^{2}\)
65. \(y=\sin (\tan 2 x)\)
64. \(y=\sin \sqrt[3]{x}+\sqrt[3]{\sin x}\)
66. \(y=\cos \sqrt{\sin (\tan \pi x)}\)

In Exercises 67-74, evaluate the derivative of the function at the given point. Use a graphing utility to verify your result.
67. \(s(t)=\sqrt{t^{2}+6 t-2}, \quad(3,5)\)
68. \(y=\sqrt[5]{3 x^{3}+4 x}, \quad(2,2)\)
69. \(f(x)=\frac{5}{x^{3}-2}, \quad\left(-2,-\frac{1}{2}\right)\)
70. \(f(x)=\frac{1}{\left(x^{2}-3 x\right)^{2}}, \quad\left(4, \frac{1}{16}\right)\)
71. \(f(t)=\frac{3 t+2}{t-1}, \quad(0,-2)\)
72. \(f(x)=\frac{x+1}{2 x-3}, \quad(2,3)\)
73. \(y=26-\sec ^{3} 4 x, \quad(0,25)\)
74. \(y=\frac{1}{x}+\sqrt{\cos x}, \quad\left(\frac{\pi}{2}, \frac{2}{\pi}\right)\)

In Exercises 75-82, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of the graphing utility to confirm your results.
\begin{tabular}{ll}
\multicolumn{1}{l}{ Function } & Point \\
75. \(f(x)=\sqrt{2 x^{2}-7}\) & \((4,5)\) \\
76. \(f(x)=\frac{1}{3} x \sqrt{x^{2}+5}\) & \((2,2)\) \\
77. \(y=\left(4 x^{3}+3\right)^{2}\) & \((-1,1)\) \\
78. \(f(x)=\left(9-x^{2}\right)^{2 / 3}\) & \((\pi, 0)\) \\
79. \(f(x)=\sin 2 x\) & \(\left(\frac{\pi}{4},-\frac{\sqrt{2}}{2}\right)\) \\
80. \(y=\cos 3 x\) & \(\left(\frac{\pi}{4}, 1\right)\) \\
81. \(f(x)=\tan ^{2} x\) & \(\left(\frac{\pi}{4}, 2\right)\) \\
82. \(y=2 \tan ^{3} x\) &
\end{tabular}

In Exercises 83-86, (a) use a graphing utility to find the derivative of the function at the given point, (b) find an equation of the tangent line to the graph of the function at the given point, and (c) use the utility to graph the function and its tangent line in the same viewing window.
83. \(g(t)=\frac{3 t^{2}}{\sqrt{t^{2}+2 t-1}}, \quad\left(\frac{1}{2}, \frac{3}{2}\right)\)
84. \(f(x)=\sqrt{x}(2-x)^{2}, \quad(4,8)\)
85. \(s(t)=\frac{(4-2 t) \sqrt{1+t}}{3}, \quad\left(0, \frac{4}{3}\right)\)
86. \(y=\left(t^{2}-9\right) \sqrt{t+2}, \quad(2,-10)\)

Famous Curves In Exercises 87 and 88, find an equation of the tangent line to the graph at the given point. Then use a graphing utility to graph the function and its tangent line in the same viewing window.
87. Top half of circle
88. Bullet-nose curve


89. Horizontal Tangent Line Determine the point(s) in the interval \((0,2 \pi)\) at which the graph of \(f(x)=2 \cos x+\sin 2 x\) has a horizontal tangent.
90. Horizontal Tangent Line Determine the point(s) at which the graph of \(f(x)=\frac{x}{\sqrt{2 x-1}}\) has a horizontal tangent.

In Exercises 91-96, find the second derivative of the function.
91. \(f(x)=5(2-7 x)^{4}\)
92. \(f(x)=4\left(x^{2}-2\right)^{3}\)
93. \(f(x)=\frac{1}{x-6}\)
94. \(f(x)=\frac{4}{(x+2)^{3}}\)
95. \(f(x)=\sin x^{2}\)
96. \(f(x)=\sec ^{2} \pi x\)

In Exercises 97-100, evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result.
97. \(h(x)=\frac{1}{9}(3 x+1)^{3}, \quad\left(1, \frac{64}{9}\right)\)
98. \(f(x)=\frac{1}{\sqrt{x+4}}, \quad\left(0, \frac{1}{2}\right)\)
99. \(f(x)=\cos x^{2}, \quad(0,1)\)
100. \(g(t)=\tan 2 t, \quad\left(\frac{\pi}{6}, \sqrt{3}\right)\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 101-104, the graphs of a function \(f\) and its derivative \(f^{\prime}\) are shown. Label the graphs as \(f\) or \(f^{\prime}\) and write a short paragraph stating the criteria you used in making your selection. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
101.

102.

103.

104.


In Exercises 105 and 106, the relationship between \(f\) and \(g\) is given. Explain the relationship between \(f^{\prime}\) and \(g^{\prime}\).
105. \(g(x)=f(3 x)\)
106. \(g(x)=f\left(x^{2}\right)\)
107. Think About It The table shows some values of the derivative of an unknown function \(f\). Complete the table by finding (if possible) the derivative of each transformation of \(f\).
(a) \(g(x)=f(x)-2\)
(b) \(h(x)=2 f(x)\)
(c) \(r(x)=f(-3 x)\)
(d) \(s(x)=f(x+2)\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(f^{\prime}(x)\) & 4 & \(\frac{2}{3}\) & \(-\frac{1}{3}\) & -1 & -2 & -4 \\
\hline\(g^{\prime}(x)\) & & & & & & \\
\hline\(h^{\prime}(x)\) & & & & & & \\
\hline\(r^{\prime}(x)\) & & & & & & \\
\hline\(s^{\prime}(x)\) & & & & & & \\
\hline
\end{tabular}

Table for 107

\section*{CAPSTONE}
108. Given that \(g(5)=-3, \quad g^{\prime}(5)=6, \quad h(5)=3\), and \(h^{\prime}(5)=-2\), find \(f^{\prime}(5)\) (if possible) for each of the following. If it is not possible, state what additional information is required.
(a) \(f(x)=g(x) h(x)\)
(b) \(f(x)=g(h(x))\)
(c) \(f(x)=\frac{g(x)}{h(x)}\)
(d) \(f(x)=[g(x)]^{3}\)

In Exercises 109 and 110, the graphs of \(f\) and \(g\) are shown. Let \(h(x)=f(g(x))\) and \(s(x)=g(f(x))\). Find each derivative, if it exists. If the derivative does not exist, explain why.
109.
(a) Find \(h^{\prime}(1)\).
110. (a) Find \(h^{\prime}(3)\).
(b) Find \(s^{\prime}(5)\).


111. Doppler Effect The frequency \(F\) of a fire truck siren heard by a stationary observer is \(F=132,400 /(331 \pm v)\), where \(\pm v\) represents the velocity of the accelerating fire truck in meters per second (see figure). Find the rate of change of \(F\) with respect to \(v\) when
(a) the fire truck is approaching at a velocity of 30 meters per second (use \(-v\) ).
(b) the fire truck is moving away at a velocity of 30 meters per second (use \(+v\) ).

112. Harmonic Motion The displacement from equilibrium of an object in harmonic motion on the end of a spring is
\(y=\frac{1}{3} \cos 12 t-\frac{1}{4} \sin 12 t\)
where \(y\) is measured in feet and \(t\) is the time in seconds. Determine the position and velocity of the object when \(t=\pi / 8\).
113. Pendulum A 15 -centimeter pendulum moves according to the equation \(\theta=0.2 \cos 8 t\), where \(\theta\) is the angular displacement from the vertical in radians and \(t\) is the time in seconds. Determine the maximum angular displacement and the rate of change of \(\theta\) when \(t=3\) seconds.
114. Wave Motion A buoy oscillates in simple harmonic motion \(y=A \cos \omega t\) as waves move past it. The buoy moves a total of 3.5 feet (vertically) from its low point to its high point. It returns to its high point every 10 seconds.
(a) Write an equation describing the motion of the buoy if it is at its high point at \(t=0\).
(b) Determine the velocity of the buoy as a function of \(t\).
115. Circulatory System The speed \(S\) of blood that is \(r\) centimeters from the center of an artery is
\(S=C\left(R^{2}-r^{2}\right)\)
where \(C\) is a constant, \(R\) is the radius of the artery, and \(S\) is measured in centimeters per second. Suppose a drug is administered and the artery begins to dilate at a rate of \(d R / d t\). At a constant distance \(r\), find the rate at which \(S\) changes with respect to \(t\) for \(C=1.76 \times 10^{5}, R=1.2 \times 10^{-2}\), and \(d R / d t=10^{-5}\).
116. Modeling Data The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Chicago, Illinois are shown in the table. (Source: National Oceanic and Atmospheric Administration)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Month & Jan & Feb & Mar & Apr & May & Jun \\
\hline Temperature & 29.6 & 34.7 & 46.1 & 58.0 & 69.9 & 79.2 \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|c|}
\hline Month & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline Temperature & 83.5 & 81.2 & 73.9 & 62.1 & 47.1 & 34.4 \\
\hline
\end{tabular}
(a) Use a graphing utility to plot the data and find a model for the data of the form
\(T(t)=a+b \sin (c t-d)\)
where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January.
(b) Use a graphing utility to graph the model. How well does the model fit the data?
(c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative.
(d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
117. Modeling Data The cost of producing \(x\) units of a product is \(C=60 x+1350\). For one week management determined the number of units produced at the end of \(t\) hours during an eight-hour shift. The average values of \(x\) for the week are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(x\) & 0 & 16 & 60 & 130 & 205 & 271 & 336 & 384 & 392 \\
\hline
\end{tabular}
(a) Use a graphing utility to fit a cubic model to the data.
(b) Use the Chain Rule to find \(d C / d t\).
(c) Explain why the cost function is not increasing at a constant rate during the eight-hour shift.
118. Finding a Pattern Consider the function \(f(x)=\sin \beta x\), where \(\beta\) is a constant.
(a) Find the first-, second-, third-, and fourth-order derivatives of the function.
(b) Verify that the function and its second derivative satisfy the equation \(f^{\prime \prime}(x)+\beta^{2} f(x)=0\).
(c) Use the results of part (a) to write general rules for the even- and odd-order derivatives
\[
f^{(2 k)}(x) \text { and } f^{(2 k-1)}(x) .
\]
[Hint: \((-1)^{k}\) is positive if \(k\) is even and negative if \(k\) is odd.]
119. Conjecture Let \(f\) be a differentiable function of period \(p\).
(a) Is the function \(f^{\prime}\) periodic? Verify your answer.
(b) Consider the function \(g(x)=f(2 x)\). Is the function \(g^{\prime}(x)\) periodic? Verify your answer.
120. Think About It Let \(r(x)=f(g(x))\) and \(s(x)=g(f(x))\), where \(f\) and \(g\) are shown in the figure. Find (a) \(r^{\prime}(1)\) and (b) \(s^{\prime}(4)\).

121. (a) Find the derivative of the function \(g(x)=\sin ^{2} x+\cos ^{2} x\) in two ways.
(b) For \(f(x)=\sec ^{2} x\) and \(g(x)=\tan ^{2} x\), show that \(f^{\prime}(x)=g^{\prime}(x)\).
122. (a) Show that the derivative of an odd function is even. That is, if \(f(-x)=-f(x)\), then \(f^{\prime}(-x)=f^{\prime}(x)\).
(b) Show that the derivative of an even function is odd. That is, if \(f(-x)=f(x)\), then \(f^{\prime}(-x)=-f^{\prime}(x)\).
123. Let \(u\) be a differentiable function of \(x\). Use the fact that \(|u|=\sqrt{u^{2}}\) to prove that
\[
\frac{d}{d x}[|u|]=u^{\prime} \frac{u}{|u|}, \quad u \neq 0 .
\]

In Exercises 124-127, use the result of Exercise 123 to find the derivative of the function.
124. \(g(x)=|3 x-5|\)
125. \(f(x)=\left|x^{2}-9\right|\)
126. \(h(x)=|x| \cos x\)
127. \(f(x)=|\sin x|\)

Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are
\(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and
\(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\).
In Exercises 128 and 129, (a) find the specified linear and quadratic approximations of \(f\), (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\).
128. \(f(x)=\tan x\)
\(a=\frac{\pi}{4}\)
129. \(f(x)=\sec x\)
\[
a=\frac{\pi}{6}
\]

True or False? In Exercises 130-132, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
130. If \(y=(1-x)^{1 / 2}\), then \(y^{\prime}=\frac{1}{2}(1-x)^{-1 / 2}\).
131. If \(f(x)=\sin ^{2}(2 x)\), then \(f^{\prime}(x)=2(\sin 2 x)(\cos 2 x)\).
132. If \(y\) is a differentiable function of \(u, u\) is a differentiable function of \(v\), and \(v\) is a differentiable function of \(x\), then
\(\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d v} \frac{d v}{d x}\).

\section*{PUTNAM EXAM CHALLENGE}
133. Let \(f(x)=a_{1} \sin x+a_{2} \sin 2 x+\cdots+a_{n} \sin n x\), where \(a_{1}, a_{2}, \ldots, a_{n}\) are real numbers and where \(n\) is a positive integer. Given that \(|f(x)| \leq|\sin x|\) for all real \(x\), prove that \(\left|a_{1}+2 a_{2}+\cdots+n a_{n}\right| \leq 1\).
134. Let \(k\) be a fixed positive integer. The \(n\)th derivative of \(\frac{1}{x^{k}-1}\) has the form
\(\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}\)
where \(P_{n}(x)\) is a polynomial. Find \(P_{n}(1)\).
These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{2.5 Implicit Differentiation}
- Distinguish between functions written in implicit form and explicit form.
- Use implicit differentiation to find the derivative of a function.

\section*{Implicit and Explicit Functions}

\section*{E X P L ORATION}

\section*{Graphing an Implicit Equation}

How could you use a graphing utility to sketch the graph of the equation
\[
x^{2}-2 y^{3}+4 y=2 ?
\]

Here are two possible approaches.
a. Solve the equation for \(x\). Switch the roles of \(x\) and \(y\) and graph the two resulting equations. The combined graphs will show a \(90^{\circ}\) rotation of the graph of the original equation.
b. Set the graphing utility to parametric mode and graph the equations
\[
\begin{aligned}
& x=-\sqrt{2 t^{3}-4 t+2} \\
& y=t
\end{aligned}
\]
and
\[
\begin{aligned}
& x=\sqrt{2 t^{3}-4 t+2} \\
& y=t .
\end{aligned}
\]

From either of these two approaches, can you decide whether the graph has a tangent line at the point \((0,1)\) ? Explain your reasoning.

Up to this point in the text, most functions have been expressed in explicit form. For example, in the equation
\[
y=3 x^{2}-5
\]
Explicit form
the variable \(y\) is explicitly written as a function of \(x\). Some functions, however, are only implied by an equation. For instance, the function \(y=1 / x\) is defined implicitly by the equation \(x y=1\). Suppose you were asked to find \(d y / d x\) for this equation. You could begin by writing \(y\) explicitly as a function of \(x\) and then differentiating.
\[
\begin{array}{llll}
\text { Implicit Form } & & \text { Explicit Form } & \\
x y=1 & y=\frac{1}{x}=x^{-1} & \frac{d y}{d x}=-x^{-2}=-\frac{1}{x^{2}}
\end{array}
\]

This strategy works whenever you can solve for the function explicitly. You cannot, however, use this procedure when you are unable to solve for \(y\) as a function of \(x\). For instance, how would you find \(d y / d x\) for the equation
\[
x^{2}-2 y^{3}+4 y=2
\]
where it is very difficult to express \(y\) as a function of \(x\) explicitly? To do this, you can use implicit differentiation.

To understand how to find \(d y / d x\) implicitly, you must realize that the differentiation is taking place with respect to \(x\). This means that when you differentiate terms involving \(x\) alone, you can differentiate as usual. However, when you differentiate terms involving \(y\), you must apply the Chain Rule, because you are assuming that \(y\) is defined implicitly as a differentiable function of \(x\).

\section*{EXAMPLE 1 Differentiating with Respect to \(x\)}
a. \(\frac{d}{d x}\left[x^{3}\right]=3 x^{2}\)

Variables agree: use Simple Power Rule.
b. \(\frac{d}{d x}[\overbrace{\left.y^{3}\right]}^{u^{n}}=\overbrace{3 y^{2}}^{n u^{n-1}} \overbrace{\text { Variables disagree }}^{u^{\prime}}\)

Variables disagree: use Chain Rule.
c. \(\frac{d}{d x}[x+3 y]=1+3 \frac{d y}{d x}\)

Chain Rule: \(\frac{d}{d x}[3 y]=3 y^{\prime}\)
d. \(\frac{d}{d x}\left[x y^{2}\right]=x \frac{d}{d x}\left[y^{2}\right]+y^{2} \frac{d}{d x}[x] \quad\) Product Rule
\(=x\left(2 y \frac{d y}{d x}\right)+y^{2}(1) \quad\) Chain Rule
\(=2 x y \frac{d y}{d x}+y^{2} \quad\) Simplify


The implicit equation
\[
y^{3}+y^{2}-5 y-x^{2}=-4
\]
has the derivative
\[
\frac{d y}{d x}=\frac{2 x}{3 y^{2}+2 y-5}
\]

Figure 2.27

\section*{Implicit Differentiation}

\section*{GUIDELINES FOR IMPLICIT DIFFERENTIATION}
1. Differentiate both sides of the equation with respect to \(x\).
2. Collect all terms involving \(d y / d x\) on the left side of the equation and move all other terms to the right side of the equation.
3. Factor \(d y / d x\) out of the left side of the equation.
4. Solve for \(d y / d x\).

In Example 2, note that implicit differentiation can produce an expression for \(d y / d x\) that contains both \(x\) and \(y\).

\section*{EXAMPLE 2 Implicit Differentiation}

Find \(d y / d x\) given that \(y^{3}+y^{2}-5 y-x^{2}=-4\).

\section*{Solution}
1. Differentiate both sides of the equation with respect to \(x\).
\[
\begin{aligned}
\frac{d}{d x}\left[y^{3}+y^{2}-5 y-x^{2}\right] & =\frac{d}{d x}[-4] \\
\frac{d}{d x}\left[y^{3}\right]+\frac{d}{d x}\left[y^{2}\right]-\frac{d}{d x}[5 y]-\frac{d}{d x}\left[x^{2}\right] & =\frac{d}{d x}[-4] \\
3 y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}-5 \frac{d y}{d x}-2 x & =0
\end{aligned}
\]
2. Collect the \(d y / d x\) terms on the left side of the equation and move all other terms to the right side of the equation.
\[
3 y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}-5 \frac{d y}{d x}=2 x
\]
3. Factor \(d y / d x\) out of the left side of the equation.
\[
\frac{d y}{d x}\left(3 y^{2}+2 y-5\right)=2 x
\]
4. Solve for \(d y / d x\) by dividing by \(\left(3 y^{2}+2 y-5\right)\).
\[
\frac{d y}{d x}=\frac{2 x}{3 y^{2}+2 y-5}
\]

To see how you can use an implicit derivative, consider the graph shown in Figure 2.27. From the graph, you can see that \(y\) is not a function of \(x\). Even so, the derivative found in Example 2 gives a formula for the slope of the tangent line at a point on this graph. The slopes at several points on the graph are shown below the graph.

TECHNOLOGY With most graphing utilities, it is easy to graph an equation that explicitly represents \(y\) as a function of \(x\). Graphing other equations, however, can require some ingenuity. For instance, to graph the equation given in Example 2, use a graphing utility, set in parametric mode, to graph the parametric representations \(x=\sqrt{t^{3}+t^{2}-5 t+4}, \quad y=t, \quad\) and \(\quad x=-\sqrt{t^{3}+t^{2}-5 t+4}, \quad y=t, \quad\) for \(-5 \leq t \leq 5\). How does the result compare with the graph shown in Figure 2.27?


Some graph segments can be represented by differentiable functions.
Figure 2.28

It is meaningless to solve for \(d y / d x\) in an equation that has no solution points. (For example, \(x^{2}+y^{2}=-4\) has no solution points.) If, however, a segment of a graph can be represented by a differentiable function, \(d y / d x\) will have meaning as the slope at each point on the segment. Recall that a function is not differentiable at (a) points with vertical tangents and (b) points at which the function is not continuous.

\section*{EXAMPLE 3 Representing a Graph by Differentiable Functions}

If possible, represent \(y\) as a differentiable function of \(x\).
a. \(x^{2}+y^{2}=0\)
b. \(x^{2}+y^{2}=1\)
c. \(x+y^{2}=1\)

\section*{Solution}
a. The graph of this equation is a single point. So, it does not define \(y\) as a differentiable function of \(x\). See Figure 2.28(a).
b. The graph of this equation is the unit circle, centered at \((0,0)\). The upper semicircle is given by the differentiable function
\[
y=\sqrt{1-x^{2}}, \quad-1<x<1
\]
and the lower semicircle is given by the differentiable function
\[
y=-\sqrt{1-x^{2}}, \quad-1<x<1
\]

At the points \((-1,0)\) and \((1,0)\), the slope of the graph is undefined. See Figure 2.28(b).
c. The upper half of this parabola is given by the differentiable function
\[
y=\sqrt{1-x}, \quad x<1
\]
and the lower half of this parabola is given by the differentiable function
\[
y=-\sqrt{1-x}, \quad x<1 .
\]

At the point \((1,0)\), the slope of the graph is undefined. See Figure 2.28(c).

\section*{EXAMPLE 4 Finding the Slope of a Graph Implicitly}

Determine the slope of the tangent line to the graph of
\[
x^{2}+4 y^{2}=4
\]
at the point \((\sqrt{2},-1 / \sqrt{2})\). See Figure 2.29.

\section*{Solution}
\[
\begin{aligned}
x^{2}+4 y^{2} & =4 & & \text { Write original equation. } \\
2 x+8 y \frac{d y}{d x} & =0 & & \text { Differentiate with respect to } x . \\
\frac{d y}{d x} & =\frac{-2 x}{8 y}=\frac{-x}{4 y} & & \text { Solve for } \frac{d y}{d x}
\end{aligned}
\]

So, at \((\sqrt{2},-1 / \sqrt{2})\), the slope is
\[
\frac{d y}{d x}=\frac{-\sqrt{2}}{-4 / \sqrt{2}}=\frac{1}{2} . \quad \text { Evaluate } \frac{d y}{d x} \text { when } x=\sqrt{2} \text { and } y=-\frac{1}{\sqrt{2}}
\]

NOTE To see the benefit of implicit differentiation, try doing Example 4 using the explicit function \(y=-\frac{1}{2} \sqrt{4-x^{2}}\).


\section*{Leminscate}

Figure 2.30


The derivative is \(\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}\).
Figure 2.31

\section*{EXAMPLE 5 Finding the Slope of a Graph Implicitly}

Determine the slope of the graph of \(3\left(x^{2}+y^{2}\right)^{2}=100 x y\) at the point \((3,1)\).
Solution
\[
\begin{aligned}
\frac{d}{d x}\left[3\left(x^{2}+y^{2}\right)^{2}\right] & =\frac{d}{d x}[100 x y] \\
3(2)\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right) & =100\left[x \frac{d y}{d x}+y(1)\right] \\
12 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}-100 x \frac{d y}{d x} & =100 y-12 x\left(x^{2}+y^{2}\right) \\
{\left[12 y\left(x^{2}+y^{2}\right)-100 x\right] \frac{d y}{d x} } & =100 y-12 x\left(x^{2}+y^{2}\right) \\
\frac{d y}{d x} & =\frac{100 y-12 x\left(x^{2}+y^{2}\right)}{-100 x+12 y\left(x^{2}+y^{2}\right)} \\
& =\frac{25 y-3 x\left(x^{2}+y^{2}\right)}{-25 x+3 y\left(x^{2}+y^{2}\right)}
\end{aligned}
\]

At the point \((3,1)\), the slope of the graph is
\[
\frac{d y}{d x}=\frac{25(1)-3(3)\left(3^{2}+1^{2}\right)}{-25(3)+3(1)\left(3^{2}+1^{2}\right)}=\frac{25-90}{-75+30}=\frac{-65}{-45}=\frac{13}{9}
\]
as shown in Figure 2.30. This graph is called a lemniscate.

\section*{EXAMPLE 6 Determining a Differentiable Function}

Find \(d y / d x\) implicitly for the equation \(\sin y=x\). Then find the largest interval of the form \(-a<y<a\) on which \(y\) is a differentiable function of \(x\) (see Figure 2.31).
Solution
\[
\begin{aligned}
\frac{d}{d x}[\sin y] & =\frac{d}{d x}[x] \\
\cos y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y}
\end{aligned}
\]

The largest interval about the origin for which \(y\) is a differentiable function of \(x\) is \(-\pi / 2<y<\pi / 2\). To see this, note that \(\cos y\) is positive for all \(y\) in this interval and is 0 at the endpoints. If you restrict \(y\) to the interval \(-\pi / 2<y<\pi / 2\), you should be able to write \(d y / d x\) explicitly as a function of \(x\). To do this, you can use
\[
\begin{aligned}
\cos y & =\sqrt{1-\sin ^{2} y} \\
& =\sqrt{1-x^{2}},-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{aligned}
\]
and conclude that
\[
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
\]

You will study this example further when inverse trigonometric functions are defined in Section 5.6.



The kappa curve
Figure 2.32

With implicit differentiation, the form of the derivative often can be simplified (as in Example 6) by an appropriate use of the original equation. A similar technique can be used to find and simplify higher-order derivatives obtained implicitly.

\section*{EXAMPLE 7 Finding the Second Derivative Implicitly}

Given \(x^{2}+y^{2}=25\), find \(\frac{d^{2} y}{d x^{2}}\). Evaluate the first and second derivatives at the point \((-3,4)\).

Solution Differentiating each term with respect to \(x\) produces
\[
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-2 x}{2 y}=-\frac{x}{y}
\end{aligned}
\]
\(\operatorname{At}(-3,4): \frac{d y}{d x}=-\frac{(-3)}{4}=\frac{3}{4}\).
Differentiating a second time with respect to \(x\) yields
\[
\begin{aligned}
& \qquad \begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-\frac{(y)(1)-(x)(d y / d x)}{y^{2}} \\
&=-\frac{y-(x)(-x / y)}{y^{2}}=-\frac{y^{2}+x^{2}}{y^{3}}=-\frac{25}{y^{3}} . \\
& \text { At }(-3,4): \frac{d^{2} y}{d x^{2}}=-\frac{25}{4^{3}}=-\frac{25}{64} .
\end{aligned}
\end{aligned}
\]

\section*{EXAMPLE 8 Finding a Tangent Line to a Graph}

Find the tangent line to the graph given by \(x^{2}\left(x^{2}+y^{2}\right)=y^{2}\) at the point \((\sqrt{2} / 2, \sqrt{2} / 2)\), as shown in Figure 2.32.
Solution By rewriting and differentiating implicitly, you obtain
\[
\begin{aligned}
x^{4}+x^{2} y^{2}-y^{2} & =0 \\
4 x^{3}+x^{2}\left(2 y \frac{d y}{d x}\right)+2 x y^{2}-2 y \frac{d y}{d x} & =0 \\
2 y\left(x^{2}-1\right) \frac{d y}{d x} & =-2 x\left(2 x^{2}+y^{2}\right) \\
\frac{d y}{d x} & =\frac{x\left(2 x^{2}+y^{2}\right)}{y\left(1-x^{2}\right)}
\end{aligned}
\]

At the point \((\sqrt{2} / 2, \sqrt{2} / 2)\), the slope is
\[
\frac{d y}{d x}=\frac{(\sqrt{2} / 2)[2(1 / 2)+(1 / 2)]}{(\sqrt{2} / 2)[1-(1 / 2)]}=\frac{3 / 2}{1 / 2}=3
\]
and the equation of the tangent line at this point is
\[
\begin{aligned}
y-\frac{\sqrt{2}}{2} & =3\left(x-\frac{\sqrt{2}}{2}\right) \\
y & =3 x-\sqrt{2} .
\end{aligned}
\]

\subsection*{2.5 Exercises}

In Exercises 1-16, find \(d y / d x\) by implicit differentiation.
1. \(x^{2}+y^{2}=9\)
2. \(x^{2}-y^{2}=25\)
3. \(x^{1 / 2}+y^{1 / 2}=16\)
4. \(x^{3}+y^{3}=64\)
5. \(x^{3}-x y+y^{2}=7\)
6. \(x^{2} y+y^{2} x=-2\)
7. \(x^{3} y^{3}-y=x\)
8. \(\sqrt{x y}=x^{2} y+1\)
9. \(x^{3}-3 x^{2} y+2 x y^{2}=12\)
10. \(4 \cos x \sin y=1\)
11. \(\sin x+2 \cos 2 y=1\)
12. \((\sin \pi x+\cos \pi y)^{2}=2\)
13. \(\sin x=x(1+\tan y)\)
14. \(\cot y=x-y\)
15. \(y=\sin x y\)
16. \(x=\sec \frac{1}{y}\)

In Exercises 17-20, (a) find two explicit functions by solving the equation for \(y\) in terms of \(x\), (b) sketch the graph of the equation and label the parts given by the corresponding explicit functions, (c) differentiate the explicit functions, and (d) find \(d y / d x\) and show that the result is equivalent to that of part (c).
17. \(x^{2}+y^{2}=64\)
18. \(x^{2}+y^{2}-4 x+6 y+9=0\)
19. \(16 x^{2}+25 y^{2}=400\)
20. \(16 y^{2}-x^{2}=16\)

In Exercises 21-28, find \(d y / d x\) by implicit differentiation and evaluate the derivative at the given point.
21. \(x y=6, \quad(-6,-1)\)
22. \(x^{2}-y^{3}=0, \quad(1,1)\)
23. \(y^{2}=\frac{x^{2}-49}{x^{2}+49}, \quad(7,0)\)
24. \((x+y)^{3}=x^{3}+y^{3}, \quad(-1,1)\)
25. \(x^{2 / 3}+y^{2 / 3}=5, \quad(8,1)\)
26. \(x^{3}+y^{3}=6 x y-1, \quad(2,3)\)
27. \(\tan (x+y)=x, \quad(0,0)\)
28. \(x \cos y=1, \quad\left(2, \frac{\pi}{3}\right)\)

Famous Curves In Exercises 29-32, find the slope of the tangent line to the graph at the given point.
29. Witch of Agnesi:
\(\left(x^{2}+4\right) y=8\)
Point: \((2,1)\)

30. Cissoid:
\((4-x) y^{2}=x^{3}\)
Point: \((2,2)\)

31. Bifolium:
\(\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y\)
Point: \((1,1)\)

32. Folium of Descartes:
\(x^{3}+y^{3}-6 x y=0\)
Point: \(\left(\frac{4}{3}, \frac{8}{3}\right)\)


Famous Curves In Exercises 33-40, find an equation of the tangent line to the graph at the given point. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
33. Parabola

35. Rotated hyperbola

37. Cruciform

34. Circle

36. Rotated ellipse

38. Astroid

39. Lemniscate

40. Kappa curve

41. (a) Use implicit differentiation to find an equation of the tangent line to the ellipse \(\frac{x^{2}}{2}+\frac{y^{2}}{8}=1\) at \((1,2)\).
(b) Show that the equation of the tangent line to the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) at \(\left(x_{0}, y_{0}\right)\) is \(\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1\).
42. (a) Use implicit differentiation to find an equation of the tangent line to the hyperbola \(\frac{x^{2}}{6}-\frac{y^{2}}{8}=1\) at \((3,-2)\).
(b) Show that the equation of the tangent line to the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) at \(\left(x_{0}, y_{0}\right)\) is \(\frac{x_{0} x}{a^{2}}-\frac{y_{0} y}{b^{2}}=1\).

In Exercises 43 and 44, find \(d y / d x\) implicitly and find the largest interval of the form \(-a<y<a\) or \(0<y<a\) such that \(y\) is a differentiable function of \(x\). Write \(d y / d x\) as a function of \(x\).
43. \(\tan y=x\)
44. \(\cos y=x\)

In Exercises 45-50, find \(d^{2} y / d x^{2}\) in terms of \(x\) and \(y\).
45. \(x^{2}+y^{2}=4\)
46. \(x^{2} y^{2}-2 x=3\)
47. \(x^{2}-y^{2}=36\)
48. \(1-x y=x-y\)
49. \(y^{2}=x^{3}\)
50. \(y^{2}=10 x\)

In Exercises 51 and 52, use a graphing utility to graph the equation. Find an equation of the tangent line to the graph at the given point and graph the tangent line in the same viewing window.
51. \(\sqrt{x}+\sqrt{y}=5, \quad(9,4)\)
52. \(y^{2}=\frac{x-1}{x^{2}+1}, \quad\left(2, \frac{\sqrt{5}}{5}\right)\)

In Exercises 53 and 54, find equations for the tangent line and normal line to the circle at each given point. (The normal line at a point is perpendicular to the tangent line at the point.) Use a graphing utility to graph the equation, tangent line, and normal line.
53. \(x^{2}+y^{2}=25\)
54. \(x^{2}+y^{2}=36\)
\((4,3),(-3,4)\)
\((6,0),(5, \sqrt{11})\)
55. Show that the normal line at any point on the circle \(x^{2}+y^{2}=r^{2}\) passes through the origin.
56. Two circles of radius 4 are tangent to the graph of \(y^{2}=4 x\) at the point \((1,2)\). Find equations of these two circles.

In Exercises 57 and 58, find the points at which the graph of the equation has a vertical or horizontal tangent line.
57. \(25 x^{2}+16 y^{2}+200 x-160 y+400=0\)
58. \(4 x^{2}+y^{2}-8 x+4 y+4=0\)

Orthogonal Trajectories In Exercises 59-62, use a graphing utility to sketch the intersecting graphs of the equations and show that they are orthogonal. [Two graphs are orthogonal if at their point(s) of intersection their tangent lines are perpendicular to each other.]
59. \(2 x^{2}+y^{2}=6\) \(y^{2}=4 x\)
60. \(y^{2}=x^{3}\)
\[
2 x^{2}+3 y^{2}=5
\]
62. \(x^{3}=3(y-1)\)
\[
x(3 y-29)=3
\]
61. \(x+y=0\) \(x=\sin y\)

Orthogonal Trajectories In Exercises 63 and 64, verify that the two families of curves are orthogonal where \(C\) and \(K\) are real numbers. Use a graphing utility to graph the two families for two values of \(C\) and two values of \(K\).
63. \(x y=C, x^{2}-y^{2}=K\)
64. \(x^{2}+y^{2}=C^{2}, \quad y=K x\)

In Exercises 65-68, differentiate (a) with respect to \(x\) ( \(y\) is a function of \(x\) ) and (b) with respect to \(t(x\) and \(y\) are functions of \(t\) ).
65. \(2 y^{2}-3 x^{4}=0\)
66. \(x^{2}-3 x y^{2}+y^{3}=10\)
67. \(\cos \pi y-3 \sin \pi x=1\)
68. \(4 \sin x \cos y=1\)

\section*{WRITING ABOUT CONCEPTS}
69. Describe the difference between the explicit form of a function and an implicit equation. Give an example of each.
70. In your own words, state the guidelines for implicit differentiation.
71. Orthogonal Trajectories The figure below shows the topographic map carried by a group of hikers. The hikers are in a wooded area on top of the hill shown on the map and they decide to follow a path of steepest descent (orthogonal trajectories to the contours on the map). Draw their routes if they start from point \(A\) and if they start from point \(B\). If their goal is to reach the road along the top of the map, which starting point should they use? To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

72. Weather Map The weather map shows several isobarscurves that represent areas of constant air pressure. Three high pressures \(H\) and one low pressure \(L\) are shown on the map. Given that wind speed is greatest along the orthogonal trajectories of the isobars, use the map to determine the areas having high wind speed.

73. Consider the equation \(x^{4}=4\left(4 x^{2}-y^{2}\right)\).
(a) Use a graphing utility to graph the equation.
(b) Find and graph the four tangent lines to the curve for \(y=3\).
(c) Find the exact coordinates of the point of intersection of the two tangent lines in the first quadrant.

\section*{CAPSTONE}
74. Determine if the statement is true. If it is false, explain why and correct it. For each statement, assume \(y\) is a function of \(x\).
(a) \(\frac{d}{d x} \cos \left(x^{2}\right)=-2 x \sin \left(x^{2}\right)\)
(b) \(\frac{d}{d y} \cos \left(y^{2}\right)=2 y \sin \left(y^{2}\right)\)
(c) \(\frac{d}{d x} \cos \left(y^{2}\right)=-2 y \sin \left(y^{2}\right)\)

\section*{SECTION PROJECT}

\section*{Optical Illusions}

In each graph below, an optical illusion is created by having lines intersect a family of curves. In each case, the lines appear to be curved. Find the value of \(d y / d x\) for the given values of \(x\) and \(y\).
(a) Circles: \(x^{2}+y^{2}=C^{2}\)
\[
x=3, y=4, C=5
\]

(b) Hyperbolas: \(x y=C\) \(x=1, y=4, C=4\)

75. Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\)-intercepts of \(L\) is \(c\).
76. Prove (Theorem 2.3) that \(d / d x\left[x^{n}\right]=n x^{n-1}\) for the case in which \(n\) is a rational number. (Hint: Write \(y=x^{p / q}\) in the form \(y^{q}=x^{p}\) and differentiate implicitly. Assume that \(p\) and \(q\) are integers, where \(q>0\).)
77. Slope Find all points on the circle \(x^{2}+y^{2}=100\) where the slope is \(\frac{3}{4}\).
78. Horizontal Tangent Determine the point(s) at which the graph of \(y^{4}=y^{2}-x^{2}\) has a horizontal tangent.
79. Tangent Lines Find equations of both tangent lines to the ellipse \(\frac{x^{2}}{4}+\frac{y^{2}}{9}=1\) that passes through the point \((4,0)\).
80. Normals to a Parabola The graph shows the normal lines from the point \((2,0)\) to the graph of the parabola \(x=y^{2}\). How many normal lines are there from the point \(\left(x_{0}, 0\right)\) to the graph of the parabola if (a) \(x_{0}=\frac{1}{4}\), (b) \(x_{0}=\frac{1}{2}\), and (c) \(x_{0}=1\) ? For what value of \(x_{0}\) are two of the normal lines perpendicular to each other?

81. Normal Lines (a) Find an equation of the normal line to the ellipse \(\frac{x^{2}}{32}+\frac{y^{2}}{8}=1\) at the point \((4,2)\). (b) Use a graphing utility to graph the ellipse and the normal line. (c) At what other point does the normal line intersect the ellipse?
(c) Lines: \(a x=b y\)
\(x=\sqrt{3}, y=3\),
\[
a=\sqrt{3}, b=1
\]

(d) Cosine curves: \(y=C \cos x\) \(x=\frac{\pi}{3}, y=\frac{1}{3}, C=\frac{2}{3}\)

FOR FURTHER INFORMATION For more information on the mathematics of optical illusions, see the article "Descriptive Models for Perception of Optical Illusions" by David A. Smith in The UMAP Journal.

\subsection*{2.6 Related Rates}


Volume is related to radius and height.
Figure 2.33

\section*{FRUREIRNID}

To
learn more about the history of relatedrate problems, see the article "The Lengthening Shadow: The Story of Related Rates" by Bill Austin, Don Barry, and David Berman in Mathematics Magazine. To view this article, go to the website www.matharticles.com.

\section*{- Find a related rate.}
- Use related rates to solve real-life problems.

\section*{Finding Related Rates}

You have seen how the Chain Rule can be used to find \(d y / d x\) implicitly. Another important use of the Chain Rule is to find the rates of change of two or more related variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the volume \(V\), the radius \(r\), and the height \(h\) of the water level are all functions of time \(t\). Knowing that these variables are related by the equation
\[
V=\frac{\pi}{3} r^{2} h
\]

Original equation
you can differentiate implicitly with respect to \(t\) to obtain the related-rate equation
\[
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(\frac{\pi}{3} r^{2} h\right) \\
\frac{d V}{d t} & =\frac{\pi}{3}\left[r^{2} \frac{d h}{d t}+h\left(2 r \frac{d r}{d t}\right)\right] \quad \text { Differentiate with respect to } t \\
& =\frac{\pi}{3}\left(r^{2} \frac{d h}{d t}+2 r h \frac{d r}{d t}\right)
\end{aligned}
\]

From this equation you can see that the rate of change of \(V\) is related to the rates of change of both \(h\) and \(r\).

\section*{EXPLORATION}

Finding a Related Rate In the conical tank shown in Figure 2.33, suppose that the height of the water level is changing at a rate of -0.2 foot per minute and the radius is changing at a rate of -0.1 foot per minute. What is the rate of change in the volume when the radius is \(r=1\) foot and the height is \(h=2\) feet? Does the rate of change in the volume depend on the values of \(r\) and \(h\) ? Explain.

\section*{EXAMPLE 1 Two Rates That Are Related}

Suppose \(x\) and \(y\) are both differentiable functions of \(t\) and are related by the equation \(y=x^{2}+3\). Find \(d y / d t\) when \(x=1\), given that \(d x / d t=2\) when \(x=1\).

Solution Using the Chain Rule, you can differentiate both sides of the equation with respect to \(t\).
\[
\begin{aligned}
y & =x^{2}+3 & & \text { Write original equation. } \\
\frac{d}{d t}[y] & =\frac{d}{d t}\left[x^{2}+3\right] & & \text { Differentiate with respect to } t . \\
\frac{d y}{d t} & =2 x \frac{d x}{d t} & & \text { Chain Rule }
\end{aligned}
\]

When \(x=1\) and \(d x / d t=2\), you have
\[
\frac{d y}{d t}=2(1)(2)=4 .
\]


Total area increases as the outer radius increases. Figure 2.34

NOTE When using these guidelines, be sure you perform Step 3 before Step 4. Substituting the known values of the variables before differentiating will produce an inappropriate derivative.

\section*{Problem Solving with Related Rates}

In Example 1, you were given an equation that related the variables \(x\) and \(y\) and were asked to find the rate of change of \(y\) when \(x=1\).

Equation: \(\quad y=x^{2}+3\)
Given rate: \(\frac{d x}{d t}=2\) when \(\quad x=1\)
Find: \(\quad \frac{d y}{d t}\) when \(x=1\)
In each of the remaining examples in this section, you must create a mathematical model from a verbal description.

\section*{EXAMPLE 2 Ripples in a Pond}

A pebble is dropped into a calm pond, causing ripples in the form of concentric circles, as shown in Figure 2.34. The radius \(r\) of the outer ripple is increasing at a constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the total area \(A\) of the disturbed water changing?
Solution The variables \(r\) and \(A\) are related by \(A=\pi r^{2}\). The rate of change of the radius \(r\) is \(d r / d t=1\).

Equation: \(\quad A=\pi r^{2}\)
Given rate: \(\quad \frac{d r}{d t}=1\)
Find: \(\quad \frac{d A}{d t} \quad\) when \(\quad r=4\)
With this information, you can proceed as in Example 1.
\[
\begin{aligned}
\frac{d}{d t}[A] & =\frac{d}{d t}\left[\pi r^{2}\right] & & \text { Differentiate with respect to } t \\
\frac{d A}{d t} & =2 \pi r \frac{d r}{d t} & & \text { Chain Rule } \\
\frac{d A}{d t} & =2 \pi(4)(1)=8 \pi & & \text { Substitute } 4 \text { for } r \text { and } 1 \text { for } d r / d t
\end{aligned}
\]

When the radius is 4 feet, the area is changing at a rate of \(8 \pi\) square feet per second.

\section*{GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS}
1. Identify all given quantities and quantities to be determined. Make a sketch and label the quantities.
2. Write an equation involving the variables whose rates of change either are given or are to be determined.
3. Using the Chain Rule, implicitly differentiate both sides of the equation with respect to time \(t\).
4. After completing Step 3, substitute into the resulting equation all known values for the variables and their rates of change. Then solve for the required rate of change.

The table below lists examples of mathematical models involving rates of change. For instance, the rate of change in the first example is the velocity of a car.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ drbal Statement } & \multicolumn{1}{c|}{ Mhematical Mlel } \\
\hline \begin{tabular}{l} 
The velocity of a car after traveling for 1 hour \\
is 50 miles per hour.
\end{tabular} & \begin{tabular}{l}
\(x=\) distance traveled \\
\(\frac{d x}{d t}=50\) when \(t=1\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Water is being pumped into a swimming pool \\
at a rate of 10 cubic meters per hour.
\end{tabular} & \begin{tabular}{l}
\(V=\) volume of water in pool \\
\(\frac{d V}{d t}=10 \mathrm{~m}^{3} / \mathrm{hr}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
A gear is revolving at a rate of 25 revolutions \\
per minute \((1\) revolution \(=2 \pi \mathrm{rad})\).
\end{tabular} & \begin{tabular}{l}
\(\theta=\) angle of revolution \\
\(d \theta\) \\
\(d t\)
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMPLE 3 An Inflating Balloon}

Air is being pumped into a spherical balloon (see Figure 2.35) at a rate of 4.5 cubic feet per minute. Find the rate of change of the radius when the radius is 2 feet.

Solution Let \(V\) be the volume of the balloon and let \(r\) be its radius. Because the volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time \(t\) the rate of change of the volume is \(d V / d t=\frac{9}{2}\). So, the problem can be stated as shown.

Given rate: \(\quad \frac{d V}{d t}=\frac{9}{2} \quad\) (constant rate)
Find: \(\quad \frac{d r}{d t} \quad\) when \(\quad r=2\)
To find the rate of change of the radius, you must find an equation that relates the radius \(r\) to the volume \(V\).

Equation: \(\quad V=\frac{4}{3} \pi r^{3} \quad\) Volume of a sphere
Differentiating both sides of the equation with respect to \(t\) produces
\[
\begin{aligned}
\frac{d V}{d t} & =4 \pi r^{2} \frac{d r}{d t} & & \text { Differentiate with respect to } t \\
\frac{d r}{d t} & =\frac{1}{4 \pi r^{2}}\left(\frac{d V}{d t}\right) . & & \text { Solve for } d r / d t
\end{aligned}
\]

Finally, when \(r=2\), the rate of change of the radius is
\(\frac{d r}{d t}=\frac{1}{16 \pi}\left(\frac{9}{2}\right) \approx 0.09\) foot per minute.

In Example 3, note that the volume is increasing at a constant rate but the radius is increasing at a variable rate. Just because two rates are related does not mean that they are proportional. In this particular case, the radius is growing more and more slowly as \(t\) increases. Do you see why?


An airplane is flying at an altitude of 6 miles, \(s\) miles from the station.
Figure 2.36


A television camera at ground level is filming the lift-off of a space shuttle that is rising vertically according to the position equation \(s=50 t^{2}\), where \(s\) is measured in feet and \(t\) is measured in seconds. The camera is 2000 feet from the launch pad.
Figure 2.37

\section*{EXAMPLE 4 The Speed of an Airplane Tracked by Radar}

An airplane is flying on a flight path that will take it directly over a radar tracking station, as shown in Figure 2.36. If \(s\) is decreasing at a rate of 400 miles per hour when \(s=10\) miles, what is the speed of the plane?
Solution Let \(x\) be the horizontal distance from the station, as shown in Figure 2.36. Notice that when \(s=10, x=\sqrt{10^{2}-36}=8\).

Given rate: \(\quad d s / d t=-400 \quad\) when \(\quad s=10\)
Find: \(\quad d x / d t\) when \(s=10\) and \(x=8\)
You can find the velocity of the plane as shown.
Equation: \(x^{2}+6^{2}=s^{2}\)
Pythagorean Theorem
\[
\begin{aligned}
2 x \frac{d x}{d t} & =2 s \frac{d s}{d t} & & \text { Differenti } \\
\frac{d x}{d t} & =\frac{s}{x}\left(\frac{d s}{d t}\right) & & \text { Solve for } \\
\frac{d x}{d t} & =\frac{10}{8}(-400) & & \text { Substitute } \\
& =-500 \text { miles per hour } & & \text { Simplify }
\end{aligned}
\]

Because the velocity is -500 miles per hour, the speed is 500 miles per hour.

NOTE Note that the velocity in Example 4 is negative because \(x\) represents a distance that is decreasing.

\section*{EXAMPLE 5 A Changing Angle of Elevation}

Find the rate of change in the angle of elevation of the camera shown in Figure 2.37 at 10 seconds after lift-off.

Solution Let \(\theta\) be the angle of elevation, as shown in Figure 2.37. When \(t=10\), the height \(s\) of the rocket is \(s=50 t^{2}=50(10)^{2}=5000\) feet.

Given rate: \(\quad d s / d t=100 t=\) velocity of rocket
Find: \(\quad d \theta / d t\) when \(t=10\) and \(s=5000\)
Using Figure 2.37, you can relate \(s\) and \(\theta\) by the equation \(\tan \theta=s / 2000\).
Equation:
\[
\begin{aligned}
\tan \theta & =\frac{s}{2000} & & \text { See Figure 2.37. } \\
\left(\sec ^{2} \theta\right) \frac{d \theta}{d t} & =\frac{1}{2000}\left(\frac{d s}{d t}\right) & & \text { Differentiate with respect to } t . \\
\frac{d \theta}{d t} & =\cos ^{2} \theta \frac{100 t}{2000} & & \text { Substitute } 100 t \text { for } d s / d t . \\
& =\left(\frac{2000}{\sqrt{s^{2}+2000^{2}}}\right)^{2} \frac{100 t}{2000} & & \cos \theta=2000 / \sqrt{s^{2}+2000^{2}}
\end{aligned}
\]

When \(t=10\) and \(s=5000\), you have
\[
\frac{d \theta}{d t}=\frac{2000(100)(10)}{5000^{2}+2000^{2}}=\frac{2}{29} \text { radian per second. }
\]

So, when \(t=10, \theta\) is changing at a rate of \(\frac{2}{29}\) radian per second.


Law of Cosines: \(b^{2}=a^{2}+c^{2}-2 a c \cos \theta\)
Figure 2.39

\section*{EXAMPLE 6 The Velocity of a Piston}

In the engine shown in Figure 2.38, a 7-inch connecting rod is fastened to a crank of radius 3 inches. The crankshaft rotates counterclockwise at a constant rate of 200 revolutions per minute. Find the velocity of the piston when \(\theta=\pi / 3\).


The velocity of a piston is related to the angle of the crankshaft.
Figure 2.38
Solution Label the distances as shown in Figure 2.38. Because a complete revolution corresponds to \(2 \pi\) radians, it follows that \(d \theta / d t=200(2 \pi)=400 \pi\) radians per minute.

Given rate: \(\quad \frac{d \theta}{d t}=400 \pi \quad\) (constant rate)
Find: \(\quad \frac{d x}{d t}\) when \(\quad \theta=\frac{\pi}{3}\)
You can use the Law of Cosines (Figure 2.39) to find an equation that relates \(x\) and \(\theta\).
Equation:
\[
\begin{aligned}
7^{2} & =3^{2}+x^{2}-2(3)(x) \cos \theta \\
0 & =2 x \frac{d x}{d t}-6\left(-x \sin \theta \frac{d \theta}{d t}+\cos \theta \frac{d x}{d t}\right) \\
(6 \cos \theta-2 x) \frac{d x}{d t} & =6 x \sin \theta \frac{d \theta}{d t} \\
\frac{d x}{d t} & =\frac{6 x \sin \theta}{6 \cos \theta-2 x}\left(\frac{d \theta}{d t}\right)
\end{aligned}
\]

When \(\theta=\pi / 3\), you can solve for \(x\) as shown.
\[
\begin{aligned}
7^{2} & =3^{2}+x^{2}-2(3)(x) \cos \frac{\pi}{3} \\
49 & =9+x^{2}-6 x\left(\frac{1}{2}\right) \\
0 & =x^{2}-3 x-40 \\
0 & =(x-8)(x+5)
\end{aligned}
\]
\[
x=8 \quad \text { Choose positive solution. }
\]

So, when \(x=8\) and \(\theta=\pi / 3\), the velocity of the piston is
\[
\begin{aligned}
\frac{d x}{d t} & =\frac{6(8)(\sqrt{3} / 2)}{6(1 / 2)-16}(400 \pi) \\
& =\frac{9600 \pi \sqrt{3}}{-13} \\
& \approx-4018 \text { inches per minute. }
\end{aligned}
\]

NOTE Note that the velocity in Example 6 is negative because \(x\) represents a distance that is decreasing.

\subsection*{2.6 Exercises}

In Exercises 1-4, assume that \(x\) and \(y\) are both differentiable functions of \(t\) and find the required values of \(d y / d t\) and \(d x / d t\).

\section*{Equation}

Find
1. \(y=\sqrt{x}\)
(a) \(\frac{d y}{d t}\) when \(x=4\)
(b) \(\frac{d x}{d t}\) when \(x=25\)

Given
\(\frac{d x}{d t}=3\)
\(\frac{d y}{d t}=2\)
2. \(y=4\left(x^{2}-5 x\right)\)
(a) \(\frac{d y}{d t}\) when \(x=3\)
\(\frac{d x}{d t}=2\)
(b) \(\frac{d x}{d t}\) when \(x=1\)
\(\frac{d y}{d t}=5\)
3. \(x y=4\)
(a) \(\frac{d y}{d t}\) when \(x=8\)
\(\frac{d x}{d t}=10\)
(b) \(\frac{d x}{d t}\) when \(x=1\)
\(\frac{d y}{d t}=-6\)
4. \(x^{2}+y^{2}=25\)
(a) \(\frac{d y}{d t}\) when \(x=3, y=4 \quad \frac{d x}{d t}=8\)
(b) \(\frac{d x}{d t}\) when \(x=4, y=3 \quad \frac{d y}{d t}=-2\)

In Exercises 5-8, a point is moving along the graph of the given function such that \(d x / d t\) is 2 centimeters per second. Find \(d y / d t\) for the given values of \(\boldsymbol{x}\).
5. \(y=2 x^{2}+1\)
(a) \(x=-1\)
(b) \(x=0\)
(c) \(x=1\)
6. \(y=\frac{1}{1+x^{2}}\)
(a) \(x=-2\)
(b) \(x=0\)
(c) \(x=2\)
7. \(y=\tan x\)
(a) \(x=-\frac{\pi}{3}\)
(b) \(x=-\frac{\pi}{4}\)
(c) \(x=0\)
8. \(y=\cos x\)
(a) \(x=\frac{\pi}{6}\)
(b) \(x=\frac{\pi}{4}\)
(c) \(x=\frac{\pi}{3}\)

\section*{WRITING ABOUT CONCEPTS}
9. Consider the linear function \(y=a x+b\). If \(x\) changes at a constant rate, does \(y\) change at a constant rate? If so, does it change at the same rate as \(x\) ? Explain.
10. In your own words, state the guidelines for solving relatedrate problems.
11. Find the rate of change of the distance between the origin and a moving point on the graph of \(y=x^{2}+1\) if \(d x / d t=2\) centimeters per second.
12. Find the rate of change of the distance between the origin and a moving point on the graph of \(y=\sin x\) if \(d x / d t=2\) centimeters per second.
13. Area The radius \(r\) of a circle is increasing at a rate of 4 centimeters per minute. Find the rates of change of the area when (a) \(r=8\) centimeters and (b) \(r=32\) centimeters.
14. Area Let \(A\) be the area of a circle of radius \(r\) that is changing with respect to time. If \(d r / d t\) is constant, is \(d A / d t\) constant? Explain.
15. Area The included angle of the two sides of constant equal length \(s\) of an isosceles triangle is \(\theta\).
(a) Show that the area of the triangle is given by \(A=\frac{1}{2} s^{2} \sin \theta\).
(b) If \(\theta\) is increasing at the rate of \(\frac{1}{2}\) radian per minute, find the rates of change of the area when \(\theta=\pi / 6\) and \(\theta=\pi / 3\).
(c) Explain why the rate of change of the area of the triangle is not constant even though \(d \theta / d t\) is constant.
16. Volume The radius \(r\) of a sphere is increasing at a rate of 3 inches per minute.
(a) Find the rates of change of the volume when \(r=9\) inches and \(r=36\) inches.
(b) Explain why the rate of change of the volume of the sphere is not constant even though \(d r / d t\) is constant.
17. Volume A spherical balloon is inflated with gas at the rate of 800 cubic centimeters per minute. How fast is the radius of the balloon increasing at the instant the radius is (a) 30 centimeters and (b) 60 centimeters?
18. Volume All edges of a cube are expanding at a rate of 6 centimeters per second. How fast is the volume changing when each edge is (a) 2 centimeters and (b) 10 centimeters?
19. Surface Area The conditions are the same as in Exercise 18. Determine how fast the surface area is changing when each edge is (a) 2 centimeters and (b) 10 centimeters.
20. Volume The formula for the volume of a cone is \(V=\frac{1}{3} \pi r^{2} h\). Find the rates of change of the volume if \(d r / d t\) is 2 inches per minute and \(h=3 r\) when (a) \(r=6\) inches and (b) \(r=24\) inches.
21. Volume At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 10 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude. At what rate is the height of the pile changing when the pile is 15 feet high?
22. Depth A conical tank (with vertex down) is 10 feet across the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.
23. Depth A swimming pool is 12 meters long, 6 meters wide, 1 meter deep at the shallow end, and 3 meters deep at the deep end (see figure on next page). Water is being pumped into the pool at \(\frac{1}{4}\) cubic meter per minute, and there is 1 meter of water at the deep end.
(a) What percent of the pool is filled?
(b) At what rate is the water level rising?


Figure for 23


Figure for 24
24. Depth A trough is 12 feet long and 3 feet across the top (see figure). Its ends are isosceles triangles with altitudes of 3 feet.
(a) If water is being pumped into the trough at 2 cubic feet per minute, how fast is the water level rising when the depth \(h\) is 1 foot?
(b) If the water is rising at a rate of \(\frac{3}{8}\) inch per minute when \(h=2\), determine the rate at which water is being pumped into the trough.
25. Moving Ladder A ladder 25 feet long is leaning against the wall of a house (see figure). The base of the ladder is pulled away from the wall at a rate of 2 feet per second.
(a) How fast is the top of the ladder moving down the wall when its base is 7 feet, 15 feet, and 24 feet from the wall?
(b) Consider the triangle formed by the side of the house, the ladder, and the ground. Find the rate at which the area of the triangle is changing when the base of the ladder is 7 feet from the wall.
(c) Find the rate at which the angle between the ladder and the wall of the house is changing when the base of the ladder is 7 feet from the wall.


Figure for 25


Figure for 26
For more information on the - FEURHINNMD mathematics of moving ladders, see the article "The Falling Ladder Paradox" by Paul Scholten and Andrew Simoson in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.
26. Construction A construction worker pulls a five-meter plank up the side of a building under construction by means of a rope tied to one end of the plank (see figure). Assume the opposite end of the plank follows a path perpendicular to the wall of the building and the worker pulls the rope at a rate of 0.15 meter per second. How fast is the end of the plank sliding along the ground when it is 2.5 meters from the wall of the building?
27. Construction A winch at the top of a 12-meter building pulls a pipe of the same length to a vertical position, as shown in the figure. The winch pulls in rope at a rate of -0.2 meter per second. Find the rate of vertical change and the rate of horizontal change at the end of the pipe when \(y=6\).


Figure for 27


Figure for 28
28. Boating A boat is pulled into a dock by means of a winch 12 feet above the deck of the boat (see figure).
(a) The winch pulls in rope at a rate of 4 feet per second. Determine the speed of the boat when there is 13 feet of rope out. What happens to the speed of the boat as it gets closer to the dock?
(b) Suppose the boat is moving at a constant rate of 4 feet per second. Determine the speed at which the winch pulls in rope when there is a total of 13 feet of rope out. What happens to the speed at which the winch pulls in rope as the boat gets closer to the dock?
29. Air Traffic Control An air traffic controller spots two planes at the same altitude converging on a point as they fly at right angles to each other (see figure). One plane is 225 miles from the point moving at 450 miles per hour. The other plane is 300 miles from the point moving at 600 miles per hour.
(a) At what rate is the distance between the planes decreasing?
(b) How much time does the air traffic controller have to get one of the planes on a different flight path?


Figure for 29


Figure for 30
30. Air Traffic Control An airplane is flying at an altitude of 5 miles and passes directly over a radar antenna (see figure). When the plane is 10 miles away \((s=10)\), the radar detects that the distance \(s\) is changing at a rate of 240 miles per hour. What is the speed of the plane?
31. Sports A baseball diamond has the shape of a square with sides 90 feet long (see figure). A player running from second base to third base at a speed of 25 feet per second is 20 feet from third base. At what rate is the player's distance \(s\) from home plate changing?


Figure for 31 and 32


Figure for 33
32. Sports For the baseball diamond in Exercise 31, suppose the player is running from first to second at a speed of 25 feet per second. Find the rate at which the distance from home plate is changing when the player is 20 feet from second base.
33. Shadow Length A man 6 feet tall walks at a rate of 5 feet per second away from a light that is 15 feet above the ground (see figure). When he is 10 feet from the base of the light,
(a) at what rate is the tip of his shadow moving?
(b) at what rate is the length of his shadow changing?
34. Shadow Length Repeat Exercise 33 for a man 6 feet tall walking at a rate of 5 feet per second toward a light that is 20 feet above the ground (see figure).


Figure for 34


Figure for 35
35. Machine Design The endpoints of a movable rod of length 1 meter have coordinates \((x, 0)\) and \((0, y)\) (see figure). The position of the end on the \(x\)-axis is
\(x(t)=\frac{1}{2} \sin \frac{\pi t}{6}\)
where \(t\) is the time in seconds.
(a) Find the time of one complete cycle of the rod.
(b) What is the lowest point reached by the end of the rod on the \(y\)-axis?
(c) Find the speed of the \(y\)-axis endpoint when the \(x\)-axis endpoint is \(\left(\frac{1}{4}, 0\right)\).
36. Machine Design Repeat Exercise 35 for a position function of \(x(t)=\frac{3}{5} \sin \pi t\). Use the point \(\left(\frac{3}{10}, 0\right)\) for part (c).
37. Evaporation As a spherical raindrop falls, it reaches a layer of dry air and begins to evaporate at a rate that is proportional to its surface area \(\left(S=4 \pi r^{2}\right)\). Show that the radius of the raindrop decreases at a constant rate.

\section*{CAPSTONE}
38. Using the graph of \(f\), (a) determine whether \(d y / d t\) is positive or negative given that \(d x / d t\) is negative, and (b) determine whether \(d x / d t\) is positive or negative given that \(d y / d t\) is positive.
(i)

(ii)

39. Electricity The combined electrical resistance \(R\) of \(R_{1}\) and \(R_{2}\), connected in parallel, is given by
\(\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\)
where \(R, R_{1}\), and \(R_{2}\) are measured in ohms. \(R_{1}\) and \(R_{2}\) are increasing at rates of 1 and 1.5 ohms per second, respectively. At what rate is \(R\) changing when \(R_{1}=50 \mathrm{ohms}\) and \(R_{2}=75\) ohms?
40. Adiabatic Expansion When a certain polyatomic gas undergoes adiabatic expansion, its pressure \(p\) and volume \(V\) satisfy the equation \(p V^{1.3}=k\), where \(k\) is a constant. Find the relationship between the related rates \(d p / d t\) and \(d V / d t\).
41. Roadway Design Cars on a certain roadway travel on a circular arc of radius \(r\). In order not to rely on friction alone to overcome the centrifugal force, the road is banked at an angle of magnitude \(\theta\) from the horizontal (see figure). The banking angle must satisfy the equation \(r g \tan \theta=v^{2}\), where \(v\) is the velocity of the cars and \(g=32\) feet per second per second is the acceleration due to gravity. Find the relationship between the related rates \(d v / d t\) and \(d \theta / d t\).

42. Angle of Elevation A balloon rises at a rate of 4 meters per second from a point on the ground 50 meters from an observer. Find the rate of change of the angle of elevation of the balloon from the observer when the balloon is 50 meters above the ground.
43. Angle of Elevation A fish is reeled in at a rate of 1 foot per second from a point 10 feet above the water (see figure). At what rate is the angle \(\theta\) between the line and the water changing when there is a total of 25 feet of line from the end of the rod to the water?


Figure for 43


Figure for 44
44. Angle of Elevation An airplane flies at an altitude of 5 miles toward a point directly over an observer (see figure). The speed of the plane is 600 miles per hour. Find the rates at which the angle of elevation \(\theta\) is changing when the angle is (a) \(\theta=30^{\circ}\), (b) \(\theta=60^{\circ}\), and (c) \(\theta=75^{\circ}\).
45. Linear vs. Angular Speed A patrol car is parked 50 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of 30 revolutions per minute. How fast is the light beam moving along the wall when the beam makes angles of (a) \(\theta=30^{\circ}\), (b) \(\theta=60^{\circ}\), and (c) \(\theta=70^{\circ}\) with the perpendicular line from the light to the wall?


Figure for 45


Figure for 46
46. Linear vs. Angular Speed A wheel of radius 30 centimeters revolves at a rate of 10 revolutions per second. A dot is painted at a point \(P\) on the rim of the wheel (see figure).
(a) Find \(d x / d t\) as a function of \(\theta\).
(b) Use a graphing utility to graph the function in part (a).
(c) When is the absolute value of the rate of change of \(x\) greatest? When is it least?
(d) Find \(d x / d t\) when \(\theta=30^{\circ}\) and \(\theta=60^{\circ}\).
47. Flight Control An airplane is flying in still air with an airspeed of 275 miles per hour. If it is climbing at an angle of \(18^{\circ}\), find the rate at which it is gaining altitude.
48. Security Camera A security camera is centered 50 feet above a 100 -foot hallway (see figure). It is easiest to design the camera with a constant angular rate of rotation, but this results in a variable rate at which the images of the surveillance area are recorded. So, it is desirable to design a system with a variable rate of rotation and a constant rate of movement of the scanning beam along the hallway. Find a model for the variable rate of rotation if \(|d x / d t|=2\) feet per second.


Figure for 48
49. Think About It Describe the relationship between the rate of change of \(y\) and the rate of change of \(x\) in each expression. Assume all variables and derivatives are positive.
(a) \(\frac{d y}{d t}=3 \frac{d x}{d t}\)
(b) \(\frac{d y}{d t}=x(L-x) \frac{d x}{d t}, \quad 0 \leq x \leq L\)

Acceleration In Exercises 50 and 51, find the acceleration of the specified obejct. (Hint: \&call that if a variable is changing at a constant rate, its acceleration is zero.)
50. Find the acceleration of the top of the ladder described in Exercise 25 when the base of the ladder is 7 feet from the wall.
51. Find the acceleration of the boat in Exercise 28(a) when there is a total of 13 feet of rope out.
52. Modeling Data The table shows the numbers (in millions) of single women (never married) \(s\) and married women \(m\) in the civilian work force in the United States for the years 1997 through 2005. (Source: U.S. Bureau of Labor Statistics)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline ear & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 \\
\hline\(s\) & 16.5 & 17.1 & 17.6 & 17.8 & 18.0 & 18.2 & 18.4 & 18.6 & 19.2 \\
\hline\(m\) & 33.8 & 33.9 & 34.4 & 35.1 & 35.2 & 35.5 & 36.0 & 35.8 & 35.9 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form \(m(s)=a s^{3}+b s^{2}+c s+d\) for the data, where \(t\) is the time in years, with \(t=7\) corresponding to 1997.
(b) Find \(d m / d t\). Then use the model to estimate \(d m / d t\) for \(t=10\) if it is predicted that the number of single women in the work force will increase at the rate of 0.75 million per year.
53. Moving Shadow A ball is dropped from a height of 20 meters, 12 meters away from the top of a 20 -meter lamppost (see figure). The ball's shadow, caused by the light at the top of the lamppost, is moving along the level ground. How fast is the shadow moving 1 second after the ball is released? (Submitted by Dennis Gittinger, St. Philips College, San Antonio, TX)


\section*{2 REVIEW EXERCISES}

In Exercises 1-4, find the derivative of the function by using the definition of the derivative.
1. \(f(x)=x^{2}-4 x+5\)
2. \(f(x)=\sqrt{x}+1\)
3. \(f(x)=\frac{x+1}{x-1}\)
4. \(f(x)=\frac{6}{x}\)

In Exercises 5 and 6, describe the \(x\)-values at which \(f\) is differentiable.
5. \(f(x)=(x-3)^{2 / 5}\)
6. \(f(x)=\frac{3 x}{x+1}\)


7. Sketch the graph of \(f(x)=4-|x-2|\).
(a) Is \(f\) continuous at \(x=2\) ?
(b) Is \(f\) differentiable at \(x=2\) ? Explain.
8. Sketch the graph of \(f(x)= \begin{cases}x^{2}+4 x+2, & x<-2 \\ 1-4 x-x^{2}, & x \geq-2 .\end{cases}\)
(a) Is \(f\) continuous at \(x=-2\) ?
(b) Is \(f\) differentiable at \(x=-2\) ? Explain.

In Exercises 9 and 10, find the slope of the tangent line to the graph of the function at the given point.
9. \(g(x)=\frac{2}{3} x^{2}-\frac{x}{6}, \quad\left(-1, \frac{5}{6}\right)\)
10. \(h(x)=\frac{3 x}{8}-2 x^{2}, \quad\left(-2,-\frac{35}{4}\right)\)

In Exercises 11 and 12, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of the graphing utility to confirm your results.
11. \(f(x)=x^{3}-1, \quad(-1,-2)\)
12. \(f(x)=\frac{2}{x+1}\),

In Exercises 13 and 14, use the alternative form of the derivative to find the derivative at \(\boldsymbol{x}=\boldsymbol{c}\) (if it exists).
13. \(g(x)=x^{2}(x-1), \quad c=2\)
14. \(f(x)=\frac{1}{x+4}, \quad c=3\)

In Exercises 15-30, use the rules of differentiation to find the derivative of the function.
15. \(y=25\)
16. \(y=-30\)
17. \(f(x)=x^{8}\)
18. \(g(x)=x^{20}\)
19. \(h(t)=13 t^{4}\)
20. \(f(t)=-8 t^{5}\)
21. \(f(x)=x^{3}-11 x^{2}\)
22. \(g(s)=4 s^{4}-5 s^{2}\)
23. \(h(x)=6 \sqrt{x}+3 \sqrt[3]{x}\)
24. \(f(x)=x^{1 / 2}-x^{-1 / 2}\)
25. \(g(t)=\frac{2}{3 t^{2}}\)
26. \(h(x)=\frac{10}{(7 x)^{2}}\)
27. \(f(\theta)=4 \theta-5 \sin \theta\)
28. \(g(\alpha)=4 \cos \alpha+6\)
29. \(f(\theta)=3 \cos \theta-\frac{\sin \theta}{4}\)
30. \(g(\alpha)=\frac{5 \sin \alpha}{3}-2 \alpha\)

Writing In Exercises 31 and 32, the figure shows the graphs of a function and its derivative. Label the graphs as \(f\) or \(f^{\prime}\) and write a short paragraph stating the criteria you used in making your selection. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
31.

32.

33. Vibrating String When a guitar string is plucked, it vibrates with a frequency of \(F=200 \sqrt{T}\), where \(F\) is measured in vibrations per second and the tension \(T\) is measured in pounds. Find the rates of change of \(F\) when (a) \(T=4\) and (b) \(T=9\).
34. Vertical Motion A ball is dropped from a height of 100 feet. One second later, another ball is dropped from a height of 75 feet. Which ball hits the ground first?
35. Vertical Motion To estimate the height of a building, a weight is dropped from the top of the building into a pool at ground level. How high is the building if the splash is seen 9.2 seconds after the weight is dropped?
36. Vertical Motion A bomb is dropped from an airplane at an altitude of 14,400 feet. How long will it take for the bomb to reach the ground? (Because of the motion of the plane, the fall will not be vertical, but the time will be the same as that for a vertical fall.) The plane is moving at 600 miles per hour. How far will the bomb move horizontally after it is released from the plane?
37. Projectile Motion A thrown ball follows a path described by \(y=x-0.02 x^{2}\).
(a) Sketch a graph of the path.
(b) Find the total horizontal distance the ball is thrown.
(c) At what \(x\)-value does the ball reach its maximum height? (Use the symmetry of the path.)
(d) Find an equation that gives the instantaneous rate of change of the height of the ball with respect to the horizontal change. Evaluate the equation at \(x=0,10,25,30\), and 50 .
(e) What is the instantaneous rate of change of the height when the ball reaches its maximum height?
38. Projectile Motion The path of a projectile thrown at an angle of \(45^{\circ}\) with level ground is
\(y=x-\frac{32}{v_{0}^{2}}\left(x^{2}\right)\)
where the initial velocity is \(v_{0}\) feet per second.
(a) Find the \(x\)-coordinate of the point where the projectile strikes the ground. Use the symmetry of the path of the projectile to locate the \(x\)-coordinate of the point where the projectile reaches its maximum height.
(b) What is the instantaneous rate of change of the height when the projectile is at its maximum height?
(c) Show that doubling the initial velocity of the projectile multiplies both the maximum height and the range by a factor of 4 .
(d) Find the maximum height and range of a projectile thrown with an initial velocity of 70 feet per second. Use a graphing utility to graph the path of the projectile.
39. Horizontal Motion The position function of a particle moving along the \(x\)-axis is
\(x(t)=t^{2}-3 t+2\) for \(-\infty<t<\infty\).
(a) Find the velocity of the particle.
(b) Find the open \(t\)-interval(s) in which the particle is moving to the left.
(c) Find the position of the particle when the velocity is 0.
(d) Find the speed of the particle when the position is 0 .
40. Modeling Data The speed of a car in miles per hour and the stopping distance in feet are recorded in the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Speed, \(x\) & 20 & 30 & 40 & 50 & 60 \\
\hline Stopping Distance, \(y\) & 25 & 55 & 105 & 188 & 300 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a quadratic model for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use a graphing utility to graph \(d y / d x\).
(d) Use the model to approximate the stopping distance at a speed of 65 miles per hour.
(e) Use the graphs in parts (b) and (c) to explain the change in stopping distance as the speed increases.

\section*{In Exercises 41-54, find the derivative of the function.}
41. \(f(x)=\left(5 x^{2}+8\right)\left(x^{2}-4 x-6\right)\)
42. \(g(x)=\left(x^{3}+7 x\right)(x+3)\)
43. \(h(x)=\sqrt{x} \sin x\)
44. \(f(t)=2 t^{5} \cos t\)
45. \(f(x)=\frac{x^{2}+x-1}{x^{2}-1}\)
46. \(f(x)=\frac{6 x-5}{x^{2}+1}\)
47. \(f(x)=\frac{1}{9-4 x^{2}}\)
48. \(f(x)=\frac{9}{3 x^{2}-2 x}\)
49. \(y=\frac{x^{4}}{\cos x}\)
50. \(y=\frac{\sin x}{x^{4}}\)
51. \(y=3 x^{2} \sec x\)
52. \(y=2 x-x^{2} \tan x\)
53. \(y=x \cos x-\sin x\)
54. \(g(x)=3 x \sin x+x^{2} \cos x\)

In Exercises 55-58, find an equation of the tangent line to the graph of \(f\) at the given point.
55. \(f(x)=\frac{2 x^{3}-1}{x^{2}}\),
\((1,1)\)
56. \(f(x)=\frac{x+1}{x-1}, \quad\left(\frac{1}{2},-3\right)\)
57. \(f(x)=-x \tan x, \quad(0,0)\)
58. \(f(x)=\frac{1+\cos x}{1-\cos x}, \quad\left(\frac{\pi}{2}, 1\right)\)
59. Acceleration The velocity of an object in meters per second is \(v(t)=36-t^{2}, 0 \leq t \leq 6\). Find the velocity and acceleration of the object when \(t=4\).
60. Acceleration The velocity of an automobile starting from rest is
\(v(t)=\frac{90 t}{4 t+10}\)
where \(v\) is measured in feet per second. Find the vehicle's velocity and acceleration at each of the following times.
(a) 1 second
(b) 5 seconds
(c) 10 seconds

In Exercises 61-66, find the second derivative of the function.
61. \(g(t)=-8 t^{3}-5 t+12\)
62. \(h(x)=21 x^{-3}+3 x\)
63. \(f(x)=15 x^{5 / 2}\)
64. \(f(x)=20 \sqrt[5]{x}\)
65. \(f(\theta)=3 \tan \theta\)
66. \(h(t)=10 \cos t-15 \sin t\)

In Exercises 67 and 68, show that the function satisfies the equation.
\begin{tabular}{ll} 
Function & \\
6q. \(y=2 \sin x+3 \cos x\) & \\
68. \(y=\frac{10-\cos x}{x}\) &
\end{tabular}\(y^{\prime \prime}+y=0, y=\sin x\).

In Exercises 69-80, find the derivative of the function.
69. \(h(x)=\left(\frac{x+5}{x^{2}+3}\right)^{2}\)
70. \(f(x)=\left(x^{2}+\frac{1}{x}\right)^{5}\)
71. \(f(s)=\left(s^{2}-1\right)^{5 / 2}\left(s^{3}+5\right)\)
72. \(h(\theta)=\frac{\theta}{(1-\theta)^{3}}\)
73. \(y=5 \cos (9 x+1)\)
74. \(y=1-\cos 2 x+2 \cos ^{2} x\)
75. \(y=\frac{x}{2}-\frac{\sin 2 x}{4}\)
76. \(y=\frac{\sec ^{7} x}{7}-\frac{\sec ^{5} x}{5}\)
77. \(y=\frac{2}{3} \sin ^{3 / 2} x-\frac{2}{7} \sin ^{7 / 2} x\)
78. \(f(x)=\frac{3 x}{\sqrt{x^{2}+1}}\)
79. \(y=\frac{\sin \pi x}{x+2}\)
80. \(y=\frac{\cos (x-1)}{x-1}\)

In Exercises 81-84, find the derivative of the function at the given point.
81. \(f(x)=\sqrt{1-x^{3}}, \quad(-2,3)\)
82. \(f(x)=\sqrt[3]{x^{2}-1}, \quad(3,2)\)
83. \(y=\frac{1}{2} \csc 2 x,\left(\frac{\pi}{4}, \frac{1}{2}\right)\)
84. \(y=\csc 3 x+\cot 3 x, \quad\left(\frac{\pi}{6}, 1\right)\)

In Exercises 85-88, use a computer algebra system to find the derivative of the function. Use the utility to graph the function and its derivative on the same set of coordinate axes. Describe the behavior of the function that corresponds to any zeros of the graph of the derivative.
85. \(g(x)=\frac{2 x}{\sqrt{x+1}}\)
86. \(f(x)=[(x-2)(x+4)]^{2}\)
87. \(f(t)=\sqrt{t+1} \sqrt[3]{t+1}\)
88. \(y=\sqrt{3 x}(x+2)^{3}\)
(CAS In Exercises 89-92, (a) use a computer algebra system to find the derivative of the function at the given point, (b) find an equation of the tangent line to the graph of the function at the point, and (c) graph the function and its tangent line on the same set of coordinate axes.
89. \(f(t)=t^{2}(t-1)^{5}, \quad(2,4)\)
90. \(g(x)=x \sqrt{x^{2}+1}, \quad(3,3 \sqrt{10})\)
91. \(f(x)=\tan \sqrt{1-x}, \quad(-2, \tan \sqrt{3})\)
92. \(f(x)=2 \csc ^{3}(\sqrt{x}), \quad\left(1,2 \csc ^{3} 1\right)\)

In Exercises 93-96, find the second derivative of the function.
93. \(y=7 x^{2}+\cos 2 x\)
94. \(y=\frac{1}{x}+\tan x\)
95. \(f(x)=\cot x\)
96. \(y=\sin ^{2} x\)

CAS In Exercises 97-100, use a computer algebra system to find the second derivative of the function.
97. \(f(t)=\frac{4 t^{2}}{(1-t)^{2}}\)
98. \(g(x)=\frac{6 x-5}{x^{2}+1}\)
99. \(g(\theta)=\tan 3 \theta-\sin (\theta-1)\)
100. \(h(x)=5 x \sqrt{x^{2}-16}\)
101. Refrigeration The temperature \(T\) (in degrees Fahrenheit) of food in a freezer is
\(T=\frac{700}{t^{2}+4 t+10}\)
where \(t\) is the time in hours. Find the rate of change of \(T\) with respect to \(t\) at each of the following times.
(a) \(t=1\)
(b) \(t=3\)
(c) \(t=5\)
(d) \(t=10\)
102. Fluid Flow The emergent velocity \(v\) of a liquid flowing from a hole in the bottom of a tank is given by \(v=\sqrt{2 g h}\), where \(g\) is the acceleration due to gravity ( 32 feet per second per second) and \(h\) is the depth of the liquid in the tank. Find the rates of change of \(v\) with respect to \(h\) when (a) \(h=9\) and (b) \(h=4\). (Note that \(g=+32\) feet per second per second. The sign of \(g\) depends on how a problem is modeled. In this case, letting \(g\) be negative would produce an imaginary value for \(v\).)

In Exercises 103-108, find \(d y / d x\) by implicit differentiation.
103. \(x^{2}+3 x y+y^{3}=10\)
104. \(y^{2}=(x-y)\left(x^{2}+y\right)\)
105. \(\sqrt{x y}=x-4 y\)
106. \(y \sqrt{x}-x \sqrt{y}=25\)
107. \(x \sin y=y \cos x\)
108. \(\cos (x+y)=x\)

In Exercises 109 and 110, find the equations of the tangent line and the normal line to the graph of the equation at the given point. Use a graphing utility to graph the equation, the tangent line, and the normal line.
109. \(x^{2}+y^{2}=10, \quad(3,1)\)
110. \(x^{2}-y^{2}=20,(6,4)\)
111. A point moves along the curve \(y=\sqrt{x}\) in such a way that the \(y\)-value is increasing at a rate of 2 units per second. At what rate is \(x\) changing for each of the following values?
(a) \(x=\frac{1}{2}\)
(b) \(x=1\)
(c) \(x=4\)
112. Surface Area The edges of a cube are expanding at a rate of 8 centimeters per second. How fast is the surface area changing when each edge is 6.5 centimeters?
113. Depth The cross section of a five-meter trough is an isosceles trapezoid with a two-meter lower base, a three-meter upper base, and an altitude of 2 meters. Water is running into the trough at a rate of 1 cubic meter per minute. How fast is the water level rising when the water is 1 meter deep?
114. Linear and Angular Velocity A rotating beacon is located 1 kilometer off a straight shoreline (see figure). If the beacon rotates at a rate of 3 revolutions per minute, how fast (in kilometers per hour) does the beam of light appear to be moving to a viewer who is \(\frac{1}{2}\) kilometer down the shoreline?

115. Moving Shadow A sandbag is dropped from a balloon at a height of 60 meters when the angle of elevation to the sun is \(30^{\circ}\) (see figure). Find the rate at which the shadow of the sandbag is traveling along the ground when the sandbag is at a height of 35 meters. [Hint: The position of the sandbag is given by \(s(t)=60-4.9 t^{2}\).]


\section*{P.S. PROBLEM SOLVING}
1. Consider the graph of the parabola \(y=x^{2}\).
(a) Find the radius \(r\) of the largest possible circle centered on the \(y\)-axis that is tangent to the parabola at the origin, as shown in the figure. This circle is called the circle of curvature (see Section 12.5). Find the equation of this circle. Use a graphing utility to graph the circle and parabola in the same viewing window to verify your answer.
(b) Find the center \((0, b)\) of the circle of radius 1 centered on the \(y\)-axis that is tangent to the parabola at two points, as shown in the figure. Find the equation of this circle. Use a graphing utility to graph the circle and parabola in the same viewing window to verify your answer.


Figure for 1(a)


Figure for 1(b)
2. Graph the two parabolas \(y=x^{2}\) and \(y=-x^{2}+2 x-5\) in the same coordinate plane. Find equations of the two lines simultaneously tangent to both parabolas.
3. (a) Find the polynomial \(P_{1}(x)=a_{0}+a_{1} x\) whose value and slope agree with the value and slope of \(f(x)=\cos x\) at the point \(x=0\).
(b) Find the polynomial \(P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}\) whose value and first two derivatives agree with the value and first two derivatives of \(f(x)=\cos x\) at the point \(x=0\). This polynomial is called the second-degree Taylor polynomial of \(f(x)=\cos x\) at \(x=0\).
(c) Complete the table comparing the values of \(f(x)=\cos x\) and \(P_{2}(x)\). What do you observe?
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & -1.0 & -0.1 & -0.001 & 0 & 0.001 & 0.1 & 1.0 \\
\hline \(\cos x\) & & & & & & & \\
\hline\(P_{2}(x)\) & & & & & & & \\
\hline
\end{tabular}
(d) Find the third-degree Taylor polynomial of \(f(x)=\sin x\) at \(x=0\).
4. (a) Find an equation of the tangent line to the parabola \(y=x^{2}\) at the point \((2,4)\).
(b) Find an equation of the normal line to \(y=x^{2}\) at the point \((2,4)\). (The normal line is perpendicular to the tangent line.) Where does this line intersect the parabola a second time?
(c) Find equations of the tangent line and normal line to \(y=x^{2}\) at the point \((0,0)\).
(d) Prove that for any point \((a, b) \neq(0,0)\) on the parabola \(y=x^{2}\), the normal line intersects the graph a second time.
5. Find a third-degree polynomial \(p(x)\) that is tangent to the line \(y=14 x-13\) at the point \((1,1)\), and tangent to the line \(y=-2 x-5\) at the point \((-1,-3)\).
6. Find a function of the form \(f(x)=a+b \cos c x\) that is tangent to the line \(y=1\) at the point \((0,1)\), and tangent to the line
\(y=x+\frac{3}{2}-\frac{\pi}{4}\)
at the point \(\left(\frac{\pi}{4}, \frac{3}{2}\right)\).
7. The graph of the eight curve
\(x^{4}=a^{2}\left(x^{2}-y^{2}\right), \quad a \neq 0\)
is shown below.

(a) Explain how you could use a graphing utility to graph this curve.
(b) Use a graphing utility to graph the curve for various values of the constant \(a\). Describe how \(a\) affects the shape of the curve.
(c) Determine the points on the curve at which the tangent line is horizontal.
8. The graph of the pear-shaped quartic
\(b^{2} y^{2}=x^{3}(a-x), \quad a, b>0\)
is shown below.

(a) Explain how you could use a graphing utility to graph this curve.
(b) Use a graphing utility to graph the curve for various values of the constants \(a\) and \(b\). Describe how \(a\) and \(b\) affect the shape of the curve.
(c) Determine the points on the curve at which the tangent line is horizontal.
9. A man 6 feet tall walks at a rate of 5 feet per second toward a streetlight that is 30 feet high (see figure). The man's 3 -foot-tall child follows at the same speed, but 10 feet behind the man. At times, the shadow behind the child is caused by the man, and at other times, by the child.
(a) Suppose the man is 90 feet from the streetlight. Show that the man's shadow extends beyond the child's shadow.
(b) Suppose the man is 60 feet from the streetlight. Show that the child's shadow extends beyond the man's shadow.
(c) Determine the distance \(d\) from the man to the streetlight at which the tips of the two shadows are exactly the same distance from the streetlight.
(d) Determine how fast the tip of the man's shadow is moving as a function of \(x\), the distance between the man and the street- light. Discuss the continuity of this shadow speed function.


Figure for 9


Figure for 10
10. A particle is moving along the graph of \(y=\sqrt[3]{x}\) (see figure). When \(x=8\), the \(y\)-component of the position of the particle is increasing at the rate of 1 centimeter per second.
(a) How fast is the \(x\)-component changing at this moment?
(b) How fast is the distance from the origin changing at this moment?
(c) How fast is the angle of inclination \(\theta\) changing at this moment?
11. Let \(L\) be a differentiable function for all \(x\). Prove that if \(L(a+b)=L(a)+L(b)\) for all \(a\) and \(b\), then \(L^{\prime}(x)=L^{\prime}(0)\) for all \(x\). What does the graph of \(L\) look like?
12. Let \(E\) be a function satisfying \(E(0)=E^{\prime}(0)=1\). Prove that if \(E(a+b)=E(a) E(b)\) for all \(a\) and \(b\), then \(E\) is differentiable and \(E^{\prime}(x)=E(x)\) for all \(x\). Find an example of a function satisfying \(E(a+b)=E(a) E(b)\).
13. The fundamental limit \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\) assumes that \(x\) is measured in radians. What happens if you assume that \(x\) is measured in degrees instead of radians?
(a) Set your calculator to degree mode and complete the table.
\begin{tabular}{|l|l|l|l|}
\hline\(z\) (in degrees) & 0.1 & 0.01 & 0.0001 \\
\hline\(\frac{\sin z}{z}\) & & & \\
\hline
\end{tabular}
(b) Use the table to estimate
\(\lim _{z \rightarrow 0} \frac{\sin z}{z}\)
for \(z\) in degrees. What is the exact value of this limit? (Hint: \(180^{\circ}=\pi\) radians)
(c) Use the limit definition of the derivative to find
\(\frac{d}{d z} \sin z\)
for \(z\) in degrees.
(d) Define the new functions \(S(z)=\sin (c z)\) and \(C(z)=\cos (c z)\), where \(c=\pi / 180\). Find \(S(90)\) and \(C(180)\). Use the Chain Rule to calculate
\(\frac{d}{d z} S(z)\).
(e) Explain why calculus is made easier by using radians instead of degrees.
14. An astronaut standing on the moon throws a rock upward. The height of the rock is
\(s=-\frac{27}{10} t^{2}+27 t+6\)
where \(s\) is measured in feet and \(t\) is measured in seconds.
(a) Find expressions for the velocity and acceleration of the rock.
(b) Find the time when the rock is at its highest point by finding the time when the velocity is zero. What is the height of the rock at this time?
(c) How does the acceleration of the rock compare with the acceleration due to gravity on Earth?
15. If \(a\) is the acceleration of an object, the jerk \(j\) is defined by \(j=a^{\prime}(t)\).
(a) Use this definition to give a physical interpretation of \(j\).
(b) Find \(j\) for the slowing vehicle in Exercise 119 in Section 2.3 and interpret the result.
(c) The figure shows the graphs of the position, velocity, acceleration, and jerk functions of a vehicle. Identify each graph and explain your reasoning.


This chapter discusses several applications of the derivative of a function. These applications fall into three basic categories-curve sketching, optimization, and approximation techniques.

In this chapter, you should learn the following.
- How to use a derivative to locate the minimum and maximum values of a function on a closed interval. (3.1)
- How numerous results in this chapter depend on two important theorems called Rolle's Theorem and the Mean Value Theorem. (3.2)
- How to use the first derivative to determine whether a function is increasing or decreasing. (3.3)
- How to use the second derivative to determine whether the graph of a function is concave upward or concave downward. (3.4)
- How to find horizontal asymptotes of the graph of a function. (3.5)
- How to graph a function using the techniques from Chapters P3. ( 3.6 )
- How to solve optimization problems. (3.7)

■ How to use approximation techniques to solve problems. (3.8 and 3.9)

© E.J Baumeister J./Alamy
A small aircraft starts its descent from an altitude of 1 mile, 4 miles west of the runway. Given a function that models the glide path of the plane, when would the plane be descending at the greatest rate? (See Section 3.4, Exercise 75.)


In Chapter 3, you will use calculus to analyze graphs of functions. For example, you can use the derivative of a function to determine the function's maximum and minimum values. You can use limits to identify any asymptotes of the function's graph. In Section 3.6, you will combine these techniques to sketch the graph of a function.

\subsection*{3.1 Extrema on an Interval}

(a) \(f\) is continuous, \([-1,2]\) is closed.

(b) \(f\) is continuous, \((-1,2)\) is open.

(c) \(g\) is not continuous, \([-1,2]\) is closed. Extrema can occur at interior points or endpoints of an interval. Extrema that occur at the endpoints are called endpoint extrema.
Figure 3.1
- Understand the definition of extrema of a function on an interval.
- Understand the definition of relative extrema of a function on an open interval.
- Find extrema on a closed interval.

\section*{Extrema of a Function}

In calculus, much effort is devoted to determining the behavior of a function \(f\) on an interval \(I\). Does \(f\) have a maximum value on \(I\) ? Does it have a minimum value? Where is the function increasing? Where is it decreasing? In this chapter you will learn how derivatives can be used to answer these questions. You will also see why these questions are important in real-life applications.

\section*{DEFINITION OF EXTREMA}

Let \(f\) be defined on an interval \(I\) containing \(c\).
1. \(f(c)\) is the minimum of \(\boldsymbol{f}\) on \(\boldsymbol{I}\) if \(f(c) \leq f(x)\) for all \(x\) in \(I\).
2. \(f(c)\) is the maximum of \(\boldsymbol{f}\) on \(\boldsymbol{I}\) if \(f(c) \geq f(x)\) for all \(x\) in \(I\).

The minimum and maximum of a function on an interval are the extreme values, or extrema (the singular form of extrema is extremum), of the function on the interval. The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum, or the global minimum and global maximum, on the interval.

A function need not have a minimum or a maximum on an interval. For instance, in Figure 3.1(a) and (b), you can see that the function \(f(x)=x^{2}+1\) has both a minimum and a maximum on the closed interval \([-1,2]\), but does not have a maximum on the open interval \((-1,2)\). Moreover, in Figure 3.1(c), you can see that continuity (or the lack of it) can affect the existence of an extremum on the interval. This suggests the theorem below. (Although the Extreme Value Theorem is intuitively plausible, a proof of this theorem is not within the scope of this text.)

\section*{THEOREM 3.1 THE EXTREME VALUE THEOREM}

If \(f\) is continuous on a closed interval \([a, b]\), then \(f\) has both a minimum and a maximum on the interval.

\section*{E X P L ORATION}

Finding Minimum and Maximum Values The Extreme Value Theorem (like the Intermediate Value Theorem) is an existence theorem because it tells of the existence of minimum and maximum values but does not show how to find these values. Use the extreme-value capability of a graphing utility to find the minimum and maximum values of each of the following functions. In each case, do you think the \(x\)-values are exact or approximate? Explain your reasoning.
a. \(f(x)=x^{2}-4 x+5\) on the closed interval \([-1,3]\)
b. \(f(x)=x^{3}-2 x^{2}-3 x-2\) on the closed interval \([-1,3]\)

\(f\) has a relative maximum at \((0,0)\) and a relative minimum at \((2,-4)\).
Figure 3.2

(a) \(f^{\prime}(3)=0\)

(b) \(f^{\prime}(0)\) does not exist.

(c) \(f^{\prime}\left(\frac{\pi}{2}\right)=0 ; f^{\prime}\left(\frac{3 \pi}{2}\right)=0\)

Figure 3.3

\section*{Relative Extrema and Critical Numbers}

In Figure 3.2, the graph of \(f(x)=x^{3}-3 x^{2}\) has a relative maximum at the point \((0,0)\) and a relative minimum at the point \((2,-4)\). Informally, for a continuous function, you can think of a relative maximum as occurring on a "hill" on the graph, and a relative minimum as occurring in a "valley" on the graph. Such a hill and valley can occur in two ways. If the hill (or valley) is smooth and rounded, the graph has a horizontal tangent line at the high point (or low point). If the hill (or valley) is sharp and peaked, the graph represents a function that is not differentiable at the high point (or low point).

\section*{DEFINITION OF RELATIVE EXTREMA}
1. If there is an open interval containing \(c\) on which \(f(c)\) is a maximum, then \(f(c)\) is called a relative maximum of \(f\), or you can say that \(f\) has a relative maximum at \((c, f(c))\).
2. If there is an open interval containing \(c\) on which \(f(c)\) is a minimum, then \(f(c)\) is called a relative minimum of \(f\), or you can say that \(f\) has a relative minimum at \((c, f(c))\).
The plural of relative maximum is relative maxima, and the plural of relative minimum is relative minima. Relative maximum and relative minimum are sometimes called local maximum and local minimum, respectively.

Example 1 examines the derivatives of functions at given relative extrema. (Much more is said about finding the relative extrema of a function in Section 3.3.)

\section*{EXAMPLE 1 The Value of the Derivative at Relative Extrema}

Find the value of the derivative at each relative extremum shown in Figure 3.3.

\section*{Solution}
a. The derivative of \(f(x)=\frac{9\left(x^{2}-3\right)}{x^{3}}\) is
\[
\begin{aligned}
f^{\prime}(x) & =\frac{x^{3}(18 x)-(9)\left(x^{2}-3\right)\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}} & & \text { Differentiate using Quotient Rule. } \\
& =\frac{9\left(9-x^{2}\right)}{x^{4}} & & \text { Simplify. }
\end{aligned}
\]

At the point \((3,2)\), the value of the derivative is \(f^{\prime}(3)=0\) [see Figure 3.3(a)].
b. At \(x=0\), the derivative of \(f(x)=|x|\) does not exist because the following one-sided limits differ [see Figure 3.3(b)].
\[
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 & \\
\text { Limit from the left } \\
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1 & \\
\text { Limit from the right }
\end{array}
\]
c. The derivative of \(f(x)=\sin x\) is
\[
f^{\prime}(x)=\cos x
\]

At the point \((\pi / 2,1)\), the value of the derivative is \(f^{\prime}(\pi / 2)=\cos (\pi / 2)=0\). At the point \((3 \pi / 2,-1)\), the value of the derivative is \(f^{\prime}(3 \pi / 2)=\cos (3 \pi / 2)=0\) [see Figure 3.3(c)].


For Fermat, who was trained as a lawyer, mathematics was more of a hobby than a profession. Nevertheless, Fermat made many contributions to analytic geometry, number theory, calculus, and probability. In letters to friends, he wrote of many of the fundamental ideas of calculus, long before Newton or Leibniz. For instance, Theorem 3.2 is sometimes attributed to Fermat.

Note in Example 1 that at each relative extremum, the derivative either is zero or does not exist. The \(x\)-values at these special points are called critical numbers. Figure 3.4 illustrates the two types of critical numbers. Notice in the definition that the critical number \(c\) has to be in the domain of \(f\), but \(c\) does not have to be in the domain of \(f^{\prime}\).

\section*{DEFINITION OF A CRITICAL NUMBER}

Let \(f\) be defined at \(c\). If \(f^{\prime}(c)=0\) or if \(f\) is not differentiable at \(c\), then \(c\) is a critical number of \(f\).

\(c\) is a critical number of \(f\).
Figure 3.4

\section*{THEOREM 3.2 RELATIVE EXTREMA OCCUR ONLY AT CRITICAL NUMBERS}

If \(f\) has a relative minimum or relative maximum at \(x=c\), then \(c\) is a critical number of \(f\).

\section*{PROOF}

Case 1: If \(f\) is not differentiable at \(x=c\), then, by definition, \(c\) is a critical number of \(f\) and the theorem is valid.
Case 2: If \(f\) is differentiable at \(x=c\), then \(f^{\prime}(c)\) must be positive, negative, or 0 . Suppose \(f^{\prime}(c)\) is positive. Then
\[
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}>0
\]
which implies that there exists an interval \((a, b)\) containing \(c\) such that
\[
\frac{f(x)-f(c)}{x-c}>0, \text { for all } x \neq c \text { in }(a, b) . \quad \text { [See Exercise 82(b), Section 1.2.] }
\]

Because this quotient is positive, the signs of the denominator and numerator must agree. This produces the following inequalities for \(x\)-values in the interval \((a, b)\).

Left of c: \(\quad x<c\) and \(f(x)<f(c) \quad \square \quad f(c)\) is not a relative minimum
Right of c: \(x>c\) and \(f(x)>f(c) \quad \square \quad f(c)\) is not a relative maximum
So, the assumption that \(f^{\prime}(c)>0\) contradicts the hypothesis that \(f(c)\) is a relative extremum. Assuming that \(f^{\prime}(c)<0\) produces a similar contradiction, you are left with only one possibility-namely, \(f^{\prime}(c)=0\). So, by definition, \(c\) is a critical number of \(f\) and the theorem is valid.


On the closed interval \([-1,2], f\) has a minimum at \((1,-1)\) and a maximum at \((2,16)\).
Figure 3.5

\section*{Finding Extrema on a Closed Interval}

Theorem 3.2 states that the relative extrema of a function can occur only at the critical numbers of the function. Knowing this, you can use the following guidelines to find extrema on a closed interval.

\section*{GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL}

To find the extrema of a continuous function \(f\) on a closed interval \([a, b]\), use the following steps.
1. Find the critical numbers of \(f\) in \((a, b)\).
2. Evaluate \(f\) at each critical number in \((a, b)\).
3. Evaluate \(f\) at each endpoint of \([a, b]\).
4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that finding the critical numbers of the function is only part of the procedure. Evaluating the function at the critical numbers and the endpoints is the other part.

\section*{EXAMPLE 2 Finding Extrema on a Closed Interval}

Find the extrema of \(f(x)=3 x^{4}-4 x^{3}\) on the interval \([-1,2]\).
Solution Begin by differentiating the function.
\[
\begin{aligned}
f(x) & =3 x^{4}-4 x^{3} & & \text { Write original function. } \\
f^{\prime}(x) & =12 x^{3}-12 x^{2} & & \text { Differentiate. }
\end{aligned}
\]

To find the critical numbers of \(f\), you must find all \(x\)-values for which \(f^{\prime}(x)=0\) and all \(x\)-values for which \(f^{\prime}(x)\) does not exist.
\[
\begin{aligned}
f^{\prime}(x)=12 x^{3}-12 x^{2} & =0 & & \text { Set } f^{\prime}(x) \text { equal to } 0 . \\
12 x^{2}(x-1) & =0 & & \text { Factor. } \\
x & =0,1 & & \text { Critical numbers }
\end{aligned}
\]

Because \(f^{\prime}\) is defined for all \(x\), you can conclude that these are the only critical numbers of \(f\). By evaluating \(f\) at these two critical numbers and at the endpoints of \([-1,2]\), you can determine that the maximum is \(f(2)=16\) and the minimum is \(f(1)=-1\), as shown in the table. The graph of \(f\) is shown in Figure 3.5.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Left \\
Endpoint
\end{tabular} & \begin{tabular}{c} 
Critical \\
Number
\end{tabular} & \begin{tabular}{c} 
Critical \\
Number
\end{tabular} & \begin{tabular}{c} 
Right \\
Endpoint
\end{tabular} \\
\hline\(f(-1)=7\) & \(f(0)=0\) & \begin{tabular}{c}
\(f(1)=-1\) \\
Minimum
\end{tabular} & \begin{tabular}{c}
\(f(2)=16\) \\
Maximum
\end{tabular} \\
\hline
\end{tabular}

In Figure 3.5, note that the critical number \(x=0\) does not yield a relative minimum or a relative maximum. This tells you that the converse of Theorem 3.2 is not true. In other words, the critical numbers of a function need not produce relative extrema.


On the closed interval \([-1,3], f\) has a minimum at \((-1,5)\) and a maximum at \((0,0)\).
Figure 3.6


On the closed interval \([0,2 \pi], f\) has two minima at \((7 \pi / 6,-3 / 2)\) and \((11 \pi / 6,-3 / 2)\) and a maximum at ( \(\pi / 2,3\) ).
Figure 3.7

\section*{EXAMPLE 3 Finding Extrema on a Closed Interval}

Find the extrema of \(f(x)=2 x-3 x^{2 / 3}\) on the interval \([-1,3]\).
Solution Begin by differentiating the function.
\[
\begin{array}{ll}
f(x)=2 x-3 x^{2 / 3} & \text { Write original function. } \\
f^{\prime}(x)=2-\frac{2}{x^{1 / 3}}=2\left(\frac{x^{1 / 3}-1}{x^{1 / 3}}\right) & \text { Differentiate. }
\end{array}
\]

From this derivative, you can see that the function has two critical numbers in the interval \([-1,3]\). The number 1 is a critical number because \(f^{\prime}(1)=0\), and the number 0 is a critical number because \(f^{\prime}(0)\) does not exist. By evaluating \(f\) at these two numbers and at the endpoints of the interval, you can conclude that the minimum is \(f(-1)=-5\) and the maximum is \(f(0)=0\), as shown in the table. The graph of \(f\) is shown in Figure 3.6.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Left \\
Endpoint
\end{tabular} & \begin{tabular}{c} 
Critical \\
Number
\end{tabular} & \begin{tabular}{c} 
Critical \\
Number
\end{tabular} & \begin{tabular}{c} 
Right \\
Endpoint
\end{tabular} \\
\hline \begin{tabular}{c}
\(f(-1)=-5\) \\
Minimum
\end{tabular} & \begin{tabular}{c}
\(f(0)=0\) \\
Maximum
\end{tabular} & \(f(1)=-1\) & \(f(3)=6-3 \sqrt[3]{9} \approx-0.24\) \\
\hline
\end{tabular}

\section*{EXAMPLE 4 Finding Extrema on a Closed Interval}

Find the extrema of \(f(x)=2 \sin x-\cos 2 x\) on the interval [ \(0,2 \pi\) ].
Solution This function is differentiable for all real \(x\), so you can find all critical numbers by differentiating the function and setting \(f^{\prime}(x)\) equal to zero, as shown.
\[
\begin{aligned}
f(x)=2 \sin x-\cos 2 x & \text { Write original function. } \\
f^{\prime}(x)=2 \cos x+2 \sin 2 x=0 & \text { Set } f^{\prime}(x) \text { equal to } 0 . \\
2 \cos x+4 \cos x \sin x=0 & \sin 2 x=2 \cos x \sin x \\
2(\cos x)(1+2 \sin x)=0 & \text { Factor. }
\end{aligned}
\]

In the interval \([0,2 \pi]\), the factor \(\cos x\) is zero when \(x=\pi / 2\) and when \(x=3 \pi / 2\). The factor \((1+2 \sin x)\) is zero when \(x=7 \pi / 6\) and when \(x=11 \pi / 6\). By evaluating \(f\) at these four critical numbers and at the endpoints of the interval, you can conclude that the maximum is \(f(\pi / 2)=3\) and the minimum occurs at two points, \(f(7 \pi / 6)=-3 / 2\) and \(f(11 \pi / 6)=-3 / 2\), as shown in the table. The graph is shown in Figure 3.7.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Left \\
Endpoint
\end{tabular} & \begin{tabular}{l}
Critical \\
Number
\end{tabular} & Right Endpoint \\
\hline \(f(0)=-1\) & \begin{tabular}{l}
\[
f\left(\frac{\pi}{2}\right)=3
\] \\
Maximum
\end{tabular} & \[
\begin{gathered}
f\left(\frac{7 \pi}{6}\right)=-\frac{3}{2} \\
\text { Minimum }
\end{gathered}
\] & \(f\left(\frac{3 \pi}{2}\right)=-1\) & \[
\begin{gathered}
f\left(\frac{11 \pi}{6}\right)=-\frac{3}{2} \\
\text { Minimum }
\end{gathered}
\] & \(f(2 \pi)=-1\) \\
\hline
\end{tabular}
\(\overline{T h e}\) icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.

\subsection*{3.1 Exercises}

In Exercises 1-6, find the value of the derivative (if it exists) at each indicated extremum.
1. \(f(x)=\frac{x^{2}}{x^{2}+4}\)
2. \(f(x)=\cos \frac{\pi x}{2}\)


3. \(g(x)=x+\frac{4}{x^{2}}\)
4. \(f(x)=-3 x \sqrt{x+1}\)


5. \(f(x)=(x+2)^{2 / 3}\)

6. \(f(x)=4-|x|\)


In Exercises 7-10, approximate the critical numbers of the function shown in the graph. Determine whether the function has a relative maximum, a relative minimum, an absolute maximum, an absolute minimum, or none of these at each critical number on the interval shown.
7.

8.

9.

10.


In Exercises 11-16, find any critical numbers of the function.
11. \(f(x)=x^{3}-3 x^{2}\)
12. \(g(x)=x^{4}-4 x^{2}\)
13. \(g(t)=t \sqrt{4-t}, t<3\)
14. \(f(x)=\frac{4 x}{x^{2}+1}\)
15. \(h(x)=\sin ^{2} x+\cos x\)
\(0<x<2 \pi\)
16. \(f(\theta)=2 \sec \theta+\tan \theta\)
\(0<\theta<2 \pi\)

In Exercises 17-36, locate the absolute extrema of the function on the closed interval.
17. \(f(x)=3-x,[-1,2]\)
18. \(f(x)=\frac{2 x+5}{3},[0,5]\)
19. \(g(x)=x^{2}-2 x,[0,4]\)
20. \(h(x)=-x^{2}+3 x-5\), \([-2,1]\)
21. \(f(x)=x^{3}-\frac{3}{2} x^{2},[-1,2]\)
22. \(f(x)=x^{3}-12 x,[0,4]\)
23. \(y=3 x^{2 / 3}-2 x,[-1,1]\)
24. \(g(x)=\sqrt[3]{x},[-1,1]\)
25. \(g(t)=\frac{t^{2}}{t^{2}+3},[-1,1]\)
26. \(f(x)=\frac{2 x}{x^{2}+1},[-2,2]\)
27. \(h(s)=\frac{1}{s-2},[0,1]\)
28. \(h(t)=\frac{t}{t-2},[3,5]\)
29. \(y=3-|t-3|,[-1,5]\)
30. \(g(x)=\frac{1}{1+|x+1|},[-3,3]\)
31. \(f(x)=\llbracket x \rrbracket,[-2,2]\)
32. \(h(x)=\llbracket 2-x \rrbracket\), \([-2,2]\)
33. \(f(x)=\cos \pi x,\left[0, \frac{1}{6}\right]\)
34. \(g(x)=\sec x,\left[-\frac{\pi}{6}, \frac{\pi}{3}\right]\)
35. \(y=3 \cos x,[0,2 \pi]\)
36. \(y=\tan \left(\frac{\pi x}{8}\right),[0,2]\)

In Exercises 37-40, locate the absolute extrema of the function (if any exist) over each interval.
37. \(f(x)=2 x-3\)
(a) \([0,2]\)
(b) \([0,2)\)
(c) \((0,2]\)
(d) \((0,2)\)
39. \(f(x)=x^{2}-2 x\)
(a) \([-1,2]\)
(b) \((1,3]\)
(c) \((0,2)\)
(d) \([1,4)\)
38. \(f(x)=5-x\)
(a) \([1,4]\)
(b) \([1,4)\)
(c) \((1,4]\)
(d) \((1,4)\)
40. \(f(x)=\sqrt{4-x^{2}}\)
(a) \([-2,2]\)
(b) \([-2,0)\)
(c) \((-2,2)\)
(d) \([1,2)\)

In Exercises 41-46, use a graphing utility to graph the function. Locate the absolute extrema of the function on the given interval.
41. \(f(x)=\left\{\begin{array}{ll}2 x+2, & 0 \leq x \leq 1 \\ 4 x^{2}, & 1<x \leq 3\end{array}, \quad[0,3]\right.\)
42. \(f(x)=\left\{\begin{array}{ll}2-x^{2}, & 1 \leq x<3 \\ 2-3 x, & 3 \leq x \leq 5\end{array}, \quad[1,5]\right.\)
43. \(f(x)=\frac{3}{x-1}, \quad(1,4]\)
44. \(f(x)=\frac{2}{2-x}\),
\([0,2)\)
45. \(f(x)=x^{4}-2 x^{3}+x+1, \quad[-1,3]\)
46. \(f(x)=\sqrt{x}+\cos \frac{x}{2}, \quad[0,2 \pi]\)

CAS In Exercises 47 and 48, (a) use a computer algebra system to graph the function and approximate any absolute extrema on the given interval. (b) Use the utility to find any critical numbers, and use them to find any absolute extrema not located at the endpoints. Compare the results with those in part (a).
47. \(f(x)=3.2 x^{5}+5 x^{3}-3.5 x, \quad[0,1]\)
48. \(f(x)=\frac{4}{3} x \sqrt{3-x}, \quad[0,3]\)

CAS In Exercises 49 and 50, use a computer algebra system to find the maximum value of \(\left|f^{\prime \prime}(x)\right|\) on the closed interval. (This value is used in the error estimate for the Trapezoidal Rule, as discussed in Section 4.6.)
49. \(f(x)=\sqrt{1+x^{3}}, \quad[0,2]\)
50. \(f(x)=\frac{1}{x^{2}+1},\left[\frac{1}{2}, 3\right]\)

CAS In Exercises 51 and 52, use a computer algebra system to find the maximum value of \(\left|f^{(4)}(x)\right|\) on the closed interval. (This value is used in the error estimate for Simpson's Rule, as discussed in Section 4.6.)
51. \(f(x)=(x+1)^{2 / 3}, \quad[0,2]\)
52. \(f(x)=\frac{1}{x^{2}+1}, \quad[-1,1]\)
53. Writing Write a short paragraph explaining why a continuous function on an open interval may not have a maximum or minimum. Illustrate your explanation with a sketch of the graph of such a function.

\section*{CAPSTONE}
54. Decide whether each labeled point is an absolute maximum or minimum, a relative maximum or minimum, or neither.


\section*{WRITING ABOUT CONCEPTS}

In Exercises 55 and 56, graph a function on the interval \([-2,5]\) having the given characteristics.
55. Absolute maximum at \(x=-2\), absolute minimum at \(x=1\), relative maximum at \(x=3\)
56. Relative minimum at \(x=-1\), critical number (but no extremum) at \(x=0\), absolute maximum at \(x=2\), absolute minimum at \(x=5\)

In Exercises 57-60, determine from the graph whether \(f\) has a minimum in the open interval \((a, b)\).
57. (a)

58. (a)

59. (a)

60. (a)

(b)

(b)

(b)

(b)

61. Power The formula for the power output \(P\) of a battery is \(P=V I-R I^{2}\), where \(V\) is the electromotive force in volts, \(R\) is the resistance in ohms, and \(I\) is the current in amperes. Find the current that corresponds to a maximum value of \(P\) in a battery for which \(V=12\) volts and \(R=0.5 \mathrm{ohm}\). Assume that a 15 -ampere fuse bounds the output in the interval \(0 \leq I \leq 15\). Could the power output be increased by replacing the 15 -ampere fuse with a 20 -ampere fuse? Explain.
62. Lawn Sprinkler A lawn sprinkler is constructed in such a way that \(d \theta / d t\) is constant, where \(\theta\) ranges between \(45^{\circ}\) and \(135^{\circ}\) (see figure). The distance the water travels horizontally is \(x=\frac{v^{2} \sin 2 \theta}{32}, \quad 45^{\circ} \leq \theta \leq 135^{\circ}\) where \(v\) is the speed of the water. Find \(d x / d t\) and explain why this lawn sprinkler does not water evenly. What part of the lawn receives the most water?


Water sprinkler: \(45^{\circ} \leq \theta \leq 135^{\circ}\)
FOR FURTHER INFORMATION For more information on the "calculus of lawn sprinklers," see the article "Design of an Oscillating Sprinkler" by Bart Braden in Mathematics Magazine. To view this article, go to the website www.matharticles.com.
63. Honeycomb The surface area of a cell in a honeycomb is \(S=6 h s+\frac{3 s^{2}}{2}\left(\frac{\sqrt{3}-\cos \theta}{\sin \theta}\right)\)
where \(h\) and \(s\) are positive constants and \(\theta\) is the angle at which the upper faces meet the altitude of the cell (see figure). Find the angle \(\theta(\pi / 6 \leq \theta \leq \pi / 2)\) that minimizes the surface area \(S\).


FOR FURTHER INFORMATION For more information on the geometric structure of a honeycomb cell, see the article "The Design of Honeycombs" by Anthony L. Peressini in UMAP Module 502, published by COMAP, Inc., Suite 210, 57 Bedford Street, Lexington, MA.
64. Highway Design In order to build a highway, it is necessary to fill a section of a valley where the grades (slopes) of the sides are \(9 \%\) and \(6 \%\) (see figure). The top of the filled region will have the shape of a parabolic arc that is tangent to the two slopes at the points \(A\) and \(B\). The horizontal distances from \(A\) to the \(y\)-axis and from \(B\) to the \(y\)-axis are both 500 feet.

(a) Find the coordinates of \(A\) and \(B\).
(b) Find a quadratic function \(y=a x^{2}+b x+c,-500 \leq\) \(x \leq 500\), that describes the top of the filled region.
(c) Construct a table giving the depths \(d\) of the fill for \(x=-500,-400,-300,-200,-100,0,100,200,300\), 400 , and 500.
(d) What will be the lowest point on the completed highway? Will it be directly over the point where the two hillsides come together?

True or False? In Exercises 65-68, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
65. The maximum of a function that is continuous on a closed interval can occur at two different values in the interval.
66. If a function is continuous on a closed interval, then it must have a minimum on the interval.
67. If \(x=c\) is a critical number of the function \(f\), then it is also a critical number of the function \(g(x)=f(x)+k\), where \(k\) is a constant.
68. If \(x=c\) is a critical number of the function \(f\), then it is also a critical number of the function \(g(x)=f(x-k)\), where \(k\) is a constant.
69. Let the function \(f\) be differentiable on an interval \(I\) containing \(c\). If \(f\) has a maximum value at \(x=c\), show that \(-f\) has a minimum value at \(x=c\).
70. Consider the cubic function \(f(x)=a x^{3}+b x^{2}+c x+d\), where \(a \neq 0\). Show that \(f\) can have zero, one, or two critical numbers and give an example of each case.

\section*{PUTNAM EXAM CHALLENGE}
71. Determine all real numbers \(a>0\) for which there exists a nonnegative continuous function \(f(x)\) defined on \([0, a]\) with the property that the region \(R=\{(x, y) ; 0 \leq x \leq a\), \(0 \leq y \leq f(x)\}\) has perimeter \(k\) units and area \(k\) square units for some real number \(k\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{3.2 Rolle's Theorem and the Mean Value Theorem}
- Understand and use Rolle's Theorem.
- Understand and use the Mean Value Theorem.

\section*{Rolle's Theorem}

\section*{ROLLE'S THEOREM}

French mathematician Michel Rolle first published the theorem that bears his name in 1691. Before this time, however, Rolle was one of the most vocal critics of calculus, stating that it gave erroneous results and was based on unsound reasoning. Later in life, Rolle came to see the usefulness of calculus.

(a) \(f\) is continuous on \([a, b]\) and differentiable on \((a, b)\).

(b) \(f\) is continuous on \([a, b]\).

Figure 3.8

The Extreme Value Theorem (Section 3.1) states that a continuous function on a closed interval \([a, b]\) must have both a minimum and a maximum on the interval. Both of these values, however, can occur at the endpoints. Rolle's Theorem, named after the French mathematician Michel Rolle (1652-1719), gives conditions that guarantee the existence of an extreme value in the interior of a closed interval.

\section*{E X P L ORATION}

Extreme Values in a Closed Interval Sketch a rectangular coordinate plane on a piece of paper. Label the points \((1,3)\) and \((5,3)\). Using a pencil or pen, draw the graph of a differentiable function \(f\) that starts at \((1,3)\) and ends at \((5,3)\). Is there at least one point on the graph for which the derivative is zero? Would it be possible to draw the graph so that there isn't a point for which the derivative is zero? Explain your reasoning.

\section*{THEOREM 3.3 ROLLE'S THEOREM}

Let \(f\) be continuous on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\). If
\[
f(a)=f(b)
\]
then there is at least one number \(c\) in \((a, b)\) such that \(f^{\prime}(c)=0\).
\[
\text { PROOF Let } f(a)=d=f(b) \text {. }
\]

Case 1: If \(f(x)=d\) for all \(x\) in \([a, b], f\) is constant on the interval and, by Theorem \(2.2, f^{\prime}(x)=0\) for all \(x\) in \((a, b)\).
Case 2: Suppose \(f(x)>d\) for some \(x\) in \((a, b)\). By the Extreme Value Theorem, you know that \(f\) has a maximum at some \(c\) in the interval. Moreover, because \(f(c)>d\), this maximum does not occur at either endpoint. So, \(f\) has a maximum in the open interval \((a, b)\). This implies that \(f(c)\) is a relative maximum and, by Theorem 3.2, \(c\) is a critical number of \(f\). Finally, because \(f\) is differentiable at \(c\), you can conclude that \(f^{\prime}(c)=0\).
Case 3: If \(f(x)<d\) for some \(x\) in \((a, b)\), you can use an argument similar to that in Case 2, but involving the minimum instead of the maximum.

From Rolle's Theorem, you can see that if a function \(f\) is continuous on \([a, b]\) and differentiable on \((a, b)\), and if \(f(a)=f(b)\), there must be at least one \(x\)-value between \(a\) and \(b\) at which the graph of \(f\) has a horizontal tangent, as shown in Figure 3.8(a). If the differentiability requirement is dropped from Rolle's Theorem, \(f\) will still have a critical number in \((a, b)\), but it may not yield a horizontal tangent. Such a case is shown in Figure 3.8(b).


The \(x\)-value for which \(f^{\prime}(x)=0\) is between the two \(x\)-intercepts.
Figure 3.9

\(f^{\prime}(x)=0\) for more than one \(x\)-value in the interval ( \(-2,2\) ).
Figure 3.10


Figure 3.11

\section*{EXAMPLE 1 Illustrating Rolle's Theorem}

Find the two \(x\)-intercepts of
\[
f(x)=x^{2}-3 x+2
\]
and show that \(f^{\prime}(x)=0\) at some point between the two \(x\)-intercepts.
Solution Note that \(f\) is differentiable on the entire real line. Setting \(f(x)\) equal to 0 produces
\[
\begin{aligned}
x^{2}-3 x+2 & =0 & & \text { Set } f(x) \text { equal to } 0 . \\
(x-1)(x-2) & =0 . & & \text { Factor. }
\end{aligned}
\]

So, \(f(1)=f(2)=0\), and from Rolle's Theorem you know that there exists at least one \(c\) in the interval \((1,2)\) such that \(f^{\prime}(c)=0\). To find such a \(c\), you can solve the equation
\[
f^{\prime}(x)=2 x-3=0 \quad \text { Set } f^{\prime}(x) \text { equal to } 0
\]
and determine that \(f^{\prime}(x)=0\) when \(x=\frac{3}{2}\). Note that this \(x\)-value lies in the open interval \((1,2)\), as shown in Figure 3.9.

Rolle's Theorem states that if \(f\) satisfies the conditions of the theorem, there must be at least one point between \(a\) and \(b\) at which the derivative is 0 . There may of course be more than one such point, as shown in the next example.

\section*{EXAMPLE 2 Illustrating Rolle's Theorem}

Let \(f(x)=x^{4}-2 x^{2}\). Find all values of \(c\) in the interval \((-2,2)\) such that \(f^{\prime}(c)=0\).
Solution To begin, note that the function satisfies the conditions of Rolle's Theorem. That is, \(f\) is continuous on the interval \([-2,2]\) and differentiable on the interval \((-2,2)\). Moreover, because \(f(-2)=f(2)=8\), you can conclude that there exists at least one \(c\) in \((-2,2)\) such that \(f^{\prime}(c)=0\). Setting the derivative equal to 0 produces
\[
\begin{aligned}
f^{\prime}(x)=4 x^{3}-4 x & =0 & & \text { Set } f^{\prime}(x) \text { equal to } 0 . \\
4 x(x-1)(x+1) & =0 & & \text { Factor. } \\
x & =0,1,-1 . & & x \text {-values for which } f^{\prime}(x)=0
\end{aligned}
\]

So, in the interval \((-2,2)\), the derivative is zero at three different values of \(x\), as shown in Figure 3.10.

TECHNOLOGY PITFALL A graphing utility can be used to indicate whether the points on the graphs in Examples 1 and 2 are relative minima or relative maxima of the functions. When using a graphing utility, however, you should keep in mind that it can give misleading pictures of graphs. For example, use a graphing utility to graph
\[
f(x)=1-(x-1)^{2}-\frac{1}{1000(x-1)^{1 / 7}+1}
\]

With most viewing windows, it appears that the function has a maximum of 1 when \(x=1\) (see Figure 3.11). By evaluating the function at \(x=1\), however, you can see that \(f(1)=0\). To determine the behavior of this function near \(x=1\), you need to examine the graph analytically to get the complete picture.


Figure 3.12


The Mean Value Theorem was first proved by the famous mathematician Joseph-Louis Lagrange. Born in Italy, Lagrange held a position in the court of Frederick the Great in Berlin for 20 years. Afterward, he moved to France, where he met emperor Napoleon Bonaparte, who is quoted as saying, "Lagrange is the lofty pyramid of the mathematical sciences."

\section*{The Mean Value Theorem}

Rolle's Theorem can be used to prove another theorem-the Mean Value Theorem.

\section*{THEOREM 3.4 THE MEAN VALUE THEOREM}

If \(f\) is continuous on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\), then there exists a number \(c\) in \((a, b)\) such that
\[
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\]

PROOF Refer to Figure 3.12. The equation of the secant line that passes through the points \((a, f(a))\) and \((b, f(b))\) is
\[
y=\left[\frac{f(b)-f(a)}{b-a}\right](x-a)+f(a)
\]

Let \(g(x)\) be the difference between \(f(x)\) and \(y\). Then
\[
\begin{aligned}
g(x) & =f(x)-y \\
& =f(x)-\left[\frac{f(b)-f(a)}{b-a}\right](x-a)-f(a) .
\end{aligned}
\]

By evaluating \(g\) at \(a\) and \(b\), you can see that \(g(a)=0=g(b)\). Because \(f\) is continuous on \([a, b]\), it follows that \(g\) is also continuous on \([a, b]\). Furthermore, because \(f\) is differentiable, \(g\) is also differentiable, and you can apply Rolle's Theorem to the function \(g\). So, there exists a number \(c\) in \((a, b)\) such that \(g^{\prime}(c)=0\), which implies that
\[
\begin{aligned}
0 & =g^{\prime}(c) \\
& =f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
\end{aligned}
\]

So, there exists a number \(c\) in \((a, b)\) such that
\[
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\]

NOTE The "mean" in the Mean Value Theorem refers to the mean (or average) rate of change of \(f\) in the interval \([a, b]\).

Although the Mean Value Theorem can be used directly in problem solving, it is used more often to prove other theorems. In fact, some people consider this to be the most important theorem in calculus-it is closely related to the Fundamental Theorem of Calculus discussed in Section 4.4. For now, you can get an idea of the versatility of the Mean Value Theorem by looking at the results stated in Exercises 81-89 in this section.

The Mean Value Theorem has implications for both basic interpretations of the derivative. Geometrically, the theorem guarantees the existence of a tangent line that is parallel to the secant line through the points \((a, f(a))\) and \((b, f(b))\), as shown in Figure 3.12. Example 3 illustrates this geometric interpretation of the Mean Value Theorem. In terms of rates of change, the Mean Value Theorem implies that there must be a point in the open interval \((a, b)\) at which the instantaneous rate of change is equal to the average rate of change over the interval \([a, b]\). This is illustrated in Example 4.


The tangent line at \((2,3)\) is parallel to the secant line through \((1,1)\) and \((4,4)\).
Figure 3.13


At some time \(t\), the instantaneous velocity is equal to the average velocity over 4 minutes. Figure 3.14

\section*{EXAMPLE 3 Finding a Tangent Line}

Given \(f(x)=5-(4 / x)\), find all values of \(c\) in the open interval \((1,4)\) such that
\[
f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}
\]

Solution The slope of the secant line through \((1, f(1))\) and \((4, f(4))\) is
\[
\frac{f(4)-f(1)}{4-1}=\frac{4-1}{4-1}=1
\]

Note that the function satisfies the conditions of the Mean Value Theorem. That is, \(f\) is continuous on the interval \([1,4]\) and differentiable on the interval \((1,4)\). So, there exists at least one number \(c\) in \((1,4)\) such that \(f^{\prime}(c)=1\). Solving the equation \(f^{\prime}(x)=1\) yields
\[
f^{\prime}(x)=\frac{4}{x^{2}}=1
\]
which implies that \(x= \pm 2\). So, in the interval \((1,4)\), you can conclude that \(c=2\), as shown in Figure 3.13.

\section*{EXAMPLE 4 Finding an Instantaneous Rate of Change}

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as shown in Figure 3.14. As a truck passes the first patrol car, its speed is clocked at 55 miles per hour. Four minutes later, when the truck passes the second patrol car, its speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the speed limit (of 55 miles per hour) at some time during the 4 minutes.
Solution Let \(t=0\) be the time (in hours) when the truck passes the first patrol car. The time when the truck passes the second patrol car is
\[
t=\frac{4}{60}=\frac{1}{15} \text { hour. }
\]

By letting \(s(t)\) represent the distance (in miles) traveled by the truck, you have \(s(0)=0\) and \(s\left(\frac{1}{15}\right)=5\). So, the average velocity of the truck over the five-mile stretch of highway is

Average velocity \(=\frac{s(1 / 15)-s(0)}{(1 / 15)-0}=\frac{5}{1 / 15}=75\) miles per hour.
Assuming that the position function is differentiable, you can apply the Mean Value Theorem to conclude that the truck must have been traveling at a rate of 75 miles per hour sometime during the 4 minutes.

A useful alternative form of the Mean Value Theorem is as follows: If \(f\) is continuous on \([a, b]\) and differentiable on \((a, b)\), then there exists a number \(c\) in \((a, b)\) such that
\[
f(b)=f(a)+(b-a) f^{\prime}(c)
\]

Alternative form of Mean Value Theorem

NOTE When doing the exercises for this section, keep in mind that polynomial functions, rational functions, and trigonometric functions are differentiable at all points in their domains.

\subsection*{3.2 Exercises}

In Exercises 1-4, explain why Rolle's Theorem does not apply to the function even though there exist \(a\) and \(b\) such that \(f(a)=f(b)\).
1. \(f(x)=\left|\frac{1}{x}\right|\),
2. \(f(x)=\cot \frac{x}{2}\),
\([-1,1]\)
\[
[\pi, 3 \pi]
\]
3. \(f(x)=1-|x-1|\),
\([0,2]\)
4. \(f(x)=\sqrt{\left(2-x^{2 / 3}\right)^{3}}\),
\([-1,1]\)

In Exercises 5-8, find the two \(x\)-intercepts of the function \(f\) and show that \(f^{\prime}(x)=0\) at some point between the two \(x\)-intercepts.
5. \(f(x)=x^{2}-x-2\)
6. \(f(x)=x(x-3)\)
7. \(f(x)=x \sqrt{x+4}\)
8. \(f(x)=-3 x \sqrt{x+1}\)

Rolle's Theorem In Exercises 9 and 10, the graph of \(f\) is shown. Apply Rolle's Theorem and find all values of \(c\) such that \(f^{\prime}(c)=0\) at some point between the labeled intercepts.
9.

10.


In Exercises 11-24, determine whether Rolle's Theorem can be applied to \(f\) on the closed interval \([a, b]\). If Rolle's Theorem can be applied, find all values of \(c\) in the open interval \((a, b)\) such that \(f^{\prime}(c)=0\). If Rolle's Theorem cannot be applied, explain why not.
11. \(f(x)=-x^{2}+3 x, \quad[0,3]\)
12. \(f(x)=x^{2}-5 x+4, \quad[1,4]\)
13. \(f(x)=(x-1)(x-2)(x-3), \quad[1,3]\)
14. \(f(x)=(x-3)(x+1)^{2}, \quad[-1,3]\)
15. \(f(x)=x^{2 / 3}-1, \quad[-8,8]\)
16. \(f(x)=3-|x-3|, \quad[0,6]\)
17. \(f(x)=\frac{x^{2}-2 x-3}{x+2},[-1,3]\)
18. \(f(x)=\frac{x^{2}-1}{x}, \quad[-1,1]\)
19. \(f(x)=\sin x, \quad[0,2 \pi]\)
20. \(f(x)=\cos x, \quad[0,2 \pi]\)
21. \(f(x)=\frac{6 x}{\pi}-4 \sin ^{2} x, \quad\left[0, \frac{\pi}{6}\right]\)
22. \(f(x)=\cos 2 x, \quad[-\pi, \pi]\)
23. \(f(x)=\tan x, \quad[0, \pi]\)
24. \(f(x)=\sec x, \quad[\pi, 2 \pi]\)

In Exercises 25-28, use a graphing utility to graph the function on the closed interval \([a, b]\). Determine whether Rolle's Theorem can be applied to \(f\) on the interval and, if so, find all values of \(c\) in the open interval \((a, b)\) such that \(f^{\prime}(c)=0\).
25. \(f(x)=|x|-1, \quad[-1,1]\)
26. \(f(x)=x-x^{1 / 3}, \quad[0,1]\)
27. \(f(x)=x-\tan \pi x, \quad\left[-\frac{1}{4}, \frac{1}{4}\right]\)
28. \(f(x)=\frac{x}{2}-\sin \frac{\pi x}{6}, \quad[-1,0]\)
29. Vertical Motion The height of a ball \(t\) seconds after it is thrown upward from a height of 6 feet and with an initial velocity of 48 feet per second is \(f(t)=-16 t^{2}+48 t+6\).
(a) Verify that \(f(1)=f(2)\).
(b) According to Rolle's Theorem, what must the velocity be at some time in the interval (1, 2)? Find that time.
30. Reorder Costs The ordering and transportation cost \(C\) for components used in a manufacturing process is approximated by \(C(x)=10\left(\frac{1}{x}+\frac{x}{x+3}\right)\), where \(C\) is measured in thousands of dollars and \(x\) is the order size in hundreds.
(a) Verify that \(C(3)=C(6)\).
(b) According to Rolle's Theorem, the rate of change of the cost must be 0 for some order size in the interval \((3,6)\). Find that order size.

In Exercises 31 and 32, copy the graph and sketch the secant line to the graph through the points \((a, f(a))\) and \((b, f(b))\). Then sketch any tangent lines to the graph for each value of \(c\) guaranteed by the Mean Value Theorem. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
31.

32.


Writing In Exercises 33-36, explain why the Mean Value Theorem does not apply to the function \(f\) on the interval \([0,6]\).

\section*{33. \\ }
35. \(f(x)=\frac{1}{x-3}\)
34.

36. \(f(x)=|x-3|\)
37. Mean Value Theorem Consider the graph of the function \(f(x)=-x^{2}+5\). (a) Find the equation of the secant line joining the points \((-1,4)\) and \((2,1)\). (b) Use the Mean Value Theorem to determine a point \(c\) in the interval \((-1,2)\) such that the tangent line at \(c\) is parallel to the secant line. (c) Find the equation of the tangent line through \(c\). (d) Then use a graphing utility to graph \(f\), the secant line, and the tangent line.


Figure for 37


Figure for 38
38. Mean Value Theorem Consider the graph of the function \(f(x)=x^{2}-x-12\). (a) Find the equation of the secant line joining the points \((-2,-6)\) and \((4,0)\). (b) Use the Mean Value Theorem to determine a point \(c\) in the interval \((-2,4)\) such that the tangent line at \(c\) is parallel to the secant line. (c) Find the equation of the tangent line through \(c\). (d) Then use a graphing utility to graph \(f\), the secant line, and the tangent line.

In Exercises 39-48, determine whether the Mean Value Theorem can be applied to \(f\) on the closed interval \([a, b]\). If the Mean Value Theorem can be applied, find all values of \(c\) in the open interval \((a, b)\) such that \(f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}\). If the Mean Value Theorem cannot be applied, explain why not.
39. \(f(x)=x^{2}, \quad[-2,1]\)
40. \(f(x)=x^{3}, \quad[0,1]\)
41. \(f(x)=x^{3}+2 x, \quad[-1,1]\)
42. \(f(x)=x^{4}-8 x, \quad[0,2]\)
43. \(f(x)=x^{2 / 3}, \quad[0,1]\)
44. \(f(x)=\frac{x+1}{x}, \quad[-1,2]\)
45. \(f(x)=|2 x+1|, \quad[-1,3]\)
46. \(f(x)=\sqrt{2-x}, \quad[-7,2]\)
47. \(f(x)=\sin x, \quad[0, \pi]\)
48. \(f(x)=\cos x+\tan x, \quad[0, \pi]\)

In Exercises 49-52, use a graphing utility to (a) graph the function \(f\) on the given interval, (b) find and graph the secant line through points on the graph of \(f\) at the endpoints of the given interval, and (c) find and graph any tangent lines to the graph of \(f\) that are parallel to the secant line.
49. \(f(x)=\frac{x}{x+1}, \quad\left[-\frac{1}{2}, 2\right]\)
50. \(f(x)=x-2 \sin x, \quad[-\pi, \pi]\)
51. \(f(x)=\sqrt{x}, \quad[1,9]\)
52. \(f(x)=x^{4}-2 x^{3}+x^{2}, \quad[0,6]\)
53. Vertical Motion The height of an object \(t\) seconds after it is dropped from a height of 300 meters is \(s(t)=-4.9 t^{2}+300\).
(a) Find the average velocity of the object during the first 3 seconds.
(b) Use the Mean Value Theorem to verify that at some time during the first 3 seconds of fall the instantaneous velocity equals the average velocity. Find that time.
54. Sales A company introduces a new product for which the number of units sold \(S\) is
\(S(t)=200\left(5-\frac{9}{2+t}\right)\)
where \(t\) is the time in months.
(a) Find the average rate of change of \(S(t)\) during the first year.
(b) During what month of the first year does \(S^{\prime}(t)\) equal the average rate of change?

\section*{WRITING ABOUT CONCEPTS}
55. Let \(f\) be continuous on \([a, b]\) and differentiable on \((a, b)\). If there exists \(c\) in \((a, b)\) such that \(f^{\prime}(c)=0\), does it follow that \(f(a)=f(b)\) ? Explain.
56. Let \(f\) be continuous on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\). Also, suppose that \(f(a)=f(b)\) and that \(c\) is a real number in the interval such that \(f^{\prime}(c)=0\). Find an interval for the function \(g\) over which Rolle's Theorem can be applied, and find the corresponding critical number of \(g\) ( \(k\) is a constant).
(a) \(g(x)=f(x)+k\)
(b) \(g(x)=f(x-k)\)
(c) \(g(x)=f(k x)\)
57. The function
\(f(x)= \begin{cases}0, & x=0 \\ 1-x, & 0<x \leq 1\end{cases}\)
is differentiable on \((0,1)\) and satisfies \(f(0)=f(1)\). However, its derivative is never zero on \((0,1)\). Does this contradict Rolle's Theorem? Explain.
58. Can you find a function \(f\) such that \(f(-2)=-2, f(2)=6\), and \(f^{\prime}(x)<1\) for all \(x\) ? Why or why not?
59. Speed A plane begins its takeoff at 2:00 P.M. on a \(2500-\mathrm{mile}\) flight. After 5.5 hours, the plane arrives at its destination. Explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.
60. Temperature When an object is removed from a furnace and placed in an environment with a constant temperature of \(90^{\circ} \mathrm{F}\), its core temperature is \(1500^{\circ} \mathrm{F}\). Five hours later the core temperature is \(390^{\circ} \mathrm{F}\). Explain why there must exist a time in the interval when the temperature is decreasing at a rate of \(222^{\circ} \mathrm{F}\) per hour.
61. Velocity Two bicyclists begin a race at \(8: 00\) A.m. They both finish the race 2 hours and 15 minutes later. Prove that at some time during the race, the bicyclists are traveling at the same velocity.
62. Acceleration At 9:13 A.M., a sports car is traveling 35 miles per hour. Two minutes later, the car is traveling 85 miles per hour. Prove that at some time during this two-minute interval, the car's acceleration is exactly 1500 miles per hour squared.
63. Consider the function \(f(x)=3 \cos ^{2}\left(\frac{\pi x}{2}\right)\).
(a) Use a graphing utility to graph \(f\) and \(f^{\prime}\).
(b) Is \(f\) a continuous function? Is \(f^{\prime}\) a continuous function?
(c) Does Rolle's Theorem apply on the interval \([-1,1]\) ? Does it apply on the interval [1, 2]? Explain.
(d) Evaluate, if possible, \(\lim _{x \rightarrow 3^{-}} f^{\prime}(x)\) and \(\lim _{x \rightarrow 3^{+}} f^{\prime}(x)\).

\section*{CAPSTONE}
64. Graphical Reasoning The figure shows two parts of the graph of a continuous differentiable function \(f\) on \([-10,4]\). The derivative \(f^{\prime}\) is also continuous. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) Explain why \(f\) must have at least one zero in \([-10,4]\).
(b) Explain why \(f^{\prime}\) must also have at least one zero in the interval \([-10,4]\). What are these zeros called?
(c) Make a possible sketch of the function with one zero of \(f^{\prime}\) on the interval \([-10,4]\).
(d) Make a possible sketch of the function with two zeros of \(f^{\prime}\) on the interval \([-10,4]\).
(e) Were the conditions of continuity of \(f\) and \(f^{\prime}\) necessary to do parts (a) through (d)? Explain.

Think About It In Exercises 65 and 66, sketch the graph of an arbitrary function \(f\) that satisfies the given condition but does not satisfy the conditions of the Mean Value Theorem on the interval \([-5,5]\).
65. \(f\) is continuous on \([-5,5]\).
66. \(f\) is not continuous on \([-5,5]\).

In Exercises 67-70, use the Intermediate Value Theorem and Rolle's Theorem to prove that the equation has exactly one real solution.
67. \(x^{5}+x^{3}+x+1=0\)
68. \(2 x^{5}+7 x-1=0\)
69. \(3 x+1-\sin x=0\)
70. \(2 x-2-\cos x=0\)
71. Determine the values \(a, b\), and \(c\) such that the function \(f\) satisfies the hypotheses of the Mean Value Theorem on the interval \([0,3]\).
\[
f(x)= \begin{cases}1, & x=0 \\ a x+b, & 0<x \leq 1 \\ x^{2}+4 x+c, & 1<x \leq 3\end{cases}
\]
72. Determine the values \(a, b, c\), and \(d\) such that the function \(f\) satisfies the hypotheses of the Mean Value Theorem on the interval \([-1,2]\).
\[
f(x)= \begin{cases}a, & x=-1 \\ 2, & -1<x \leq 0 \\ b x^{2}+c, & 0<x \leq 1 \\ d x+4, & 1<x \leq 2\end{cases}
\]

Differential Equations In Exercises 73-76, find a function \(f\) that has the derivative \(f^{\prime}(x)\) and whose graph passes through the given point. Explain your reasoning.
73. \(f^{\prime}(x)=0\),
\((2,5)\)
74. \(f^{\prime}(x)=4, \quad(0,1)\)
75. \(f^{\prime}(x)=2 x, \quad(1,0)\)
76. \(f^{\prime}(x)=2 x+3, \quad(1,0)\)

True or False? In Exercises 77-80, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
77. The Mean Value Theorem can be applied to \(f(x)=1 / x\) on the interval \([-1,1]\).
78. If the graph of a function has three \(x\)-intercepts, then it must have at least two points at which its tangent line is horizontal.
79. If the graph of a polynomial function has three \(x\)-intercepts, then it must have at least two points at which its tangent line is horizontal.
80. If \(f^{\prime}(x)=0\) for all \(x\) in the domain of \(f\), then \(f\) is a constant function.
81. Prove that if \(a>0\) and \(n\) is any positive integer, then the polynomial function \(p(x)=x^{2 n+1}+a x+b\) cannot have two real roots.
82. Prove that if \(f^{\prime}(x)=0\) for all \(x\) in an interval \((a, b)\), then \(f\) is constant on \((a, b)\).
83. Let \(p(x)=A x^{2}+B x+C\). Prove that for any interval \([a, b]\), the value \(c\) guaranteed by the Mean Value Theorem is the midpoint of the interval.
84. (a) Let \(f(x)=x^{2}\) and \(g(x)=-x^{3}+x^{2}+3 x+2\). Then \(f(-1)=g(-1)\) and \(f(2)=g(2)\). Show that there is at least one value \(c\) in the interval \((-1,2)\) where the tangent line to \(f\) at \((c, f(c))\) is parallel to the tangent line to \(g\) at \((c, g(c))\). Identify \(c\).
(b) Let \(f\) and \(g\) be differentiable functions on \([a, b]\) where \(f(a)=g(a)\) and \(f(b)=g(b)\). Show that there is at least one value \(c\) in the interval \((a, b)\) where the tangent line to \(f\) at \((c, f(c))\) is parallel to the tangent line to \(g\) at \((c, g(c))\).
85. Prove that if \(f\) is differentiable on \((-\infty, \infty)\) and \(f^{\prime}(x)<1\) for all real numbers, then \(f\) has at most one fixed point. A fixed point of a function \(f\) is a real number \(c\) such that \(f(c)=c\).
86. Use the result of Exercise 85 to show that \(f(x)=\frac{1}{2} \cos x\) has at most one fixed point.
87. Prove that \(|\cos a-\cos b| \leq|a-b|\) for all \(a\) and \(b\).
88. Prove that \(|\sin a-\sin b| \leq|a-b|\) for all \(a\) and \(b\).
89. Let \(0<a<b\). Use the Mean Value Theorem to show that
\[
\sqrt{b}-\sqrt{a}<\frac{b-a}{2 \sqrt{a}} .
\]

\subsection*{3.3 Increasing and Decreasing Functions and the First Derivative Test}
- Determine intervals on which a function is increasing or decreasing.
- Apply the First Derivative Test to find relative extrema of a function.

\section*{Increasing and Decreasing Functions}

In this section you will learn how derivatives can be used to classify relative extrema as either relative minima or relative maxima. First, it is important to define increasing and decreasing functions.

\section*{DEFINITIONS OF INCREASING AND DECREASING FUNCTIONS}

A function \(f\) is increasing on an interval if for any two numbers \(x_{1}\) and \(x_{2}\) in the interval, \(x_{1}<x_{2}\) implies \(f\left(x_{1}\right)<f\left(x_{2}\right)\).
A function \(f\) is decreasing on an interval if for any two numbers \(x_{1}\) and \(x_{2}\) in the interval, \(x_{1}<x_{2}\) implies \(f\left(x_{1}\right)>f\left(x_{2}\right)\).

A function is increasing if, as \(x\) moves to the right, its graph moves up, and is decreasing if its graph moves down. For example, the function in Figure 3.15 is decreasing on the interval \((-\infty, a)\), is constant on the interval \((a, b)\), and is increasing on the interval \((b, \infty)\). As shown in Theorem 3.5 below, a positive derivative implies that the function is increasing; a negative derivative implies that the function is decreasing; and a zero derivative on an entire interval implies that the function is constant on that interval.

\section*{THEOREM 3.5 TEST FOR INCREASING AND DECREASING FUNCTIONS}

Let \(f\) be a function that is continuous on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\).
1. If \(f^{\prime}(x)>0\) for all \(x\) in \((a, b)\), then \(f\) is increasing on \([a, b]\).
2. If \(f^{\prime}(x)<0\) for all \(x\) in \((a, b)\), then \(f\) is decreasing on \([a, b]\).
3. If \(f^{\prime}(x)=0\) for all \(x\) in \((a, b)\), then \(f\) is constant on \([a, b]\).

PROOF To prove the first case, assume that \(f^{\prime}(x)>0\) for all \(x\) in the interval \((a, b)\) and let \(x_{1}<x_{2}\) be any two points in the interval. By the Mean Value Theorem, you know that there exists a number \(c\) such that \(x_{1}<c<x_{2}\), and
\[
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\]

Because \(f^{\prime}(c)>0\) and \(x_{2}-x_{1}>0\), you know that
\[
f\left(x_{2}\right)-f\left(x_{1}\right)>0
\]
which implies that \(f\left(x_{1}\right)<f\left(x_{2}\right)\). So, \(f\) is increasing on the interval. The second case has a similar proof (see Exercise 104), and the third case is a consequence of Exercise 82 in Section 3.2.

NOTE The conclusions in the first two cases of Theorem 3.5 are valid even if \(f^{\prime}(x)=0\) at a finite number of \(x\)-values in \((a, b)\).


Figure 3.16

(a) Strictly monotonic function

(b) Not strictly monotonic

Figure 3.17

\section*{EXAMPLE 1 Intervals on Which \(\boldsymbol{f}\) Is Increasing or Decreasing}

Find the open intervals on which \(f(x)=x^{3}-\frac{3}{2} x^{2}\) is increasing or decreasing.
Solution Note that \(f\) is differentiable on the entire real number line. To determine the critical numbers of \(f\), set \(f^{\prime}(x)\) equal to zero.
\[
\begin{aligned}
f(x) & =x^{3}-\frac{3}{2} x^{2} & & \text { Write original function. } \\
f^{\prime}(x)=3 x^{2}-3 x & =0 & & \text { Differentiate and set } f^{\prime}(x) \text { equal to } 0 . \\
3(x)(x-1) & =0 & & \text { Factor. } \\
x & =0,1 & & \text { Critical numbers }
\end{aligned}
\]

Because there are no points for which \(f^{\prime}\) does not exist, you can conclude that \(x=0\) and \(x=1\) are the only critical numbers. The table summarizes the testing of the three intervals determined by these two critical numbers.
\begin{tabular}{|l|c|c|c|}
\hline Interval & \(-\infty<x<0\) & \(0<x<1\) & \(1<x<\infty\) \\
\hline Test Value & \(x=-1\) & \(x=\frac{1}{2}\) & \(x=2\) \\
\hline Sign of \(f^{\prime}(x)\) & \(f^{\prime}(-1)=6>0\) & \(f^{\prime}\left(\frac{1}{2}\right)=-\frac{3}{4}<0\) & \(f^{\prime}(2)=6>0\) \\
\hline Conclusion & Increasing & Decreasing & Increasing \\
\hline
\end{tabular}

So, \(f\) is increasing on the intervals \((-\infty, 0)\) and \((1, \infty)\) and decreasing on the interval \((0,1)\), as shown in Figure 3.16.

Example 1 gives you one example of how to find intervals on which a function is increasing or decreasing. The guidelines below summarize the steps followed in that example.

\section*{GUIDELINES FOR FINDING INTERVALS ON WHICH A FUNCTION IS INCREASING OR DECREASING}

Let \(f\) be continuous on the interval \((a, b)\). To find the open intervals on which \(f\) is increasing or decreasing, use the following steps.
1. Locate the critical numbers of \(f\) in \((a, b)\), and use these numbers to determine test intervals.
2. Determine the sign of \(f^{\prime}(x)\) at one test value in each of the intervals.
3. Use Theorem 3.5 to determine whether \(f\) is increasing or decreasing on each interval.
These guidelines are also valid if the interval \((a, b)\) is replaced by an interval of the form \((-\infty, b),(a, \infty)\), or \((-\infty, \infty)\).

A function is strictly monotonic on an interval if it is either increasing on the entire interval or decreasing on the entire interval. For instance, the function \(f(x)=x^{3}\) is strictly monotonic on the entire real number line because it is increasing on the entire real number line, as shown in Figure 3.17(a). The function shown in Figure 3.17(b) is not strictly monotonic on the entire real number line because it is constant on the interval \([0,1]\).


Relative extrema of \(f\)
Figure 3.18

\section*{The First Derivative Test}

After you have determined the intervals on which a function is increasing or decreasing, it is not difficult to locate the relative extrema of the function. For instance, in Figure 3.18 (from Example 1), the function
\[
f(x)=x^{3}-\frac{3}{2} x^{2}
\]
has a relative maximum at the point \((0,0)\) because \(f\) is increasing immediately to the left of \(x=0\) and decreasing immediately to the right of \(x=0\). Similarly, \(f\) has a relative minimum at the point \(\left(1,-\frac{1}{2}\right)\) because \(f\) is decreasing immediately to the left of \(x=1\) and increasing immediately to the right of \(x=1\). The following theorem, called the First Derivative Test, makes this more explicit.

\section*{THEOREM 3.6 THE FIRST DERIVATIVE TEST}

Let \(c\) be a critical number of a function \(f\) that is continuous on an open interval \(I\) containing \(c\). If \(f\) is differentiable on the interval, except possibly at \(c\), then \(f(c)\) can be classified as follows.
1. If \(f^{\prime}(x)\) changes from negative to positive at \(c\), then \(f\) has a relative minimum at \((c, f(c))\).
2. If \(f^{\prime}(x)\) changes from positive to negative at \(c\), then \(f\) has a relative maximum at \((c, f(c))\).
3. If \(f^{\prime}(x)\) is positive on both sides of \(c\) or negative on both sides of \(c\), then \(f(c)\) is neither a relative minimum nor a relative maximum.


Relative minimum


Neither relative minimum nor relative maximum

PROOF Assume that \(f^{\prime}(x)\) changes from negative to positive at \(c\). Then there exist \(a\) and \(b\) in \(I\) such that
\[
f^{\prime}(x)<0 \text { for all } x \text { in }(a, c)
\]
and
\[
f^{\prime}(x)>0 \text { for all } x \text { in }(c, b)
\]

By Theorem 3.5, \(f\) is decreasing on \([a, c]\) and increasing on \([c, b]\). So, \(f(c)\) is a minimum of \(f\) on the open interval \((a, b)\) and, consequently, a relative minimum of \(f\). This proves the first case of the theorem. The second case can be proved in a similar way (see Exercise 105).


A relative minimum occurs where \(f\) changes from decreasing to increasing, and a relative maximum occurs where \(f\) changes from increasing to decreasing.
Figure 3.19

\section*{EXAMPLE 2 Applying the First Derivative Test}

Find the relative extrema of the function \(f(x)=\frac{1}{2} x-\sin x\) in the interval \((0,2 \pi)\).
Solution Note that \(f\) is continuous on the interval \((0,2 \pi)\). To determine the critical numbers of \(f\) in this interval, set \(f^{\prime}(x)\) equal to 0 .
\[
\begin{array}{rlrl}
f^{\prime}(x)=\frac{1}{2}-\cos x & =0 & & \text { Set } f^{\prime}(x) \text { equal to } 0 \\
\cos x & =\frac{1}{2} & \\
x & =\frac{\pi}{3}, \frac{5 \pi}{3} & & \text { Critical numbers }
\end{array}
\]

Because there are no points for which \(f^{\prime}\) does not exist, you can conclude that \(x=\pi / 3\) and \(x=5 \pi / 3\) are the only critical numbers. The table summarizes the testing of the three intervals determined by these two critical numbers.
\begin{tabular}{|l|c|c|c|}
\hline Interval & \(0<x<\frac{\pi}{3}\) & \(\frac{\pi}{3}<x<\frac{5 \pi}{3}\) & \(\frac{5 \pi}{3}<x<2 \pi\) \\
\hline Test Value & \(x=\frac{\pi}{4}\) & \(x=\pi\) & \(x=\frac{7 \pi}{4}\) \\
\hline Sign of \(f^{\prime}(x)\) & \(f^{\prime}\left(\frac{\pi}{4}\right)<0\) & \(f^{\prime}(\pi)>0\) & \(f^{\prime}\left(\frac{7 \pi}{4}\right)<0\) \\
\hline Conclusion & Decreasing & Increasing & Decreasing \\
\hline
\end{tabular}

By applying the First Derivative Test, you can conclude that \(f\) has a relative minimum at the point where
\[
x=\frac{\pi}{3} \quad x \text {-value where relative minimum occurs }
\]
and a relative maximum at the point where
\[
x=\frac{5 \pi}{3} \quad x \text {-value where relative maximum occurs }
\]
as shown in Figure 3.19.

\section*{E X P L ORATION}

Comparing Graphical and Analytic Approaches From Section 3.2, you know that, by itself, a graphing utility can give misleading information about the relative extrema of a graph. Used in conjunction with an analytic approach, however, a graphing utility can provide a good way to reinforce your conclusions. Use a graphing utility to graph the function in Example 2. Then use the zoom and trace features to estimate the relative extrema. How close are your graphical approximations?

Note that in Examples 1 and 2 the given functions are differentiable on the entire real number line. For such functions, the only critical numbers are those for which \(f^{\prime}(x)=0\). Example 3 concerns a function that has two types of critical numbersthose for which \(f^{\prime}(x)=0\) and those for which \(f\) is not differentiable.


You can apply the First Derivative Test to find relative extrema.
Figure 3.20

\section*{EXAMPLE 3 Applying the First Derivative Test}

Find the relative extrema of
\[
f(x)=\left(x^{2}-4\right)^{2 / 3}
\]

Solution Begin by noting that \(f\) is continuous on the entire real number line. The derivative of \(f\)
\[
\begin{aligned}
f^{\prime}(x) & =\frac{2}{3}\left(x^{2}-4\right)^{-1 / 3}(2 x) & & \text { General Power Rule } \\
& =\frac{4 x}{3\left(x^{2}-4\right)^{1 / 3}} & & \text { Simplify. }
\end{aligned}
\]
is 0 when \(x=0\) and does not exist when \(x= \pm 2\). So, the critical numbers are \(x=-2, x=0\), and \(x=2\). The table summarizes the testing of the four intervals determined by these three critical numbers.
\begin{tabular}{|l|c|c|c|c|}
\hline Interval & \(-\infty<x<-2\) & \(-2<x<0\) & \(0<x<2\) & \(2<x<\infty\) \\
\hline Test Value & \(x=-3\) & \(x=-1\) & \(x=1\) & \(x=3\) \\
\hline Sign of \(f^{\prime}(x)\) & \(f^{\prime}(-3)<0\) & \(f^{\prime}(-1)>0\) & \(f^{\prime}(1)<0\) & \(f^{\prime}(3)>0\) \\
\hline Conclusion & Decreasing & Increasing & Decreasing & Increasing \\
\hline
\end{tabular}

By applying the First Derivative Test, you can conclude that \(f\) has a relative minimum at the point \((-2,0)\), a relative maximum at the point \((0, \sqrt[3]{16})\), and another relative minimum at the point \((2,0)\), as shown in Figure 3.20.

TECHNOLOGY PITFALL When using a graphing utility to graph a function involving radicals or rational exponents, be sure you understand the way the utility evaluates radical expressions. For instance, even though
\[
f(x)=\left(x^{2}-4\right)^{2 / 3}
\]
and
\[
g(x)=\left[\left(x^{2}-4\right)^{2}\right]^{1 / 3}
\]
are the same algebraically, some graphing utilities distinguish between these two functions. Which of the graphs shown in Figure 3.21 is incorrect? Why did the graphing utility produce an incorrect graph?
\(f(x)=\left(x^{2}-4\right)^{2 / 3}\)



Which graph is incorrect?
Figure 3.21
\(f(x)=\frac{x^{4}+1}{x^{2}}\)

\(x\)-values that are not in the domain of \(f\), as well as critical numbers, determine test intervals for \(f^{\prime}\).
Figure 3.22

When using the First Derivative Test, be sure to consider the domain of the function. For instance, in the next example, the function
\[
f(x)=\frac{x^{4}+1}{x^{2}}
\]
is not defined when \(x=0\). This \(x\)-value must be used with the critical numbers to determine the test intervals.

\section*{EXAMPLE 4 Applying the First Derivative Test}

Find the relative extrema of \(f(x)=\frac{x^{4}+1}{x^{2}}\).

\section*{Solution}
\[
\begin{aligned}
f(x) & =x^{2}+x^{-2} & & \text { Rewrite original function. } \\
f^{\prime}(x) & =2 x-2 x^{-3} & & \text { Differentiate. } \\
& =2 x-\frac{2}{x^{3}} & & \text { Rewrite with positive exponent. } \\
& =\frac{2\left(x^{4}-1\right)}{x^{3}} & & \text { Simplify. } \\
& =\frac{2\left(x^{2}+1\right)(x-1)(x+1)}{x^{3}} & & \text { Factor. }
\end{aligned}
\]

So, \(f^{\prime}(x)\) is zero at \(x= \pm 1\). Moreover, because \(x=0\) is not in the domain of \(f\), you should use this \(x\)-value along with the critical numbers to determine the test intervals.
\[
\begin{array}{ll}
x= \pm 1 & \text { Critical numbers, } f^{\prime}( \pm 1)=0 \\
x=0 & 0 \text { is not in the domain of } f
\end{array}
\]

The table summarizes the testing of the four intervals determined by these three \(x\)-values.
\begin{tabular}{|l|c|c|c|c|}
\hline Interval & \(-\infty<x<-1\) & \(-1<x<0\) & \(0<x<1\) & \(1<x<\infty\) \\
\hline Test Value & \(x=-2\) & \(x=-\frac{1}{2}\) & \(x=\frac{1}{2}\) & \(x=2\) \\
\hline Sign of \(f^{\prime}(x)\) & \(f^{\prime}(-2)<0\) & \(f^{\prime}\left(-\frac{1}{2}\right)>0\) & \(f^{\prime}\left(\frac{1}{2}\right)<0\) & \(f^{\prime}(2)>0\) \\
\hline Conclusion & Decreasing & Increasing & Decreasing & Increasing \\
\hline
\end{tabular}

By applying the First Derivative Test, you can conclude that \(f\) has one relative minimum at the point \((-1,2)\) and another at the point \((1,2)\), as shown in Figure 3.22.

TECHNOLOGY The most difficult step in applying the First Derivative Test is finding the values for which the derivative is equal to 0 . For instance, the values of \(x\) for which the derivative of
\[
f(x)=\frac{x^{4}+1}{x^{2}+1}
\]
is equal to zero are \(x=0\) and \(x= \pm \sqrt{\sqrt{2}-1}\). If you have access to technology that can perform symbolic differentiation and solve equations, use it to apply the First Derivative Test to this function.


If a projectile is propelled from ground level and air resistance is neglected, the object will travel farthest with an initial angle of \(45^{\circ}\). If, however, the projectile is propelled from a point above ground level, the angle that yields a maximum horizontal distance is not \(45^{\circ}\) (see Example 5).

\section*{EXAMPLE 5 The Path of a Projectile}

Neglecting air resistance, the path of a projectile that is propelled at an angle \(\theta\) is
\[
y=\frac{g \sec ^{2} \theta}{2 v_{0}^{2}} x^{2}+(\tan \theta) x+h, \quad 0 \leq \theta \leq \frac{\pi}{2}
\]
where \(y\) is the height, \(x\) is the horizontal distance, \(g\) is the acceleration due to gravity, \(v_{0}\) is the initial velocity, and \(h\) is the initial height. (This equation is derived in Section 12.3.) Let \(g=-32\) feet per second per second, \(v_{0}=24\) feet per second, and \(h=9\) feet. What value of \(\theta\) will produce a maximum horizontal distance?

Solution To find the distance the projectile travels, let \(y=0\), and use the Quadratic Formula to solve for \(x\).
\[
\begin{aligned}
\frac{g \sec ^{2} \theta}{2 v_{0}^{2}} x^{2}+(\tan \theta) x+h & =0 \\
\frac{-32 \sec ^{2} \theta}{2\left(24^{2}\right)} x^{2}+(\tan \theta) x+9 & =0 \\
-\frac{\sec ^{2} \theta}{36} x^{2}+(\tan \theta) x+9 & =0 \\
x & =\frac{-\tan \theta \pm \sqrt{\tan ^{2} \theta+\sec ^{2} \theta}}{-\sec ^{2} \theta / 18} \\
x & =18 \cos \theta\left(\sin \theta+\sqrt{\sin ^{2} \theta+1}\right), \quad x \geq 0
\end{aligned}
\]

At this point, you need to find the value of \(\theta\) that produces a maximum value of \(x\). Applying the First Derivative Test by hand would be very tedious. Using technology to solve the equation \(d x / d \theta=0\), however, eliminates most of the messy computations. The result is that the maximum value of \(x\) occurs when
\[
\theta \approx 0.61548 \text { radian, or } 35.3^{\circ}
\]

This conclusion is reinforced by sketching the path of the projectile for different values of \(\theta\), as shown in Figure 3.23. Of the three paths shown, note that the distance traveled is greatest for \(\theta=35^{\circ}\).


The path of a projectile with initial angle \(\theta\)
Figure 3.23

NOTE A computer simulation of this example is given in the premium eBook for this text. Using that simulation, you can experimentally discover that the maximum value of \(x\) occurs when \(\theta \approx 35.3^{\circ}\).

\subsection*{3.3 Exercises}

In Exercises 1 and 2, use the graph of \(\boldsymbol{f}\) to find (a) the largest open interval on which \(f\) is increasing, and (b) the largest open interval on which \(f\) is decreasing.

2.


In Exercises 3-8, use the graph to estimate the open intervals on which the function is increasing or decreasing. Then find the open intervals analytically.

5. \(y=\frac{x^{3}}{4}-3 x\)

7. \(f(x)=\frac{1}{(x+1)^{2}}\)

4. \(y=-(x+1)^{2}\)

6. \(f(x)=x^{4}-2 x^{2}\)

8. \(y=\frac{x^{2}}{2 x-1}\)


In Exercises 9-16, identify the open intervals on which the function is increasing or decreasing.
9. \(g(x)=x^{2}-2 x-8\)
10. \(h(x)=27 x-x^{3}\)
11. \(y=x \sqrt{16-x^{2}}\)
12. \(y=x+\frac{4}{x}\)
13. \(f(x)=\sin x-1, \quad 0<x<2 \pi\)
14. \(h(x)=\cos \frac{x}{2}, \quad 0<x<2 \pi\)
15. \(y=x-2 \cos x, \quad 0<x<2 \pi\)
16. \(f(x)=\cos ^{2} x-\cos x, \quad 0<x<2 \pi\)

In Exercises 17-42, (a) find the critical numbers of \(f\) (if any), (b) find the open interval(s) on which the function is increasing or decreasing, (c) apply the First Derivative Test to identify all relative extrema, and (d) use a graphing utility to confirm your results.
17. \(f(x)=x^{2}-4 x\)
18. \(f(x)=x^{2}+6 x+10\)
19. \(f(x)=-2 x^{2}+4 x+3\)
20. \(f(x)=-\left(x^{2}+8 x+12\right)\)
21. \(f(x)=2 x^{3}+3 x^{2}-12 x\)
22. \(f(x)=x^{3}-6 x^{2}+15\)
23. \(f(x)=(x-1)^{2}(x+3)\)
24. \(f(x)=(x+2)^{2}(x-1)\)
25. \(f(x)=\frac{x^{5}-5 x}{5}\)
26. \(f(x)=x^{4}-32 x+4\)
27. \(f(x)=x^{1 / 3}+1\)
28. \(f(x)=x^{2 / 3}-4\)
29. \(f(x)=(x+2)^{2 / 3}\)
30. \(f(x)=(x-3)^{1 / 3}\)
31. \(f(x)=5-|x-5|\)
32. \(f(x)=|x+3|-1\)
33. \(f(x)=2 x+\frac{1}{x}\)
34. \(f(x)=\frac{x}{x+3}\)
35. \(f(x)=\frac{x^{2}}{x^{2}-9}\)
36. \(f(x)=\frac{x+4}{x^{2}}\)
37. \(f(x)=\frac{x^{2}-2 x+1}{x+1}\)
38. \(f(x)=\frac{x^{2}-3 x-4}{x-2}\)
39. \(f(x)= \begin{cases}4-x^{2}, & x \leq 0 \\ -2 x, & x>0\end{cases}\)
40. \(f(x)= \begin{cases}2 x+1, & x \leq-1 \\ x^{2}-2, & x>-1\end{cases}\)
41. \(f(x)= \begin{cases}3 x+1, & x \leq 1 \\ 5-x^{2}, & x>1\end{cases}\)

In Exercises 43-50, consider the function on the interval \((0,2 \pi)\). For each function, (a) find the open interval(s) on which the function is increasing or decreasing, (b) apply the First Derivative Test to identify all relative extrema, and (c) use a graphing utility to confirm your results.
43. \(f(x)=\frac{x}{2}+\cos x\)
44. \(f(x)=\sin x \cos x+5\)
45. \(f(x)=\sin x+\cos x\)
46. \(f(x)=x+2 \sin x\)
47. \(f(x)=\cos ^{2}(2 x)\)
48. \(f(x)=\sqrt{3} \sin x+\cos x\)
49. \(f(x)=\sin ^{2} x+\sin x\)
50. \(f(x)=\frac{\sin x}{1+\cos ^{2} x}\)

In Exercises 51-56, (a) use a computer algebra system to differentiate the function, (b) sketch the graphs of \(f\) and \(f^{\prime}\) on the same set of coordinate axes over the given interval, (c) find the critical numbers of \(f\) in the open interval, and (d) find the interval(s) on which \(f^{\prime}\) is positive and the interval(s) on which it is negative. Compare the behavior of \(f\) and the sign of \(f^{\prime}\).
51. \(f(x)=2 x \sqrt{9-x^{2}}, \quad[-3,3]\)
52. \(f(x)=10\left(5-\sqrt{x^{2}-3 x+16}\right),[0,5]\)
53. \(f(t)=t^{2} \sin t, \quad[0,2 \pi]\)
54. \(f(x)=\frac{x}{2}+\cos \frac{x}{2}, \quad[0,4 \pi]\)
55. \(f(x)=-3 \sin \frac{x}{3}, \quad[0,6 \pi]\)
56. \(f(x)=2 \sin 3 x+4 \cos 3 x, \quad[0, \pi]\)

In Exercises 57 and 58, use symmetry, extrema, and zeros to sketch the graph of \(f\). How do the functions \(f\) and \(g\) differ?
57. \(f(x)=\frac{x^{5}-4 x^{3}+3 x}{x^{2}-1}, \quad g(x)=x\left(x^{2}-3\right)\)
58. \(f(t)=\cos ^{2} t-\sin ^{2} t, \quad g(t)=1-2 \sin ^{2} t\)

Think About It In Exercises 59-64, the graph of \(f\) is shown in the figure. Sketch a graph of the derivative of \(f\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
59.

60.

61.

62.

63.

64.


In Exercises 65-68, use the graph of \(f^{\prime}\) to (a) identify the interval(s) on which \(f\) is increasing or decreasing, and (b) estimate the value(s) of \(x\) at which \(f\) has a relative maximum or minimum.
65.

66.


68.


In Exercises 69 and 70, use the graph of \(f^{\prime}\) to (a) identify the critical numbers of \(f\), and (b) determine whether \(f\) has a relative maximum, a relative minimum, or neither at each critical number.
69.

70.


\section*{WRITING ABOUT CONCEPTS}

In Exercises 71-76, assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows.
\(f^{\prime}(x)>0\) on \((-\infty,-4)\)
\(f^{\prime}(x)<0\) on \((-4,6)\)
\(f^{\prime}(x)>0\) on \((6, \infty)\)
Supply the appropriate inequality sign for the indicated value of \(c\).
Function
71. \(g(x)=f(x)+5\)
72. \(g(x)=3 f(x)-3\)
73. \(g(x)=-f(x)\)
74. \(g(x)=-f(x)\)
75. \(g(x)=f(x-10)\)
76. \(g(x)=f(x-10)\)
\begin{tabular}{lrl}
\hline \multicolumn{2}{l}{ Sign of \(g^{\prime}(c)\)} \\
\hline\(g^{\prime}(0)\) & 0 \\
\(g^{\prime}(-5)\) & 0 \\
\(g^{\prime}(-6)\) & 0 \\
\(g^{\prime}(0)\) & 0 \\
\(g^{\prime}(0)\) & 0 \\
\(g^{\prime}(8)\) & & 0
\end{tabular}
77. Sketch the graph of the arbitrary function \(f\) such that
\(f^{\prime}(x) \begin{cases}>0, & x<4 \\ \text { undefined, } & x=4 . \\ <0, & x>4\end{cases}\)

\section*{CAPSTONE}
78. A differentiable function \(f\) has one critical number at \(x=5\). Identify the relative extrema of \(f\) at the critical number if \(f^{\prime}(4)=-2.5\) and \(f^{\prime}(6)=3\).

Think About It In Exercises 79 and 80, the function \(f\) is differentiable on the indicated interval. The table shows \(f^{\prime}(x)\) for selected values of \(x\). (a) Sketch the graph of \(f\), (b) approximate the critical numbers, and (c) identify the relative extrema.
79. \(f\) is differentiable on \([-1,1]\)
\begin{tabular}{|l|c|c|c|c|}
\hline\(x\) & -1 & -0.75 & -0.50 & -0.25 \\
\hline\(f^{\prime}(x)\) & -10 & -3.2 & -0.5 & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 0.25 & 0.50 & 0.75 & 1 \\
\hline\(f^{\prime}(x)\) & 5.6 & 3.6 & -0.2 & -6.7 & -20.1 \\
\hline
\end{tabular}
80. \(f\) is differentiable on \([0, \pi]\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & \(\pi / 6\) & \(\pi / 4\) & \(\pi / 3\) & \(\pi / 2\) \\
\hline\(f^{\prime}(x)\) & 3.14 & -0.23 & -2.45 & -3.11 & 0.69 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline\(x\) & \(2 \pi / 3\) & \(3 \pi / 4\) & \(5 \pi / 6\) & \(\pi\) \\
\hline\(f^{\prime}(x)\) & 3.00 & 1.37 & -1.14 & -2.84 \\
\hline
\end{tabular}
81. Rolling a Ball Bearing A ball bearing is placed on an inclined plane and begins to roll. The angle of elevation of the plane is \(\theta\). The distance (in meters) the ball bearing rolls in \(t\) seconds is \(s(t)=4.9(\sin \theta) t^{2}\).
(a) Determine the speed of the ball bearing after \(t\) seconds.
(b) Complete the table and use it to determine the value of \(\theta\) that produces the maximum speed at a particular time.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(\theta\) & 0 & \(\pi / 4\) & \(\pi / 3\) & \(\pi / 2\) & \(2 \pi / 3\) & \(3 \pi / 4\) & \(\pi\) \\
\hline\(s^{\prime}(t)\) & & & & & & & \\
\hline
\end{tabular}
82. Numerical, Graphical, and Analytic Analysis The concentration \(C\) of a chemical in the bloodstream \(t\) hours after injection into muscle tissue is
\(C(t)=\frac{3 t}{27+t^{3}}, \quad t \geq 0\).
(a) Complete the table and use it to approximate the time when the concentration is greatest.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(t\) & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline\(C(t)\) & & & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph the concentration function and use the graph to approximate the time when the concentration is greatest.
(c) Use calculus to determine analytically the time when the concentration is greatest.
83. Numerical, Graphical, and Analytic Analysis Consider the functions \(f(x)=x\) and \(g(x)=\sin x\) on the interval \((0, \pi)\).
(a) Complete the table and make a conjecture about which is the greater function on the interval \((0, \pi)\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline\(f(x)\) & & & & & & \\
\hline\(g(x)\) & & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph the functions and use the graphs to make a conjecture about which is the greater function on the interval \((0, \pi)\).
(c) Prove that \(f(x)>g(x)\) on the interval \((0, \pi)\). [Hint: Show that \(h^{\prime}(x)>0\) where \(h=f-g\).]
84. Numerical, Graphical, and Analytic Analysis Consider the functions \(f(x)=x\) and \(g(x)=\tan x\) on the interval \((0, \pi / 2)\).
(a) Complete the table and make a conjecture about which is the greater function on the interval \((0, \pi / 2)\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0.25 & 0.5 & 0.75 & 1 & 1.25 & 1.5 \\
\hline\(f(x)\) & & & & & & \\
\hline\(g(x)\) & & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph the functions and use the graphs to make a conjecture about which is the greater function on the interval \((0, \pi / 2)\).
(c) Prove that \(f(x)<g(x)\) on the interval \((0, \pi / 2)\). [Hint: Show that \(h^{\prime}(x)>0\), where \(h=g-f\).]
85. Trachea Contraction Coughing forces the trachea (windpipe) to contract, which affects the velocity \(v\) of the air passing through the trachea. The velocity of the air during coughing is \(v=k(R-r) r^{2}, 0 \leq r<R\), where \(k\) is a constant, \(R\) is the normal radius of the trachea, and \(r\) is the radius during coughing. What radius will produce the maximum air velocity?
86. Power The electric power \(P\) in watts in a direct-current circuit with two resistors \(R_{1}\) and \(R_{2}\) connected in parallel is
\(P=\frac{v R_{1} R_{2}}{\left(R_{1}+R_{2}\right)^{2}}\)
where \(v\) is the voltage. If \(v\) and \(R_{1}\) are held constant, what resistance \(R_{2}\) produces maximum power?
87. Electrical Resistance The resistance \(R\) of a certain type of resistor is \(R=\sqrt{0.001 T^{4}-4 T+100}\), where \(R\) is measured in ohms and the temperature \(T\) is measured in degrees Celsius.
(a) Use a computer algebra system to find \(d R / d T\) and the critical number of the function. Determine the minimum resistance for this type of resistor.
(b) Use a graphing utility to graph the function \(R\) and use the graph to approximate the minimum resistance for this type of resistor.
88. Modeling Data The end-of-year assets of the Medicare Hospital Insurance Trust Fund (in billions of dollars) for the years 1995 through 2006 are shown.
1995: 130.3; 1996: 124.9; 1997: 115.6; 1998: 120.4;
1999: 141.4; 2000: 177.5; 2001: 208.7; 2002: 234.8; 2003: 256.0; 2004: 269.3; 2005: 285.8; 2006: 305.4
(Source: U.S. Centers for Medicare and Medicaid Services)
(a) Use the regression capabilities of a graphing utility to find a model of the form \(M=a t^{4}+b t^{3}+c t^{2}+d t+e\) for the data. (Let \(t=5\) represent 1995.)
(b) Use a graphing utility to plot the data and graph the model.
(c) Find the minimum value of the model and compare the result with the actual data.

Motion Along a Line In Exercises 89-92, the function \(s(t)\) describes the motion of a particle along a line. For each function, (a) find the velocity function of the particle at any time \(t \geq 0\), (b) identify the time interval(s) in which the particle is moving in a positive direction, (c) identify the time interval(s) in which the particle is moving in a negative direction, and (d) identify the time(s) at which the particle changes direction.
89. \(s(t)=6 t-t^{2}\)
90. \(s(t)=t^{2}-7 t+10\)
91. \(s(t)=t^{3}-5 t^{2}+4 t\)
92. \(s(t)=t^{3}-20 t^{2}+128 t-280\)

Motion Along a Line In Exercises 93 and 94, the graph shows the position of a particle moving along a line. Describe how the particle's position changes with respect to time.

93.


Creating Polynomial Functions In Exercises 95-98, find a polynomial function
\(f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}\)
that has only the specified extrema. (a) Determine the minimum degree of the function and give the criteria you used in determining the degree. (b) Using the fact that the coordinates of the extrema are solution points of the function, and that the \(x\)-coordinates are critical numbers, determine a system of linear equations whose solution yields the coefficients of the required function. (c) Use a graphing utility to solve the system of equations and determine the function. (d) Use a graphing utility to confirm your result graphically.
95. Relative minimum: \((0,0)\); Relative maximum: \((2,2)\)
96. Relative minimum: \((0,0)\); Relative maximum: \((4,1000)\)
97. Relative minima: \((0,0),(4,0)\); Relative maximum: \((2,4)\)
98. Relative minimum: \((1,2)\); Relative maxima: \((-1,4),(3,4)\)

True or False? In Exercises 99-103, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
99. The sum of two increasing functions is increasing.
100. The product of two increasing functions is increasing.
101. Every \(n\) th-degree polynomial has \((n-1)\) critical numbers.
102. An \(n\) th-degree polynomial has at most \((n-1)\) critical numbers.
103. There is a relative maximum or minimum at each critical number.
104. Prove the second case of Theorem 3.5.
105. Prove the second case of Theorem 3.6.
106. Use the definitions of increasing and decreasing functions to prove that \(f(x)=x^{3}\) is increasing on \((-\infty, \infty)\).
107. Use the definitions of increasing and decreasing functions to prove that \(f(x)=1 / x\) is decreasing on \((0, \infty)\).

\section*{PUTNAM EXAM CHALLENGE}
108. Find the minimum value of
\(|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|\)
for real numbers \(x\).
This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{Rainbows}

Rainbows are formed when light strikes raindrops and is reflected and refracted, as shown in the figure. (This figure shows a cross section of a spherical raindrop.) The Law of Refraction states that \((\sin \alpha) /(\sin \beta)=k\), where \(k \approx 1.33\) (for water). The angle of deflection is given by \(D=\pi+2 \alpha-4 \beta\).
(a) Use a graphing utility to graph
\(D=\pi+2 \alpha-4 \sin ^{-1}(1 / k \sin \alpha)\),
\(0 \leq \alpha \leq \pi / 2\).
(b) Prove that the minimum angle of deflection occurs when
\(\cos \alpha=\sqrt{\frac{k^{2}-1}{3}}\).


For water, what is the minimum angle of deflection, \(D_{\min }\) ? (The angle \(\pi-D_{\text {min }}\) is called the rainbow angle.) What value of \(\alpha\) produces this minimum angle? (A ray of sunlight that strikes a raindrop at this angle, \(\alpha\), is called a rainbow ray.)
- FOR FURTHER INFORMATION For more information about the mathematics of rainbows, see the article "Somewhere Within the Rainbow" by Steven Janke in The UMAP Journal.

\subsection*{3.4 Concavity and the Second Derivative Test}
- Determine intervals on which a function is concave upward or concave downward.
- Find any points of inflection of the graph of a function.
- Apply the Second Derivative Test to find relative extrema of a function.

\section*{Concavity}

You have already seen that locating the intervals in which a function \(f\) increases or decreases helps to describe its graph. In this section, you will see how locating the intervals in which \(f^{\prime}\) increases or decreases can be used to determine where the graph of \(f\) is curving upward or curving downward.

\section*{DEFINITION OF CONCAVITY}

Let \(f\) be differentiable on an open interval \(I\). The graph of \(f\) is concave upward on \(I\) if \(f^{\prime}\) is increasing on the interval and concave downward on \(I\) if \(f^{\prime}\) is decreasing on the interval.

The following graphical interpretation of concavity is useful. (See Appendix A for a proof of these results.)
1. Let \(f\) be differentiable on an open interval \(I\). If the graph of \(f\) is concave upward on \(I\), then the graph of \(f\) lies above all of its tangent lines on \(I\).
[See Figure 3.24(a).]
2. Let \(f\) be differentiable on an open interval \(I\). If the graph of \(f\) is concave downward on \(I\), then the graph of \(f\) lies below all of its tangent lines on \(I\).
[See Figure 3.24(b).]

(a) The graph of \(f\) lies above its tangent lines.

\section*{Figure 3.24}

To find the open intervals on which the graph of a function \(f\) is concave upward or concave downward, you need to find the intervals on which \(f^{\prime}\) is increasing or decreasing. For instance, the graph of
\[
f(x)=\frac{1}{3} x^{3}-x
\]
is concave downward on the open interval \((-\infty, 0)\) because \(f^{\prime}(x)=x^{2}-1\) is decreasing there. (See Figure 3.25.) Similarly, the graph of \(f\) is concave upward on the interval \((0, \infty)\) because \(f^{\prime}\) is increasing on \((0, \infty)\).

The following theorem shows how to use the second derivative of a function \(f\) to determine intervals on which the graph of \(f\) is concave upward or concave downward. A proof of this theorem (see Appendix A) follows directly from Theorem 3.5 and the definition of concavity.

\section*{THEOREM 3.7 TEST FOR CONCAVITY}

Let \(f\) be a function whose second derivative exists on an open interval \(I\).
1. If \(f^{\prime \prime}(x)>0\) for all \(x\) in \(I\), then the graph of \(f\) is concave upward on \(I\).
2. If \(f^{\prime \prime}(x)<0\) for all \(x\) in \(I\), then the graph of \(f\) is concave downward on \(I\).

To apply Theorem 3.7, locate the \(x\)-values at which \(f^{\prime \prime}(x)=0\) or \(f^{\prime \prime}\) does not exist. Second, use these \(x\)-values to determine test intervals. Finally, test the sign of \(f^{\prime \prime}(x)\) in each of the test intervals.

\section*{EXAMPLE 1 Determining Concavity}

Determine the open intervals on which the graph of
\[
f(x)=\frac{6}{x^{2}+3}
\]
is concave upward or downward.
Solution Begin by observing that \(f\) is continuous on the entire real line. Next, find the second derivative of \(f\).
\[
\begin{aligned}
f(x) & =6\left(x^{2}+3\right)^{-1} & & \text { Rewrite original function. } \\
f^{\prime}(x) & =(-6)\left(x^{2}+3\right)^{-2}(2 x) & & \text { Differentiate. } \\
& =\frac{-12 x}{\left(x^{2}+3\right)^{2}} & & \text { First derivative } \\
f^{\prime \prime}(x) & =\frac{\left(x^{2}+3\right)^{2}(-12)-(-12 x)(2)\left(x^{2}+3\right)(2 x)}{\left(x^{2}+3\right)^{4}} & & \text { Differentiate. } \\
& =\frac{36\left(x^{2}-1\right)}{\left(x^{2}+3\right)^{3}} & & \text { Second derivative }
\end{aligned}
\]

Because \(f^{\prime \prime}(x)=0\) when \(x= \pm 1\) and \(f^{\prime \prime}\) is defined on the entire real line, you should test \(f^{\prime \prime}\) in the intervals \((-\infty,-1),(-1,1)\), and \((1, \infty)\). The results are shown in the table and in Figure 3.26.
\begin{tabular}{|l|c|c|c|}
\hline Interval & \(-\infty<x<-1\) & \(-1<x<1\) & \(1<x<\infty\) \\
\hline Test Value & \(x=-2\) & \(x=0\) & \(x=2\) \\
\hline Sign of \(f^{\prime \prime}(x)\) & \(f^{\prime \prime}(-2)>0\) & \(f^{\prime \prime}(0)<0\) & \(f^{\prime \prime}(2)>0\) \\
\hline Conclusion & Concave upward & Concave downward & Concave upward \\
\hline
\end{tabular}

The function given in Example 1 is continuous on the entire real line. If there are \(x\)-values at which the function is not continuous, these values should be used, along with the points at which \(f^{\prime \prime}(x)=0\) or \(f^{\prime \prime}(x)\) does not exist, to form the test intervals.


Figure 3.27




The concavity of \(f\) changes at a point of inflection. Note that the graph crosses its tangent line at a point of inflection.
Figure 3.28

\section*{EXAMPLE 2 Determining Concavity}

Determine the open intervals on which the graph of \(f(x)=\frac{x^{2}+1}{x^{2}-4}\) is concave upward or concave downward.
Solution Differentiating twice produces the following.
\[
\begin{aligned}
f(x) & =\frac{x^{2}+1}{x^{2}-4} & & \text { Write original func } \\
f^{\prime}(x) & =\frac{\left(x^{2}-4\right)(2 x)-\left(x^{2}+1\right)(2 x)}{\left(x^{2}-4\right)^{2}} & & \text { Differentiate. } \\
& =\frac{-10 x}{\left(x^{2}-4\right)^{2}} & & \text { First derivative } \\
f^{\prime \prime}(x) & =\frac{\left(x^{2}-4\right)^{2}(-10)-(-10 x)(2)\left(x^{2}-4\right)(2 x)}{\left(x^{2}-4\right)^{4}} & & \text { Differentiate. } \\
& =\frac{10\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}} & & \text { Second derivative }
\end{aligned}
\]

There are no points at which \(f^{\prime \prime}(x)=0\), but at \(x= \pm 2\) the function \(f\) is not continuous, so test for concavity in the intervals \((-\infty,-2),(-2,2)\), and \((2, \infty)\), as shown in the table. The graph of \(f\) is shown in Figure 3.27.
\begin{tabular}{|l|c|c|c|}
\hline Interval & \(-\infty<x<-2\) & \(-2<x<2\) & \(2<x<\infty\) \\
\hline Test Value & \(x=-3\) & \(x=0\) & \(x=3\) \\
\hline Sign of \(f^{\prime \prime}(x)\) & \(f^{\prime \prime}(-3)>0\) & \(f^{\prime \prime}(0)<0\) & \(f^{\prime \prime}(3)>0\) \\
\hline Conclusion & Concave upward & Concave downward & Concave upward \\
\hline
\end{tabular}

\section*{Points of Inflection}

The graph in Figure 3.26 has two points at which the concavity changes. If the tangent line to the graph exists at such a point, that point is a point of inflection. Three types of points of inflection are shown in Figure 3.28.

\section*{DEFINITION OF POINT OF INFLECTION}

Let \(f\) be a function that is continuous on an open interval and let \(c\) be a point in the interval. If the graph of \(f\) has a tangent line at this point \((c, f(c))\), then this point is a point of inflection of the graph of \(f\) if the concavity of \(f\) changes from upward to downward (or downward to upward) at the point.

NOTE The definition of point of inflection given above requires that the tangent line exists at the point of inflection. Some books do not require this. For instance, we do not consider the function
\[
f(x)= \begin{cases}x^{3}, & x<0 \\ x^{2}+2 x, & x \geq 0\end{cases}
\]
to have a point of inflection at the origin, even though the concavity of the graph changes from concave downward to concave upward.


Points of inflection can occur where \(f^{\prime \prime}(x)=0\) or \(f^{\prime \prime}\) does not exist.
Figure 3.29

\(f^{\prime \prime}(x)=0\), but \((0,0)\) is not a point of inflection.
Figure 3.30

To locate possible points of inflection, you can determine the values of \(x\) for which \(f^{\prime \prime}(x)=0\) or \(f^{\prime \prime}(x)\) does not exist. This is similar to the procedure for locating relative extrema of \(f\).

\section*{THEOREM 3.8 POINTS OF INFLECTION}

If \((c, f(c))\) is a point of inflection of the graph of \(f\), then either \(f^{\prime \prime}(c)=0\) or \(f^{\prime \prime}\) does not exist at \(x=c\).

\section*{EXAMPLE 3 Finding Points of Inflection}

Determine the points of inflection and discuss the concavity of the graph of
\[
f(x)=x^{4}-4 x^{3}
\]

Solution Differentiating twice produces the following.
\[
\begin{array}{ll}
f(x)=x^{4}-4 x^{3} & \text { Write original function. } \\
f^{\prime}(x)=4 x^{3}-12 x^{2} & \text { Find first derivative. } \\
f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2) & \text { Find second derivative. }
\end{array}
\]

Setting \(f^{\prime \prime}(x)=0\), you can determine that the possible points of inflection occur at \(x=0\) and \(x=2\). By testing the intervals determined by these \(x\)-values, you can conclude that they both yield points of inflection. A summary of this testing is shown in the table, and the graph of \(f\) is shown in Figure 3.29.
\begin{tabular}{|l|c|c|c|}
\hline Interval & \(-\infty<x<0\) & \(0<x<2\) & \(2<x<\infty\) \\
\hline Test Value & \(x=-1\) & \(x=1\) & \(x=3\) \\
\hline Sign of \(f^{\prime \prime}(x)\) & \(f^{\prime \prime}(-1)>0\) & \(f^{\prime \prime}(1)<0\) & \(f^{\prime \prime}(3)>0\) \\
\hline Conclusion & Concave upward & Concave downward & Concave upward \\
\hline
\end{tabular}

The converse of Theorem 3.8 is not generally true. That is, it is possible for the second derivative to be 0 at a point that is not a point of inflection. For instance, the graph of \(f(x)=x^{4}\) is shown in Figure 3.30. The second derivative is 0 when \(x=0\), but the point \((0,0)\) is not a point of inflection because the graph of \(f\) is concave upward in both intervals \(-\infty<x<0\) and \(0<x<\infty\).

\section*{E X P L O R A TION}

Consider a general cubic function of the form
\[
f(x)=a x^{3}+b x^{2}+c x+d
\]

You know that the value of \(d\) has a bearing on the location of the graph but has no bearing on the value of the first derivative at given values of \(x\). Graphically, this is true because changes in the value of \(d\) shift the graph up or down but do not change its basic shape. Use a graphing utility to graph several cubics with different values of \(c\). Then give a graphical explanation of why changes in \(c\) do not affect the values of the second derivative.


If \(f^{\prime}(c)=0\) and \(f^{\prime \prime}(c)>0, f(c)\) is a relative minimum.


If \(f^{\prime}(c)=0\) and \(f^{\prime \prime}(c)<0, f(c)\) is a relative maximum.
Figure 3.31

\((0,0)\) is neither a relative minimum nor a relative maximum.
Figure 3.32

\section*{The Second Derivative Test}

In addition to testing for concavity, the second derivative can be used to perform a simple test for relative maxima and minima. The test is based on the fact that if the graph of a function \(f\) is concave upward on an open interval containing \(c\), and \(f^{\prime}(c)=0, f(c)\) must be a relative minimum of \(f\). Similarly, if the graph of a function \(f\) is concave downward on an open interval containing \(c\), and \(f^{\prime}(c)=0, f(c)\) must be a relative maximum of \(f\) (see Figure 3.31).

\section*{THEOREM 3.9 SECOND DERIVATIVE TEST}

Let \(f\) be a function such that \(f^{\prime}(c)=0\) and the second derivative of \(f\) exists on an open interval containing \(c\).
1. If \(f^{\prime \prime}(c)>0\), then \(f\) has a relative minimum at \((c, f(c))\).
2. If \(f^{\prime \prime}(c)<0\), then \(f\) has a relative maximum at \((c, f(c))\).

If \(f^{\prime \prime}(c)=0\), the test fails. That is, \(f\) may have a relative maximum, a relative minimum, or neither. In such cases, you can use the First Derivative Test.

PR00F If \(f^{\prime}(c)=0\) and \(f^{\prime \prime}(c)>0\), there exists an open interval \(I\) containing \(c\) for which
\[
\frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}=\frac{f^{\prime}(x)}{x-c}>0
\]
for all \(x \neq c\) in \(I\). If \(x<c\), then \(x-c<0\) and \(f^{\prime}(x)<0\). Also, if \(x>c\), then \(x-c>0\) and \(f^{\prime}(x)>0\). So, \(f^{\prime}(x)\) changes from negative to positive at \(c\), and the First Derivative Test implies that \(f(c)\) is a relative minimum. A proof of the second case is left to you.

\section*{EXAMPLE 4 Using the Second Derivative Test}

Find the relative extrema for \(f(x)=-3 x^{5}+5 x^{3}\).
Solution Begin by finding the critical numbers of \(f\).
\[
\begin{aligned}
f^{\prime}(x) & =-15 x^{4}+15 x^{2}=15 x^{2}\left(1-x^{2}\right)=0 & & \text { Set } f^{\prime}(x) \text { equal to } 0 . \\
x & =-1,0,1 & & \text { Critical numbers }
\end{aligned}
\]

Using
\[
f^{\prime \prime}(x)=-60 x^{3}+30 x=30\left(-2 x^{3}+x\right)
\]
you can apply the Second Derivative Test as shown below.
\begin{tabular}{|l|c|c|c|}
\hline Point & \((-1,-2)\) & \((1,2)\) & \((0,0)\) \\
\hline Sign of \(f^{\prime \prime}(x)\) & \(f^{\prime \prime}(-1)>0\) & \(f^{\prime \prime}(1)<0\) & \(f^{\prime \prime}(0)=0\) \\
\hline Conclusion & Relative minimum & Relative maximum & Test fails \\
\hline
\end{tabular}

Because the Second Derivative Test fails at \((0,0)\), you can use the First Derivative Test and observe that \(f\) increases to the left and right of \(x=0\). So, \((0,0)\) is neither a relative minimum nor a relative maximum (even though the graph has a horizontal tangent line at this point). The graph of \(f\) is shown in Figure 3.32.

\subsection*{3.4 Exercises}

In Exercises 1-4, the graph of \(f\) is shown. State the signs of \(f^{\prime}\) and \(f^{\prime \prime}\) on the interval ( 0,2 ).
1.

2.

3.

4.


In Exercises 5-18, determine the open intervals on which the graph is concave upward or concave downward.
5. \(y=x^{2}-x-2\)
6. \(y=-x^{3}+3 x^{2}-2\)
7. \(g(x)=3 x^{2}-x^{3}\)
8. \(h(x)=x^{5}-5 x+2\)
9. \(f(x)=-x^{3}+6 x^{2}-9 x-1\)
10. \(f(x)=x^{5}+5 x^{4}-40 x^{2}\)
11. \(f(x)=\frac{24}{x^{2}+12}\)
12. \(f(x)=\frac{x^{2}}{x^{2}+1}\)
13. \(f(x)=\frac{x^{2}+1}{x^{2}-1}\)
14. \(y=\frac{-3 x^{5}+40 x^{3}+135 x}{270}\)
15. \(g(x)=\frac{x^{2}+4}{4-x^{2}}\)
16. \(h(x)=\frac{x^{2}-1}{2 x-1}\)
17. \(y=2 x-\tan x, \quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
18. \(y=x+\frac{2}{\sin x}, \quad(-\pi, \pi)\)

In Exercises 19-36, find the points of inflection and discuss the concavity of the graph of the function.
19. \(f(x)=\frac{1}{2} x^{4}+2 x^{3}\)
20. \(f(x)=-x^{4}+24 x^{2}\)
21. \(f(x)=x^{3}-6 x^{2}+12 x\)
22. \(f(x)=2 x^{3}-3 x^{2}-12 x+5\)
23. \(f(x)=\frac{1}{4} x^{4}-2 x^{2}\)
24. \(f(x)=2 x^{4}-8 x+3\)
25. \(f(x)=x(x-4)^{3}\)
26. \(f(x)=(x-2)^{3}(x-1)\)
27. \(f(x)=x \sqrt{x+3}\)
28. \(f(x)=x \sqrt{9-x}\)
29. \(f(x)=\frac{4}{x^{2}+1}\)
30. \(f(x)=\frac{x+1}{\sqrt{x}}\)
31. \(f(x)=\sin \frac{x}{2}, \quad[0,4 \pi]\)
32. \(f(x)=2 \csc \frac{3 x}{2}\),
\((0,2 \pi)\)
33. \(f(x)=\sec \left(x-\frac{\pi}{2}\right), \quad(0,4 \pi)\)
34. \(f(x)=\sin x+\cos x, \quad[0,2 \pi]\)
35. \(f(x)=2 \sin x+\sin 2 x, \quad[0,2 \pi]\)
36. \(f(x)=x+2 \cos x, \quad[0,2 \pi]\)

In Exercises 37-52, find all relative extrema. Use the Second Derivative Test where applicable.
37. \(f(x)=(x-5)^{2}\)
38. \(f(x)=-(x-5)^{2}\)
39. \(f(x)=6 x-x^{2}\)
40. \(f(x)=x^{2}+3 x-8\)
41. \(f(x)=x^{3}-3 x^{2}+3\)
42. \(f(x)=x^{3}-5 x^{2}+7 x\)
43. \(f(x)=x^{4}-4 x^{3}+2\)
44. \(f(x)=-x^{4}+4 x^{3}+8 x^{2}\)
45. \(g(x)=x^{2}(6-x)^{3}\)
46. \(g(x)=-\frac{1}{8}(x+2)^{2}(x-4)^{2}\)
47. \(f(x)=x^{2 / 3}-3\)
49. \(f(x)=x+\frac{4}{x}\)
48. \(f(x)=\sqrt{x^{2}+1}\)
50. \(f(x)=\frac{x}{x-1}\)
51. \(f(x)=\cos x-x, \quad[0,4 \pi]\)
52. \(f(x)=2 \sin x+\cos 2 x, \quad[0,2 \pi]\)

CAS In Exercises 53-56, use a computer algebra system to analyze the function over the given interval. (a) Find the first and second derivatives of the function. (b) Find any relative extrema and points of inflection. (c) Graph \(f, f^{\prime}\), and \(f^{\prime \prime}\) on the same set of coordinate axes and state the relationship between the behavior of \(f\) and the signs of \(f^{\prime}\) and \(f^{\prime \prime}\).
53. \(f(x)=0.2 x^{2}(x-3)^{3},[-1,4]\)
54. \(f(x)=x^{2} \sqrt{6-x^{2}},[-\sqrt{6}, \sqrt{6}]\)
55. \(f(x)=\sin x-\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x,[0, \pi]\)
56. \(f(x)=\sqrt{2 x} \sin x,[0,2 \pi]\)

\section*{WRITING ABOUT CONCEPTS}
57. Consider a function \(f\) such that \(f^{\prime}\) is increasing. Sketch graphs of \(f\) for (a) \(f^{\prime}<0\) and (b) \(f^{\prime}>0\).
58. Consider a function \(f\) such that \(f^{\prime}\) is decreasing. Sketch graphs of \(f\) for (a) \(f^{\prime}<0\) and (b) \(f^{\prime}>0\).
59. Sketch the graph of a function \(f\) that does not have a point of inflection at \((c, f(c))\) even though \(f^{\prime \prime}(c)=0\).
60. \(S\) represents weekly sales of a product. What can be said of \(S^{\prime}\) and \(S^{\prime \prime}\) for each of the following statements?
(a) The rate of change of sales is increasing.
(b) Sales are increasing at a slower rate.
(c) The rate of change of sales is constant.
(d) Sales are steady.
(e) Sales are declining, but at a slower rate.
(f) Sales have bottomed out and have started to rise.

In Exercises 61-64, the graph of \(f\) is shown. Graph \(f, f^{\prime}\), and \(f^{\prime \prime}\) on the same set of coordinate axes. To print an enlarged copy of the graph, go to the website ww.mathgraphs.com.
61.

62.

63.

64.


Think About It In Exercises 65-68, sketch the graph of a function \(f\) having the given characteristics.
65. \(f(2)=f(4)=0\)
66. \(f(0)=f(2)=0\)
\(f^{\prime}(x)<0\) if \(x<3\)
\(f^{\prime}(x)>0\) if \(x<1\)
\(f^{\prime}(3)\) does not exist.
\(f^{\prime}(1)=0\)
\(f^{\prime}(x)>0\) if \(x>3\)
\(f^{\prime}(x)<0\) if \(x>1\)
\(f^{\prime \prime}(x)<0, x \neq 3\)
\(f^{\prime \prime}(x)<0\)
67. \(f(2)=f(4)=0\)
\(f^{\prime}(x)>0\) if \(x<3\)
\(f^{\prime}(3)\) does not exist.
\(f^{\prime}(x)<0\) if \(x>3\)
\(f^{\prime \prime}(x)>0, x \neq 3\)
68. \(f(0)=f(2)=0\)
\(f^{\prime}(x)<0\) if \(x<1\)
\(f^{\prime}(1)=0\)
\(f^{\prime}(x)>0\) if \(x>1\)
\(f^{\prime \prime}(x)>0\)
69. Think About It The figure shows the graph of \(f^{\prime \prime}\). Sketch a graph of \(f\). (The answer is not unique.) To print an enlarged copy of the graph, go to the website www.mathgraphs.com.


Figure for 69


Figure for 70

\section*{CAPSTONE}
70. Think About It Water is running into the vase shown in the figure at a constant rate.
(a) Graph the depth \(d\) of water in the vase as a function of time.
(b) Does the function have any extrema? Explain.
(c) Interpret the inflection points of the graph of \(d\).
71. Conjecture Consider the function \(f(x)=(x-2)^{n}\).
(a) Use a graphing utility to graph \(f\) for \(n=1,2,3\), and 4. Use the graphs to make a conjecture about the relationship between \(n\) and any inflection points of the graph of \(f\).
(b) Verify your conjecture in part (a).
72. (a) Graph \(f(x)=\sqrt[3]{x}\) and identify the inflection point.
(b) Does \(f^{\prime \prime}(x)\) exist at the inflection point? Explain.

In Exercises 73 and 74, find \(a, b, c\), and \(d\) such that the cubic \(f(x)=a x^{3}+b x^{2}+c x+d\) satisfies the given conditions.
73. Relative maximum: \((3,3)\)

Relative minimum: \((5,1)\)
Inflection point: \((4,2)\)
74. Relative maximum: \((2,4)\)

Relative minimum: \((4,2)\)
Inflection point: \((3,3)\)
75. Aircraft Glide Path A small aircraft starts its descent from an altitude of 1 mile, 4 miles west of the runway (see figure).

(a) Find the cubic \(f(x)=a x^{3}+b x^{2}+c x+d\) on the interval \([-4,0]\) that describes a smooth glide path for the landing.
(b) The function in part (a) models the glide path of the plane. When would the plane be descending at the greatest rate?

FOR FURTHER INFORMATION For more information on this type of modeling, see the article "How Not to Land at Lake Tahoe!" by Richard Barshinger in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.
76. Highway Design A section of highway connecting two hillsides with grades of \(6 \%\) and \(4 \%\) is to be built between two points that are separated by a horizontal distance of 2000 feet (see figure). At the point where the two hillsides come together, there is a 50 -foot difference in elevation.

(a) Design a section of highway connecting the hillsides modeled by the function \(f(x)=a x^{3}+b x^{2}+c x+d\) \((-1000 \leq x \leq 1000)\). At the points \(A\) and \(B\), the slope of the model must match the grade of the hillside.
(b) Use a graphing utility to graph the model.
(c) Use a graphing utility to graph the derivative of the model.
(d) Determine the grade at the steepest part of the transitional section of the highway.
77. Beam Deflection The deflection \(D\) of a beam of length \(L\) is \(D=2 x^{4}-5 L x^{3}+3 L^{2} x^{2}\), where \(x\) is the distance from one end of the beam. Find the value of \(x\) that yields the maximum deflection.
78. Specific Gravity A model for the specific gravity of water \(S\) is \(S=\frac{5.755}{10^{8}} T^{3}-\frac{8.521}{10^{6}} T^{2}+\frac{6.540}{10^{5}} T+0.99987,0<T<25\) where \(T\) is the water temperature in degrees Celsius.
(a) Use a computer algebra system to find the coordinates of the maximum value of the function.
(b) Sketch a graph of the function over the specified domain. (Use a setting in which \(0.996 \leq S \leq 1.001\).)
(c) Estimate the specific gravity of water when \(T=20^{\circ}\).
79. Average Cost A manufacturer has determined that the total cost \(C\) of operating a factory is \(C=0.5 x^{2}+15 x+5000\), where \(x\) is the number of units produced. At what level of production will the average cost per unit be minimized? (The average cost per unit is \(C / x\).)
80. Inventory Cost The total cost \(C\) of ordering and storing \(x\) units is \(C=2 x+(300,000 / x)\). What order size will produce a minimum cost?
81. Sales Growth The annual sales \(S\) of a new product are given by \(S=\frac{5000 t^{2}}{8+t^{2}}, 0 \leq t \leq 3\), where \(t\) is time in years.
(a) Complete the table. Then use it to estimate when the annual sales are increasing at the greatest rate.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t\) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline\(S\) & & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph the function \(S\). Then use the graph to estimate when the annual sales are increasing at the greatest rate.
(c) Find the exact time when the annual sales are increasing at the greatest rate.
82. Modeling Data The average typing speed \(S\) (in words per minute) of a typing student after \(t\) weeks of lessons is shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(t\) & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline\(S\) & 38 & 56 & 79 & 90 & 93 & 94 \\
\hline
\end{tabular}

A model for the data is \(S=\frac{100 t^{2}}{65+t^{2}}, t>0\).
(a) Use a graphing utility to plot the data and graph the model.
(b) Use the second derivative to determine the concavity of \(S\). Compare the result with the graph in part (a).
(c) What is the sign of the first derivative for \(t>0\) ? By combining this information with the concavity of the model, what inferences can be made about the typing speed as \(t\) increases?

Linear and Quadratic Approximations In Exercises 83-86, use a graphing utility to graph the function. Then graph the linear and quadratic approximations
\(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\)
and
\(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\)
in the same viewing window. Compare the values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives at \(x=a\). How do the approximations change as you move farther away from \(x=a\) ?

Function
83. \(f(x)=2(\sin x+\cos x)\)
84. \(f(x)=2(\sin x+\cos x)\)
85. \(f(x)=\sqrt{1-x} \quad a=0\)
86. \(f(x)=\frac{\sqrt{x}}{x-1}\)
87. Use a graphing utility to graph \(y=x \sin (1 / x)\). Show that the graph is concave downward to the right of \(x=1 / \pi\).
88. Show that the point of inflection of \(f(x)=x(x-6)^{2}\) lies midway between the relative extrema of \(f\).
89. Prove that every cubic function with three distinct real zeros has a point of inflection whose \(x\)-coordinate is the average of the three zeros.
90. Show that the cubic polynomial \(p(x)=a x^{3}+b x^{2}+c x+d\) has exactly one point of inflection \(\left(x_{0}, y_{0}\right)\), where
\(x_{0}=\frac{-b}{3 a} \quad\) and \(\quad y_{0}=\frac{2 b^{3}}{27 a^{2}}-\frac{b c}{3 a}+d\).
Use this formula to find the point of inflection of \(p(x)=x^{3}-3 x^{2}+2\).

True or False? In Exercises 91-94, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
91. The graph of every cubic polynomial has precisely one point of inflection.
92. The graph of \(f(x)=1 / x\) is concave downward for \(x<0\) and concave upward for \(x>0\), and thus it has a point of inflection at \(x=0\).
93. If \(f^{\prime}(c)>0\), then \(f\) is concave upward at \(x=c\).
94. If \(f^{\prime \prime}(2)=0\), then the graph of \(f\) must have a point of inflection at \(x=2\).

In Exercises 95 and 96, let \(f\) and \(g\) represent differentiable functions such that \(f^{\prime \prime} \neq 0\) and \(g^{\prime \prime} \neq 0\).
95. Show that if \(f\) and \(g\) are concave upward on the interval \((a, b)\), then \(f+g\) is also concave upward on \((a, b)\).
96. Prove that if \(f\) and \(g\) are positive, increasing, and concave upward on the interval \((a, b)\), then \(f g\) is also concave upward on \((a, b)\).

\subsection*{3.5 Limits at Infinity}
- Determine (finite) limits at infinity.
- Determine the horizontal asymptotes, if any, of the graph of a function.
- Determine infinite limits at infinity.

\section*{Limits at Infinity}


The limit of \(f(x)\) as \(x\) approaches \(-\infty\) or \(\infty\) is 3 .
Figure 3.33

NOTE The statement \(\lim _{x \rightarrow-\infty} f(x)=L\) or \(\lim _{x \rightarrow \infty} f(x)=L\) means that the limit exists and the limit is equal to \(L\).

\(f(x)\) is within \(\varepsilon\) units of \(L\) as \(x \rightarrow \infty\).
Figure 3.34

This section discusses the "end behavior" of a function on an infinite interval. Consider the graph of
\[
f(x)=\frac{3 x^{2}}{x^{2}+1}
\]
as shown in Figure 3.33. Graphically, you can see that the values of \(f(x)\) appear to approach 3 as \(x\) increases without bound or decreases without bound. You can come to the same conclusions numerically, as shown in the table.


The table suggests that the value of \(f(x)\) approaches 3 as \(x\) increases without bound \((x \rightarrow \infty)\). Similarly, \(f(x)\) approaches 3 as \(x\) decreases without bound \((x \rightarrow-\infty)\). These limits at infinity are denoted by
\[
\lim _{x \rightarrow-\infty} f(x)=3 \quad \text { Limit at negative infinity }
\]
and
\[
\lim _{x \rightarrow \infty} f(x)=3 . \quad \text { Limit at positive infinity }
\]

To say that a statement is true as \(x\) increases without bound means that for some (large) real number \(M\), the statement is true for all \(x\) in the interval \(\{x: x>M\}\). The following definition uses this concept.

\section*{DEFINITION OF LIMITS AT INFINITY}

Let \(L\) be a real number.
1. The statement \(\lim _{x \rightarrow \infty} f(x)=L\) means that for each \(\varepsilon>0\) there exists an \(M>0\) such that \(|f(x)-L|<\varepsilon\) whenever \(x>M\).
2. The statement \(\lim _{x \rightarrow-\infty} f(x)=L\) means that for each \(\varepsilon>0\) there exists an \(N<0\) such that \(|f(x)-L|<\varepsilon\) whenever \(x<N\).

The definition of a limit at infinity is shown in Figure 3.34. In this figure, note that for a given positive number \(\varepsilon\) there exists a positive number \(M\) such that, for \(x>M\), the graph of \(f\) will lie between the horizontal lines given by \(y=L+\varepsilon\) and \(y=L-\varepsilon\).

\section*{EXPLORATION}

Use a graphing utility to graph
\[
f(x)=\frac{2 x^{2}+4 x-6}{3 x^{2}+2 x-16}
\]

Describe all the important features of the graph. Can you find a single viewing window that shows all of these features clearly? Explain your reasoning.

What are the horizontal asymptotes of the graph? How far to the right do you have to move on the graph so that the graph is within 0.001 unit of its horizontal asymptote? Explain your reasoning.

\section*{Horizontal Asymptotes}

In Figure 3.34, the graph of \(f\) approaches the line \(y=L\) as \(x\) increases without bound. The line \(y=L\) is called a horizontal asymptote of the graph of \(f\).

\section*{DEFINITION OF A HORIZONTAL ASYMPTOTE}

The line \(y=L\) is a horizontal asymptote of the graph of \(f\) if
\[
\lim _{x \rightarrow-\infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow \infty} f(x)=L .
\]

Note that from this definition, it follows that the graph of a function of \(x\) can have at most two horizontal asymptotes-one to the right and one to the left.

Limits at infinity have many of the same properties of limits discussed in Section 1.3. For example, if \(\lim _{x \rightarrow \infty} f(x)\) and \(\lim _{x \rightarrow \infty} g(x)\) both exist, then
\[
\lim _{x \rightarrow \infty}[f(x)+g(x)]=\lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x)
\]
and
\[
\lim _{x \rightarrow \infty}[f(x) g(x)]=\left[\lim _{x \rightarrow \infty} f(x)\right]\left[\lim _{x \rightarrow \infty} g(x)\right] .
\]

Similar properties hold for limits at \(-\infty\).
When evaluating limits at infinity, the following theorem is helpful. (A proof of this theorem is given in Appendix A.)

\section*{THEOREM 3.10 LIMITS AT INFINITY}

If \(r\) is a positive rational number and \(c\) is any real number, then
\[
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0 .
\]

Furthermore, if \(x^{r}\) is defined when \(x<0\), then
\[
\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0
\]

\section*{EXAMPLE 1 Finding a Limit at Infinity}

Find the limit: \(\lim _{x \rightarrow \infty}\left(5-\frac{2}{x^{2}}\right)\).
Solution Using Theorem 3.10, you can write
\[
\begin{aligned}
\lim _{x \rightarrow \infty}\left(5-\frac{2}{x^{2}}\right) & =\lim _{x \rightarrow \infty} 5-\lim _{x \rightarrow \infty} \frac{2}{x^{2}} \quad \text { Property of limits } \\
& =5-0 \\
& =5 .
\end{aligned}
\]

NOTE When you encounter an indeterminate form such as the one in Example 2, you should divide the numerator and denominator by the highest power of \(x\) in the denominator.

\(y=2\) is a horizontal asymptote.
Figure 3.35


As \(x\) increases, the graph of \(f\) moves closer and closer to the line \(y=2\).
Figure 3.36

\section*{EXAMPLE 2 Finding a Limit at Infinity}

Find the limit: \(\lim _{x \rightarrow \infty} \frac{2 x-1}{x+1}\).
Solution Note that both the numerator and the denominator approach infinity as \(x\) approaches infinity.


This results in \(\frac{\infty}{\infty}\), an indeterminate form. To resolve this problem, you can divide both the numerator and the denominator by \(x\). After dividing, the limit may be evaluated as shown.
\[
\begin{array}{rlrl}
\lim _{x \rightarrow \infty} \frac{2 x-1}{x+1} & =\lim _{x \rightarrow \infty} \frac{\frac{2 x-1}{x}}{\frac{x+1}{x}} & & \\
& =\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x}}{1+\frac{1}{x}} \\
& =\frac{\text { Divide numerator and denominator by } x .}{\lim _{x \rightarrow \infty}} 2-\lim _{x \rightarrow \infty} \frac{1}{x} \\
& =\frac{2-\lim _{x \rightarrow \infty} \frac{1}{1+0}}{x \rightarrow \infty} & & \\
& =2 & \text { Take limits of numerator and denominator. } \\
& &
\end{array}
\]

So, the line \(y=2\) is a horizontal asymptote to the right. By taking the limit as \(x \rightarrow-\infty\), you can see that \(y=2\) is also a horizontal asymptote to the left. The graph of the function is shown in Figure 3.35.

TECHNOLOGY You can test the reasonableness of the limit found in Example 2 by evaluating \(f(x)\) for a few large positive values of \(x\). For instance,
\[
f(100) \approx 1.9703, \quad f(1000) \approx 1.9970, \quad \text { and } \quad f(10,000) \approx 1.9997
\]

Another way to test the reasonableness of the limit is to use a graphing utility. For instance, in Figure 3.36, the graph of
\[
f(x)=\frac{2 x-1}{x+1}
\]
is shown with the horizontal line \(y=2\). Note that as \(x\) increases, the graph of \(f\) moves closer and closer to its horizontal asymptote.

\section*{EXAMPLE 3 A Comparison of Three Rational Functions}


Agnesi was one of a handful of women to receive credit for significant contributions to mathematics before the twentieth century. In her early twenties, she wrote the first text that included both differential and integral calculus. By age 30, she was an honorary member of the faculty at the University of Bologna.

For more information on the contributions of women to mathematics, see the article "Why Women Succeed in Mathematics" by Mona Fabricant, Sylvia Svitak, and Patricia Clark Kenschaft in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\(f\) has a horizontal asymptote at \(y=0\).
Figure 3.37

Find each limit.
a. \(\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1}\)
b. \(\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1}\)
c. \(\lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1}\)

Solution In each case, attempting to evaluate the limit produces the indeterminate form \(\infty / \infty\).
a. Divide both the numerator and the denominator by \(x^{2}\).
\[
\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{(2 / x)+\left(5 / x^{2}\right)}{3+\left(1 / x^{2}\right)}=\frac{0+0}{3+0}=\frac{0}{3}=0
\]
b. Divide both the numerator and the denominator by \(x^{2}\).
\[
\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{2+\left(5 / x^{2}\right)}{3+\left(1 / x^{2}\right)}=\frac{2+0}{3+0}=\frac{2}{3}
\]
c. Divide both the numerator and the denominator by \(x^{2}\).
\[
\lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{2 x+\left(5 / x^{2}\right)}{3+\left(1 / x^{2}\right)}=\frac{\infty}{3}
\]

You can conclude that the limit does not exist because the numerator increases without bound while the denominator approaches 3 .

\section*{GUIDELINES FOR FINDING LIMITS AT \(\pm \infty\) OF RATIONAL FUNCTIONS}
1. If the degree of the numerator is less than the degree of the denominator, then the limit of the rational function is 0 .
2. If the degree of the numerator is equal to the degree of the denominator, then the limit of the rational function is the ratio of the leading coefficients.
3. If the degree of the numerator is greater than the degree of the denominator, then the limit of the rational function does not exist.

Use these guidelines to check the results in Example 3. These limits seem reasonable when you consider that for large values of \(x\), the highest-power term of the rational function is the most "influential" in determining the limit. For instance, the limit as \(x\) approaches infinity of the function
\[
f(x)=\frac{1}{x^{2}+1}
\]
is 0 because the denominator overpowers the numerator as \(x\) increases or decreases without bound, as shown in Figure 3.37.

The function shown in Figure 3.37 is a special case of a type of curve studied by the Italian mathematician Maria Gaetana Agnesi. The general form of this function is
\[
f(x)=\frac{8 a^{3}}{x^{2}+4 a^{2}} \quad \text { Witch of Agnesi }
\]
and, through a mistranslation of the Italian word vertéré, the curve has come to be known as the Witch of Agnesi. Agnesi's work with this curve first appeared in a comprehensive text on calculus that was published in 1748.


Functions that are not rational may have different right and left horizontal asymptotes.
Figure 3.38


The horizontal asymptote appears to be the line \(y=1\) but it is actually the line \(y=2\). Figure 3.39

In Figure 3.37, you can see that the function \(f(x)=1 /\left(x^{2}+1\right)\) approaches the same horizontal asymptote to the right and to the left. This is always true of rational functions. Functions that are not rational, however, may approach different horizontal asymptotes to the right and to the left. This is demonstrated in Example 4.

\section*{EXAMPLE 4 A Function with Two Horizontal Asymptotes}

Find each limit.
a. \(\lim _{x \rightarrow \infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}\)
b. \(\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}\)

\section*{Solution}
a. For \(x>0\), you can write \(x=\sqrt{x^{2}}\). So, dividing both the numerator and the denominator by \(x\) produces
\[
\frac{3 x-2}{\sqrt{2 x^{2}+1}}=\frac{\frac{3 x-2}{x}}{\frac{\sqrt{2 x^{2}+1}}{\sqrt{x^{2}}}}=\frac{3-\frac{2}{x}}{\sqrt{\frac{2 x^{2}+1}{x^{2}}}}=\frac{3-\frac{2}{x}}{\sqrt{2+\frac{1}{x^{2}}}}
\]
and you can take the limit as follows.
\[
\lim _{x \rightarrow \infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{3-\frac{2}{x}}{\sqrt{2+\frac{1}{x^{2}}}}=\frac{3-0}{\sqrt{2+0}}=\frac{3}{\sqrt{2}}
\]
b. For \(x<0\), you can write \(x=-\sqrt{x^{2}}\). So, dividing both the numerator and the denominator by \(x\) produces
\[
\frac{3 x-2}{\sqrt{2 x^{2}+1}}=\frac{\frac{3 x-2}{x}}{\frac{\sqrt{2 x^{2}+1}}{-\sqrt{x^{2}}}}=\frac{3-\frac{2}{x}}{-\sqrt{\frac{2 x^{2}+1}{x^{2}}}}=\frac{3-\frac{2}{x}}{-\sqrt{2+\frac{1}{x^{2}}}}
\]
and you can take the limit as follows.
\[
\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{3-\frac{2}{x}}{-\sqrt{2+\frac{1}{x^{2}}}}=\frac{3-0}{-\sqrt{2+0}}=-\frac{3}{\sqrt{2}}
\]

The graph of \(f(x)=(3 x-2) / \sqrt{2 x^{2}+1}\) is shown in Figure 3.38.

TECHNOLOGY PITFALL If you use a graphing utility to help estimate a limit, be sure that you also confirm the estimate analytically-the pictures shown by a graphing utility can be misleading. For instance, Figure 3.39 shows one view of the graph of
\[
y=\frac{2 x^{3}+1000 x^{2}+x}{x^{3}+1000 x^{2}+x+1000}
\]

From this view, one could be convinced that the graph has \(y=1\) as a horizontal asymptote. An analytical approach shows that the horizontal asymptote is actually \(y=2\). Confirm this by enlarging the viewing window on the graphing utility.


As \(x\) increases without bound, \(f(x)\) approaches 0 .
Figure 3.40


The level of oxygen in a pond approaches the normal level of 1 as \(t\) approaches \(\infty\).
Figure 3.41

In Section 1.3 (Example 9), you saw how the Squeeze Theorem can be used to evaluate limits involving trigonometric functions. This theorem is also valid for limits at infinity.

\section*{EXAMPLE 5 Limits Involving Trigonometric Functions}

Find each limit.
a. \(\lim _{x \rightarrow \infty} \sin x\)
b. \(\lim _{x \rightarrow \infty} \frac{\sin x}{x}\)

\section*{Solution}
a. As \(x\) approaches infinity, the sine function oscillates between 1 and -1 . So, this limit does not exist.
b. Because \(-1 \leq \sin x \leq 1\), it follows that for \(x>0\),
\[
-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
\]
where \(\lim _{x \rightarrow \infty}(-1 / x)=0\) and \(\lim _{x \rightarrow \infty}(1 / x)=0\). So, by the Squeeze Theorem, you can obtain
\[
\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0
\]
as shown in Figure 3.40.

\section*{EXAMPLE 6 Oxygen Level in a Pond}

Suppose that \(f(t)\) measures the level of oxygen in a pond, where \(f(t)=1\) is the normal (unpolluted) level and the time \(t\) is measured in weeks. When \(t=0\), organic waste is dumped into the pond, and as the waste material oxidizes, the level of oxygen in the pond is
\[
f(t)=\frac{t^{2}-t+1}{t^{2}+1}
\]

What percent of the normal level of oxygen exists in the pond after 1 week? After 2 weeks? After 10 weeks? What is the limit as \(t\) approaches infinity?
Solution When \(t=1,2\), and 10 , the levels of oxygen are as shown.
\[
\begin{array}{ll}
f(1)=\frac{1^{2}-1+1}{1^{2}+1}=\frac{1}{2}=50 \% & 1 \text { week } \\
f(2)=\frac{2^{2}-2+1}{2^{2}+1}=\frac{3}{5}=60 \% & 2 \text { weeks } \\
f(10)=\frac{10^{2}-10+1}{10^{2}+1}=\frac{91}{101} \approx 90.1 \% & 10 \text { weeks }
\end{array}
\]

To find the limit as \(t\) approaches infinity, divide the numerator and the denominator by \(t^{2}\) to obtain
\[
\lim _{t \rightarrow \infty} \frac{t^{2}-t+1}{t^{2}+1}=\lim _{t \rightarrow \infty} \frac{1-(1 / t)+\left(1 / t^{2}\right)}{1+\left(1 / t^{2}\right)}=\frac{1-0+0}{1+0}=1=100 \%
\]

See Figure 3.41.

NOTE Determining whether a function has an infinite limit at infinity is useful in analyzing the "end behavior" of its graph. You will see examples of this in Section 3.6 on curve sketching.


Figure 3.42

Figure 3.43

\section*{Infinite Limits at Infinity}

Many functions do not approach a finite limit as \(x\) increases (or decreases) without bound. For instance, no polynomial function has a finite limit at infinity. The following definition is used to describe the behavior of polynomial and other functions at infinity.

\section*{DEFINITION OF INFINITE LIMITS AT INFINITY}

Let \(f\) be a function defined on the interval \((a, \infty)\).
1. The statement \(\lim _{x \rightarrow \infty} f(x)=\infty\) means that for each positive number \(M\), there is a corresponding number \(N>0\) such that \(f(x)>M\) whenever \(x>N\).
2. The statement \(\lim _{x \rightarrow \infty} f(x)=-\infty\) means that for each negative number \(M\), there is a corresponding number \(N>0\) such that \(f(x)<M\) whenever \(x>N\).

Similar definitions can be given for the statements \(\lim _{x \rightarrow-\infty} f(x)=\infty\) and \(\lim _{x \rightarrow-\infty} f(x)=-\infty\).

\section*{EXAMPLE 7 Finding Infinite Limits at Infinity}

Find each limit.
a. \(\lim _{x \rightarrow \infty} x^{3}\)
b. \(\lim _{x \rightarrow-\infty} x^{3}\)

\section*{Solution}
a. As \(x\) increases without bound, \(x^{3}\) also increases without bound. So, you can write \(\lim _{x \rightarrow \infty} x^{3}=\infty\).
b. As \(x\) decreases without bound, \(x^{3}\) also decreases without bound. So, you can write \(\lim _{x \rightarrow-\infty} x^{3}=-\infty\).
The graph of \(f(x)=x^{3}\) in Figure 3.42 illustrates these two results. These results agree with the Leading Coefficient Test for polynomial functions as described in Section P.3.

\section*{EXAMPLE 8 Finding Infinite Limits at Infinity}

Find each limit.
a. \(\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x}{x+1}\)
b. \(\lim _{x \rightarrow-\infty} \frac{2 x^{2}-4 x}{x+1}\)

Solution One way to evaluate each of these limits is to use long division to rewrite the improper rational function as the sum of a polynomial and a rational function.
a. \(\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x}{x+1}=\lim _{x \rightarrow \infty}\left(2 x-6+\frac{6}{x+1}\right)=\infty\)
b. \(\lim _{x \rightarrow-\infty} \frac{2 x^{2}-4 x}{x+1}=\lim _{x \rightarrow-\infty}\left(2 x-6+\frac{6}{x+1}\right)=-\infty\)

The statements above can be interpreted as saying that as \(x\) approaches \(\pm \infty\), the function \(f(x)=\left(2 x^{2}-4 x\right) /(x+1)\) behaves like the function \(g(x)=2 x-6\). In Section 3.6, you will see that this is graphically described by saying that the line \(y=2 x-6\) is a slant asymptote of the graph of \(f\), as shown in Figure 3.43.

\subsection*{3.5 Exercises}

In Exercises 1-6, match the function with one of the graphs [(a), (b), (c), (d), (e), or (f)] using horizontal asymptotes as an aid.
(a)

(b)

(c)

(d)

(e)

(f)

1. \(f(x)=\frac{2 x^{2}}{x^{2}+2}\)
2. \(f(x)=\frac{2 x}{\sqrt{x^{2}+2}}\)
3. \(f(x)=\frac{x}{x^{2}+2}\)
4. \(f(x)=2+\frac{x^{2}}{x^{4}+1}\)
5. \(f(x)=\frac{4 \sin x}{x^{2}+1}\)
6. \(f(x)=\frac{2 x^{2}-3 x+5}{x^{2}+1}\)

Numerical and Graphical Analysis In Exercises 7-12, use a graphing utility to complete the table and estimate the limit as \(x\) approaches infinity. Then use a graphing utility to graph the function and estimate the limit graphically.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline\(f(x)\) & & & & & & & \\
\hline
\end{tabular}
7. \(f(x)=\frac{4 x+3}{2 x-1}\)
8. \(f(x)=\frac{2 x^{2}}{x+1}\)
9. \(f(x)=\frac{-6 x}{\sqrt{4 x^{2}+5}}\)
10. \(f(x)=\frac{20 x}{\sqrt{9 x^{2}-1}}\)
11. \(f(x)=5-\frac{1}{x^{2}+1}\)
12. \(f(x)=4+\frac{3}{x^{2}+2}\)

In Exercises 13 and 14, find \(\lim _{x \rightarrow \infty} \boldsymbol{h ( x )}\), if possible.
13. \(f(x)=5 x^{3}-3 x^{2}+10 x\)
14. \(f(x)=-4 x^{2}+2 x-5\)
(a) \(h(x)=\frac{f(x)}{x^{2}}\)
(a) \(h(x)=\frac{f(x)}{x}\)
(b) \(h(x)=\frac{f(x)}{x^{3}}\)
(b) \(h(x)=\frac{f(x)}{x^{2}}\)
(c) \(h(x)=\frac{f(x)}{x^{4}}\)
(c) \(h(x)=\frac{f(x)}{x^{3}}\)

In Exercises 15-18, find each limit, if possible.
15. (a) \(\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{3}-1}\)
16. (a) \(\lim _{x \rightarrow \infty} \frac{3-2 x}{3 x^{3}-1}\)
(b) \(\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{2}-1}\)
(b) \(\lim _{x \rightarrow \infty} \frac{3-2 x}{3 x-1}\)
(c) \(\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x-1}\)
(c) \(\lim _{x \rightarrow \infty} \frac{3-2 x^{2}}{3 x-1}\)
17. (a) \(\lim _{x \rightarrow \infty} \frac{5-2 x^{3 / 2}}{3 x^{2}-4}\)
18. (a) \(\lim _{x \rightarrow \infty} \frac{5 x^{3 / 2}}{4 x^{2}+1}\)
(b) \(\lim _{x \rightarrow \infty} \frac{5-2 x^{3 / 2}}{3 x^{3 / 2}-4}\)
(b) \(\lim _{x \rightarrow \infty} \frac{5 x^{3 / 2}}{4 x^{3 / 2}+1}\)
(c) \(\lim _{x \rightarrow \infty} \frac{5-2 x^{3 / 2}}{3 x-4}\)
(c) \(\lim _{x \rightarrow \infty} \frac{5 x^{3 / 2}}{4 \sqrt{x}+1}\)

In Exercises 19-38, find the limit.
19. \(\lim _{x \rightarrow \infty}\left(4+\frac{3}{x}\right)\)
20. \(\lim _{x \rightarrow-\infty}\left(\frac{5}{x}-\frac{x}{3}\right)\)
21. \(\lim _{x \rightarrow \infty} \frac{2 x-1}{3 x+2}\)
22. \(\lim _{x \rightarrow \infty} \frac{x^{2}+3}{2 x^{2}-1}\)
23. \(\lim _{x \rightarrow \infty} \frac{x}{x^{2}-1}\)
24. \(\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{10 x^{3}-3 x^{2}+7}\)
25. \(\lim _{x \rightarrow-\infty} \frac{5 x^{2}}{x+3}\)
26. \(\lim _{x \rightarrow-\infty}\left(\frac{1}{2} x-\frac{4}{x^{2}}\right)\)
27. \(\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-x}}\)
28. \(\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}\)
29. \(\lim _{x \rightarrow-\infty} \frac{2 x+1}{\sqrt{x^{2}-x}}\)
30. \(\lim _{x \rightarrow-\infty} \frac{-3 x+1}{\sqrt{x^{2}+x}}\)
31. \(\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-1}}{2 x-1}\)
32. \(\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}-1}}{x^{3}-1}\)
33. \(\lim _{x \rightarrow \infty} \frac{x+1}{\left(x^{2}+1\right)^{1 / 3}}\)
34. \(\lim _{x \rightarrow-\infty} \frac{2 x}{\left(x^{6}-1\right)^{1 / 3}}\)
35. \(\lim _{x \rightarrow \infty} \frac{1}{2 x+\sin x}\)
36. \(\lim _{x \rightarrow \infty} \cos \frac{1}{x}\)
37. \(\lim _{x \rightarrow \infty} \frac{\sin 2 x}{x}\)
38. \(\lim _{x \rightarrow \infty} \frac{x-\cos x}{x}\)

In Exercises 39-42, use a graphing utility to graph the function and identify any horizontal asymptotes.
39. \(f(x)=\frac{|x|}{x+1}\)
40. \(f(x)=\frac{|3 x+2|}{x-2}\)
41. \(f(x)=\frac{3 x}{\sqrt{x^{2}+2}}\)
42. \(f(x)=\frac{\sqrt{9 x^{2}-2}}{2 x+1}\)

In Exercises 43 and 44, find the limit. (Hint: Let \(x=1 / t\) and find the limit as \(t \rightarrow \mathbf{0}^{+}\).)
43. \(\lim _{x \rightarrow \infty} x \sin \frac{1}{x}\)
44. \(\lim _{x \rightarrow \infty} x \tan \frac{1}{x}\)

In Exercises 45-48, find the limit. (Hint: Treat the expression as a fraction whose denominator is 1 , and rationalize the numerator.) Use a graphing utility to verify your result.
45. \(\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+3}\right)\)
46. \(\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)\)
47. \(\lim _{x \rightarrow-\infty}\left(3 x+\sqrt{9 x^{2}-x}\right)\)
48. \(\lim _{x \rightarrow \infty}\left(4 x-\sqrt{16 x^{2}-x}\right)\)

Numerical, Graphical, and Analytic Analysis In Exercises 49-52, use a graphing utility to complete the table and estimate the limit as \(x\) approaches infinity. Then use a graphing utility to graph the function and estimate the limit. Finally, find the limit analytically and compare your results with the estimates.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline\(f(x)\) & & & & & & & \\
\hline
\end{tabular}
49. \(f(x)=x-\sqrt{x(x-1)}\)
50. \(f(x)=x^{2}-x \sqrt{x(x-1)}\)
51. \(f(x)=x \sin \frac{1}{2 x}\)
52. \(f(x)=\frac{x+1}{x \sqrt{x}}\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 53 and 54, describe in your own words what the statement means.
53. \(\lim _{x \rightarrow \infty} f(x)=4\)
54. \(\lim _{x \rightarrow-\infty} f(x)=2\)
55. Sketch a graph of a differentiable function \(f\) that satisfies the following conditions and has \(x=2\) as its only critical number.
\[
\begin{aligned}
& f^{\prime}(x)<0 \text { for } x<2 \quad f^{\prime}(x)>0 \text { for } x>2 \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=6
\end{aligned}
\]
56. Is it possible to sketch a graph of a function that satisfies the conditions of Exercise 55 and has no points of inflection? Explain.
57. If \(f\) is a continuous function such that \(\lim _{x \rightarrow \infty} f(x)=5\), find, if possible, \(\lim _{x \rightarrow-\infty} f(x)\) for each specified condition.
(a) The graph of \(f\) is symmetric with respect to the \(y\)-axis.
(b) The graph of \(f\) is symmetric with respect to the origin.

\section*{CAPSTONE}
58. The graph of a function \(f\) is shown below. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) Sketch \(f^{\prime}\).
(b) Use the graphs to estimate \(\lim _{x \rightarrow \infty} f(x)\) and \(\lim _{x \rightarrow \infty} f^{\prime}(x)\).
(c) Explain the answers you gave in part (b).

In Exercises 59-76, sketch the graph of the equation using extrema, intercepts, symmetry, and asymptotes. Then use a graphing utility to verify your result.
59. \(y=\frac{x}{1-x}\)
60. \(y=\frac{x-4}{x-3}\)
61. \(y=\frac{x+1}{x^{2}-4}\)
62. \(y=\frac{2 x}{9-x^{2}}\)
63. \(y=\frac{x^{2}}{x^{2}+16}\)
64. \(y=\frac{x^{2}}{x^{2}-16}\)
65. \(y=\frac{2 x^{2}}{x^{2}-4}\)
66. \(y=\frac{2 x^{2}}{x^{2}+4}\)
67. \(x y^{2}=9\)
68. \(x^{2} y=9\)
69. \(y=\frac{3 x}{1-x}\)
70. \(y=\frac{3 x}{1-x^{2}}\)
71. \(y=2-\frac{3}{x^{2}}\)
72. \(y=1+\frac{1}{x}\)
73. \(y=3+\frac{2}{x}\)
74. \(y=4\left(1-\frac{1}{x^{2}}\right)\)
75. \(y=\frac{x^{3}}{\sqrt{x^{2}-4}}\)
76. \(y=\frac{x}{\sqrt{x^{2}-4}}\)

CAS In Exercises 77-84, use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist.
77. \(f(x)=9-\frac{5}{x^{2}}\)
78. \(f(x)=\frac{1}{x^{2}-x-2}\)
79. \(f(x)=\frac{x-2}{x^{2}-4 x+3}\)
80. \(f(x)=\frac{x+1}{x^{2}+x+1}\)
81. \(f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}}\)
82. \(g(x)=\frac{2 x}{\sqrt{3 x^{2}+1}}\)
83. \(g(x)=\sin \left(\frac{x}{x-2}\right), \quad x>3\)
84. \(f(x)=\frac{2 \sin 2 x}{x}\)

In Exercises 85 and 86, (a) use a graphing utility to graph \(f\) and \(g\) in the same viewing window, (b) verify algebraically that \(f\) and \(g\) represent the same function, and (c) zoom out sufficiently far so that the graph appears as a line. What equation does this line appear to have? (Note that the points at which the function is not continuous are not readily seen when you zoom out.)
85. \(f(x)=\frac{x^{3}-3 x^{2}+2}{x(x-3)}\)
86. \(f(x)=-\frac{x^{3}-2 x^{2}+2}{2 x^{2}}\)
\[
g(x)=x+\frac{2}{x(x-3)}
\]
\[
g(x)=-\frac{1}{2} x+1-\frac{1}{x^{2}}
\]
87. Engine Efficiency The efficiency of an internal combustion engine is
\(\operatorname{Efficiency}(\%)=100\left[1-\frac{1}{\left(v_{1} / v_{2}\right)^{c}}\right]\)
where \(v_{1} / v_{2}\) is the ratio of the uncompressed gas to the compressed gas and \(c\) is a positive constant dependent on the engine design. Find the limit of the efficiency as the compression ratio approaches infinity.
88. Average Cost A business has a cost of \(C=0.5 x+500\) for producing \(x\) units. The average cost per unit is
\(\bar{C}=\frac{C}{x}\).
Find the limit of \(\bar{C}\) as \(x\) approaches infinity.
89. Physics Newton's First Law of Motion and Einstein's Special Theory of Relativity differ concerning a particle's behavior as its velocity approaches the speed of light \(c\). In the graph, functions \(N\) and \(E\) represent the velocity \(v\), with respect to time \(t\), of a particle accelerated by a constant force as predicted by Newton and Einstein. Write limit statements that describe these two theories.

90. Temperature The graph shows the temperature \(T\), in degrees Fahrenheit, of molten glass \(t\) seconds after it is removed from a kiln.

(a) Find \(\lim _{t \rightarrow 0^{+}} T\). What does this limit represent?
(b) Find \(\lim _{t \rightarrow \infty} T\). What does this limit represent?
(c) Will the temperature of the glass ever actually reach room temperature? Why?
91. Modeling Data The table shows the world record times for the mile run, where \(t\) represents the year, with \(t=0\) corresponding to 1900 , and \(y\) is the time in minutes and seconds.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 23 & 33 & 45 & 54 & 58 \\
\hline\(y\) & \(4: 10.4\) & \(4: 07.6\) & \(4: 01.3\) & \(3: 59.4\) & \(3: 54.5\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline\(t\) & 66 & 79 & 85 & 99 \\
\hline\(y\) & \(3: 51.3\) & \(3: 48.9\) & \(3: 46.3\) & \(3: 43.1\) \\
\hline
\end{tabular}

A model for the data is
\(y=\frac{3.351 t^{2}+42.461 t-543.730}{t^{2}}\)
where the seconds have been changed to decimal parts of a minute.
(a) Use a graphing utility to plot the data and graph the model.
(b) Does there appear to be a limiting time for running 1 mile? Explain.
92. Modeling Data The average typing speeds \(S\) (in words per minute) of a typing student after \(t\) weeks of lessons are shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(t\) & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline\(S\) & 28 & 56 & 79 & 90 & 93 & 94 \\
\hline
\end{tabular}

A model for the data is \(S=\frac{100 t^{2}}{65+t^{2}}, \quad t>0\).
(a) Use a graphing utility to plot the data and graph the model.
(b) Does there appear to be a limiting typing speed? Explain.
93. Modeling Data A heat probe is attached to the heat exchanger of a heating system. The temperature \(T\) (in degrees Celsius) is recorded \(t\) seconds after the furnace is started. The results for the first 2 minutes are recorded in the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 0 & 15 & 30 & 45 & 60 \\
\hline\(T\) & \(25.2^{\circ}\) & \(36.9^{\circ}\) & \(45.5^{\circ}\) & \(51.4^{\circ}\) & \(56.0^{\circ}\) \\
\hline \begin{tabular}{|l|c|c|c|c|}
\hline\(t\) & 75 & 90 & 105 & 120 \\
\hline\(T\) & \(59.6^{\circ}\) & \(62.0^{\circ}\) & \(64.0^{\circ}\) & \(65.2^{\circ}\) \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l}
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form \(T_{1}=a t^{2}+b t+c\) for the data.
(b) Use a graphing utility to graph \(T_{1}\).
(c) A rational model for the data is \(T_{2}=\frac{1451+86 t}{58+t}\). Use a graphing utility to graph \(T_{2}\).
(d) Find \(T_{1}(0)\) and \(T_{2}(0)\).
(e) Find \(\lim _{t \rightarrow \infty} T_{2}\).
(f) Interpret the result in part (e) in the context of the problem. Is it possible to do this type of analysis using \(T_{1}\) ? Explain.
94. Modeling Data A container holds 5 liters of a \(25 \%\) brine solution. The table shows the concentrations \(C\) of the mixture after adding \(x\) liters of a \(75 \%\) brine solution to the container.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 0.5 & 1 & 1.5 & 2 \\
\hline\(C\) & 0.25 & 0.295 & 0.333 & 0.365 & 0.393 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline\(x\) & 2.5 & 3 & 3.5 & 4 \\
\hline\(C\) & 0.417 & 0.438 & 0.456 & 0.472 \\
\hline
\end{tabular}
(a) Use the regression features of a graphing utility to find a model of the form \(C_{1}=a x^{2}+b x+c\) for the data.
(b) Use a graphing utility to graph \(C_{1}\).
(c) A rational model for these data is \(C_{2}=\frac{5+3 x}{20+4 x}\). Use a graphing utility to graph \(C_{2}\).
(d) Find \(\lim _{x \rightarrow \infty} C_{1}\) and \(\lim _{x \rightarrow \infty} C_{2}\). Which model do you think best represents the concentration of the mixture? Explain.
(e) What is the limiting concentration?
95. A line with slope \(m\) passes through the point \((0,4)\).
(a) Write the distance \(d\) between the line and the point \((3,1)\) as a function of \(m\).
(b) Use a graphing utility to graph the equation in part (a).
(c) Find \(\lim _{m \rightarrow \infty} d(m)\) and \(\lim _{m \rightarrow-\infty} d(m)\). Interpret the results geometrically.
96. A line with slope \(m\) passes through the point \((0,-2)\).
(a) Write the distance \(d\) between the line and the point \((4,2)\) as a function of \(m\).
(b) Use a graphing utility to graph the equation in part (a).
(c) Find \(\lim _{m \rightarrow \infty} d(m)\) and \(\lim _{m \rightarrow-\infty} d(m)\). Interpret the results geometrically.
97. The graph of \(f(x)=\frac{2 x^{2}}{x^{2}+2}\) is shown.

(a) Find \(L=\lim _{x \rightarrow \infty} f(x)\).
(b) Determine \(x_{1}\) and \(x_{2}\) in terms of \(\varepsilon\).
(c) Determine \(M\), where \(M>0\), such that \(|f(x)-L|<\varepsilon\) for \(x>M\).
(d) Determine \(N\), where \(N<0\), such that \(|f(x)-L|<\varepsilon\) for \(x<N\).
98. The graph of \(f(x)=\frac{6 x}{\sqrt{x^{2}+2}}\) is shown.

(a) Find \(L=\lim _{x \rightarrow \infty} f(x)\) and \(K=\lim _{x \rightarrow-\infty} f(x)\).
(b) Determine \(x_{1}\) and \(x_{2}\) in terms of \(\varepsilon\).
(c) Determine \(M\), where \(M>0\), such that \(|f(x)-L|<\varepsilon\) for \(x>M\).
(d) Determine \(N\), where \(N<0\), such that \(|f(x)-K|<\varepsilon\) for \(x<N\).
99. Consider \(\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}+3}}\). Use the definition of limits at infinity to find values of \(M\) that correspond to (a) \(\varepsilon=0.5\) and (b) \(\varepsilon=0.1\).
100. Consider \(\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}+3}}\). Use the definition of limits at infinity to find values of \(N\) that correspond to (a) \(\varepsilon=0.5\) and (b) \(\varepsilon=0.1\).

In Exercises 101-104, use the definition of limits at infinity to prove the limit.
101. \(\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0\)
102. \(\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0\)
103. \(\lim _{x \rightarrow-\infty} \frac{1}{x^{3}}=0\)
104. \(\lim _{x \rightarrow-\infty} \frac{1}{x-2}=0\)
105. Prove that if \(p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}\) and \(q(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}\left(a_{n} \neq 0, b_{m} \neq 0\right)\), then \(\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}= \begin{cases}0, & n<m \\ \frac{a_{n}}{b_{m}}, & n=m . \\ \pm \infty, & n>m\end{cases}\)
106. Use the definition of infinite limits at infinity to prove that \(\lim _{x \rightarrow \infty} x^{3}=\infty\).
True or False? In Exercises 107 and 108, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
107. If \(f^{\prime}(x)>0\) for all real numbers \(x\), then \(f\) increases without bound.
108. If \(f^{\prime \prime}(x)<0\) for all real numbers \(x\), then \(f\) decreases without bound.

\subsection*{3.6 A Summary of Curve Sketching}


Different viewing windows for the graph of \(f(x)=x^{3}-25 x^{2}+74 x-20\)
Figure 3.44

Analyze and sketch the graph of a function.

\section*{Analyzing the Graph of a Function}

It would be difficult to overstate the importance of using graphs in mathematics. Descartes's introduction of analytic geometry contributed significantly to the rapid advances in calculus that began during the mid-seventeenth century. In the words of Lagrange, "As long as algebra and geometry traveled separate paths their advance was slow and their applications limited. But when these two sciences joined company, they drew from each other fresh vitality and thenceforth marched on at a rapid pace toward perfection."

So far, you have studied several concepts that are useful in analyzing the graph of a function.
- \(x\)-intercepts and \(y\)-intercepts
- Symmetry
- Domain and range
- Continuity
- Vertical asymptotes
- Differentiability
- Relative extrema
- Concavity
- Points of inflection
- Horizontal asymptotes
- Infinite limits at infinity
(Section P.1)
(Section P.1)
(Section P.3)
(Section 1.4)
(Section 1.5)
(Section 2.1)
(Section 3.1)
(Section 3.4)
(Section 3.4)
(Section 3.5)
(Section 3.5)

When you are sketching the graph of a function, either by hand or with a graphing utility, remember that normally you cannot show the entire graph. The decision as to which part of the graph you choose to show is often crucial. For instance, which of the viewing windows in Figure 3.44 better represents the graph of
\[
f(x)=x^{3}-25 x^{2}+74 x-20 ?
\]

By seeing both views, it is clear that the second viewing window gives a more complete representation of the graph. But would a third viewing window reveal other interesting portions of the graph? To answer this, you need to use calculus to interpret the first and second derivatives. Here are some guidelines for determining a good viewing window for the graph of a function.

\section*{GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION}
1. Determine the domain and range of the function.
2. Determine the intercepts, asymptotes, and symmetry of the graph.
3. Locate the \(x\)-values for which \(f^{\prime}(x)\) and \(f^{\prime \prime}(x)\) either are zero or do not exist. Use the results to determine relative extrema and points of inflection.

NOTE In these guidelines, note the importance of algebra (as well as calculus) for solving the equations \(f(x)=0, f^{\prime}(x)=0\), and \(f^{\prime \prime}(x)=0\).
\[
f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}
\]


Using calculus, you can be certain that you have determined all characteristics of the graph of \(f\).
Figure 3.45

FOR FURTHER INFORMATION For more information on the use of technology to graph rational functions, see the article "Graphs of Rational Functions for Computer Assisted Calculus" by Stan Byrd and Terry Walters in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.


By not using calculus you may overlook important characteristics of the graph of \(g\).
Figure 3.46

\section*{EXAMPLE 1 Sketching the Graph of a Rational Function}

Analyze and sketch the graph of \(f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}\).

\section*{Solution}
\[
\begin{aligned}
\text { First derivative: } & f^{\prime}(x)=\frac{20 x}{\left(x^{2}-4\right)^{2}} \\
\text { Second derivative: } & f^{\prime \prime}(x)=\frac{-20\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}} \\
\text { x-intercepts: } & (-3,0),(3,0) \\
y \text {-intercept: } & \left(0, \frac{9}{2}\right) \\
\text { Vertical asymptotes: } & x=-2, x=2 \\
\text { Horizontal asymptote: } & y=2 \\
\text { Critical number: } & x=0 \\
\text { Possible points of inflection: } & \text { None } \\
\text { Domain: } & \text { All real numbers except } x= \pm 2 \\
\text { Symmetry: } & \text { With respect to } y \text {-axis } \\
\text { Test intervals: } & (-\infty,-2),(-2,0),(0,2),(2, \infty)
\end{aligned}
\]

The table shows how the test intervals are used to determine several characteristics of the graph. The graph of \(f\) is shown in Figure 3.45.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(-\infty<x<-2\) & & - & - & Decreasing, concave downward \\
\hline\(x=-2\) & Undef. & Undef. & Undef. & Vertical asymptote \\
\hline\(-2<x<0\) & & - & + & Decreasing, concave upward \\
\hline\(x=0\) & \(\frac{9}{2}\) & 0 & + & Relative minimum \\
\hline \(0<x<2\) & & + & + & Increasing, concave upward \\
\hline\(x=2\) & Undef. & Undef. & Undef. & Vertical asymptote \\
\hline \(2<x<\infty\) & & + & - & Increasing, concave downward \\
\hline
\end{tabular}

Be sure you understand all of the implications of creating a table such as that shown in Example 1. By using calculus, you can be sure that the graph has no relative extrema or points of inflection other than those shown in Figure 3.45.

TECHNOLOGY PITFALL Without using the type of analysis outlined in Example 1, it is easy to obtain an incomplete view of a graph's basic characteristics. For instance, Figure 3.46 shows a view of the graph of
\[
g(x)=\frac{2\left(x^{2}-9\right)(x-20)}{\left(x^{2}-4\right)(x-21)}
\]

From this view, it appears that the graph of \(g\) is about the same as the graph of \(f\) shown in Figure 3.45. The graphs of these two functions, however, differ significantly. Try enlarging the viewing window to see the differences.

\section*{EXAMPLE 2 Sketching the Graph of a Rational Function}

Analyze and sketch the graph of \(f(x)=\frac{x^{2}-2 x+4}{x-2}\).

\section*{Solution}
\[
\text { First derivative: } \quad f^{\prime}(x)=\frac{x(x-4)}{(x-2)^{2}}
\]

Second derivative: \(\quad f^{\prime \prime}(x)=\frac{8}{(x-2)^{3}}\)
\(\boldsymbol{x}\)-intercepts: None
\(y\)-intercept: \(\quad(0,-2)\)
Vertical asymptote: \(\quad x=2\)
Horizontal asymptotes: None
\[
\begin{aligned}
\text { End behavior: } & \lim _{\substack{x \rightarrow-\infty}} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=\infty \\
\text { Critical numbers: } & x=0, x=4
\end{aligned}
\]

Possible points of inflection: None
Domain: All real numbers except \(x=2\)
Test intervals: \(\quad(-\infty, 0),(0,2),(2,4),(4, \infty)\)
The analysis of the graph of \(f\) is shown in the table, and the graph is shown in Figure 3.47.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(-\infty<x<0\) & & + & - & Increasing, concave downward \\
\hline\(x=0\) & -2 & 0 & - & Relative maximum \\
\hline \(0<x<2\) & & - & - & Decreasing, concave downward \\
\hline\(x=2\) & Undef. & Undef. & Undef. & Vertical asymptote \\
\hline \(2<x<4\) & & - & + & Decreasing, concave upward \\
\hline\(x=4\) & 6 & 0 & + & Relative minimum \\
\hline \(4<x<\infty\) & & + & + & Increasing, concave upward \\
\hline
\end{tabular}

Although the graph of the function in Example 2 has no horizontal asymptote, it does have a slant asymptote. The graph of a rational function (having no common factors and whose denominator is of degree 1 or greater) has a slant asymptote if the degree of the numerator exceeds the degree of the denominator by exactly 1 . To find the slant asymptote, use long division to rewrite the rational function as the sum of a first-degree polynomial and another rational function.
\[
\begin{aligned}
f(x) & =\frac{x^{2}-2 x+4}{x-2} & & \text { Write original equation. } \\
& =x+\frac{4}{x-2} & & \text { Rewrite using long division. }
\end{aligned}
\]

In Figure 3.48, note that the graph of \(f\) approaches the slant asymptote \(y=x\) as \(x\) approaches \(-\infty\) or \(\infty\).

A slant asymptote
Figure 3.48


Figure 3.49


Relative minimum

\section*{EXAMPLE 3 Sketching the Graph of a Radical Function}

Analyze and sketch the graph of \(f(x)=\frac{x}{\sqrt{x^{2}+2}}\).

\section*{Solution}
\[
f^{\prime}(x)=\frac{2}{\left(x^{2}+2\right)^{3 / 2}} \quad f^{\prime \prime}(x)=-\frac{6 x}{\left(x^{2}+2\right)^{5 / 2}}
\]

The graph has only one intercept, \((0,0)\). It has no vertical asymptotes, but it has two horizontal asymptotes: \(y=1\) (to the right) and \(y=-1\) (to the left). The function has no critical numbers and one possible point of inflection (at \(x=0\) ). The domain of the function is all real numbers, and the graph is symmetric with respect to the origin. The analysis of the graph of \(f\) is shown in the table, and the graph is shown in Figure 3.49.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(-\infty<x<0\) & & + & + & Increasing, concave upward \\
\hline\(x=0\) & 0 & \(\frac{1}{\sqrt{2}}\) & 0 & Point of inflection \\
\hline \(0<x<\infty\) & & + & - & Increasing, concave downward \\
\hline
\end{tabular}

\section*{EXAMPLE 4 Sketching the Graph of a Radical Function}

Analyze and sketch the graph of \(f(x)=2 x^{5 / 3}-5 x^{4 / 3}\).
Solution
\[
f^{\prime}(x)=\frac{10}{3} x^{1 / 3}\left(x^{1 / 3}-2\right) \quad f^{\prime \prime}(x)=\frac{20\left(x^{1 / 3}-1\right)}{9 x^{2 / 3}}
\]

The function has two intercepts: \((0,0)\) and \(\left(\frac{125}{8}, 0\right)\). There are no horizontal or vertical asymptotes. The function has two critical numbers ( \(x=0\) and \(x=8\) ) and two possible points of inflection \((x=0\) and \(x=1)\). The domain is all real numbers. The analysis of the graph of \(f\) is shown in the table, and the graph is shown in Figure 3.50.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(-\infty<x<0\) & & + & - & Increasing, concave downward \\
\hline\(x=0\) & 0 & 0 & Undef. & Relative maximum \\
\hline \(0<x<1\) & & - & - & Decreasing, concave downward \\
\hline\(x=1\) & -3 & - & 0 & Point of inflection \\
\hline \(1<x<8\) & & - & + & Decreasing, concave upward \\
\hline\(x=8\) & -16 & 0 & + & Relative minimum \\
\hline \(8<x<\infty\) & & + & + & Increasing, concave upward \\
\hline
\end{tabular}

Figure 3.50

(b)

A polynomial function of even degree must have at least one relative extremum.
Figure 3.51

\section*{EXAMPLE 5 Sketching the Graph of a Polynomial Function}

Analyze and sketch the graph of \(f(x)=x^{4}-12 x^{3}+48 x^{2}-64 x\).
Solution Begin by factoring to obtain
\[
\begin{aligned}
f(x) & =x^{4}-12 x^{3}+48 x^{2}-64 x \\
& =x(x-4)^{3}
\end{aligned}
\]

Then, using the factored form of \(f(x)\), you can perform the following analysis.
\[
\begin{aligned}
\text { First derivative: } & f^{\prime}(x)=4(x-1)(x-4)^{2} \\
\text { Second derivative: } & f^{\prime \prime}(x)=12(x-4)(x-2) \\
\boldsymbol{x} \text {-intercepts: } & (0,0),(4,0) \\
\text { y-intercept: } & (0,0) \\
\text { Vertical asymptotes: } & \text { None } \\
\text { Horizontal asymptotes: } & \text { None } \\
\text { End behavior: } & \lim _{x \rightarrow-\infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=\infty \\
\text { Critical numbers: } & x=1, x=4 \\
\text { Possible points of inflection: } & x=2, x=4 \\
\text { Domain: } & \text { All real numbers } \\
\text { Test intervals: } & (-\infty, 1),(1,2),(2,4),(4, \infty)
\end{aligned}
\]

The analysis of the graph of \(f\) is shown in the table, and the graph is shown in Figure 3.51(a). Using a computer algebra system such as Maple [see Figure 3.51(b)] can help you verify your analysis.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(-\infty<x<1\) & & - & + & Decreasing, concave upward \\
\hline\(x=1\) & -27 & 0 & + & Relative minimum \\
\hline \(1<x<2\) & & + & + & Increasing, concave upward \\
\hline\(x=2\) & -16 & + & 0 & Point of inflection \\
\hline \(2<x<4\) & & + & - & Increasing, concave downward \\
\hline\(x=4\) & 0 & 0 & 0 & Point of inflection \\
\hline \(4<x<\infty\) & & + & + & Increasing, concave upward \\
\hline
\end{tabular}

The fourth-degree polynomial function in Example 5 has one relative minimum and no relative maxima. In general, a polynomial function of degree \(n\) can have at most \(n-1\) relative extrema, and at most \(n-2\) points of inflection. Moreover, polynomial functions of even degree must have at least one relative extremum.

Remember from the Leading Coefficient Test described in Section P. 3 that the "end behavior" of the graph of a polynomial function is determined by its leading coefficient and its degree. For instance, because the polynomial in Example 5 has a positive leading coefficient, the graph rises to the right. Moreover, because the degree is even, the graph also rises to the left.

(a)

(b)

Figure 3.52

\section*{EXAMPLE 6 Sketching the Graph of a Trigonometric Function}

Analyze and sketch the graph of \(f(x)=\frac{\cos x}{1+\sin x}\).
Solution Because the function has a period of \(2 \pi\), you can restrict the analysis of the graph to any interval of length \(2 \pi\). For convenience, choose \((-\pi / 2,3 \pi / 2)\).
\[
\begin{aligned}
\text { First derivative: } & f^{\prime}(x)=-\frac{1}{1+\sin x} \\
\text { Second derivative: } & f^{\prime \prime}(x)=\frac{\cos x}{(1+\sin x)^{2}} \\
\text { Period: } & 2 \pi \\
\text { x-intercept: } & \left(\frac{\pi}{2}, 0\right) \\
y \text {-intercept: } & (0,1)
\end{aligned}
\]

Vertical asymptotes: \(\quad x=-\frac{\pi}{2}, x=\frac{3 \pi}{2} \quad\) See Note below.

\section*{Horizontal asymptotes: None}

Critical numbers: None
Possible points of inflection: \(\quad x=\frac{\pi}{2}\)
Domain: All real numbers except \(x=\frac{3+4 n}{2} \pi\) Test intervals: \(\quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)\)

The analysis of the graph of \(f\) on the interval \((-\pi / 2,3 \pi / 2)\) is shown in the table, and the graph is shown in Figure 3.52(a). Compare this with the graph generated by the computer algebra system Maple in Figure 3.52(b).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(f(x)\) & \(f^{\prime}(x)\) & \(f^{\prime \prime}(x)\) & Characteristic of Graph \\
\hline\(x=-\frac{\pi}{2}\) & Undef. & Undef. & Undef. & Vertical asymptote \\
\hline\(-\frac{\pi}{2}<x<\frac{\pi}{2}\) & & - & + & Decreasing, concave upward \\
\hline\(x=\frac{\pi}{2}\) & 0 & \(-\frac{1}{2}\) & 0 & Point of inflection \\
\hline\(\frac{\pi}{2}<x<\frac{3 \pi}{2}\) & & - & - & Decreasing, concave downward \\
\hline\(x=\frac{3 \pi}{2}\) & Undef. & Undef. & Undef. & Vertical asymptote \\
\hline
\end{tabular}

NOTE By substituting \(-\pi / 2\) or \(3 \pi / 2\) into the function, you obtain the form \(0 / 0\). This is called an indeterminate form, which you will study in Section 8.7. To determine that the function has vertical asymptotes at these two values, you can rewrite the function as follows.
\[
f(x)=\frac{\cos x}{1+\sin x}=\frac{(\cos x)(1-\sin x)}{(1+\sin x)(1-\sin x)}=\frac{(\cos x)(1-\sin x)}{\cos ^{2} x}=\frac{1-\sin x}{\cos x}
\]

In this form, it is clear that the graph of \(f\) has vertical asymptotes at \(x=-\pi / 2\) and \(3 \pi / 2\).

\subsection*{3.6 Exercises}

In Exercises 1-4, match the graph of \(f\) in the left column with that of its derivative in the right column.

(a)
Graph off \(f^{\prime}\)

1.
2.

(b)

3.

(c)

4.

(d)


In Exercises 5-32, analyze and sketch a graph of the function. Label any intercepts, relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results.
5. \(y=\frac{1}{x-2}-3\)
6. \(y=\frac{x}{x^{2}+1}\)
7. \(y=\frac{x^{2}}{x^{2}+3}\)
8. \(y=\frac{x^{2}+1}{x^{2}-4}\)
9. \(y=\frac{3 x}{x^{2}-1}\)
10. \(f(x)=\frac{x-3}{x}\)
11. \(g(x)=x-\frac{8}{x^{2}}\)
12. \(f(x)=x+\frac{32}{x^{2}}\)
13. \(f(x)=\frac{x^{2}+1}{x}\)
14. \(f(x)=\frac{x^{3}}{x^{2}-9}\)
15. \(y=\frac{x^{2}-6 x+12}{x-4}\)
16. \(y=\frac{2 x^{2}-5 x+5}{x-2}\)
17. \(y=x \sqrt{4-x}\)
18. \(g(x)=x \sqrt{9-x}\)
19. \(h(x)=x \sqrt{4-x^{2}}\)
20. \(g(x)=x \sqrt{9-x^{2}}\)
21. \(y=3 x^{2 / 3}-2 x\)
22. \(y=3(x-1)^{2 / 3}-(x-1)^{2}\)
23. \(y=x^{3}-3 x^{2}+3\)
24. \(y=-\frac{1}{3}\left(x^{3}-3 x+2\right)\)
25. \(y=2-x-x^{3}\)
26. \(f(x)=\frac{1}{3}(x-1)^{3}+2\)
27. \(y=3 x^{4}+4 x^{3}\)
28. \(y=3 x^{4}-6 x^{2}+\frac{5}{3}\)
29. \(y=x^{5}-5 x\)
30. \(y=(x-1)^{5}\)
31. \(y=|2 x-3|\)
32. \(y=\left|x^{2}-6 x+5\right|\)

CAS In Exercises 33-36, use a computer algebra system to analyze and graph the function. Identify any relative extrema, points of inflection, and asymptotes.
33. \(f(x)=\frac{20 x}{x^{2}+1}-\frac{1}{x}\)
34. \(f(x)=x+\frac{4}{x^{2}+1}\)
35. \(f(x)=\frac{-2 x}{\sqrt{x^{2}+7}}\)
36. \(f(x)=\frac{4 x}{\sqrt{x^{2}+15}}\)

In Exercises 37-46, sketch a graph of the function over the given interval. Use a graphing utility to verify your graph.
37. \(f(x)=2 x-4 \sin x, \quad 0 \leq x \leq 2 \pi\)
38. \(f(x)=-x+2 \cos x, \quad 0 \leq x \leq 2 \pi\)
39. \(y=\sin x-\frac{1}{18} \sin 3 x, \quad 0 \leq x \leq 2 \pi\)
40. \(y=\cos x-\frac{1}{4} \cos 2 x, \quad 0 \leq x \leq 2 \pi\)
41. \(y=2 x-\tan x, \quad-\frac{\pi}{2}<x<\frac{\pi}{2}\)
42. \(y=2(x-2)+\cot x, \quad 0<x<\pi\)
43. \(y=2(\csc x+\sec x), \quad 0<x<\frac{\pi}{2}\)
44. \(y=\sec ^{2}\left(\frac{\pi x}{8}\right)-2 \tan \left(\frac{\pi x}{8}\right)-1, \quad-3<x<3\)
45. \(g(x)=x \tan x, \quad-\frac{3 \pi}{2}<x<\frac{3 \pi}{2}\)
46. \(g(x)=x \cot x, \quad-2 \pi<x<2 \pi\)

\section*{WRITING ABOUT CONCEPTS}
47. Suppose \(f^{\prime}(t)<0\) for all \(t\) in the interval \((2,8)\). Explain why \(f(3)>f(5)\).
48. Suppose \(f(0)=3\) and \(2 \leq f^{\prime}(x) \leq 4\) for all \(x\) in the interval \([-5,5]\). Determine the greatest and least possible values of \(f(2)\).

\section*{WRITING ABOUT CONCEPTS (continued)}

In Exercises 49 and 50, the graphs of \(f, f^{\prime}\), and \(f^{\prime \prime}\) are shown on the same set of coordinate axes. Which is which? Explain your reasoning. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
49.

50.


In Exercises 51-54, use a graphing utility to graph the function. Use the graph to determine whether it is possible for the graph of a function to cross its horizontal asymptote. Do you think it is possible for the graph of a function to cross its vertical asymptote? Why or why not?
51. \(f(x)=\frac{4(x-1)^{2}}{x^{2}-4 x+5}\)
52. \(g(x)=\frac{3 x^{4}-5 x+3}{x^{4}+1}\)
53. \(h(x)=\frac{\sin 2 x}{x}\)
54. \(f(x)=\frac{\cos 3 x}{4 x}\)

In Exercises 55 and 56, use a graphing utility to graph the function. Explain why there is no vertical asymptote when a superficial examination of the function may indicate that there should be one.
55. \(h(x)=\frac{6-2 x}{3-x}\)
56. \(g(x)=\frac{x^{2}+x-2}{x-1}\)

In Exercises 57-60, use a graphing utility to graph the function and determine the slant asymptote of the graph. Zoom out repeatedly and describe how the graph on the display appears to change. Why does this occur?
57. \(f(x)=-\frac{x^{2}-3 x-1}{x-2}\)
58. \(g(x)=\frac{2 x^{2}-8 x-15}{x-5}\)
59. \(f(x)=\frac{2 x^{3}}{x^{2}+1}\)
60. \(h(x)=\frac{-x^{3}+x^{2}+4}{x^{2}}\)

Graphical Reasoning In Exercises 61-64, use the graph of \(f^{\prime}\) to sketch a graph of \(f\) and the graph of \(f^{\prime \prime}\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
61.

62.

63.

64.

(Submitted by Bill Fox, Moberly Area Community College, Moberly, MO)
65. Graphical Reasoning Consider the function
\(f(x)=\frac{\cos ^{2} \pi x}{\sqrt{x^{2}+1}}, \quad 0<x<4\).
(a) Use a computer algebra system to graph the function and use the graph to approximate the critical numbers visually.
(b) Use a computer algebra system to find \(f^{\prime}\) and approximate the critical numbers. Are the results the same as the visual approximation in part (a)? Explain.
66. Graphical Reasoning Consider the function
\(f(x)=\tan (\sin \pi x)\).
(a) Use a graphing utility to graph the function.
(b) Identify any symmetry of the graph.
(c) Is the function periodic? If so, what is the period?
(d) Identify any extrema on \((-1,1)\).
(e) Use a graphing utility to determine the concavity of the graph on \((0,1)\).

Think About It In Exercises 67-70, create a function whose graph has the given characteristics. (There is more than one correct answer.)
67. Vertical asymptote: \(x=3\)

Horizontal asymptote: \(y=0\)
68. Vertical asymptote: \(x=-5\)

Horizontal asymptote: None
69. Vertical asymptote: \(x=3\)

Slant asymptote: \(y=3 x+2\)
70. Vertical asymptote: \(x=2\)

Slant asymptote: \(y=-x\)
71. Graphical Reasoning The graph of \(f\) is shown in the figure on the next page.
(a) For which values of \(x\) is \(f^{\prime}(x)\) zero? Positive? Negative?
(b) For which values of \(x\) is \(f^{\prime \prime}(x)\) zero? Positive? Negative?
(c) On what interval is \(f^{\prime}\) an increasing function?
(d) For which value of \(x\) is \(f^{\prime}(x)\) minimum? For this value of \(x\), how does the rate of change of \(f\) compare with the rates of change of \(f\) for other values of \(x\) ? Explain.


Figure for 71


Figure for 72

\section*{CAPSTONE}
72. Graphical Reasoning Identify the real numbers \(x_{0}, x_{1}, x_{2}, x_{3}\), and \(x_{4}\) in the figure such that each of the following is true.
(a) \(f^{\prime}(x)=0\)
(b) \(f^{\prime \prime}(x)=0\)
(c) \(f^{\prime}(x)\) does not exist.
(d) \(f\) has a relative maximum.
(e) \(f\) has a point of inflection.
73. Graphical Reasoning Consider the function
\(f(x)=\frac{a x}{(x-b)^{2}}\).
Determine the effect on the graph of \(f\) as \(a\) and \(b\) are changed. Consider cases where \(a\) and \(b\) are both positive or both negative, and cases where \(a\) and \(b\) have opposite signs.
74. Consider the function \(f(x)=\frac{1}{2}(a x)^{2}-a x, a \neq 0\).
(a) Determine the changes (if any) in the intercepts, extrema, and concavity of the graph of \(f\) when \(a\) is varied.
(b) In the same viewing window, use a graphing utility to graph the function for four different values of \(a\).
75. Investigation Consider the function
\(f(x)=\frac{2 x^{n}}{x^{4}+1}\)
for nonnegative integer values of \(n\).
(a) Discuss the relationship between the value of \(n\) and the symmetry of the graph.
(b) For which values of \(n\) will the \(x\)-axis be the horizontal asymptote?
(c) For which value of \(n\) will \(y=2\) be the horizontal asymptote?
(d) What is the asymptote of the graph when \(n=5\) ?
(e) Use a graphing utility to graph \(f\) for the indicated values of \(n\) in the table. Use the graph to determine the number of extrema \(M\) and the number of inflection points \(N\) of the graph.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(n\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(M\) & & & & & & \\
\hline\(N\) & & & & & & \\
\hline
\end{tabular}
76. Investigation Let \(P\left(x_{0}, y_{0}\right)\) be an arbitrary point on the graph of \(f\) such that \(f^{\prime}\left(x_{0}\right) \neq 0\), as shown in the figure. Verify each statement.
(a) The \(x\)-intercept of the tangent line is \(\left(x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}, 0\right)\).
(b) The \(y\)-intercept of the tangent line is \(\left(0, f\left(x_{0}\right)-x_{0} f^{\prime}\left(x_{0}\right)\right)\).
(c) The \(x\)-intercept of the normal
 line is \(\left(x_{0}+f\left(x_{0}\right) f^{\prime}\left(x_{0}\right), 0\right)\).
(d) The \(y\)-intercept of the normal line is \(\left(0, y_{0}+\frac{x_{0}}{f^{\prime}\left(x_{0}\right)}\right)\).
(e) \(|B C|=\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right|\)
(f) \(|P C|=\left|\frac{f\left(x_{0}\right) \sqrt{1+\left[f^{\prime}\left(x_{0}\right)\right]^{2}}}{f^{\prime}\left(x_{0}\right)}\right|\)
(g) \(|A B|=\left|f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right|\)
(h) \(|A P|=\left|f\left(x_{0}\right)\right| \sqrt{1+\left[f^{\prime}\left(x_{0}\right)\right]^{2}}\)
77. Modeling Data The data in the table show the number \(N\) of bacteria in a culture at time \(t\), where \(t\) is measured in days.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline\(t\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(N\) & 25 & 200 & 804 & 1756 & 2296 & 2434 & 2467 & 2473 \\
\hline
\end{tabular}

A model for these data is given by
\(N=\frac{24,670-35,153 t+13,250 t^{2}}{100-39 t+7 t^{2}}, \quad 1 \leq t \leq 8\).
(a) Use a graphing utility to plot the data and graph the model.
(b) Use the model to estimate the number of bacteria when \(t=10\).
(c) Approximate the day when the number of bacteria is greatest.
(d) Use a computer algebra system to determine the time when the rate of increase in the number of bacteria is greatest.
(e) Find \(\lim _{t \rightarrow \infty} N(t)\).

Slant Asymptotes In Exercises 78 and 79, the graph of the function has two slant asymptotes. Identify each slant asymptote. Then graph the function and its asymptotes.
78. \(y=\sqrt{4+16 x^{2}}\)
79. \(y=\sqrt{x^{2}+6 x}\)

\section*{PUTNAM EXAM CHALLENGE}
80. Let \(f(x)\) be defined for \(a \leq x \leq b\). Assuming appropriate properties of continuity and derivability, prove for \(a<x<b\) that
\(\frac{\frac{f(x)-f(a)}{x-a}-\frac{f(b)-f(a)}{b-a}}{x-b}=\frac{1}{2} f^{\prime \prime}(\beta)\)
where \(\beta\) is some number between \(a\) and \(b\).
This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{3.7 Optimization Problems}
- Solve applied minimum and maximum problems.

\section*{Applied Minimum and Maximum Problems}

One of the most common applications of calculus involves the determination of minimum and maximum values. Consider how frequently you hear or read terms such as greatest profit, least cost, least time, greatest voltage, optimum size, least size, greatest strength, and greatest distance. Before outlining a general problem-solving strategy for such problems, let's look at an example.

\section*{EXAMPLE 1 Finding Maximum Volume}

A manufacturer wants to design an open box having a square base and a surface area of 108 square inches, as shown in Figure 3.53. What dimensions will produce a box with maximum volume?

Solution Because the box has a square base, its volume is
\[
V=x^{2} h
\]

Primary equation
This equation is called the primary equation because it gives a formula for the quantity to be optimized. The surface area of the box is
\[
\begin{array}{ll}
S=(\text { area of base })+(\text { area of four sides }) \\
S & =x^{2}+4 x h=108
\end{array} \quad \text { Secondary equation } \quad \text {. }
\]

Because \(V\) is to be maximized, you want to write \(V\) as a function of just one variable. To do this, you can solve the equation \(x^{2}+4 x h=108\) for \(h\) in terms of \(x\) to obtain \(h=\left(108-x^{2}\right) /(4 x)\). Substituting into the primary equation produces
\[
\begin{aligned}
V & =x^{2} h & & \text { Function of two variables } \\
& =x^{2}\left(\frac{108-x^{2}}{4 x}\right) & & \text { Substitute for } h . \\
& =27 x-\frac{x^{3}}{4} . & & \text { Function of one variable }
\end{aligned}
\]

Before finding which \(x\)-value will yield a maximum value of \(V\), you should determine the feasible domain. That is, what values of \(x\) make sense in this problem? You know that \(V \geq 0\). You also know that \(x\) must be nonnegative and that the area of the base ( \(A=x^{2}\) ) is at most 108. So, the feasible domain is
\[
0 \leq x \leq \sqrt{108} . \quad \text { Feasible domain }
\]

To maximize \(V\), find the critical numbers of the volume function on the interval ( \(0, \sqrt{108}\) ).
\[
\begin{aligned}
\frac{d V}{d x}=27-\frac{3 x^{2}}{4} & =0 & & \text { Set derivative equal to } 0 . \\
3 x^{2} & =108 & & \text { Simplify. } \\
x & = \pm 6 & & \text { Critical numbers }
\end{aligned}
\]

So, the critical numbers are \(x= \pm 6\). You do not need to consider \(x=-6\) because it is outside the domain. Evaluating \(V\) at the critical number \(x=6\) and at the endpoints of the domain produces \(V(0)=0, V(6)=108\), and \(V(\sqrt{108})=0\). So, \(V\) is maximum when \(x=6\) and the dimensions of the box are \(6 \times 6 \times 3\) inches.

In Example 1, you should realize that there are infinitely many open boxes having 108 square inches of surface area. To begin solving the problem, you might ask yourself which basic shape would seem to yield a maximum volume. Should the box be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 3.54, to see if you can get a better feeling for what the optimum dimensions should be. Remember that you are not ready to begin solving a problem until you have clearly identified what the problem is.




Which box has the greatest volume?
Figure 3.54
Example 1 illustrates the following guidelines for solving applied minimum and maximum problems.

\section*{GUIDELINES FOR SOLVING APPLIED MINIMUM AND MAXIMUM PROBLEMS}
1. Identify all given quantities and all quantities to be determined. If possible, make a sketch.
2. Write a primary equation for the quantity that is to be maximized or minimized. (A review of several useful formulas from geometry is presented inside the back cover.)
3. Reduce the primary equation to one having a single independent variable. This may involve the use of secondary equations relating the independent variables of the primary equation.
4. Determine the feasible domain of the primary equation. That is, determine the values for which the stated problem makes sense.
5. Determine the desired maximum or minimum value by the calculus techniques discussed in Sections 3.1 through 3.4.


The quantity to be minimized is distance: \(d=\sqrt{(x-0)^{2}+(y-2)^{2}}\).
Figure 3.55


The quantity to be minimized is area: \(A=(x+3)(y+2)\).
Figure 3.56

\section*{EXAMPLE 2 Finding Minimum Distance}

Which points on the graph of \(y=4-x^{2}\) are closest to the point \((0,2) ?\)
Solution Figure 3.55 shows that there are two points at a minimum distance from the point \((0,2)\). The distance between the point \((0,2)\) and a point \((x, y)\) on the graph of \(y=4-x^{2}\) is given by
\[
d=\sqrt{(x-0)^{2}+(y-2)^{2}} . \quad \text { Primary equation }
\]

Using the secondary equation \(y=4-x^{2}\), you can rewrite the primary equation as
\[
d=\sqrt{x^{2}+\left(4-x^{2}-2\right)^{2}}=\sqrt{x^{4}-3 x^{2}+4}
\]

Because \(d\) is smallest when the expression inside the radical is smallest, you need only find the critical numbers of \(f(x)=x^{4}-3 x^{2}+4\). Note that the domain of \(f\) is the entire real line. So, there are no endpoints of the domain to consider. Moreover, setting \(f^{\prime}(x)\) equal to 0 yields
\[
\begin{aligned}
f^{\prime}(x)=4 x^{3}-6 x=2 x\left(2 x^{2}-3\right) & =0 \\
x & =0, \sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}} .
\end{aligned}
\]

The First Derivative Test verifies that \(x=0\) yields a relative maximum, whereas both \(x=\sqrt{3 / 2}\) and \(x=-\sqrt{3 / 2}\) yield a minimum distance. So, the closest points are \((\sqrt{3 / 2}, 5 / 2)\) and \((-\sqrt{3 / 2}, 5 / 2)\).

\section*{EXAMPLE 3 Finding Minimum Area}

A rectangular page is to contain 24 square inches of print. The margins at the top and bottom of the page are to be \(1 \frac{1}{2}\) inches, and the margins on the left and right are to be 1 inch (see Figure 3.56). What should the dimensions of the page be so that the least amount of paper is used?

Solution Let \(A\) be the area to be minimized.
\[
A=(x+3)(y+2) \quad \text { Primary equation }
\]

The printed area inside the margins is given by
\[
24=x y
\]

\section*{Secondary equation}

Solving this equation for \(y\) produces \(y=24 / x\). Substitution into the primary equation produces
\[
A=(x+3)\left(\frac{24}{x}+2\right)=30+2 x+\frac{72}{x} . \quad \text { Function of one variable }
\]

Because \(x\) must be positive, you are interested only in values of \(A\) for \(x>0\). To find the critical numbers, differentiate with respect to \(x\).
\[
\frac{d A}{d x}=2-\frac{72}{x^{2}}=0 \quad \square x^{2}=36
\]

So, the critical numbers are \(x= \pm 6\). You do not have to consider \(x=-6\) because it is outside the domain. The First Derivative Test confirms that \(A\) is a minimum when \(x=6\). So, \(y=\frac{24}{6}=4\) and the dimensions of the page should be \(x+3=9\) inches by \(y+2=6\) inches.


The quantity to be minimized is length. From the diagram, you can see that \(x\) varies between 0 and 30 .
Figure 3.57


You can confirm the minimum value of \(W\) with a graphing utility.
Figure 3.58

\section*{EXAMPLE 4 Finding Minimum Length}

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are to be stayed by two wires, attached to a single stake, running from ground level to the top of each post. Where should the stake be placed to use the least amount of wire?

Solution Let \(W\) be the wire length to be minimized. Using Figure 3.57, you can write
\[
W=y+z . \quad \text { Primary equation }
\]

In this problem, rather than solving for \(y\) in terms of \(z\) (or vice versa), you can solve for both \(y\) and \(z\) in terms of a third variable \(x\), as shown in Figure 3.57. From the Pythagorean Theorem, you obtain
\[
\begin{aligned}
x^{2}+12^{2} & =y^{2} \\
(30-x)^{2}+28^{2} & =z^{2}
\end{aligned}
\]
which implies that
\[
\begin{aligned}
& y=\sqrt{x^{2}+144} \\
& z=\sqrt{x^{2}-60 x+1684}
\end{aligned}
\]

So, \(W\) is given by
\[
\begin{aligned}
W & =y+z \\
& =\sqrt{x^{2}+144}+\sqrt{x^{2}-60 x+1684}, \quad 0 \leq x \leq 30 .
\end{aligned}
\]

Differentiating \(W\) with respect to \(x\) yields
\[
\frac{d W}{d x}=\frac{x}{\sqrt{x^{2}+144}}+\frac{x-30}{\sqrt{x^{2}-60 x+1684}}
\]

By letting \(d W / d x=0\), you obtain
\[
\begin{aligned}
\frac{x}{\sqrt{x^{2}+144}}+\frac{x-30}{\sqrt{x^{2}-60 x+1684}} & =0 \\
x \sqrt{x^{2}-60 x+1684} & =(30-x) \sqrt{x^{2}+144} \\
x^{2}\left(x^{2}-60 x+1684\right) & =(30-x)^{2}\left(x^{2}+144\right) \\
x^{4}-60 x^{3}+1684 x^{2} & =x^{4}-60 x^{3}+1044 x^{2}-8640 x+129,600 \\
640 x^{2}+8640 x-129,600 & =0 \\
320(x-9)(2 x+45) & =0 \\
x & =9,-22.5 .
\end{aligned}
\]

Because \(x=-22.5\) is not in the domain and
\[
W(0) \approx 53.04, \quad W(9)=50, \quad \text { and } \quad W(30) \approx 60.31
\]
you can conclude that the wire should be staked at 9 feet from the 12 -foot pole.

TECHNOLOGY From Example 4, you can see that applied optimization problems can involve a lot of algebra. If you have access to a graphing utility, you can confirm that \(x=9\) yields a minimum value of \(W\) by graphing
\[
W=\sqrt{x^{2}+144}+\sqrt{x^{2}-60 x+1684}
\]
as shown in Figure 3.58.


The quantity to be maximized is area: \(A=x^{2}+\pi r^{2}\).
Figure 3.59

\section*{E X P L ORATION}

What would the answer be if Example 5 asked for the dimensions needed to enclose the minimum total area?

In each of the first four examples, the extreme value occurred at a critical number. Although this happens often, remember that an extreme value can also occur at an endpoint of an interval, as shown in Example 5.

\section*{EXAMPLE 5 An Endpoint Maximum}

Four feet of wire is to be used to form a square and a circle. How much of the wire should be used for the square and how much should be used for the circle to enclose the maximum total area?

Solution The total area (see Figure 3.59) is given by
\[
\begin{array}{ll}
A & =(\text { area of square })+(\text { area of circle }) \\
A & =x^{2}+\pi r^{2} .
\end{array} \quad \text { Primary equation }
\]

Because the total length of wire is 4 feet, you obtain
\[
\begin{aligned}
& 4=(\text { perimeter of square })+(\text { circumference of circle }) \\
& 4=4 x+2 \pi r .
\end{aligned}
\]

So, \(r=2(1-x) / \pi\), and by substituting into the primary equation you have
\[
\begin{aligned}
A & =x^{2}+\pi\left[\frac{2(1-x)}{\pi}\right]^{2} \\
& =x^{2}+\frac{4(1-x)^{2}}{\pi} \\
& =\frac{1}{\pi}\left[(\pi+4) x^{2}-8 x+4\right] .
\end{aligned}
\]

The feasible domain is \(0 \leq x \leq 1\) restricted by the square's perimeter. Because
\[
\frac{d A}{d x}=\frac{2(\pi+4) x-8}{\pi}
\]
the only critical number in \((0,1)\) is \(x=4 /(\pi+4) \approx 0.56\). So, using
\[
A(0) \approx 1.273, \quad A(0.56) \approx 0.56, \quad \text { and } \quad A(1)=1
\]
you can conclude that the maximum area occurs when \(x=0\). That is, all the wire is used for the circle.

Let's review the primary equations developed in the first five examples. As applications go, these five examples are fairly simple, and yet the resulting primary equations are quite complicated.
\[
\begin{array}{ll}
V=27 x-\frac{x^{3}}{4} & W=\sqrt{x^{2}+144}+\sqrt{x^{2}-60 x+1684} \\
d=\sqrt{x^{4}-3 x^{2}+4} & A=\frac{1}{\pi}\left[(\pi+4) x^{2}-8 x+4\right] \\
A=30+2 x+\frac{72}{x} &
\end{array}
\]

You must expect that real-life applications often involve equations that are at least as complicated as these five. Remember that one of the main goals of this course is to learn to use calculus to analyze equations that initially seem formidable.

\subsection*{3.7 Exercises}
1. Numerical, Graphical, and Analytic Analysis Find two positive numbers whose sum is 110 and whose product is a maximum.
(a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
First \\
Number \(x\)
\end{tabular} & \begin{tabular}{c} 
Second \\
Number
\end{tabular} & Product \(P\) \\
\hline 10 & \(110-10\) & \(10(110-10)=1000\) \\
\hline 20 & \(110-20\) & \(20(110-20)=1800\) \\
\hline
\end{tabular}
(b) Use a graphing utility to generate additional rows of the table. Use the table to estimate the solution. (Hint: Use the table feature of the graphing utility.)
(c) Write the product \(P\) as a function of \(x\).
(d) Use a graphing utility to graph the function in part (c) and estimate the solution from the graph.
(e) Use calculus to find the critical number of the function in part (c). Then find the two numbers.
2. Numerical, Graphical, and Analytic Analysis An open box of maximum volume is to be made from a square piece of material, 24 inches on a side, by cutting equal squares from the corners and turning up the sides (see figure).

(a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.) Use the table to guess the maximum volume.
\begin{tabular}{|c|c|c|}
\hline Height \(x\) & \begin{tabular}{c} 
Length and \\
Width
\end{tabular} & Volume \(V\) \\
\hline 1 & \(24-2(1)\) & \(1[24-2(1)]^{2}=484\) \\
\hline 2 & \(24-2(2)\) & \(2[24-2(2)]^{2}=800\) \\
\hline
\end{tabular}
(b) Write the volume \(V\) as a function of \(x\).
(c) Use calculus to find the critical number of the function in part (b) and find the maximum value.
(d) Use a graphing utility to graph the function in part (b) and verify the maximum volume from the graph.

In Exercises 3-8, find two positive numbers that satisfy the given requirements.
3. The sum is \(S\) and the product is a maximum.
4. The product is 185 and the sum is a minimum.
5. The product is 147 and the sum of the first number plus three times the second number is a minimum.
6. The second number is the reciprocal of the first number and the sum is a minimum.
7. The sum of the first number and twice the second number is 108 and the product is a maximum.
8. The sum of the first number squared and the second number is 54 and the product is a maximum.

In Exercises 9 and 10, find the length and width of a rectangle that has the given perimeter and a maximum area.
9. Perimeter: 80 meters
10. Perimeter: \(P\) units

In Exercises 11 and 12, find the length and width of a rectangle that has the given area and a minimum perimeter.
11. Area: 32 square feet
12. Area: \(A\) square centimeters

In Exercises 13-16, find the point on the graph of the function that is closest to the given point.
\(\begin{array}{llll}\frac{\text { Function }}{} & \frac{\text { Point }}{\left(2, \frac{1}{2}\right)} & & \text { 14. } \begin{array}{l}\text { Function } \\ \text { 13. } f(x)=(x-1)^{2}\end{array} \\ \underline{(-5,3)} \\ \text { 15. } f(x)=\sqrt{x} & (4,0) & \text { 16. } f(x)=\sqrt{x-8} & (12,0)\end{array}\)
17. Area A rectangular page is to contain 30 square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.
18. Area A rectangular page is to contain 36 square inches of print. The margins on each side are \(1 \frac{1}{2}\) inches. Find the dimensions of the page such that the least amount of paper is used.
19. Chemical Reaction In an autocatalytic chemical reaction, the product formed is a catalyst for the reaction. If \(Q_{0}\) is the amount of the original substance and \(x\) is the amount of catalyst formed, the rate of chemical reaction is
\(\frac{d Q}{d x}=k x\left(Q_{0}-x\right)\).
For what value of \(x\) will the rate of chemical reaction be greatest?
20. Traffic Control On a given day, the flow rate \(F\) (cars per hour) on a congested roadway is
\(F=\frac{v}{22+0.02 v^{2}}\)
where \(v\) is the speed of the traffic in miles per hour. What speed will maximize the flow rate on the road?
21. Area A farmer plans to fence a rectangular pasture adjacent to a river (see figure). The pasture must contain 245,000 square meters in order to provide enough grass for the herd. What dimensions will require the least amount of fencing if no fencing is needed along the river?

22. Maximum Area A rancher has 400 feet of fencing with which to enclose two adjacent rectangular corrals (see figure). What dimensions should be used so that the enclosed area will be a maximum?


\section*{23. Maximum Volume}
(a) Verify that each of the rectangular solids shown in the figure has a surface area of 150 square inches.
(b) Find the volume of each solid.
(c) Determine the dimensions of a rectangular solid (with a square base) of maximum volume if its surface area is 150 square inches.

24. Maximum Volume Determine the dimensions of a rectangular solid (with a square base) with maximum volume if its surface area is 337.5 square centimeters.
25. Maximum Area A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the total perimeter is 16 feet.


Figure for 25
26. Maximum Area A rectangle is bounded by the \(x\) - and \(y\)-axes and the graph of \(y=(6-x) / 2\) (see figure). What length and width should the rectangle have so that its area is a maximum?


Figure for 26


Figure for 27
27. Minimum Length A right triangle is formed in the first quadrant by the \(x\) - and \(y\)-axes and a line through the point \((1,2)\) (see figure).
(a) Write the length \(L\) of the hypotenuse as a function of \(x\).
(b) Use a graphing utility to approximate \(x\) graphically such that the length of the hypotenuse is a minimum.
(c) Find the vertices of the triangle such that its area is a minimum.
28. Maximum Area Find the area of the largest isosceles triangle that can be inscribed in a circle of radius 6 (see figure).
(a) Solve by writing the area as a function of \(h\).
(b) Solve by writing the area as a function of \(\alpha\).
(c) Identify the type of triangle of maximum area.


Figure for 28


Figure for 29
29. Maximum Area A rectangle is bounded by the \(x\)-axis and the semicircle \(y=\sqrt{25-x^{2}}\) (see figure). What length and width should the rectangle have so that its area is a maximum?
30. Area Find the dimensions of the largest rectangle that can be inscribed in a semicircle of radius \(r\) (see Exercise 29).
31. Numerical, Graphical, and Analytic Analysis An exercise room consists of a rectangle with a semicircle on each end. A 200-meter running track runs around the outside of the room.
(a) Draw a figure to represent the problem. Let \(x\) and \(y\) represent the length and width of the rectangle.
(b) Analytically complete six rows of a table such as the one below. (The first two rows are shown.) Use the table to guess the maximum area of the rectangular region.
\begin{tabular}{|c|c|c|}
\hline Length \(x\) & Width \(y\) & Area \(x y\) \\
\hline 10 & \(\frac{2}{\pi}(100-10)\) & \((10) \frac{2}{\pi}(100-10) \approx 573\) \\
\hline 20 & \(\frac{2}{\pi}(100-20)\) & \((20) \frac{2}{\pi}(100-20) \approx 1019\) \\
\hline
\end{tabular}
(c) Write the area \(A\) as a function of \(x\).
(d) Use calculus to find the critical number of the function in part (c) and find the maximum value.
(e) Use a graphing utility to graph the function in part (c) and verify the maximum area from the graph.
32. Numerical, Graphical, and Analytic Analysis A right circular cylinder is to be designed to hold 22 cubic inches of a soft drink (approximately 12 fluid ounces).
(a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.)
\begin{tabular}{|c|c|c|}
\hline Radius \(r\) & Height & Surface Area \(S\) \\
\hline 0.2 & \(\frac{22}{\pi(0.2)^{2}}\) & \(2 \pi(0.2)\left[0.2+\frac{22}{\pi(0.2)^{2}}\right] \approx 220.3\) \\
\hline 0.4 & \(\frac{22}{\pi(0.4)^{2}}\) & \(2 \pi(0.4)\left[0.4+\frac{22}{\pi(0.4)^{2}}\right] \approx 111.0\) \\
\hline
\end{tabular}
(b) Use a graphing utility to generate additional rows of the table. Use the table to estimate the minimum surface area. (Hint: Use the table feature of the graphing utility.)
(c) Write the surface area \(S\) as a function of \(r\).
(d) Use a graphing utility to graph the function in part (c) and estimate the minimum surface area from the graph.
(e) Use calculus to find the critical number of the function in part (c) and find dimensions that will yield the minimum surface area.
33. Maximum Volume A rectangular package to be sent by a postal service can have a maximum combined length and girth (perimeter of a cross section) of 108 inches (see figure). Find the dimensions of the package of maximum volume that can be sent. (Assume the cross section is square.)

34. Maximum Volume Rework Exercise 33 for a cylindrical package. (The cross section is circular.)
35. Maximum Volume Find the volume of the largest right circular cone that can be inscribed in a sphere of radius \(r\).

36. Maximum Volume Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius \(r\).

\section*{WRITING ABOUT CONCEPTS}
37. A shampoo bottle is a right circular cylinder. Because the surface area of the bottle does not change when it is squeezed, is it true that the volume remains the same? Explain.

\section*{CAPSTONE}
38. The perimeter of a rectangle is 20 feet. Of all possible dimensions, the maximum area is 25 square feet when its length and width are both 5 feet. Are there dimensions that yield a minimum area? Explain.
39. Minimum Surface Area A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the solid is 14 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area.
40. Minimum Cost An industrial tank of the shape described in Exercise 39 must have a volume of 4000 cubic feet. The hemispherical ends cost twice as much per square foot of surface area as the sides. Find the dimensions that will minimize cost.
41. Minimum Area The sum of the perimeters of an equilateral triangle and a square is 10 . Find the dimensions of the triangle and the square that produce a minimum total area.
42. Maximum Area Twenty feet of wire is to be used to form two figures. In each of the following cases, how much wire should be used for each figure so that the total enclosed area is maximum?
(a) Equilateral triangle and square
(b) Square and regular pentagon
(c) Regular pentagon and regular hexagon
(d) Regular hexagon and circle

What can you conclude from this pattern? \{Hint: The area of a regular polygon with \(n\) sides of length \(x\) is \(\left.A=(n / 4)[\cot (\pi / n)] x^{2}.\right\}\)
43. Beam Strength A wooden beam has a rectangular cross section of height \(h\) and width \(w\) (see figure on the next page). The strength \(S\) of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter 20 inches? (Hint: \(S=k h^{2} w\), where \(k\) is the proportionality constant.)


Figure for 43


Figure for 44
44. Minimum Length Two factories are located at the coordinates \((-x, 0)\) and \((x, 0)\), and their power supply is at \((0, h)\) (see figure). Find \(y\) such that the total length of power line from the power supply to the factories is a minimum.
45. Projectile Range The range \(R\) of a projectile fired with an initial velocity \(v_{0}\) at an angle \(\theta\) with the horizontal is \(R=\frac{v_{0}^{2} \sin 2 \theta}{g}\), where \(g\) is the acceleration due to gravity. Find the angle \(\theta\) such that the range is a maximum.
46. Conjecture Consider the functions \(f(x)=\frac{1}{2} x^{2}\) and \(g(x)=\frac{1}{16} x^{4}-\frac{1}{2} x^{2}\) on the domain \([0,4]\).
(a) Use a graphing utility to graph the functions on the specified domain.
(b) Write the vertical distance \(d\) between the functions as a function of \(x\) and use calculus to find the value of \(x\) for which \(d\) is maximum.
(c) Find the equations of the tangent lines to the graphs of \(f\) and \(g\) at the critical number found in part (b). Graph the tangent lines. What is the relationship between the lines?
(d) Make a conjecture about the relationship between tangent lines to the graphs of two functions at the value of \(x\) at which the vertical distance between the functions is greatest, and prove your conjecture.
47. Illumination A light source is located over the center of a circular table of diameter 4 feet (see figure). Find the height \(h\) of the light source such that the illumination \(I\) at the perimeter of the table is maximum if \(I=k(\sin \alpha) / s^{2}\), where \(s\) is the slant height, \(\alpha\) is the angle at which the light strikes the table, and \(k\) is a constant.

48. Illumination The illumination from a light source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. Two light sources of intensities \(I_{1}\) and \(I_{2}\) are \(d\) units apart. What point on the line segment joining the two sources has the least illumination?
49. Minimum Time A man is in a boat 2 miles from the nearest point on the coast. He is to go to a point \(Q\), located 3 miles down the coast and 1 mile inland (see figure). He can row at 2 miles per hour and walk at 4 miles per hour. Toward what point on the coast should he row in order to reach point \(Q\) in the least time?

50. Minimum Time Consider Exercise 49 if the point \(Q\) is on the shoreline rather than 1 mile inland.
(a) Write the travel time \(T\) as a function of \(\alpha\).
(b) Use the result of part (a) to find the minimum time to reach \(Q\).
(c) The man can row at \(v_{1}\) miles per hour and walk at \(v_{2}\) miles per hour. Write the time \(T\) as a function of \(\alpha\). Show that the critical number of \(T\) depends only on \(v_{1}\) and \(v_{2}\) and not on the distances. Explain how this result would be more beneficial to the man than the result of Exercise 49.
(d) Describe how to apply the result of part (c) to minimizing the cost of constructing a power transmission cable that \(\operatorname{costs} c_{1}\) dollars per mile under water and \(c_{2}\) dollars per mile over land.
51. Minimum Time The conditions are the same as in Exercise 49 except that the man can row at \(v_{1}\) miles per hour and walk at \(v_{2}\) miles per hour. If \(\theta_{1}\) and \(\theta_{2}\) are the magnitudes of the angles, show that the man will reach point \(Q\) in the least time when
\(\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin \theta_{2}}{v_{2}}\).
52. Minimum Time When light waves traveling in a transparent medium strike the surface of a second transparent medium, they change direction. This change of direction is called refraction and is defined by Snell's Law of Refraction,
\(\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin \theta_{2}}{v_{2}}\)
where \(\theta_{1}\) and \(\theta_{2}\) are the magnitudes of the angles shown in the figure and \(v_{1}\) and \(v_{2}\) are the velocities of light in the two media. Show that this problem is equivalent to that in Exercise 51, and that light waves traveling from \(P\) to \(Q\) follow the path of minimum time.

53. Sketch the graph of \(f(x)=2-2 \sin x\) on the interval \([0, \pi / 2]\).
(a) Find the distance from the origin to the \(y\)-intercept and the distance from the origin to the \(x\)-intercept.
(b) Write the distance \(d\) from the origin to a point on the graph of \(f\) as a function of \(x\). Use your graphing utility to graph \(d\) and find the minimum distance.
(c) Use calculus and the zero or root feature of a graphing utility to find the value of \(x\) that minimizes the function \(d\) on the interval \([0, \pi / 2]\). What is the minimum distance?
(Submitted by Tim Chapell, Penn Valley Community College, Kansas City, MO)
54. Minimum Cost An offshore oil well is 2 kilometers off the coast. The refinery is 4 kilometers down the coast. Laying pipe in the ocean is twice as expensive as on land. What path should the pipe follow in order to minimize the cost?
55. Minimum Force A component is designed to slide a block of steel with weight \(W\) across a table and into a chute (see figure). The motion of the block is resisted by a frictional force proportional to its apparent weight. (Let \(k\) be the constant of proportionality.) Find the minimum force \(F\) needed to slide the block, and find the corresponding value of \(\theta\). (Hint: \(F \cos \theta\) is the force in the direction of motion, and \(F \sin \theta\) is the amount of force tending to lift the block. So, the apparent weight of the block is \(W-F \sin \theta\).)

56. Maximum Volume A sector with central angle \(\theta\) is cut from a circle of radius 12 inches (see figure), and the edges of the sector are brought together to form a cone. Find the magnitude of \(\theta\) such that the volume of the cone is a maximum.


Figure for 56


Figure for 57
57. Numerical, Graphical, and Analytic Analysis The cross sections of an irrigation canal are isosceles trapezoids of which three sides are 8 feet long (see figure). Determine the angle of elevation \(\theta\) of the sides such that the area of the cross sections is a maximum by completing the following.
(a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.)
\begin{tabular}{|c|c|c|c|}
\hline Base 1 & Base 2 & Altitude & Area \\
\hline 8 & \(8+16 \cos 10^{\circ}\) & \(8 \sin 10^{\circ}\) & \(\approx 22.1\) \\
\hline 8 & \(8+16 \cos 20^{\circ}\) & \(8 \sin 20^{\circ}\) & \(\approx 42.5\) \\
\hline
\end{tabular}
(b) Use a graphing utility to generate additional rows of the table and estimate the maximum cross-sectional area. (Hint: Use the table feature of the graphing utility.)
(c) Write the cross-sectional area \(A\) as a function of \(\theta\).
(d) Use calculus to find the critical number of the function in part (c) and find the angle that will yield the maximum cross-sectional area.
(e) Use a graphing utility to graph the function in part (c) and verify the maximum cross-sectional area.
58. Maximum Profit Assume that the amount of money deposited in a bank is proportional to the square of the interest rate the bank pays on this money. Furthermore, the bank can reinvest this money at \(12 \%\). Find the interest rate the bank should pay to maximize profit. (Use the simple interest formula.)
59. Minimum Cost The ordering and transportation cost \(C\) of the components used in manufacturing a product is
\(C=100\left(\frac{200}{x^{2}}+\frac{x}{x+30}\right), \quad x \geq 1\)
where \(C\) is measured in thousands of dollars and \(x\) is the order size in hundreds. Find the order size that minimizes the cost. (Hint: Use the root feature of a graphing utility.)
60. Diminishing Returns The profit \(P\) (in thousands of dollars) for a company spending an amount \(s\) (in thousands of dollars) on advertising is
\(P=-\frac{1}{10} s^{3}+6 s^{2}+400\).
(a) Find the amount of money the company should spend on advertising in order to yield a maximum profit.
(b) The point of diminishing returns is the point at which the rate of growth of the profit function begins to decline. Find the point of diminishing returns.

Minimum Distance In Exercises 61-63, consider a fuel distribution center located at the origin of the rectangular coordinate system (units in miles; see figures on next page). The center supplies three factories with coordinates \((4,1),(5,6)\), and \((10,3)\). A trunk line will run from the distribution center along the line \(y=m x\), and feeder lines will run to the three factories. The objective is to find \(m\) such that the lengths of the feeder lines are minimized.
61. Minimize the sum of the squares of the lengths of the vertical feeder lines (see figure) given by
\(S_{1}=(4 m-1)^{2}+(5 m-6)^{2}+(10 m-3)^{2}\).
Find the equation of the trunk line by this method and then determine the sum of the lengths of the feeder lines.
62. Minimize the sum of the absolute values of the lengths of the vertical feeder lines (see figure) given by
\(S_{2}=|4 m-1|+|5 m-6|+|10 m-3|\).
Find the equation of the trunk line by this method and then determine the sum of the lengths of the feeder lines. (Hint: Use a graphing utility to graph the function \(S_{2}\) and approximate the required critical number.)


Figure for 61 and 62


Figure for 63
63. Minimize the sum of the perpendicular distances (see figure and Exercises 87-92 in Section P.2) from the trunk line to the factories given by
\(S_{3}=\frac{|4 m-1|}{\sqrt{m^{2}+1}}+\frac{|5 m-6|}{\sqrt{m^{2}+1}}+\frac{|10 m-3|}{\sqrt{m^{2}+1}}\).
Find the equation of the trunk line by this method and then determine the sum of the lengths of the feeder lines. (Hint: Use a graphing utility to graph the function \(S_{3}\) and approximate the required critical number.)
64. Maximum Area Consider a symmetric cross inscribed in a circle of radius \(r\) (see figure).

(a) Write the area \(A\) of the cross as a function of \(x\) and find the value of \(x\) that maximizes the area.
(b) Write the area \(A\) of the cross as a function of \(\theta\) and find the value of \(\theta\) that maximizes the area.
(c) Show that the critical numbers of parts (a) and (b) yield the same maximum area. What is that area?

\section*{PUTNAM EXAM CHALLENGE}
65. Find the maximum value of \(f(x)=x^{3}-3 x\) on the set of all real numbers \(x\) satisfying \(x^{4}+36 \leq 13 x^{2}\). Explain your reasoning.
66. Find the minimum value of
\[
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} \text { for } x>0 .
\]

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{Connecticut River}

Whenever the Connecticut River reaches a level of 105 feet above sea level, two Northampton, Massachusetts flood control station operators begin a round-the-clock river watch. Every 2 hours, they check the height of the river, using a scale marked off in tenths of a foot, and record the data in a log book. In the spring of 1996, the flood watch lasted from April 4, when the river reached 105 feet and was rising at 0.2 foot per hour, until April 25, when the level subsided again to 105 feet. Between those dates, their log shows that the river rose and fell several times, at one point coming close to the 115 -foot mark. If the river had reached 115 feet, the city would have closed down Mount Tom Road (Route 5, south of Northampton).
The graph below shows the rate of change of the level of the river during one portion of the flood watch. Use the graph to answer each question.


Day \((0 \leftrightarrow 12: 01\) A.M. April 14)
(a) On what date was the river rising most rapidly? How do you know?
(b) On what date was the river falling most rapidly? How do you know?
(c) There were two dates in a row on which the river rose, then fell, then rose again during the course of the day. On which days did this occur, and how do you know?
(d) At 1 minute past midnight, April 14, the river level was 111.0 feet. Estimate its height 24 hours later and 48 hours later. Explain how you made your estimates.
(e) The river crested at 114.4 feet. On what date do you think this occurred?
(Submitted by Mary Murphy, Smith College, Northampton, MA)

\subsection*{3.8 Newton's Method}

(a)

(b)

The \(x\)-intercept of the tangent line approximates the zero of \(f\).
Figure 3.60

\section*{Approximate a zero of a function using Newton's Method.}

\section*{Newton’s Method}

In this section you will study a technique for approximating the real zeros of a function. The technique is called Newton's Method, and it uses tangent lines to approximate the graph of the function near its \(x\)-intercepts.

To see how Newton's Method works, consider a function \(f\) that is continuous on the interval \([a, b]\) and differentiable on the interval \((a, b)\). If \(f(a)\) and \(f(b)\) differ in sign, then, by the Intermediate Value Theorem, \(f\) must have at least one zero in the interval \((a, b)\). Suppose you estimate this zero to occur at
\[
x=x_{1} \quad \text { First estimate }
\]
as shown in Figure 3.60(a). Newton's Method is based on the assumption that the graph of \(f\) and the tangent line at \(\left(x_{1}, f\left(x_{1}\right)\right)\) both cross the \(x\)-axis at about the same point. Because you can easily calculate the \(x\)-intercept for this tangent line, you can use it as a second (and, usually, better) estimate of the zero of \(f\). The tangent line passes through the point \(\left(x_{1}, f\left(x_{1}\right)\right)\) with a slope of \(f^{\prime}\left(x_{1}\right)\). In point-slope form, the equation of the tangent line is therefore
\[
\begin{aligned}
y-f\left(x_{1}\right) & =f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) \\
y & =f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+f\left(x_{1}\right) .
\end{aligned}
\]

Letting \(y=0\) and solving for \(x\) produces
\[
x=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
\]

So, from the initial estimate \(x_{1}\) you obtain a new estimate
\[
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} . \quad \text { Second estimate [see Figure 3.60(b)] }
\]

You can improve on \(x_{2}\) and calculate yet a third estimate
\[
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} . \quad \text { Third estimate }
\]

Repeated application of this process is called Newton's Method.

\section*{NEWTON'S METHOD FOR APPROXIMATING THE ZEROS OF A FUNCTION}

Let \(f(c)=0\), where \(f\) is differentiable on an open interval containing \(c\). Then, to approximate \(c\), use the following steps.
1. Make an initial estimate \(x_{1}\) that is close to \(c\). (A graph is helpful.)
2. Determine a new approximation
\[
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\]
3. If \(\left|x_{n}-x_{n+1}\right|\) is within the desired accuracy, let \(x_{n+1}\) serve as the final approximation. Otherwise, return to Step 2 and calculate a new approximation.

Each successive application of this procedure is called an iteration.

NOTE For many functions, just a few iterations of Newton's Method will produce approximations having very small errors, as shown in Example 1.


The first iteration of Newton's Method Figure 3.61


After three iterations of Newton's Method, the zero of \(f\) is approximated to the desired accuracy.
Figure 3.62

\section*{EXAMPLE 1 Using Newton's Method}

Calculate three iterations of Newton's Method to approximate a zero of \(f(x)=x^{2}-2\). Use \(x_{1}=1\) as the initial guess.
Solution Because \(f(x)=x^{2}-2\), you have \(f^{\prime}(x)=2 x\), and the iterative process is given by the formula
\[
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}} .
\]

The calculations for three iterations are shown in the table.
\begin{tabular}{|c|c|r|c|r|r|}
\hline\(n\) & \(x_{n}\) & \(f\left(x_{n}\right)\) & \(f^{\prime}\left(x_{n}\right)\) & \multicolumn{1}{c|}{\(\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\)} & \multicolumn{1}{|c|}{\(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\)} \\
\hline 1 & 1.000000 & -1.000000 & 2.000000 & -0.500000 & 1.500000 \\
\hline 2 & 1.500000 & 0.250000 & 3.000000 & 0.083333 & 1.416667 \\
\hline 3 & 1.416667 & 0.006945 & 2.833334 & 0.002451 & 1.414216 \\
\hline 4 & 1.414216 & & & & \\
\hline
\end{tabular}

Of course, in this case you know that the two zeros of the function are \(\pm \sqrt{2}\). To six decimal places, \(\sqrt{2}=1.414214\). So, after only three iterations of Newton's Method, you have obtained an approximation that is within 0.000002 of an actual root. The first iteration of this process is shown in Figure 3.61.

\section*{Cexample 2 Using Newton's Method}

Use Newton's Method to approximate the zeros of
\[
f(x)=2 x^{3}+x^{2}-x+1 .
\]

Continue the iterations until two successive approximations differ by less than 0.0001 .
Solution Begin by sketching a graph of \(f\), as shown in Figure 3.62. From the graph, you can observe that the function has only one zero, which occurs near \(x=-1.2\). Next, differentiate \(f\) and form the iterative formula
\[
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{2 x_{n}^{3}+x_{n}^{2}-x_{n}+1}{6 x_{n}^{2}+2 x_{n}-1} .
\]

The calculations are shown in the table.
\begin{tabular}{|c|c|r|c|r|r|}
\hline\(n\) & \(x_{n}\) & \(f\left(x_{n}\right)\) & \(f^{\prime}\left(x_{n}\right)\) & \(\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\) & \(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\) \\
\hline 1 & -1.20000 & 0.18400 & 5.24000 & 0.03511 & -1.23511 \\
\hline 2 & -1.23511 & -0.00771 & 5.68276 & -0.00136 & -1.23375 \\
\hline 3 & -1.23375 & 0.00001 & 5.66533 & 0.00000 & -1.23375 \\
\hline 4 & -1.23375 & & & & \\
\hline
\end{tabular}

Because two successive approximations differ by less than the required 0.0001 , you can estimate the zero of \(f\) to be -1.23375 .

When, as in Examples 1 and 2, the approximations approach a limit, the sequence \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\) is said to converge. Moreover, if the limit is \(c\), it can be shown that \(c\) must be a zero of \(f\).

Newton's Method does not always yield a convergent sequence. One way it can fail to do so is shown in Figure 3.63. Because Newton's Method involves division by \(f^{\prime}\left(x_{n}\right)\), it is clear that the method will fail if the derivative is zero for any \(x_{n}\) in the sequence. When you encounter this problem, you can usually overcome it by choosing a different value for \(x_{1}\). Another way Newton's Method can fail is shown in the next example.


Newton's Method fails to converge if \(f^{\prime}\left(x_{n}\right)=0\).
Figure 3.63

\section*{EXAMPLE 3 An Example in Which Newton’s Method Fails}

The function \(f(x)=x^{1 / 3}\) is not differentiable at \(x=0\). Show that Newton's Method fails to converge using \(x_{1}=0.1\).
Solution Because \(f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}\), the iterative formula is
\[
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{x_{n}^{1 / 3}}{\frac{1}{3} x_{n}^{-2 / 3}} \\
& =x_{n}-3 x_{n} \\
& =-2 x_{n} .
\end{aligned}
\]

The calculations are shown in the table. This table and Figure 3.64 indicate that \(x_{n}\) continues to increase in magnitude as \(n \rightarrow \infty\), and so the limit of the sequence does not exist.
\begin{tabular}{|r|r|r|c|c|r|}
\hline\(n\) & \multicolumn{1}{|c|}{\(x_{n}\)} & \multicolumn{1}{c|}{\(f\left(x_{n}\right)\)} & \(f^{\prime}\left(x_{n}\right)\) & \multicolumn{1}{c|}{\(\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\)} & \multicolumn{1}{r|}{\(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\)} \\
\hline 1 & 0.10000 & 0.46416 & 1.54720 & 0.30000 & -0.20000 \\
\hline 2 & -0.20000 & -0.58480 & 0.97467 & -0.60000 & 0.40000 \\
\hline 3 & 0.40000 & 0.73681 & 0.61401 & 1.20000 & -0.80000 \\
\hline 4 & -0.80000 & -0.92832 & 0.38680 & -2.40000 & 1.60000 \\
\hline
\end{tabular}

NOTE In Example 3, the initial estimate \(x_{1}=0.1\) fails to produce a convergent sequence. Try showing that Newton's Method also fails for every other choice of \(x_{1}\) (other than the actual zero).


It can be shown that a condition sufficient to produce convergence of Newton's Method to a zero of \(f\) is that
\[
\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|<1 \quad \text { Condition for convergence }
\]
on an open interval containing the zero. For instance, in Example 1 this test would yield \(f(x)=x^{2}-2, f^{\prime}(x)=2 x, f^{\prime \prime}(x)=2\), and
\[
\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|=\left|\frac{\left(x^{2}-2\right)(2)}{4 x^{2}}\right|=\left|\frac{1}{2}-\frac{1}{x^{2}}\right| . \quad \text { Example } 1
\]

On the interval \((1,3)\), this quantity is less than 1 and therefore the convergence of Newton's Method is guaranteed. On the other hand, in Example 3, you have \(f(x)=x^{1 / 3}, f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}, f^{\prime \prime}(x)=-\frac{2}{9} x^{-5 / 3}\), and
\[
\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|=\left|\frac{x^{1 / 3}(-2 / 9)\left(x^{-5 / 3}\right)}{(1 / 9)\left(x^{-4 / 3}\right)}\right|=2 \quad \text { Example 3 }
\]
which is not less than 1 for any value of \(x\), so you cannot conclude that Newton's Method will converge.

\section*{Algebraic Solutions of Polynomial Equations}

The zeros of some functions, such as
\[
f(x)=x^{3}-2 x^{2}-x+2
\]
can be found by simple algebraic techniques, such as factoring. The zeros of other functions, such as
\[
f(x)=x^{3}-x+1
\]
cannot be found by elementary algebraic methods. This particular function has only one real zero, and by using more advanced algebraic techniques you can determine the zero to be
\[
x=-\sqrt[3]{\frac{3-\sqrt{23 / 3}}{6}}-\sqrt[3]{\frac{3+\sqrt{23 / 3}}{6}}
\]

Because the exact solution is written in terms of square roots and cube roots, it is called a solution by radicals.

NOTE Try approximating the real zero of \(f(x)=x^{3}-x+1\) and compare your result with the exact solution shown above.

The determination of radical solutions of a polynomial equation is one of the fundamental problems of algebra. The earliest such result is the Quadratic Formula, which dates back at least to Babylonian times. The general formula for the zeros of a cubic function was developed much later. In the sixteenth century an Italian mathematician, Jerome Cardan, published a method for finding radical solutions to cubic and quartic equations. Then, for 300 years, the problem of finding a general quintic formula remained open. Finally, in the nineteenth century, the problem was answered independently by two young mathematicians. Niels Henrik Abel, a Norwegian mathematician, and Evariste Galois, a French mathematician, proved that it is not possible to solve a general fifth- (or higher-) degree polynomial equation by radicals. Of course, you can solve particular fifth-degree equations such as \(x^{5}-1=0\), but Abel and Galois were able to show that no general radical solution exists.

\subsection*{3.8 Exercises}

In Exercises 1-4, complete two iterations of Newton's Method for the function using the given initial guess.
1. \(f(x)=x^{2}-5, \quad x_{1}=2.2\)
2. \(f(x)=x^{3}-3, \quad x_{1}=1.4\)
3. \(f(x)=\cos x, \quad x_{1}=1.6\)
4. \(f(x)=\tan x, \quad x_{1}=0.1\)

In Exercises 5-14, approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive approximations differ by less than \(\mathbf{0 . 0 0 1}\). Then find the zero(s) using a graphing utility and compare the results.
5. \(f(x)=x^{3}+4\)
6. \(f(x)=2-x^{3}\)
7. \(f(x)=x^{3}+x-1\)
8. \(f(x)=x^{5}+x-1\)
9. \(f(x)=5 \sqrt{x-1}-2 x\)
10. \(f(x)=x-2 \sqrt{x+1}\)
11. \(f(x)=x^{3}-3.9 x^{2}+4.79 x-1.881\)
12. \(f(x)=x^{4}+x^{3}-1\)
13. \(f(x)=-x+\sin x\)
14. \(f(x)=x^{3}-\cos x\)

In Exercises 15-18, apply Newton's Method to approximate the \(x\)-value(s) of the indicated point(s) of intersection of the two graphs. Continue the process until two successive approximations differ by less than 0.001. [Hint: Let \(h(x)=f(x)-g(x)\).]
15. \(f(x)=2 x+1\)
\(g(x)=\sqrt{x+4}\)

17. \(f(x)=x\)
\(g(x)=\tan x\)
18. \(f(x)=x^{2}\)
\(g(x)=\cos x\)
19. Mechanic's Rule The Mechanic's Rule for approximating \(\sqrt{a}, a>0\), is
\(x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right), \quad n=1,2,3 \ldots\)
where \(x_{1}\) is an approximation of \(\sqrt{a}\).
(a) Use Newton's Method and the function \(f(x)=x^{2}-a\) to derive the Mechanic's Rule.
(b) Use the Mechanic's Rule to approximate \(\sqrt{5}\) and \(\sqrt{7}\) to three decimal places.
20. (a) Use Newton's Method and the function \(f(x)=x^{n}-a\) to obtain a general rule for approximating \(x=\sqrt[n]{a}\).
(b) Use the general rule found in part (a) to approximate \(\sqrt[4]{6}\) and \(\sqrt[3]{15}\) to three decimal places.

In Exercises 21-24, apply Newton's Method using the given initial guess, and explain why the method fails.
21. \(y=2 x^{3}-6 x^{2}+6 x-1, \quad x_{1}=1\)
22. \(y=x^{3}-2 x-2, \quad x_{1}=0\)


Figure for 21


Figure for 22
23. \(f(x)=-x^{3}+6 x^{2}-10 x+6, \quad x_{1}=2\)
24. \(f(x)=2 \sin x+\cos 2 x, \quad x_{1}=\frac{3 \pi}{2}\)


Figure for 23


Figure for 24

Fixed Point In Exercises 25 and 26, approximate the fixed point of the function to two decimal places. [A fixed point \(x_{0}\) of a function \(f\) is a value of \(x\) such that \(f\left(x_{0}\right)=x_{0}\).]
25. \(f(x)=\cos x\)
26. \(f(x)=\cot x, \quad 0<x<\pi\)
27. Use Newton's Method to show that the equation \(x_{n+1}=x_{n}\left(2-a x_{n}\right)\) can be used to approximate \(1 / a\) if \(x_{1}\) is an initial guess of the reciprocal of \(a\). Note that this method of approximating reciprocals uses only the operations of multiplication and subtraction. [Hint: Consider \(f(x)=(1 / x)-a\).]
28. Use the result of Exercise 27 to approximate (a) \(\frac{1}{3}\) and (b) \(\frac{1}{11}\) to three decimal places.

\section*{WRITING ABOUT CONCEPTS}
29. Consider the function \(f(x)=x^{3}-3 x^{2}+3\).
(a) Use a graphing utility to graph \(f\).
(b) Use Newton's Method with \(x_{1}=1\) as an initial guess.
(c) Repeat part (b) using \(x_{1}=\frac{1}{4}\) as an initial guess and observe that the result is different.
(d) To understand why the results in parts (b) and (c) are different, sketch the tangent lines to the graph of \(f\) at the points \((1, f(1))\) and \(\left(\frac{1}{4}, f\left(\frac{1}{4}\right)\right)\). Find the \(x\)-intercept of each tangent line and compare the intercepts with the first iteration of Newton's Method using the respective initial guesses.
(e) Write a short paragraph summarizing how Newton's Method works. Use the results of this exercise to describe why it is important to select the initial guess carefully.
30. Repeat the steps in Exercise 29 for the function \(f(x)=\sin x\) with initial guesses of \(x_{1}=1.8\) and \(x_{1}=3\).
31. In your own words and using a sketch, describe Newton's Method for approximating the zeros of a function.

\section*{CAPSTONE}
32. Under what conditions will Newton's Method fail?

In Exercises 33 and 34, approximate the critical number of \(f\) on the interval \((0, \pi)\). Sketch the graph of \(f\), labeling any extrema.
33. \(f(x)=x \cos x\)
34. \(f(x)=x \sin x\)

Exercises 35-38 present problems similar to exercises from the previous sections of this chapter. In each case, use Newton's Method to approximate the solution.
35. Minimum Distance Find the point on the graph of \(f(x)=4-x^{2}\) that is closest to the point \((1,0)\).
36. Minimum Distance Find the point on the graph of \(f(x)=x^{2}\) that is closest to the point \((4,-3)\).
37. Minimum Time You are in a boat 2 miles from the nearest point on the coast (see figure). You are to go to a point \(Q\), which is 3 miles down the coast and 1 mile inland. You can row at 3 miles per hour and walk at 4 miles per hour. Toward what point on the coast should you row in order to reach \(Q\) in the least time?

38. Medicine The concentration \(C\) of a chemical in the bloodstream \(t\) hours after injection into muscle tissue is given by \(C=\left(3 t^{2}+t\right) /\left(50+t^{3}\right)\). When is the concentration greatest?
39. Crime The total number of arrests \(T\) (in thousands) for all males ages 14 to 27 in 2006 is approximated by the model
\(T=0.602 x^{3}-41.44 x^{2}+922.8 x-6330, \quad 14 \leq x \leq 27\)
where \(x\) is the age in years (see figure). Approximate the two ages that had total arrests of 225 thousand. (Source: U.S. Department of Justice)


Figure for 40
40. Advertising Costs A manufacturer of digital audio players estimates that the profit for selling a particular model is
\(P=-76 x^{3}+4830 x^{2}-320,000, \quad 0 \leq x \leq 60\)
where \(P\) is the profit in dollars and \(x\) is the advertising expense in tens of thousands of dollars (see figure). Find the smaller of two advertising amounts that yield a profit \(P\) of \(\$ 2,500,000\).

True or False? In Exercises 41-44, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
41. The zeros of \(f(x)=p(x) / q(x)\) coincide with the zeros of \(p(x)\).
42. If the coefficients of a polynomial function are all positive, then the polynomial has no positive zeros.
43. If \(f(x)\) is a cubic polynomial such that \(f^{\prime}(x)\) is never zero, then any initial guess will force Newton's Method to converge to the zero of \(f\).
44. The roots of \(\sqrt{f(x)}=0\) coincide with the roots of \(f(x)=0\).
45. Tangent Lines The graph of \(f(x)=-\sin x\) has infinitely many tangent lines that pass through the origin. Use Newton's Method to approximate to three decimal places the slope of the tangent line having the greatest slope.
46. Point of Tangency The graph of \(f(x)=\cos x\) and a tangent line to \(f\) through the origin are shown. Find the coordinates of the point of tangency to three decimal places.


\subsection*{3.9 Differentials}

\section*{EXPLORATION}

Tangent Line Approximation
Use a graphing utility to graph
\[
f(x)=x^{2} .
\]

In the same viewing window, graph the tangent line to the graph of \(f\) at the point \((1,1)\). Zom in twice on the point of tangency. Does your graphing utility distinguish between the two graphs? Use the trace feature to compare the two graphs. As the \(x\)-values get closer to 1 , what can you say about the \(y\)-values?


The tangent line approximation of \(f\) at the point \((0,1)\)
Figure 3.65
- Understand the concept of a tangent line approximation.
- Compare the value of the differential, \(d y\), with the actual change in \(y, \Delta y\).
- Estimate a propagated error using a differential.

Find the differential of a function using differentiation formulas.

\section*{Tangent Line Approximations}

Newton's Method (Section 3.8) is an example of the use of a tangent line to a graph to approximate the graph. In this section, you will study other situations in which the graph of a function can be approximated by a straight line.

To begin, consider a function \(f\) that is differentiable at \(c\). The equation for the tangent line at the point \((c, f(c))\) is given by
\[
\begin{aligned}
y-f(c) & =f^{\prime}(c)(x-c) \\
y & =f(c)+f^{\prime}(c)(x-c)
\end{aligned}
\]
and is called the tangent line approximation (or linear approximation) of \(f\) at \(c\). Bcause is a constant, is a linear function of \(x\) Moreover, by restricting the values of \(x\) to those sufficiently close to \(c\), the values of \(y\) can be used as approximations (to any desired degree of accuracy) of the values of the function \(f\). In other words, as \(x \rightarrow c\), the limit of \(y\) is \(f(c)\).

\section*{EXAMPLE 1 Using a Tangent Line Approximation}

Find the tangent line approximation of
\[
f(x)=1+\sin x
\]
at the point \((0,1)\). Then use a table to compare the \(y\)-values of the linear function with those of \(f(x)\) on an open interval containing \(x=0\).

Solution The derivative of \(f\) is
\[
f^{\prime}(x)=\cos x . \quad \text { First derivative }
\]

So, the equation of the tangent line to the graph of \(f\) at the point \((0,1)\) is
\[
\begin{aligned}
y-f(0) & =f^{\prime}(0)(x-0) \\
y-1 & =(1)(x-0)
\end{aligned}
\]
\[
y=1+x . \quad \text { Tangent line approximation }
\]

The table compares the values of \(y\) given by this linear approximation with the values of \(f(x)\) near \(x=0\). Notice that the closer \(x\) is to 0 , the better the approximation is. This conclusion is reinforced by the graph shown in Figure 3.65.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & -0.5 & -0.1 & -0.01 & 0 & 0.01 & 0.1 & 0.5 \\
\hline\(f(x)=\mathbb{1}+\sin x\) & 0.521 & 0.9002 & 0.9900002 & 1 & 1.0099998 & 1.0998 & 1.479 \\
\hline\(y=\mathbb{1}+x\) & 0.5 & 0.9 & 0.99 & 1 & 1.01 & 1.1 & 1.5 \\
\hline
\end{tabular}

NOTE B sure you see that this linear approximation of \(f(x)=1+\sin x\) depends on the point of tangency. At a different point on the graph of \(f\), you would obtain a different tangent line approximation.


When \(\Delta x\) is small, \(\Delta y=f(c+\Delta x)-f(c)\) is approximated by \(f^{\prime}(c) \Delta x\).
Figure 3.66

\section*{Differentials}

When the tangent line to the graph of \(f\) at the point \((c, f(c))\)
\[
y=f(c)+f^{\prime}(c)(x-c) \quad \text { Tangent line at }(c, f(c))
\]
is used as an approximation of the graph of \(f\), the quantity \(x-c\) is called the change in \(x\), and is denoted by \(\Delta x\), as shown in Figure 3.66. When \(\Delta x\) is small, the change in \(y\) (denoted by \(\Delta y\) ) can be approximated as shown.
\[
\begin{aligned}
\Delta y & =f(c+\Delta x)-f(c) & & \text { Actual change in } y \\
& \approx f^{\prime}(c) \Delta x & & \text { Approximate change in } y
\end{aligned}
\]

For such an approximation, the quantity \(\Delta x\) is traditionally denoted by \(d x\), and is called the differential of \(\boldsymbol{x}\). The expression \(f^{\prime}(x) d x\) is denoted by \(d y\), and is called the differential of \(y\).

\section*{DEFINITION OF DIFFERENTIALS}

Let \(y=f(x)\) represent a function that is differentiable on an open interval containing \(x\). The differential of \(\boldsymbol{x}\) (denoted by \(d x\) ) is any nonzero real number. The differential of \(\boldsymbol{y}\) (denoted by \(d y\) ) is
\[
d y=f^{\prime}(x) d x
\]

In many types of applications, the differential of \(y\) can be used as an approximation of the change in \(y\). That is,
\[
\Delta y \approx d y \quad \text { or } \quad \Delta y \approx f^{\prime}(x) d x
\]

\section*{EXAMPLE 2 Comparing \(\Delta y\) and \(d y\)}

Let \(y=x^{2}\). Find \(d y\) when \(x=1\) and \(d x=0.01\). Compare this value with \(\Delta y\) for \(x=1\) and \(\Delta x=0.01\).

Solution Bcause \(y=f(x)=x^{2}\) you have \(f^{\prime}(x)=2 x\) and the differential dyis given by
\[
d y=f^{\prime}(x) d x=f^{\prime}(1)(0.01)=2(0.01)=0.02 . \quad \text { Differential of } y
\]

Now, using \(\Delta x=0.01\), the change in \(y\) is
\[
\Delta y=f(x+\Delta x)-f(x)=f(1.01)-f(1)=(1.01)^{2}-1^{2}=0.0201
\]

Figure 3.67 shows the geometric comparison of \(d y\) and \(\Delta y\). Try comparing other values of \(d y\) and \(\Delta y\). du will see that the values become closer to each other as \(d x\) (or \(\Delta x\) ) approaches 0 .

In Example 2, the tangent line to the graph of \(f(x)=x^{2}\) at \(x=1\) is
\[
y=2 x-1 \quad \text { or } \quad g(x)=2 x-1 . \quad \text { Tangent line to the graph of } f \text { at } x=1 .
\]

For \(x\)-values near 1, this line is close to the graph of \(f\), as shown in Figure 3.67. For instance,
\[
f(1.01)=1.01^{2}=1.0201 \quad \text { and } \quad g(1.01)=2(1.01)-1=1.02
\]


Ball bearing with measured radius that is correct to within 0.01 inch.
Figure 3.68

\section*{Error Propagation}

Physicists and engineers tend to make liberal use of the approximation of \(\Delta y\) by \(d y\). One way this occurs in practice is in the estimation of errors propagated by physical measuring devices. For example, if you let \(x\) represent the measured value of a variable and let \(x+\Delta x\) represent the exact value, then \(\Delta x\) is the error in measurement. Finally, if the measured value \(x\) is used to compute another value \(f(x)\), the difference between \(f(x+\Delta x)\) and \(f(x)\) is the propagated error.
\[
f(\underbrace{x+\overbrace{\substack{\text { Measured } \\
\text { value }}}^{\begin{array}{c}
\text { Measurement } \\
\text { error }
\end{array}}-f(x)}_{\begin{array}{c}
\text { Exact } \\
\text { value }
\end{array}}=\overbrace{\Delta y}^{\substack{\text { Propagated } \\
\text { error }}}
\]

\section*{EXAMPLE 3 Estimation of Error}

The measured radius of a ball bearing is 0.7 inch, as shown in Figure 3.68. If the measurement is correct to within 0.01 inch, estimate the propagated error in the volume \(V\) of the ball bearing.
Solution The formula for the volume of a sphere is \(V=\frac{4}{3} \pi r^{3}\), where \(r\) is the radius of the sphere. So, you can write
\[
r=0.7 \quad \text { Measured radius }
\]
and
\[
-0.01 \leq \Delta r \leq 0.01 . \quad \text { Possible error }
\]

To approximate the propagated error in the volume, differentiate \(V\) to obtain \(d V / d r=4 \pi r^{2}\) and write
\[
\begin{aligned}
\Delta V & \approx d V & & \text { Approximate } \Delta V \text { by } d V . \\
& =4 \pi r^{2} d r & & \\
& =4 \pi(0.7)^{2}( \pm 0.01) & & \text { Substitute for } r \text { and } d r . \\
& \approx \pm 0.06158 \text { cubic inch. } & &
\end{aligned}
\]

So, the volume has a propagated error of about 0.06 cubic inch.

Would you say that the propagated error in Example 3 is large or small? The answer is best given in relative terms by comparing \(d V\) with \(V\). The ratio
\[
\begin{aligned}
\frac{d V}{V} & =\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi r^{3}} & & \text { Ratio of } d V \text { to } V \\
& =\frac{3 d r}{r} & & \text { Simplify. } \\
& \approx \frac{3}{0.7}( \pm 0.01) & & \text { Substitute for } d r \text { and } r . \\
& \approx \pm 0.0429 & &
\end{aligned}
\]
is called the relative error. The corresponding percent error is approximately 4.29\%


GOTTFRIED WILHELM LEIBNIZ (1646-1716)
Both Leibniz and Newton are credited with creating calculus. It was Leibniz, however, who tried to broaden calculus by developing rules and formal notation. He often spent days choosing an appropriate notation for a new concept.

\section*{Calculating Differentials}

Each of the differentiation rules that you studied in Chapter 2 can be written in differential form. For example, suppose \(u\) and \(v\) are differentiable functions of \(x\). B the definition of differentials, you have
\[
d u=u^{\prime} d x \quad \text { and } \quad d v=v^{\prime} d x
\]

So, you can write the differential form of the Product Rule as shown below.
\[
\begin{aligned}
d[u v] & =\frac{d}{d x}[u v] d x & & \text { Differential of } u v \\
& =\left[u v^{\prime}+v u^{\prime}\right] d x & & \text { Product Rule } \\
& =u v^{\prime} d x+v u^{\prime} d x & & \\
& =u d v+v d u & &
\end{aligned}
\]

\section*{DIFFERENTIAL FORMULAS}

Let \(u\) and \(v\) be differentiable functions of \(x\).
Constant multiple: \(d[c u]=c d u\)
Sum or difference: \(d[u \pm v]=d u \pm d v\)
Product: \(\quad d[u v]=u d v+v d u\)
Quotient: \(\quad d\left[\frac{u}{v}\right]=\frac{v d u-u d v}{v^{2}}\)

\section*{EXAMPLE 4 Finding Differentials}

\section*{Function}
a. \(y=x^{2}\)

Derivative
\(\frac{d y}{d x}=2 x\)
\(d y=2 x d x\)
b. \(y=2 \sin x\)
c. \(y=x \cos x\)
d. \(y=\frac{1}{x} \quad \frac{d y}{d x}=-\frac{1}{x^{2}}\)
\[
d y=2 \cos x d x
\]

The notation in Example 4 is called the Leibniz notation for derivatives and differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The beauty of this notation is that it provides an easy way to remember several important calculus formulas by making it seem as though the formulas were derived from algebraic manipulations of differentials. For instance, in Leibniz notation, the Chain Rule
\[
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
\]
would appear to be true because the \(d u\) 's divide out. Even though this reasoning is incorrect, the notation does help one remember the Chain Rule.

\section*{EXAMPLE 5 Finding the Differential of a Composite Function}
\[
\begin{aligned}
y=f(x) & =\sin 3 x & & \text { Original function } \\
f^{\prime}(x) & =3 \cos 3 x & & \text { Apply Chain Rule. } \\
d y=f^{\prime}(x) d x & =3 \cos 3 x d x & & \text { Differential form }
\end{aligned}
\]

\section*{EXAMPLE 6 Finding the Differential of a Composite Function}
\[
\begin{aligned}
y=f(x) & =\left(x^{2}+1\right)^{1 / 2} & & \text { Original function } \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)=\frac{x}{\sqrt{x^{2}+1}} & & \text { Apply Chain Rule. } \\
d y=f^{\prime}(x) d x & =\frac{x}{\sqrt{x^{2}+1}} d x & & \text { Differential form }
\end{aligned}
\]

Differentials can be used to approximate function values. To do this for the function given by \(y=f(x)\), use the formula
\[
f(x+\Delta x) \approx f(x)+d y=f(x)+f^{\prime}(x) d x
\]
which is derived from the approximation \(\Delta y=f(x+\Delta x)-f(x) \approx d y\). The key to using this formula is to choose a value for \(x\) that makes the calculations easier, as shown in Example 7. (This formula is equivalent to the tangent line approximation given earlier in this section.)

\section*{EXAMPLE 7 Approximating Function Values}

Use differentials to approximate \(\sqrt{16.5}\).
Solution Using \(f(x)=\sqrt{x}\), you can write
\[
f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x=\sqrt{x}+\frac{1}{2 \sqrt{x}} d x
\]

Now, choosing \(x=16\) and \(d x=0.5\), you obtain the following approximation.
\[
f(x+\Delta x)=\sqrt{16.5} \approx \sqrt{16}+\frac{1}{2 \sqrt{16}}(0.5)=4+\left(\frac{1}{8}\right)\left(\frac{1}{2}\right)=4.0625
\]

The tangent line approximation to \(f(x)=\sqrt{x}\) at \(x=16\) is the line \(g(x)=\frac{1}{8} x+2\). For \(x\)-values near 16, the graphs of \(f\) and \(g\) are close together, as shown in Figure 3.69. For instance,
\[
f(16.5)=\sqrt{16.5} \approx 4.0620 \quad \text { and } \quad g(16.5)=\frac{1}{8}(16.5)+2=4.0625
\]

In fact, if you use a graphing utility to zoom in near the point of tangency \((16,4)\), you will see that the two graphs appear to coincide. Notice also that as you move farther away from the point of tangency, the linear approximation becomes less accurate.

\subsection*{3.9 Exercises}

In Exercises 1-6, find the equation of the tangent line \(T\) to the graph of \(f\) at the given point. Use this linear approximation to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 1.9 & 1.99 & 2 & 2.01 & 2.1 \\
\hline\(f(x)\) & & & & & \\
\hline\(T(x)\) & & & & & \\
\hline
\end{tabular}
1. \(f(x)=x^{2}, \quad(2,4)\)
2. \(f(x)=\frac{6}{x^{2}}, \quad\left(2, \frac{3}{2}\right)\)
3. \(f(x)=x^{5}, \quad(2,32)\)
4. \(f(x)=\sqrt{x}, \quad(2, \sqrt{2})\)
5. \(f(x)=\sin x, \quad(2, \sin 2)\)
6. \(f(x)=\csc x, \quad(2, \csc 2)\)

In Exercises 7-10, use the information to evaluate and compare \(\Delta y\) and \(d y\).
7. \(y=x^{3}\)
\(x=1\)
\(\Delta x=d x=0.1\)
8. \(y=1-2 x^{2} \quad x=0\)
\(\Delta x=d x=-0.1\)
9. \(y=x^{4}+1 \quad x=-1\)
\(\Delta x=d x=0.01\)
10. \(y=2-x^{4}\)
\(x=2\)
\(\Delta x=d x=0.01\)

In Exercises 11-20, find the differential \(d y\) of the given function.
11. \(y=3 x^{2}-4\)
12. \(y=3 x^{2 / 3}\)
13. \(y=\frac{x+1}{2 x-1}\)
14. \(y=\sqrt{9-x^{2}}\)
15. \(y=x \sqrt{1-x^{2}}\)
16. \(y=\sqrt{x}+\frac{1}{\sqrt{x}}\)
17. \(y=3 x-\sin ^{2} x\)
18. \(y=x \cos x\)
19. \(y=\frac{1}{3} \cos \left(\frac{6 \pi x-1}{2}\right)\)
20. \(y=\frac{\sec ^{2} x}{x^{2}+1}\)

In Exercises 21-24, use differentials and the graph of \(f\) to approximate (a) \(f(1.9)\) and (b) \(f(2.04)\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
21.

22. \(y\)

23.

24.


In Exercises 25 and 26, use differentials and the graph of \(g^{\prime}\) to approximate (a) \(g(2.93)\) and (b) \(g(3.1)\) given that \(g(3)=8\).
25.

26.

27. Area The measurement of the side of a square floor tile is 10 inches, with a possible error of \(\frac{1}{32}\) inch. Use differentials to approximate the possible propagated error in computing the area of the square.
28. Area The measurements of the base and altitude of a triangle are found to be 36 and 50 centimeters, respectively. The possible error in each measurement is 0.25 centimeter. Use differentials to approximate the possible propagated error in computing the area of the triangle.
29. Area The measurement of the radius of the end of a log is found to be 16 inches, with a possible error of \(\frac{1}{4}\) inch. Use differentials to approximate the possible propagated error in computing the area of the end of the log.
30. Volume and Surface Area The measurement of the edge of a cube is found to be 15 inches, with a possible error of 0.03 inch. Use differentials to approximate the maximum possible propagated error in computing (a) the volume of the cube and (b) the surface area of the cube.
31. Area The measurement of a side of a square is found to be 12 centimeters, with a possible error of 0.05 centimeter.
(a) Approximate the percent error in computing the area of the square.
(b) Estimate the maximum allowable percent error in measuring the side if the error in computing the area cannot exceed 2.5\%
32. Circumference The measurement of the circumference of a circle is found to be 64 centimeters, with a possible error of 0.9 centimeter.
(a) Approximate the percent error in computing the area of the circle.
(b) Estimate the maximum allowable percent error in measuring the circumference if the error in computing the area cannot exceed \(3 \%\)
33. Volume and Surface Area The radius of a spherical balloon is measured as 8 inches, with a possible error of 0.02 inch. Use differentials to approximate the maximum possible error in calculating (a) the volume of the sphere, (b) the surface area of the sphere, and (c) the relative errors in parts (a) and (b).
34. Stopping Distance The total stopping distance \(T\) of a vehicle is
\(T=2.5 x+0.5 x^{2}\)
where \(T\) is in feet and \(x\) is the speed in miles per hour. Approximate the change and percent change in total stopping distance as speed changes from \(x=25\) to \(x=26\) miles per hour.

Volume In Exercises 35 and 36, the thickness of each shell is 0.2 centimeter. Use differentials to approximate the volume of each shell.
35. 0.2 cm

36.

37. Pendulum The period of a pendulum is given by \(T=2 \pi \sqrt{\frac{L}{g}}\)
where \(L\) is the length of the pendulum in feet, \(g\) is the acceleration due to gravity, and \(T\) is the time in seconds. The pendulum has been subjected to an increase in temperature such that the length has increased by \(\frac{1}{2} \%\)
(a) Find the approximate percent change in the period.
(b) Using the result in part (a), find the approximate error in this pendulum clock in 1 day.
38. Ohm's Law A current of \(I\) amperes passes through a resistor of \(R\) ohms. Ohm's Law states that the voltage \(E\) applied to the resistor is \(E=I R\). If the voltage is constant, show that the magnitude of the relative error in \(R\) caused by a change in \(I\) is equal in magnitude to the relative error in \(I\).
39. Triangle Measurements The measurement of one side of a right triangle is found to be 9.5 inches, and the angle opposite that side is \(26^{\circ} 45^{\prime}\) with a possible error of \(15^{\prime}\).
(a) Approximate the percent error in computing the length of the hypotenuse.
(b) Estimate the maximum allowable percent error in measuring the angle if the error in computing the length of the hypotenuse cannot exceed \(2 \%\)
40. Area Approximate the percent error in computing the area of the triangle in Exercise 39.
41. Projectile Motion The range \(R\) of a projectile is
\(R=\frac{v_{0}^{2}}{32}(\sin 2 \theta)\)
where \(v_{0}\) is the initial velocity in feet per second and \(\theta\) is the angle of elevation. If \(v_{0}=2500\) feet per second and \(\theta\) is changed from \(10^{\circ}\) to \(11^{\circ}\), use differentials to approximate the change in the range.
42. Surveying A surveyor standing 50 feet from the base of a large tree measures the angle of elevation to the top of the tree as \(71.5^{\circ}\). How accurately must the angle be measured if the percent error in estimating the height of the tree is to be less than \(6 \%\)

In Exercises 43-46, use differentials to approximate the value of the expression. Compare your answer with that of a calculator.
43. \(\sqrt{99.4}\)
44. \(\sqrt[3]{26}\)
45. \(\sqrt[4]{624}\)
46. \((2.99)^{3}\)

In Exercises 47 and 48, verify the tangent line approximation of the function at the given point. Then use a graphing utility to graph the function and its approximation in the same viewing window.
\begin{tabular}{clll}
\multicolumn{4}{l}{ Function } \\
47. \(f(x)=\sqrt{x+4}\) & & Approximation & \\
48. \(f(x)=\tan x\) & & \(y=2+\frac{x}{4}\) & \\
\hline
\end{tabular}

\section*{WRITING ABOUT CONCEPTS}
49. Describe the change in accuracy of \(d y\) as an approximation for \(\Delta y\) when \(\Delta x\) is decreased.
50. When using differentials, what is meant by the terms propagated error, relative error, and percent error?
51. Give a short explanation of why the approximation is valid.
(a) \(\sqrt{4.02} \approx 2+\frac{1}{4}(0.02)\)
(b) \(\tan 0.05 \approx 0+1(0.05)\)

\section*{CAPSTONE}
52. Would you use \(y=x\) to approximate \(f(x)=\sin x\) near \(x=0\) ? Why or why not?

True or False? In Exercises 53-56, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
53. If \(y=x+c\), then \(d y=d x\).
54. If \(y=a x+b\), then \(\Delta y / \Delta x=d y / d x\).
55. If \(y\) is differentiable, then \(\lim _{\Delta x \rightarrow 0}(\Delta y-d y)=0\).
56. If \(y=f(x), f\) is increasing and differentiable, and \(\Delta x>0\), then \(\Delta y \geq d y\).

\section*{3 REVIEW EXERCISES}
1. Give the definition of a critical number, and graph a function \(f\) showing the different types of critical numbers.
2. Consider the odd function \(f\) that is continuous and differentiable and has the functional values shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & -5 & -4 & -1 & 0 & 2 & 3 & 6 \\
\hline\(f(x)\) & 1 & 3 & 2 & 0 & -1 & -4 & 0 \\
\hline
\end{tabular}
(a) Determine \(f(4)\).
(b) Determine \(f(-3)\).
(c) Plot the points and make a possible sketch of the graph of \(f\) on the interval \([-6,6]\). What is the smallest number of critical points in the interval? Explain.
(d) Does there exist at least one real number \(c\) in the interval \((-6,6)\) where \(f^{\prime}(c)=-1\) ? Explain.
(e) Is it possible that \(\lim _{x \rightarrow 0} f(x)\) does not exist? Explain.
(f) Is it necessary that \(f^{\prime}(x)\) exists at \(x=2\) ? Explain.

In Exercises 3-6, find the absolute extrema of the function on the closed interval. Use a graphing utility to graph the function over the given interval to confirm your results.
3. \(f(x)=x^{2}+5 x, \quad[-4,0]\)
4. \(h(x)=3 \sqrt{x}-x, \quad[0,9]\)
5. \(g(x)=2 x+5 \cos x, \quad[0,2 \pi]\)
6. \(f(x)=\frac{x}{\sqrt{x^{2}+1}}, \quad[0,2]\)

In Exercises 7-10, determine whether Bleṡ Theorem can be applied to \(f\) on the closed interval \([a, b]\). If Bles' Theorem can be applied, find all values of \(c\) in the open interval \((a, b)\) such that \(f^{\prime}(c)=0\). If Bless Theorem cannot be applied, explain why not.
7. \(f(x)=2 x^{2}-7, \quad[0,4]\)
8. \(f(x)=(x-2)(x+3)^{2}, \quad[-3,2]\)
9. \(f(x)=\frac{x^{2}}{1-x^{2}}, \quad[-2,2]\)
10. \(f(x)=|x-2|-2, \quad[0,4]\)
11. Consider the function \(f(x)=3-|x-4|\).
(a) Graph the function and verify that \(f(1)=f(7)\).
(b) Note that \(f^{\prime}(x)\) is not equal to zero for any \(x\) in \([1,7]\). Explain why this does not contradict Rolle's Theorem.
12. Can the Mean Value Theorem be applied to the function \(f(x)=1 / x^{2}\) on the interval \([-2,1]\) ? Explain.

In Exercises 13-18, determine whether the Mn aue Theorem can be applied to \(f\) on the closed interval \([a, b]\). If the Mn Aue Theorem can be applied, find all values of inathe open interval \((a, b)\) such that \(f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}\). If the Mn alue Theorem cannot be applied, explain why not.
13. \(f(x)=x^{2 / 3}, \quad[1,8]\)
14. \(f(x)=\frac{1}{x}, \quad[1,4]\)
15. \(f(x)=|5-x|, \quad[2,6]\)
16. \(f(x)=2 x-3 \sqrt{x}, \quad[-1,1]\)
17. \(f(x)=x-\cos x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\)
18. \(f(x)=\sqrt{x}-2 x, \quad[0,4]\)
19. For the function \(f(x)=A x^{2}+B x+C\), determine the value of \(c\) guaranteed by the Mean Value Theorem on the interval \(\left[x_{1}, x_{2}\right]\).
20. Demonstrate the result of Exercise 19 for \(f(x)=2 x^{2}-3 x+1\) on the interval \([0,4]\).

In Exercises 21-26, find the critical numbers (if any) and the open intervals on which the function is increasing or decreasing.
21. \(f(x)=x^{2}+3 x-12\)
22. \(h(x)=(x+2)^{1 / 3}+8\)
23. \(f(x)=(x-1)^{2}(x-3)\)
24. \(g(x)=(x+1)^{3}\)
25. \(h(x)=\sqrt{x}(x-3), \quad x>0\)
26. \(f(x)=\sin x+\cos x, \quad[0,2 \pi]\)

In Exercises 27-30, use the First Crivative Test to find any relative extrema of the function. Use a graphing utility to confirm your results.
27. \(f(x)=4 x^{3}-5 x\)
28. \(g(x)=\frac{x^{3}-8 x}{4}\)
29. \(h(t)=\frac{1}{4} t^{4}-8 t\)
30. \(g(x)=\frac{3}{2} \sin \left(\frac{\pi x}{2}-1\right),[0,4]\)
31. Harmonic Motion The height of an object attached to a spring is given by the harmonic equation
\(y=\frac{1}{3} \cos 12 t-\frac{1}{4} \sin 12 t\)
where \(y\) is measured in inches and \(t\) is measured in seconds.
(a) Calculate the height and velocity of the object when \(t=\pi / 8\) second.
(b) Show that the maximum displacement of the object is \(\frac{5}{12}\) inch.
(c) Find the period \(P\) of \(y\). Also, find the frequency \(f\) (number of oscillations per second) if \(f=1 / P\).
32. Writing The general equation giving the height of an oscillating object attached to a spring is
\(y=A \sin \sqrt{\frac{k}{m}} t+B \cos \sqrt{\frac{k}{m}} t\)
where \(k\) is the spring constant and \(m\) is the mass of the object.
(a) Show that the maximum displacement of the object is \(\sqrt{A^{2}+B^{2}}\).
(b) Show that the object oscillates with a frequency of
\[
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
\]

In Exercises 33-36, determine the points of inflection and discuss the concavity of the graph of the function.
33. \(f(x)=x^{3}-9 x^{2}\)
34. \(g(x)=x \sqrt{x+5}\)
35. \(f(x)=x+\cos x, \quad[0,2 \pi]\)
36. \(f(x)=(x+2)^{2}(x-4)\)

In Exercises 37-40, use the Second Erivative Test to find all relative extrema.
37. \(f(x)=(x+9)^{2}\)
38. \(h(x)=x-2 \cos x,[0,4 \pi]\)
39. \(g(x)=2 x^{2}\left(1-x^{2}\right)\)
40. \(h(t)=t-4 \sqrt{t+1}\)

Think About It In Exercises 41 and 42, sketch the graph of a function \(f\) having the given characteristics.
41. \(f(0)=f(6)=0\)
\(f^{\prime}(3)=f^{\prime}(5)=0\)
\(f^{\prime}(x)>0\) if \(x<3\)
\(f^{\prime}(x)>0\) if \(3<x<5\)
\(f^{\prime}(x)<0\) if \(x>5\)
\(f^{\prime \prime}(x)<0\) if \(x<3\) or \(x>4\)
\(f^{\prime \prime}(x)>0\) if \(3<x<4\)
42. \(f(0)=4, f(6)=0\)
\(f^{\prime}(x)<0\) if \(x<2\) or \(x>4\)
\(f^{\prime}(2)\) does not exist.
\(f^{\prime}(4)=0\)
\(f^{\prime}(x)>0\) if \(2<x<4\)
\(f^{\prime \prime}(x)<0\) if \(x \neq 2\)
43. Writing A newspaper headline states that "The rate of growth of the national deficit is decreasing." What does this mean? What does it imply about the graph of the deficit as a function of time?
44. Inventory Cost The cost of inventory depends on the ordering and storage costs according to the inventory model
\(C=\left(\frac{Q}{x}\right) s+\left(\frac{x}{2}\right) r\).
Determine the order size that will minimize the cost, assuming that sales occur at a constant rate, \(Q\) is the number of units sold per year, \(r\) is the cost of storing one unit for 1 year, \(s\) is the cost of placing an order, and \(x\) is the number of units per order.
45. Modeling Data Outlays for national defense \(D\) (in billions of dollars) for selected years from 1970 through 2005 are shown in the table, where \(t\) is time in years, with \(t=0\) corresponding to 1970. (Source: U.S. Office of Management and Budget)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 0 & 5 & 10 & 15 & 20 \\
\hline\(D\) & 81.7 & 86.5 & 134.0 & 252.7 & 299.3 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline\(t\) & 25 & 30 & 35 \\
\hline\(D\) & 272.1 & 294.5 & 495.3 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to fit a model of the form
\(D=a t^{4}+b t^{3}+c t^{2}+d t+e\)
to the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) For the years shown in the table, when does the model indicate that the outlay for national defense was at a maximum? When was it at a minimum?
(d) For the years shown in the table, when does the model indicate that the outlay for national defense was increasing at the greatest rate?
46. Modeling Data The manager of a store recorded the annual sales \(S\) (in thousands of dollars) of a product over a period of 7 years, as shown in the table, where \(t\) is the time in years, with \(t=1\) corresponding to 2001 .
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(t\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(S\) & 5.4 & 6.9 & 11.5 & 15.5 & 19.0 & 22.0 & 23.6 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form \(S=a t^{3}+b t^{2}+c t+d\) for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use calculus and the model to find the time \(t\) when sales were increasing at the greatest rate.
(d) Do you think the model would be accurate for predicting future sales? Explain.

In Exercises 47-56, find the limit.
47. \(\lim _{x \rightarrow \infty}\left(8+\frac{1}{x}\right)\)
48. \(\lim _{x \rightarrow \infty} \frac{3-x}{2 x+5}\)
49. \(\lim _{x \rightarrow \infty} \frac{2 x^{2}}{3 x^{2}+5}\)
50. \(\lim _{x \rightarrow \infty} \frac{2 x}{3 x^{2}+5}\)
51. \(\lim _{x \rightarrow-\infty} \frac{3 x^{2}}{x+5}\)
52. \(\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{-2 x}\)
53. \(\lim _{x \rightarrow \infty} \frac{5 \cos x}{x}\)
54. \(\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}+4}}\)
55. \(\lim _{x \rightarrow-\infty} \frac{6 x}{x+\cos x}\)
56. \(\lim _{x \rightarrow-\infty} \frac{x}{2 \sin x}\)

In Exercises 57-60, find any vertical and horimntal asymptotes of the graph of the function. Use a graphing utility to verify your results.
57. \(f(x)=\frac{3}{x}-2\)
58. \(g(x)=\frac{5 x^{2}}{x^{2}+2}\)
59. \(h(x)=\frac{2 x+3}{x-4}\)
60. \(f(x)=\frac{3 x}{\sqrt{x^{2}+2}}\)

In Exercises 61-64, use a graphing utility to graph the function. Use the graph to approximate any relative extrema or asymptotes.
61. \(f(x)=x^{3}+\frac{243}{x}\)
62. \(f(x)=\left|x^{3}-3 x^{2}+2 x\right|\)
63. \(f(x)=\frac{x-1}{1+3 x^{2}}\)
64. \(g(x)=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x\)

In Exercises 65-82, analye and sketch the graph of the function.
65. \(f(x)=4 x-x^{2}\)
66. \(f(x)=4 x^{3}-x^{4}\)
67. \(f(x)=x \sqrt{16-x^{2}}\)
68. \(f(x)=\left(x^{2}-4\right)^{2}\)
69. \(f(x)=(x-1)^{3}(x-3)^{2}\)
70. \(f(x)=(x-3)(x+2)^{3}\)
71. \(f(x)=x^{1 / 3}(x+3)^{2 / 3}\)
72. \(f(x)=(x-2)^{1 / 3}(x+1)^{2 / 3}\)
73. \(f(x)=\frac{5-3 x}{x-2}\)
74. \(f(x)=\frac{2 x}{1+x^{2}}\)
75. \(f(x)=\frac{4}{1+x^{2}}\)
76. \(f(x)=\frac{x^{2}}{1+x^{4}}\)
77. \(f(x)=x^{3}+x+\frac{4}{x}\)
78. \(f(x)=x^{2}+\frac{1}{x}\)
79. \(f(x)=\left|x^{2}-9\right|\)
80. \(f(x)=|x-1|+|x-3|\)
81. \(f(x)=x+\cos x, \quad 0 \leq x \leq 2 \pi\)
82. \(f(x)=\frac{1}{\pi}(2 \sin \pi x-\sin 2 \pi x), \quad-1 \leq x \leq 1\)
83. Find the maximum and minimum points on the graph of \(x^{2}+4 y^{2}-2 x-16 y+13=0\)
(a) without using calculus.
(b) using calculus.
84. Consider the function \(f(x)=x^{n}\) for positive integer values of \(n\).
(a) For what values of \(n\) does the function have a relative minimum at the origin?
(b) For what values of \(n\) does the function have a point of inflection at the origin?
85. Distance At noon, ship \(A\) is 100 kilometers due east of ship \(B\). Ship \(A\) is sailing west at 12 kilometers per hour, and ship \(B\) is sailing south at 10 kilometers per hour. At what time will the ships be nearest to each other, and what will this distance be?
86. Maximum Area Find the dimensions of the rectangle of maximum area, with sides parallel to the coordinate axes, that can be inscribed in the ellipse given by
\(\frac{x^{2}}{144}+\frac{y^{2}}{16}=1\).
87. Minimum Length A right triangle in the first quadrant has the coordinate axes as sides, and the hypotenuse passes through the point \((1,8)\). Find the vertices of the triangle such that the length of the hypotenuse is minimum.
88. Minimum Length The wall of a building is to be braced by a beam that must pass over a parallel fence 5 feet high and 4 feet from the building. Find the length of the shortest beam that can be used.
89. Maximum Area Three sides of a trapezoid have the same length \(s\). Of all such possible trapezoids, show that the one of maximum area has a fourth side of length \(2 s\).
90. Maximum Area Show that the greatest area of any rectangle inscribed in a triangle is one-half the area of the triangle.
91. Distance Find the length of the longest pipe that can be carried level around a right-angle corner at the intersection of two corridors of widths 4 feet and 6 feet. (Do not use trigonometry.)
92. Distance Rework Exercise 91, given corridors of widths \(a\) meters and \(b\) meters.
93. Distance A hallway of width 6 feet meets a hallway of width 9 feet at right angles. Find the length of the longest pipe that can be carried level around this corner. [Hint: If \(L\) is the length of the pipe, show that
\(L=6 \csc \theta+9 \csc \left(\frac{\pi}{2}-\theta\right)\)
where \(\theta\) is the angle between the pipe and the wall of the narrower hallway.]
94. Length Rework Exercise 93, given that one hallway is of width \(a\) meters and the other is of width \(b\) meters. Show that the result is the same as in Exercise 92.

Minimum Cost In Exercises 95 and 96, find the speed \(v\), in miles per hour, that will minimic costs on a 110 -mile delivery trip. The cost per hour for fuel is \(C\) dollars, and the driver is paid \(W\) dollars per hour. (Assume there are no costs other than wages and fuel.)
95. Fuel cost: \(C=\frac{v^{2}}{600}\)
96. Fuel cost: \(C=\frac{v^{2}}{500}\)
Driver: \(W=\$ 5\)
Driver: \(W=\$ 7.50\)

In Exercises 97 and 98, use Newtons Alhod to approximate any real cros of the function accurate to three decimal places. Use the zero or root feature of a graphing utility to verify your results.

> 97. \(f(x)=x^{3}-3 x-1\)
> 98. \(f(x)=x^{3}+2 x+1\)

In Exercises 99 and 100, use Newtons Athod to approximate, to three decimal places, the \(x\)-value(s) of the point(s) of intersection of the equations. Use a graphing utility to verify your results.
99. \(y=x^{4}\)
100. \(y=\sin \pi x\)
\(y=x+3\)
\[
y=1-x
\]

In Exercises 101 and 102, find the differential \(d y\).
101. \(y=x(1-\cos x)\)
102. \(y=\sqrt{36-x^{2}}\)
103. Surface Area and Volume The diameter of a sphere is measured as 18 centimeters, with a maximum possible error of 0.05 centimeter. Use differentials to approximate the possible propagated error and percent error in calculating the surface area and the volume of the sphere.
104. Demand Function A company finds that the demand for its commodity is
\(p=75-\frac{1}{4} x\).
If \(x\) changes from 7 to 8 , find and compare the values of \(\Delta p\) and \(d p\).

\section*{P.S. PROBLEM SOLVING}
1. Graph the fourth-degree polynomial \(p(x)=x^{4}+a x^{2}+1\) for various values of the constant \(a\).
(a) Determine the values of \(a\) for which \(p\) has exactly one relative minimum.
(b) Determine the values of \(a\) for which \(p\) has exactly one relative maximum.
(c) Determine the values of \(a\) for which \(p\) has exactly two relative minima.
(d) Show that the graph of \(p\) cannot have exactly two relative extrema.
2. (a) Graph the fourth-degree polynomial \(p(x)=a x^{4}-6 x^{2}\) for \(a=-3,-2,-1,0,1,2\), and 3 . For what values of the constant \(a\) does \(p\) have a relative minimum or relative maximum?
(b) Show that \(p\) has a relative maximum for all values of the constant \(a\).
(c) Determine analytically the values of \(a\) for which \(p\) has a relative minimum.
(d) Let \((x, y)=(x, p(x))\) be a relative extremum of \(p\). Show that \((x, y)\) lies on the graph of \(y=-3 x^{2}\). Verify this result graphically by graphing \(y=-3 x^{2}\) together with the seven curves from part (a).
3. Let \(f(x)=\frac{c}{x}+x^{2}\). Determine all values of the constant \(c\) such that \(f\) has a relative minimum, but no relative maximum.
4. (a) Let \(f(x)=a x^{2}+b x+c, a \neq 0\), be a quadratic polynomial. How many points of inflection does the graph of \(f\) have?
(b) Let \(f(x)=a x^{3}+b x^{2}+c x+d, a \neq 0\), be a cubic polynomial. How many points of inflection does the graph of \(f\) have?
(c) Suppose the function \(y=f(x)\) satisfies the equation \(\frac{d y}{d x}=k y\left(1-\frac{y}{L}\right)\) where \(k\) and \(L\) are positive constants.
Show that the graph of \(f\) has a point of inflection at the point where \(y=\frac{L}{2}\). (This equation is called the logistic differential equation.)
5. Prove Darboux's Theorem: Let \(f\) be differentiable on the closed interval \([a, b]\) such that \(f^{\prime}(a)=y_{1}\) and \(f^{\prime}(b)=y_{2}\). If \(d\) lies between \(y_{1}\) and \(y_{2}\), then there exists \(c\) in \((a, b)\) such that \(f^{\prime}(c)=d\).
6. Let \(f\) and \(g\) be functions that are continuous on \([a, b]\) and differentiable on \((a, b)\). Prove that if \(f(a)=g(a)\) and \(g^{\prime}(x)>f^{\prime}(x)\) for all \(x\) in \((a, b)\), then \(g(b)>f(b)\).
7. Prove the following Extended Mandue Theorem. If \(f\) and \(f^{\prime}\) are continuous on the closed interval \([a, b]\), and if \(f^{\prime \prime}\) exists in the open interval \((a, b)\), then there exists a number \(c\) in \((a, b)\) such that
\[
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2} f^{\prime \prime}(c)(b-a)^{2} .
\]
8. (a) Let \(V=x^{3}\). Find \(d V\) and \(\Delta V\). Show that for small values of \(x\), the difference \(\Delta V-d V\) is very small in the sense that there exists \(\varepsilon\) such that \(\Delta V-d V=\varepsilon \Delta x\), where \(\varepsilon \rightarrow 0\) as \(\Delta x \rightarrow 0\).
(b) Generalize this result by showing that if \(y=f(x)\) is a differentiable function, then \(\Delta y-d y=\varepsilon \Delta x\), where \(\varepsilon \rightarrow 0\) as \(\Delta x \rightarrow 0\).
9. The amount of illumination of a surface is proportional to the intensity of the light source, inversely proportional to the square of the distance from the light source, and proportional to \(\sin \theta\), where \(\theta\) is the angle at which the light strikes the surface. A rectangular room measures 10 feet by 24 feet, with a 10 -foot ceiling (see figure). Determine the height at which the light should be placed to allow the corners of the floor to receive as much light as possible.

10. Consider a room in the shape of a cube, 4 meters on each side. A bug at point \(P\) wants to walk to point \(Q\) at the opposite corner, as shown in the figure. Use calculus to determine the shortest path. Can you solve the problem without calculus?

11. The line joining \(P\) and \(Q\) crosses the two parallel lines, as shown in the figure. The point \(R\) is \(d\) units from \(P\). How far from \(Q\) should the point \(S\) be positioned so that the sum of the areas of the two shaded triangles is a minimum? So that the sum is a maximum?

12. The figures show a rectangle, a circle, and a semicircle inscribed in a triangle bounded by the coordinate axes and the first-quadrant portion of the line with intercepts \((3,0)\) and \((0,4)\). Find the dimensions of each inscribed figure such that its area is maximum. State whether calculus was helpful in finding the required dimensions. Explain your reasoning.



13. (a) Prove that \(\lim _{x \rightarrow \infty} x^{2}=\infty\).
(b) Prove that \(\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)=0\).
(c) Let \(L\) be a real number. Prove that if \(\lim _{x \rightarrow \infty} f(x)=L\), then \(\lim _{y \rightarrow 0^{+}} f\left(\frac{1}{y}\right)=L\).
14. Find the point on the graph of \(y=\frac{1}{1+x^{2}}\) (see figure) where the tangent line has the greatest slope, and the point where the tangent line has the least slope.

15. (a) Let \(x\) be a positive number. Use the table feature of a graphing utility to verify that \(\sqrt{1+x}<\frac{1}{2} x+1\).
(b) Use the Mean Value Theorem to prove that \(\sqrt{1+x}<\frac{1}{2} x+1\) for all positive real numbers \(x\).
16. (a) Let \(x\) be a positive number. Use the table feature of a graphing utility to verify that \(\sin x<x\).
(b) Use the Mean Value Theorem to prove that \(\sin x<x\) for all positive real numbers \(x\).
17. The police department must determine the speed limit on a bridge such that the flow rate of cars is maximum per unit time. The greater the speed limit, the farther apart the cars must be in order to keep a safe stopping distance. Experimental data on the stopping distances \(d\) (in meters) for various speeds \(v\) (in kilometers per hour) are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(v\) & 20 & 40 & 60 & 80 & 100 \\
\hline\(d\) & 5.1 & 13.7 & 27.2 & 44.2 & 66.4 \\
\hline
\end{tabular}
(a) Convert the speeds \(v\) in the table to speeds \(s\) in meters per second. Use the regression capabilities of a graphing utility to find a model of the form \(d(s)=a s^{2}+b s+c\) for the data.
(b) Consider two consecutive vehicles of average length 5.5 meters, traveling at a safe speed on the bridge. Let \(T\) be the difference between the times (in seconds) when the front bumpers of the vehicles pass a given point on the bridge. Verify that this difference in times is given by
\[
T=\frac{d(s)}{s}+\frac{5.5}{s} .
\]
(c) Use a graphing utility to graph the function \(T\) and estimate the speed \(s\) that minimizes the time between vehicles.
(d) Use calculus to determine the speed that minimizes \(T\). What is the minimum value of \(T\) ? Convert the required speed to kilometers per hour.
(e) Find the optimal distance between vehicles for the posted speed limit determined in part (d).
18. A legal-sized sheet of paper ( 8.5 inches by 14 inches) is folded so that corner \(P\) touches the opposite 14 -inch edge at \(R\) (see figure). (Note: \(P Q=\sqrt{C^{2}-x^{2}}\).)

(a) Show that \(C^{2}=\frac{2 x^{3}}{2 x-8.5}\).
(b) What is the domain of \(C\) ?
(c) Determine the \(x\)-value that minimizes \(C\).
(d) Determine the minimum length \(C\).
19. The polynomial \(P(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}\) is the quadratic approximation of the function \(f\) at \((a, f(a))\) if \(P(a)=f(a), P^{\prime}(a)=f^{\prime}(a)\), and \(P^{\prime \prime}(a)=f^{\prime \prime}(a)\).
(a) Find the quadratic approximation of
\[
f(x)=\frac{x}{x+1}
\]
at \((0,0)\).
(b) Use a graphing utility to graph \(P(x)\) and \(f(x)\) in the same viewing window.
20. Let \(x>0\) and \(n>1\) be real numbers. Prove that \((1+x)^{n}>1+n x\).


\section*{Integration}

In this chapter, you will study an important process of calculus that is closely related to differentiation-integration. You will learn new methods and rules for solving definite and indefinite integrals, including the Fundamental Theorem of Calculus. Then you will apply these rules to find such things as the position function for an object and the average value of a function.

In this chapter, you should learn the following.
- How to evaluate indefinite integrals using basic integration rules. (4.1)
■ How to evaluate a sum and approximate the area of a plane region. (4.2)
- How to evaluate a definite integral using a limit. (4.3)
- How to evaluate a definite integral using the Fundamental Theorem of Calculus. (4.4)
- How to evaluate different types of definite and indefinite integrals using a variety of methods. (4.5)
- How to approximate a definite integral using the Trapezoidal Rule and Simpson's Rule. (4.6)

© Chuck Pefley/Alamy
Although its official nickname is the Emerald City, Seattle is sometimes called the Rainy City due to its weather. But there are several cities, including New York and Boston, that typically get more annual precipitation. How could you use integration to calculate the normal annual precipitation for the Seattle area? (See Section 4.5, Exercise 117.)


The area of a parabolic region can be approximated as the sum of the areas of rectangles. As you increase the number of rectangles, the approximation tends to become more and more accurate. In Section 4.2, you will learn how the limit process can be used to find areas of a wide variety of regions.

\subsection*{4.1 Antiderivatives and Indefinite Integration}

\section*{E X P L O R A T I O N}

Finding Antiderivatives For each derivative, describe the original function \(F\).
a. \(F^{\prime}(x)=2 x\)
b. \(F^{\prime}(x)=x\)
c. \(F^{\prime}(x)=x^{2}\)
d. \(F^{\prime}(x)=\frac{1}{x^{2}}\)
e. \(F^{\prime}(x)=\frac{1}{x^{3}} \quad\) f. \(F^{\prime}(x)=\cos x\)

What strategy did you use to find \(F\) ?
- Write the general solution of a differential equation.
- Use indefinite integral notation for antiderivatives.
- Use basic integration rules to find antiderivatives.
- Find a particular solution of a differential equation.

\section*{Antiderivatives}

Suppose you were asked to find a function \(F\) whose derivative is \(f(x)=3 x^{2}\). From your knowledge of derivatives, you would probably say that
\[
F(x)=x^{3} \text { because } \frac{d}{d x}\left[x^{3}\right]=3 x^{2}
\]

The function \(F\) is an antiderivative of \(f\).

\section*{DEFINITION OF ANTIDERIVATIVE}

A function \(F\) is an antiderivative of \(f\) on an interval \(I\) if \(F^{\prime}(x)=f(x)\) for all \(x\) in \(I\).

Note that \(F\) is called an antiderivative of \(f\), rather than the antiderivative of \(f\). To see why, observe that
\[
F_{1}(x)=x^{3}, \quad F_{2}(x)=x^{3}-5, \quad \text { and } \quad F_{3}(x)=x^{3}+97
\]
are all antiderivatives of \(f(x)=3 x^{2}\). In fact, for any constant \(C\), the function given by \(F(x)=x^{3}+C\) is an antiderivative of \(f\).

\section*{THEOREM 4.1 REPRESENTATION OF ANTIDERIVATIVES}

If \(F\) is an antiderivative of \(f\) on an interval \(I\), then \(G\) is an antiderivative of \(f\) on the interval \(I\) if and only if \(G\) is of the form \(G(x)=F(x)+C\), for all \(x\) in \(I\) where \(C\) is a constant.

PROOF The proof of Theorem 4.1 in one direction is straightforward. That is, if \(G(x)=F(x)+C, F^{\prime}(x)=f(x)\), and \(C\) is a constant, then
\[
G^{\prime}(x)=\frac{d}{d x}[F(x)+C]=F^{\prime}(x)+0=f(x)
\]

To prove this theorem in the other direction, assume that \(G\) is an antiderivative of \(f\). Define a function \(H\) such that
\[
H(x)=G(x)-F(x)
\]

For any two points \(a\) and \(b(a<b)\) in the interval, \(H\) is continuous on \([a, b]\) and differentiable on \((a, b)\). By the Mean Value Theorem,
\[
H^{\prime}(c)=\frac{H(b)-H(a)}{b-a}
\]
for some \(c\) in \((a, b)\). However, \(H^{\prime}(c)=0\), so \(H(a)=H(b)\). Because \(a\) and \(b\) are arbitrary points in the interval, you know that \(H\) is a constant function \(C\). So, \(G(x)-F(x)=C\) and it follows that \(G(x)=F(x)+C\).


Functions of the form \(y=2 x+C\) Figure 4.1

NOTE In this text, the notation \(\int f(x) d x=F(x)+C\) means that \(F\) is an antiderivative of \(f\) on an interval.

Using Theorem 4.1, you can represent the entire family of antiderivatives of a function by adding a constant to a known antiderivative. For example, knowing that \(D_{x}\left[x^{2}\right]=2 x\), you can represent the family of all antiderivatives of \(f(x)=2 x\) by
\[
G(x)=x^{2}+C \quad \text { Family of all antiderivatives of } f(x)=2 x
\]
where \(C\) is a constant. The constant \(C\) is called the constant of integration. The family of functions represented by \(G\) is the general antiderivative of \(f\), and \(G(x)=x^{2}+C\) is the general solution of the differential equation
\[
G^{\prime}(x)=2 x . \quad \text { Differential equation }
\]

A differential equation in \(x\) and \(y\) is an equation that involves \(x, y\), and derivatives of \(y\). For instance, \(y^{\prime}=3 x\) and \(y^{\prime}=x^{2}+1\) are examples of differential equations.

\section*{EXAMPLE 1 Solving a Differential Equation}

Find the general solution of the differential equation \(y^{\prime}=2\).
Solution To begin, you need to find a function whose derivative is 2 . One such function is
\[
y=2 x . \quad 2 x \text { is an antiderivative of } 2 .
\]

Now, you can use Theorem 4.1 to conclude that the general solution of the differential equation is
\[
y=2 x+C . \quad \text { General solution }
\]

The graphs of several functions of the form \(y=2 x+C\) are shown in Figure 4.1.

\section*{Notation for Antiderivatives}

When solving a differential equation of the form
\[
\frac{d y}{d x}=f(x)
\]
it is convenient to write it in the equivalent differential form
\[
d y=f(x) d x
\]

The operation of finding all solutions of this equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign \(\int\). The general solution is denoted by


The expression \(\int f(x) d x\) is read as the antiderivative of \(f\) with respect to \(x\). So, the differential \(d x\) serves to identify \(x\) as the variable of integration. The term indefinite integral is a synonym for antiderivative.

\section*{Basic Integration Rules}

The inverse nature of integration and differentiation can be verified by substituting \(F^{\prime}(x)\) for \(f(x)\) in the indefinite integration definition to obtain
\[
\int F^{\prime}(x) d x=F(x)+C
\]

Integration is the "inverse" of differentiation.

Moreover, if \(\int f(x) d x=F(x)+C\), then
\[
\frac{d}{d x}\left[\int f(x) d x\right]=f(x)
\]

Differentiation is the "inverse" of integration.

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

\section*{BASIC INTEGRATION RULES}

Differentiation Formula
\(\frac{d}{d x}[C]=0\)
\(\frac{d}{d x}[k x]=k\)
\(\frac{d}{d x}[k f(x)]=k f^{\prime}(x)\)
\(\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)\)
\(\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}\)
\(\frac{d}{d x}[\sin x]=\cos x\)
\(\frac{d}{d x}[\cos x]=-\sin x\)
\(\frac{d}{d x}[\tan x]=\sec ^{2} x\)
\(\frac{d}{d x}[\sec x]=\sec x \tan x\)
\(\frac{d}{d x}[\cot x]=-\csc ^{2} x\)
\(\frac{d}{d x}[\csc x]=-\csc x \cot x\)
\[
\begin{aligned}
& \text { Integration Formula } \\
& \int 0 d x=C \\
& \int k d x=k x+C \\
& \int k f(x) d x=k \int f(x) d x \\
& \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1 \\
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec { }^{2} x d x=\tan x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \csc { }^{2} x d x=-\cot x+C \\
& \int \csc x \cot x d x=-\csc x+C
\end{aligned}
\]

NOTE Note that the Power Rule for Integration has the restriction that \(n \neq-1\). The evaluation of \(\int 1 / x d x\) must wait until the introduction of the natural logarithmic function in Chapter 5.

\section*{EXAMPLE 2 Applying the Basic Integration Rules}

Describe the antiderivatives of \(3 x\).
\[
\text { Solution } \begin{aligned}
\int 3 x d x & =3 \int x d x & & \text { Constant Multiple Rule } \\
& =3 \int x^{1} d x & & \text { Rewrite } x \text { as } x^{1} . \\
& =3\left(\frac{x^{2}}{2}\right)+C & & \text { Power Rule }(n=1) \\
& =\frac{3}{2} x^{2}+C & & \text { Simplify. }
\end{aligned}
\]

So, the antiderivatives of \(3 x\) are of the form \(\frac{3}{2} x^{2}+C\), where \(C\) is any constant.

When indefinite integrals are evaluated, a strict application of the basic integration rules tends to produce complicated constants of integration. For instance, in Example 2, you could have written
\[
\int 3 x d x=3 \int x d x=3\left(\frac{x^{2}}{2}+C\right)=\frac{3}{2} x^{2}+3 C
\]

However, because \(C\) represents any constant, it is both cumbersome and unnecessary to write \(3 C\) as the constant of integration. So, \(\frac{3}{2} x^{2}+3 C\) is written in the simpler form, \(\frac{3}{2} x^{2}+C\).

In Example 2, note that the general pattern of integration is similar to that of differentiation.
Original integral \(\square\) Rewrite \(\square\) Integrate \(\square\) Simplify

\section*{CeXAmple 3 Rewriting Before Integrating}

TECHNOLOGY Some software programs, such as Maple, Mathematica, and the TI-89, are capable of performing integration symbolically. If you have access to such a symbolic integration utility, try using it to evaluate the indefinite integrals in Example 3.
Original Integral
a. \(\int \frac{1}{x^{3}} d x\)
Rewrite
Integrate
Simplify
b. \(\int \sqrt{x} d x\)
\(\int x^{-3} d x\)
\(\frac{x^{-2}}{-2}+C\)
\(-\frac{1}{2 x^{2}}+C\)
c. \(\int 2 \sin x d x\)
\(\int x^{1 / 2} d x\)
\(2 \int \sin x d x\)
\(\frac{x^{3 / 2}}{3 / 2}+C\)
\(\frac{2}{3} x^{3 / 2}+C\)
\(2(-\cos x)+C\)
\(-2 \cos x+C\)

Remember that you can check your answer to an antidifferentiation problem by differentiating. For instance, in Example 3(b), you can check that \(\frac{2}{3} x^{3 / 2}+C\) is the correct antiderivative by differentiating the answer to obtain
\[
D_{x}\left[\frac{2}{3} x^{3 / 2}+C\right]=\left(\frac{2}{3}\right)\left(\frac{3}{2}\right) x^{1 / 2}=\sqrt{x} . \quad \text { Use differentiation to check antiderivative. }
\]

The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.

STUDY TIP Remember that you can check your answer by differentiating.

The basic integration rules listed on page 250 allow you to integrate any polynomial function, as shown in Example 4.

\section*{EXAMPLE 4 Integrating Polynomial Functions}
a. \(\int d x=\int 1 d x\) Integrand is understood to be 1 .
\[
=x+C \quad \text { Integrate }
\]
b. \(\int(x+2) d x=\int x d x+\int 2 d x\)
\(=\frac{x^{2}}{2}+C_{1}+2 x+C_{2} \quad\) Integrate.
\(=\frac{x^{2}}{2}+2 x+C\)
\(C=C_{1}+C_{2}\)
The second line in the solution is usually omitted.
c. \(\int\left(3 x^{4}-5 x^{2}+x\right) d x=3\left(\frac{x^{5}}{5}\right)-5\left(\frac{x^{3}}{3}\right)+\frac{x^{2}}{2}+C \quad\) Integrate.
\[
=\frac{3}{5} x^{5}-\frac{5}{3} x^{3}+\frac{1}{2} x^{2}+C \quad \text { Simplify }
\]

\section*{EXAMPLE 5 Rewriting Before Integrating}
\[
\begin{array}{rlrl}
\int \frac{x+1}{\sqrt{x}} d x & =\int\left(\frac{x}{\sqrt{x}}+\frac{1}{\sqrt{x}}\right) d x & & \text { Rewrite as two fractions. } \\
& =\int\left(x^{1 / 2}+x^{-1 / 2}\right) d x & & \begin{array}{l}
\text { Rewrite with fractional } \\
\text { exponents. }
\end{array} \\
& =\frac{x^{3 / 2}}{3 / 2}+\frac{x^{1 / 2}}{1 / 2}+C & & \text { Integrate. } \\
& =\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C & & \text { Simplify. } \\
& =\frac{2}{3} \sqrt{x}(x+3)+C &
\end{array}
\]

NOTE When integrating quotients, do not integrate the numerator and denominator separately. This is no more valid in integration than it is in differentiation. For instance, in Example 5, be sure you understand that
\[
\int \frac{x+1}{\sqrt{x}} d x=\frac{2}{3} \sqrt{x}(x+3)+C \text { is not the same as } \frac{\int(x+1) d x}{\int \sqrt{x} d x}=\frac{\frac{1}{2} x^{2}+x+C_{1}}{\frac{2}{3} x \sqrt{x}+C_{2}} .
\]

\section*{EXAMPLE 6 Rewriting Before Integrating}
\[
\begin{array}{rlrl}
\int \frac{\sin x}{\cos ^{2} x} d x & =\int\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) d x & & \text { Rewrite as a product. } \\
& =\int \sec x \tan x d x & & \text { Rewrite using trigonometric } \\
& =\sec x+C & & \text { identities. } \\
\text { Integrate. }
\end{array}
\]


The particular solution that satisfies the initial condition \(F(2)=4\) is \(F(x)=x^{3}-x-2\). Figure 4.2


The particular solution that satisfies the initial condition \(F(1)=0\) is \(F(x)=-(1 / x)+1\), \(x>0\).
Figure 4.3

\section*{Initial Conditions and Particular Solutions}

You have already seen that the equation \(y=\int f(x) d x\) has many solutions (each differing from the others by a constant). This means that the graphs of any two antiderivatives of \(f\) are vertical translations of each other. For example, Figure 4.2 shows the graphs of several antiderivatives of the form
\[
y=\int\left(3 x^{2}-1\right) d x=x^{3}-x+C \quad \text { General solution }
\]
for various integer values of \(C\). Each of these antiderivatives is a solution of the differential equation
\[
\frac{d y}{d x}=3 x^{2}-1
\]

In many applications of integration, you are given enough information to determine a particular solution. To do this, you need only know the value of \(y=F(x)\) for one value of \(x\). This information is called an initial condition. For example, in Figure 4.2, only one curve passes through the point \((2,4)\). To find this curve, you can use the following information.
\[
\begin{array}{ll}
F(x)=x^{3}-x+C & \text { General solution } \\
F(2)=4 & \text { Initial condition }
\end{array}
\]

By using the initial condition in the general solution, you can determine that \(F(2)=8-2+C=4\), which implies that \(C=-2\). So, you obtain
\[
F(x)=x^{3}-x-2 . \quad \text { Particular solution }
\]

\section*{EXAMPLE 7 Finding a Particular Solution}

Find the general solution of
\[
F^{\prime}(x)=\frac{1}{x^{2}}, \quad x>0
\]
and find the particular solution that satisfies the initial condition \(F(1)=0\).
Solution To find the general solution, integrate to obtain
\[
\begin{aligned}
F(x) & =\int \frac{1}{x^{2}} d x & & F(x)=\int F^{\prime}(x) d x \\
& =\int x^{-2} d x & & \text { Rewrite as a power. } \\
& =\frac{x^{-1}}{-1}+C & & \text { Integrate. } \\
& =-\frac{1}{x}+C, \quad x>0 . & & \text { General solution }
\end{aligned}
\]

Using the initial condition \(F(1)=0\), you can solve for \(C\) as follows.
\[
F(1)=-\frac{1}{1}+C=0 \quad \square \quad C=1
\]

So, the particular solution, as shown in Figure 4.3, is
\[
F(x)=-\frac{1}{x}+1, \quad x>0 . \quad \text { Particular solution }
\]


Height of a ball at time \(t\)
Figure 4.4

NOTE In Example 8, note that the position function has the form
\[
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
\]
where \(g=-32, v_{0}\) is the initial velocity, and \(s_{0}\) is the initial height, as presented in Section 2.2.

So far in this section you have been using \(x\) as the variable of integration. In applications, it is often convenient to use a different variable. For instance, in the following example involving time, the variable of integration is \(t\).

\section*{EXAMPLE 8 Solving a Vertical Motion Problem}

A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet.
a. Find the position function giving the height \(s\) as a function of the time \(t\).
b. When does the ball hit the ground?

\section*{Solution}
a. Let \(t=0\) represent the initial time. The two given initial conditions can be written as follows.
\[
\begin{array}{rlr}
s(0)=80 & \text { Initial height is } 80 \text { feet. } \\
s^{\prime}(0)=64 & \text { Initial velocity is } 64 \text { feet per second. }
\end{array}
\]

Using -32 feet per second per second as the acceleration due to gravity, you can write
\[
\begin{aligned}
& s^{\prime \prime}(t)=-32 \\
& s^{\prime}(t)=\int s^{\prime \prime}(t) d t=\int-32 d t=-32 t+C_{1}
\end{aligned}
\]

Using the initial velocity, you obtain \(s^{\prime}(0)=64=-32(0)+C_{1}\), which implies that \(C_{1}=64\). Next, by integrating \(s^{\prime}(t)\), you obtain
\[
s(t)=\int s^{\prime}(t) d t=\int(-32 t+64) d t=-16 t^{2}+64 t+C_{2}
\]

Using the initial height, you obtain
\[
s(0)=80=-16\left(0^{2}\right)+64(0)+C_{2}
\]
which implies that \(C_{2}=80\). So, the position function is
\[
s(t)=-16 t^{2}+64 t+80 . \quad \text { See Figure 4.4 }
\]
b. Using the position function found in part (a), you can find the time at which the ball hits the ground by solving the equation \(s(t)=0\).
\[
\begin{aligned}
s(t)=-16 t^{2}+64 t+80 & =0 \\
-16(t+1)(t-5) & =0 \\
t & =-1,5
\end{aligned}
\]

Because \(t\) must be positive, you can conclude that the ball hits the ground 5 seconds after it was thrown.

Example 8 shows how to use calculus to analyze vertical motion problems in which the acceleration is determined by a gravitational force. You can use a similar strategy to analyze other linear motion problems (vertical or horizontal) in which the acceleration (or deceleration) is the result of some other force, as you will see in Exercises 81-89.

Before you begin the exercise set, be sure you realize that one of the most important steps in integration is rewriting the integrand in a form that fits the basic integration rules. To illustrate this point further, here are some additional examples.
\[
\begin{array}{llll}
\frac{\text { Original Integral }}{\int 2} & \frac{\text { Rewrite }}{} & \text { Integrate } & \text { Simplify } \\
\int \frac{2}{\sqrt{x}} d x & 2 \int x^{-1 / 2} d x & 2\left(\frac{x^{1 / 2}}{1 / 2}\right)+C & 4 x^{1 / 2}+C \\
\int\left(t^{2}+1\right)^{2} d t & \int\left(t^{4}+2 t^{2}+1\right) d t & \frac{t^{5}}{5}+2\left(\frac{t^{3}}{3}\right)+t+C & \frac{1}{5} t^{5}+\frac{2}{3} t^{3}+t+C \\
\int \frac{x^{3}+3}{x^{2}} d x & \int\left(x+3 x^{-2}\right) d x & \frac{x^{2}}{2}+3\left(\frac{x^{-1}}{-1}\right)+C & \frac{1}{2} x^{2}-\frac{3}{x}+C \\
\int \sqrt[3]{x}(x-4) d x & \int\left(x^{4 / 3}-4 x^{1 / 3}\right) d x & \frac{x^{7 / 3}}{7 / 3}-4\left(\frac{x^{4 / 3}}{4 / 3}\right)+C & \frac{3}{7} x^{7 / 3}-3 x^{4 / 3}
\end{array}
\]

\subsection*{4.1 Exercises}

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, verify the statement by showing that the derivative of the right side equals the integrand of the left side.
1. \(\int\left(-\frac{6}{x^{4}}\right) d x=\frac{2}{x^{3}}+C\)
2. \(\int\left(8 x^{3}+\frac{1}{2 x^{2}}\right) d x=2 x^{4}-\frac{1}{2 x}+C\)
3. \(\int(x-4)(x+4) d x=\frac{1}{3} x^{3}-16 x+C\)
4. \(\int \frac{x^{2}-1}{x^{3 / 2}} d x=\frac{2\left(x^{2}+3\right)}{3 \sqrt{x}}+C\)

In Exercises 5-8, find the general solution of the differential equation and check the result by differentiation.
5. \(\frac{d y}{d t}=9 t^{2}\)
6. \(\frac{d r}{d \theta}=\pi\)
7. \(\frac{d y}{d x}=x^{3 / 2}\)
8. \(\frac{d y}{d x}=2 x^{-3}\)

In Exercises 9-14, complete the table.
\(\frac{\text { Original Integral }}{\text { Rewrite }}\) Integrate Simplify
9. \(\int \sqrt[3]{x} d x\)
10. \(\int \frac{1}{4 x^{2}} d x\)
11. \(\int \frac{1}{x \sqrt{x}} d x\)
12. \(\int x\left(x^{3}+1\right) d x\)
13. \(\int \frac{1}{2 x^{3}} d x\)
14. \(\int \frac{1}{(3 x)^{2}} d x\)

In Exercises 15-34, find the indefinite integral and check the result by differentiation.
15. \(\int(x+7) d x\)
16. \(\int(13-x) d x\)
17. \(\int\left(2 x-3 x^{2}\right) d x\)
18. \(\int\left(8 x^{3}-9 x^{2}+4\right) d x\)
19. \(\int\left(x^{5}+1\right) d x\)
20. \(\int\left(x^{3}-10 x-3\right) d x\)
21. \(\int\left(x^{3 / 2}+2 x+1\right) d x\)
22. \(\int\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x\)
23. \(\int \sqrt[3]{x^{2}} d x\)
24. \(\int\left(\sqrt[4]{x^{3}}+1\right) d x\)
25. \(\int \frac{1}{x^{5}} d x\)
26. \(\int \frac{1}{x^{6}} d x\)
27. \(\int \frac{x+6}{\sqrt{x}} d x\)
28. \(\int \frac{x^{2}+2 x-3}{x^{4}} d x\)
29. \(\int(x+1)(3 x-2) d x\)
30. \(\int\left(2 t^{2}-1\right)^{2} d t\)
31. \(\int y^{2} \sqrt{y} d y\)
32. \(\int(1+3 t) t^{2} d t\)
33. \(\int d x\)
34. \(\int 14 d t\)

In Exercises 35-44, find the indefinite integral and check the result by differentiation.
35. \(\int(5 \cos x+4 \sin x) d x\)
36. \(\int\left(t^{2}-\cos t\right) d t\)
37. \(\int(1-\csc t \cot t) d t\)
38. \(\int\left(\theta^{2}+\sec ^{2} \theta\right) d \theta\)
39. \(\int\left(\sec ^{2} \theta-\sin \theta\right) d \theta\)
40. \(\int \sec y(\tan y-\sec y) d y\)
41. \(\int\left(\tan ^{2} y+1\right) d y\)
42. \(\int\left(4 x-\csc ^{2} x\right) d x\)
43. \(\int \frac{\cos x}{1-\cos ^{2} x} d x\)
44. \(\int \frac{\sin x}{1-\sin ^{2} x} d x\)

In Exercises 45-48, the graph of the derivative of a function is given. Sketch the graphs of two functions that have the given derivative. (There is more than one correct answer.) To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
45.

46.

47.

48.


In Exercises 49 and 50, find the equation of \(y\), given the derivative and the indicated point on the curve.
49. \(\frac{d y}{d x}=2 x-1\)
50. \(\frac{d y}{d x}=2(x-1)\)



Slope Fields In Exercises 51-54, a differential equation, a point, and a slope field are given. A slope field (or direction field) consists of line segments with slopes given by the differential equation. These line segments give a visual perspective of the slopes of the solutions of the differential equation. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the indicated point. (To print an enlarged copy of the graph, go to the website www.mathgraphs.com.) (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a).
51. \(\frac{d y}{d x}=\frac{1}{2} x-1,(4,2)\) 52. \(\frac{d y}{d x}=x^{2}-1,(-1,3)\)


53. \(\frac{d y}{d x}=\cos x,(0,4)\)

54. \(\frac{d y}{d x}=-\frac{1}{x^{2}}, x>0,(1,3)\)


Slope Fields In Exercises 55 and 56, (a) use a graphing utility to graph a slope field for the differential equation, (b) use integration and the given point to find the particular solution of the differential equation, and (c) graph the solution and the slope field in the same viewing window.
55. \(\frac{d y}{d x}=2 x,(-2,-2)\)
56. \(\frac{d y}{d x}=2 \sqrt{x},(4,12)\)

In Exercises 57-64, solve the differential equation.
57. \(f^{\prime}(x)=6 x, f(0)=8\)
58. \(g^{\prime}(x)=6 x^{2}, g(0)=-1\)
59. \(h^{\prime}(t)=8 t^{3}+5, h(1)=-4\)
60. \(f^{\prime}(s)=10 s-12 s^{3}, f(3)=2\)
61. \(f^{\prime \prime}(x)=2, f^{\prime}(2)=5, f(2)=10\)
62. \(f^{\prime \prime}(x)=x^{2}, f^{\prime}(0)=8, f(0)=4\)
63. \(f^{\prime \prime}(x)=x^{-3 / 2}, f^{\prime}(4)=2, f(0)=0\)
64. \(f^{\prime \prime}(x)=\sin x, f^{\prime}(0)=1, f(0)=6\)
65. Tree Growth An evergreen nursery usually sells a certain type of shrub after 6 years of growth and shaping. The growth rate during those 6 years is approximated by \(d h / d t=1.5 t+5\), where \(t\) is the time in years and \(h\) is the height in centimeters. The seedlings are 12 centimeters tall when planted \((t=0)\).
(a) Find the height after \(t\) years.
(b) How tall are the shrubs when they are sold?
66. Population Growth The rate of growth \(d P / d t\) of a population of bacteria is proportional to the square root of \(t\), where \(P\) is the population size and \(t\) is the time in days \((0 \leq t \leq 10)\). That is, \(d P / d t=k \sqrt{t}\). The initial size of the population is 500 . After 1 day the population has grown to 600 . Estimate the population after 7 days.

\section*{WRITING ABOUT CONCEPTS}
67. What is the difference, if any, between finding the antiderivative of \(f(x)\) and evaluating the integral \(\int f(x) d x\) ?
68. Consider \(f(x)=\tan ^{2} x\) and \(g(x)=\sec ^{2} x\). What do you notice about the derivatives of \(f(x)\) and \(g(x)\) ? What can you conclude about the relationship between \(f(x)\) and \(g(x)\) ?
69. The graphs of \(f\) and \(f^{\prime}\) each pass through the origin. Use the graph of \(f^{\prime \prime}\) shown in the figure to sketch the graphs of \(f\) and \(f^{\prime}\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com


\section*{CAPSTONE}
70. Use the graph of \(f^{\prime}\) shown in the figure to answer the following, given that \(f(0)=-4\).

(a) Approximate the slope of \(f\) at \(x=4\). Explain.
(b) Is it possible that \(f(2)=-1\) ? Explain.
(c) Is \(f(5)-f(4)>0\) ? Explain.
(d) Approximate the value of \(x\) where \(f\) is maximum. Explain.
(e) Approximate any intervals in which the graph of \(f\) is concave upward and any intervals in which it is concave downward. Approximate the \(x\)-coordinates of any points of inflection.
(f) Approximate the \(x\)-coordinate of the minimum of \(f^{\prime \prime}(x)\).
(g) Sketch an approximate graph of \(f\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

Vertical Motion In Exercises 71-74, use \(a(t)=\mathbf{- 3 2}\) feet per second per second as the acceleration due to gravity. (Neglect air resistance.)
71. A ball is thrown vertically upward from a height of 6 feet with an initial velocity of 60 feet per second. How high will the ball go?
72. Show that the height above the ground of an object thrown upward from a point \(s_{0}\) feet above the ground with an initial velocity of \(v_{0}\) feet per second is given by the function
\(f(t)=-16 t^{2}+v_{0} t+s_{0}\).
73. With what initial velocity must an object be thrown upward (from ground level) to reach the top of the Washington Monument (approximately 550 feet)?
74. A balloon, rising vertically with a velocity of 16 feet per second, releases a sandbag at the instant it is 64 feet above the ground.
(a) How many seconds after its release will the bag strike the ground?
(b) At what velocity will it hit the ground?

Vertical Motion In Exercises 75-78, use \(a(t)=\mathbf{- 9 . 8}\) meters per second per second as the acceleration due to gravity. (Neglect air resistance.)
75. Show that the height above the ground of an object thrown upward from a point \(s_{0}\) meters above the ground with an initial velocity of \(v_{0}\) meters per second is given by the function
\(f(t)=-4.9 t^{2}+v_{0} t+s_{0}\).
76. The Grand Canyon is 1800 meters deep at its deepest point. A rock is dropped from the rim above this point. Write the height of the rock as a function of the time \(t\) in seconds. How long will it take the rock to hit the canyon floor?
77. A baseball is thrown upward from a height of 2 meters with an initial velocity of 10 meters per second. Determine its maximum height.
78. With what initial velocity must an object be thrown upward (from a height of 2 meters) to reach a maximum height of 200 meters?
79. Lunar Gravity On the moon, the acceleration due to gravity is -1.6 meters per second per second. A stone is dropped from a cliff on the moon and hits the surface of the moon 20 seconds later. How far did it fall? What was its velocity at impact?
80. Escape Velocity The minimum velocity required for an object to escape Earth's gravitational pull is obtained from the solution of the equation
\(\int v d v=-G M \int \frac{1}{y^{2}} d y\)
where \(v\) is the velocity of the object projected from Earth, \(y\) is the distance from the center of Earth, \(G\) is the gravitational constant, and \(M\) is the mass of Earth. Show that \(v\) and \(y\) are related by the equation
\(v^{2}=v_{0}^{2}+2 G M\left(\frac{1}{y}-\frac{1}{R}\right)\)
where \(v_{0}\) is the initial velocity of the object and \(R\) is the radius of Earth.

Rectilinear Motion In Exercises 81-84, consider a particle moving along the \(x\)-axis where \(x(t)\) is the position of the particle at time \(t, x^{\prime}(t)\) is its velocity, and \(x^{\prime \prime}(t)\) is its acceleration.
81. \(x(t)=t^{3}-6 t^{2}+9 t-2, \quad 0 \leq t \leq 5\)
(a) Find the velocity and acceleration of the particle.
(b) Find the open \(t\)-intervals on which the particle is moving to the right.
(c) Find the velocity of the particle when the acceleration is 0 .
82. Repeat Exercise 81 for the position function
\(x(t)=(t-1)(t-3)^{2}, 0 \leq t \leq 5\)
83. A particle moves along the \(x\)-axis at a velocity of \(v(t)=1 / \sqrt{t}\), \(t>0\). At time \(t=1\), its position is \(x=4\). Find the acceleration and position functions for the particle.
84. A particle, initially at rest, moves along the \(x\)-axis such that its acceleration at time \(t>0\) is given by \(a(t)=\cos t\). At the time \(t=0\), its position is \(x=3\).
(a) Find the velocity and position functions for the particle.
(b) Find the values of \(t\) for which the particle is at rest.
85. Acceleration The maker of an automobile advertises that it takes 13 seconds to accelerate from 25 kilometers per hour to 80 kilometers per hour. Assuming constant acceleration, compute the following.
(a) The acceleration in meters per second per second
(b) The distance the car travels during the 13 seconds
86. Deceleration A car traveling at 45 miles per hour is brought to a stop, at constant deceleration, 132 feet from where the brakes are applied.
(a) How far has the car moved when its speed has been reduced to 30 miles per hour?
(b) How far has the car moved when its speed has been reduced to 15 miles per hour?
(c) Draw the real number line from 0 to 132 , and plot the points found in parts (a) and (b). What can you conclude?
87. Acceleration At the instant the traffic light turns green, a car that has been waiting at an intersection starts with a constant acceleration of 6 feet per second per second. At the same instant, a truck traveling with a constant velocity of 30 feet per second passes the car.
(a) How far beyond its starting point will the car pass the truck?
(b) How fast will the car be traveling when it passes the truck?
88. Acceleration Assume that a fully loaded plane starting from rest has a constant acceleration while moving down a runway. The plane requires 0.7 mile of runway and a speed of 160 miles per hour in order to lift off. What is the plane's acceleration?
89. Airplane Separation Two airplanes are in a straight-line landing pattern and, according to FAA regulations, must keep at least a three-mile separation. Airplane A is 10 miles from touchdown and is gradually decreasing its speed from 150 miles per hour to a landing speed of 100 miles per hour. Airplane B is 17 miles from touchdown and is gradually decreasing its speed from 250 miles per hour to a landing speed of 115 miles per hour.
(a) Assuming the deceleration of each airplane is constant, find the position functions \(s_{A}\) and \(s_{B}\) for airplane A and airplane B. Let \(t=0\) represent the times when the airplanes are 10 and 17 miles from the airport.
(b) Use a graphing utility to graph the position functions.
(c) Find a formula for the magnitude of the distance \(d\) between the two airplanes as a function of \(t\). Use a graphing utility to graph \(d\). Is \(d<3\) for some time prior to the landing of airplane A? If so, find that time.

True or False? In Exercises 90-95, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
90. Each antiderivative of an \(n\) th-degree polynomial function is an \((n+1)\) th-degree polynomial function.
91. If \(p(x)\) is a polynomial function, then \(p\) has exactly one antiderivative whose graph contains the origin.
92. If \(F(x)\) and \(G(x)\) are antiderivatives of \(f(x)\), then \(F(x)=G(x)+C\).
93. If \(f^{\prime}(x)=g(x)\), then \(\int g(x) d x=f(x)+C\).
94. \(\int f(x) g(x) d x=\int f(x) d x \int g(x) d x\)
95. The antiderivative of \(f(x)\) is unique.
96. Find a function \(f\) such that the graph of \(f\) has a horizontal tangent at \((2,0)\) and \(f^{\prime \prime}(x)=2 x\).
97. The graph of \(f^{\prime}\) is shown. Sketch the graph of \(f\) given that \(f\) is continuous and \(f(0)=1\).

98. If \(f^{\prime}(x)=\left\{\begin{array}{rl}1, & 0 \leq x<2 \\ 3 x, & 2 \leq x \leq 5\end{array}, f\right.\) is continuous, and \(f(1)=3\), find \(f\). Is \(f\) differentiable at \(x=2\) ?
99. Let \(s(x)\) and \(c(x)\) be two functions satisfying \(s^{\prime}(x)=c(x)\) and \(c^{\prime}(x)=-s(x)\) for all \(x\). If \(s(0)=0\) and \(c(0)=1\), prove that \([s(x)]^{2}+[c(x)]^{2}=1\).

\section*{PUTNAM EXAM CHALLENGE}
100. Suppose \(f\) and \(g\) are nonconstant, differentiable, real-valued functions on \(R\). Furthermore, suppose that for each pair of real numbers \(x\) and \(y, f(x+y)=f(x) f(y)-g(x) g(y)\) and \(g(x+y)=f(x) g(y)+g(x) f(y)\). If \(f^{\prime}(0)=0\), prove that \((f(x))^{2}+(g(x))^{2}=1\) for all \(x\).
This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{4.2 Area}

FOR FURTHER INFORMATION For a geometric interpretation of summation formulas, see the article, "Looking at \(\sum_{k=1}^{n} k\) and \(\sum_{k=1}^{n} k^{2}\) Geometrically" by Eric Hegblom in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{- Use sigma notation to write and evaluate a sum. \\ - Understand the concept of area. \\ Approximate the area of a plane region. \\ Find the area of a plane region using limits.}

\section*{Sigma Notation}

In the preceding section, you studied antidifferentiation. In this section, you will look further into a problem introduced in Section 1.1-that of finding the area of a region in the plane. At first glance, these two ideas may seem unrelated, but you will discover in Section 4.4 that they are closely related by an extremely important theorem called the Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is called sigma notation because it uses the uppercase Greek letter sigma, written as \(\Sigma\).

\section*{SIGMA NOTATION}

The sum of \(n\) terms \(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\) is written as
\[
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
\]
where \(i\) is the index of summation, \(a_{i}\) is the \(\boldsymbol{i}\) th term of the sum, and the upper and lower bounds of summation are \(n\) and 1 .

NOTE The upper and lower bounds must be constant with respect to the index of summation. However, the lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

\section*{EXAMPLE 1 Examples of Sigma Notation}
a. \(\sum_{i=1}^{6} i=1+2+3+4+5+6\)
b. \(\sum_{i=0}^{5}(i+1)=1+2+3+4+5+6\)
c. \(\sum_{j=3}^{7} j^{2}=3^{2}+4^{2}+5^{2}+6^{2}+7^{2}\)
d. \(\sum_{k=1}^{n} \frac{1}{n}\left(k^{2}+1\right)=\frac{1}{n}\left(1^{2}+1\right)+\frac{1}{n}\left(2^{2}+1\right)+\cdots+\frac{1}{n}\left(n^{2}+1\right)\)
e. \(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\)

From parts (a) and (b), notice that the same sum can be represented in different ways using sigma notation.

Although any variable can be used as the index of summation \(i, j\), and \(k\) are often used. Notice in Example 1 that the index of summation does not appear in the terms of the expanded sum.

\section*{THE SUM OF THE FIRST 100 INTEGERS}

A teacher of Carl Friedrich Gauss (1777-1855) asked him to add all the integers from 1 to 100. When Gauss returned with the correct answer after only a few moments, the teacher could only look at him in astounded silence.
This is what Gauss did:
\begin{tabular}{r}
\(1+2+3+\cdots \cdots+100\) \\
\(100+99+98+\cdots+r\) \\
\hline \(101+101+101+\cdots\)
\end{tabular}

This is generalized by Theorem 4.2, where
\(\sum_{t=1}^{100} i=\frac{100(101)}{2}=5050\).
\begin{tabular}{|l|c|}
\hline\(n\) & \(\sum_{i=1}^{n} \frac{i+1}{n^{2}}=\frac{n+3}{2 n}\) \\
\hline 10 & 0.65000 \\
\hline 100 & 0.51500 \\
\hline 1,000 & 0.50150 \\
\hline 10,000 & 0.50015 \\
\hline
\end{tabular}

The following properties of summation can be derived using the associative and commutative properties of addition and the distributive property of addition over multiplication. (In the first property, \(k\) is a constant.)
1. \(\sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i}\)
2. \(\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}\)

The next theorem lists some useful formulas for sums of powers. A proof of this theorem is given in Appendix A.

\section*{THEOREM 4.2 SUMMATION FORMULAS}
1. \(\sum_{i=1}^{n} c=c n\)
2. \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)
3. \(\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}\)
4. \(\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}\)

\section*{EXAMPLE 2 Evaluating a Sum}

Evaluate \(\sum_{i=1}^{n} \frac{i+1}{n^{2}}\) for \(n=10,100,1000\), and 10,000.
Solution Applying Theorem 4.2, you can write
\[
\begin{aligned}
\sum_{i=1}^{n} \frac{i+1}{n^{2}} & =\frac{1}{n^{2}} \sum_{i=1}^{n}(i+1) & & \text { Factor the constant } 1 / n^{2} \text { out of sum. } \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} i+\sum_{i=1}^{n} 1\right) & & \text { Write as two sums. } \\
& =\frac{1}{n^{2}}\left[\frac{n(n+1)}{2}+n\right] & & \text { Apply Theorem 4.2. } \\
& =\frac{1}{n^{2}}\left[\frac{n^{2}+3 n}{2}\right] & & \text { Simplify. } \\
& =\frac{n+3}{2 n} & & \text { Simplify. }
\end{aligned}
\]

Now you can evaluate the sum by substituting the appropriate values of \(n\), as shown in the table at the left.

In the table, note that the sum appears to approach a limit as \(n\) increases. Although the discussion of limits at infinity in Section 3.5 applies to a variable \(x\), where \(x\) can be any real number, many of the same results hold true for limits involving the variable \(n\), where \(n\) is restricted to positive integer values. So, to find the limit of \((n+3) / 2 n\) as \(n\) approaches infinity, you can write
\[
\lim _{n \rightarrow \infty} \frac{n+3}{2 n}=\lim _{n \rightarrow \infty}\left(\frac{n}{2 n}+\frac{3}{2 n}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{3}{2 n}\right)=\frac{1}{2}+0=\frac{1}{2} .
\]


Triangle: \(A=\frac{1}{2} b h\)
Figure 4.5


FOR FURTHER INFORMATION For an alternative development of the formula for the area of a circle, see the article "Proof Without Words: Area of a Disk is \(\pi R^{2}\) ", by Russell dy Hendel in Mathematics Magazine. To view this article, go to the website www.matharticles.com.

\section*{Area}

In Euclidean geometry, the simplest type of plane region is a rectangle. Although people often say that the formula for the area of a rectangle is \(A=b h\), it is actually more proper to say that this is the definition of the area of a rectangle.

From this definition, you can develop formulas for the areas of many other plane regions. For example, to determine the area of a triangle, you can form a rectangle whose area is twice that of the triangle, as shown in Figure 4.5. Once you know how to find the area of a triangle, you can determine the area of any polygon by subdividing the polygon into triangular regions, as shown in Figure 4.6.


Parallelogram


Hexagon


Polygon

Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient Greeks were able to determine formulas for the areas of some general regions (principally those bounded by conics) by the exhaustion method. The clearest description of this method was given by Archimedes. Essentially, the method is a limiting process in which the area is squeezed between two polygons-one inscribed in the region and one circumscribed about the region.

For instance, in Figure 4.7 the area of a circular region is approximated by an \(n\)-sided inscribed polygon and an \(n\)-sided circumscribed polygon. For each value of \(n\), the area of the inscribed polygon is less than the area of the circle, and the area of the circumscribed polygon is greater than the area of the circle. Moreover, as \(n\) increases, the areas of both polygons become better and better approximations of the area of the circle.


The exhaustion method for finding the area of a circular region
Figure 4.7

A process that is similar to that used by Archimedes to determine the area of a plane region is used in the remaining examples in this section.

(a) The area of the parabolic region is greater than the area of the rectangles.

(b) The area of the parabolic region is less than the area of the rectangles.
Figure 4.8

\section*{The Area of a Plane Region}

Recall from Section 1.1 that the origins of calculus are connected to two classic problems: the tangent line problem and the area problem. Example 3 begins the investigation of the area problem.

\section*{EXAMPLE 3 Approximating the Area of a Plane Region}

Use the five rectangles in Figure 4.8(a) and (b) to find two approximations of the area of the region lying between the graph of
\[
f(x)=-x^{2}+5
\]
and the \(x\)-axis between \(x=0\) and \(x=2\).

\section*{Solution}
a. The right endpoints of the five intervals are \(\frac{2}{5} i\), where \(i=1,2,3,4,5\). The width of each rectangle is \(\frac{2}{5}\), and the height of each rectangle can be obtained by evaluating \(f\) at the right endpoint of each interval.
\[
\left[0, \frac{2}{5}\right],\left[\frac{2}{5}, \frac{4}{5}\right],\left[\frac{4}{5}, \frac{6}{5}\right],\left[\frac{6}{5}, \frac{8}{5}\right],\left[\frac{8}{5}, \frac{10}{5}\right]
\]


The sum of the areas of the five rectangles is
\[
\overbrace{\sum_{i=1}^{5} f\left(\frac{2 i}{5}\right)}^{\text {Height Width }} \overbrace{\left(\frac{2}{5}\right)}=\sum_{i=1}^{5}\left[-\left(\frac{2 i}{5}\right)^{2}+5\right]\left(\frac{2}{5}\right)=\frac{162}{25}=6.48
\]

Because each of the five rectangles lies inside the parabolic region, you can conclude that the area of the parabolic region is greater than 6.48.
b. The left endpoints of the five intervals are \(\frac{2}{5}(i-1)\), where \(i=1,2,3,4,5\). The width of each rectangle is \(\frac{2}{5}\), and the height of each rectangle can be obtained by evaluating \(f\) at the left endpoint of each interval. So, the sum is
\[
\overbrace{\sum_{i=1}^{5} f\left(\frac{2 i-2}{5}\right)}^{\text {Height }} \overbrace{\left(\frac{2}{5}\right)}^{\text {Width }}=\sum_{i=1}^{5}\left[-\left(\frac{2 i-2}{5}\right)^{2}+5\right]\left(\frac{2}{5}\right)=\frac{202}{25}=8.08
\]

Because the parabolic region lies within the union of the five rectangular regions, you can conclude that the area of the parabolic region is less than 8.08.
By combining the results in parts (a) and (b), you can conclude that
\[
6.48<(\text { Area of region })<8.08
\]

NOTE By increasing the number of rectangles used in Example 3, you can obtain closer and closer approximations of the area of the region. For instance, using 25 rectangles of width \(\frac{2}{25}\) each, you can conclude that
\[
7.17<(\text { Area of region })<7.49
\]


The region under a curve
Figure 4.9


The interval \([a, b]\) is divided into \(n\) subintervals of width \(\Delta x=\frac{b-a}{n}\).
Figure 4.10

\section*{Upper and Lower Sums}

The procedure used in Example 3 can be generalized as follows. Consider a plane region bounded above by the graph of a nonnegative, continuous function \(y=f(x)\), as shown in Figure 4.9. The region is bounded below by the \(x\)-axis, and the left and right boundaries of the region are the vertical lines \(x=a\) and \(x=b\).

To approximate the area of the region, begin by subdividing the interval \([a, b]\) into \(n\) subintervals, each of width \(\Delta x=(b-a) / n\), as shown in Figure 4.10. The endpoints of the intervals are as follows.
\[
\overbrace{a+0(\Delta x)}^{a=x_{0}}<\overbrace{a+1(\Delta x)}^{x_{1}}<\overbrace{a+2(\Delta x)}^{x_{2}}<\cdots<\overbrace{a+n(\Delta x)}^{x_{n}=b}
\]

Because \(f\) is continuous, the Extreme Value Theorem guarantees the existence of a minimum and a maximum value of \(f(x)\) in each subinterval.
\[
\begin{aligned}
& f\left(m_{i}\right)=\text { Minimum value of } f(x) \text { in } i \text { th subinterval } \\
& f\left(M_{i}\right)=\text { Maximum value of } f(x) \text { in } i \text { th subinterval }
\end{aligned}
\]

Next, define an inscribed rectangle lying inside the \(i\) th subregion and a circumscribed rectangle extending outside the \(i\) th subregion. The height of the \(i\) th inscribed rectangle is \(f\left(m_{i}\right)\) and the height of the \(i\) th circumscribed rectangle is \(f\left(M_{i}\right)\). For each \(i\), the area of the inscribed rectangle is less than or equal to the area of the circumscribed rectangle.
\[
\binom{\text { Area of inscribed }}{\text { rectangle }}=f\left(m_{i}\right) \Delta x \leq f\left(M_{i}\right) \Delta x=\binom{\text { Area of circumscribed }}{\text { rectangle }}
\]

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of the areas of the circumscribed rectangles is called an upper sum.
\[
\begin{array}{ll}
\text { Lower sum }=s(n)=\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x & \text { Area of inscribed rectangles } \\
\text { Upper sum }=S(n)=\sum_{i=1}^{n} f\left(M_{i}\right) \Delta x & \text { Area of circumscribed rectangles }
\end{array}
\]

From Figure 4.11, you can see that the lower sum \(s(n)\) is less than or equal to the upper sum \(S(n)\). Moreover, the actual area of the region lies between these two sums.
\[
s(n) \leq(\text { Area of region }) \leq S(n)
\]



Inscribed rectangles


Circumscribed rectangles
Figure 4.12

\section*{EXAMPLE 4 Finding Upper and Lower Sums for a Region}

Find the upper and lower sums for the region bounded by the graph of \(f(x)=x^{2}\) and the \(x\)-axis between \(x=0\) and \(x=2\).
Solution To begin, partition the interval [0,2] into \(n\) subintervals, each of width
\[
\Delta x=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n} .
\]

Figure 4.12 shows the endpoints of the subintervals and several inscribed and circumscribed rectangles. Because \(f\) is increasing on the interval [ 0,2 ], the minimum value on each subinterval occurs at the left endpoint, and the maximum value occurs at the right endpoint.

Left Endpoints
\[
m_{i}=0+(i-1)\left(\frac{2}{n}\right)=\frac{2(i-1)}{n}
\]
\[
M_{i}=0+i\left(\frac{2}{n}\right)=\frac{2 i}{n}
\]

Using the left endpoints, the lower sum is
\[
\begin{aligned}
s(n)=\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x & =\sum_{i=1}^{n} f\left[\frac{2(i-1)}{n}\right]\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left[\frac{2(i-1)}{n}\right]^{2}\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left(\frac{8}{n^{3}}\right)\left(i^{2}-2 i+1\right) \\
& =\frac{8}{n^{3}}\left(\sum_{i=1}^{n} i^{2}-2 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1\right) \\
& =\frac{8}{n^{3}}\left\{\frac{n(n+1)(2 n+1)}{6}-2\left[\frac{n(n+1)}{2}\right]+n\right\} \\
& =\frac{4}{3 n^{3}}\left(2 n^{3}-3 n^{2}+n\right) \\
& =\frac{8}{3}-\frac{4}{n}+\frac{4}{3 n^{2}} . \quad \text { Lower sum }
\end{aligned}
\]

Using the right endpoints, the upper sum is
\[
\begin{aligned}
S(n)=\sum_{i=1}^{n} f\left(M_{i}\right) \Delta x & =\sum_{i=1}^{n} f\left(\frac{2 i}{n}\right)\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{2}\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left(\frac{8}{n^{3}}\right) i^{2} \\
& =\frac{8}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right] \\
& =\frac{4}{3 n^{3}}\left(2 n^{3}+3 n^{2}+n\right) \\
& =\frac{8}{3}+\frac{4}{n}+\frac{4}{3 n^{2}} . \quad \text { Upper sum }
\end{aligned}
\]

\section*{EXPLORATION}

For the region given in Example 4, evaluate the lower sum
\[
s(n)=\frac{8}{3}-\frac{4}{n}+\frac{4}{3 n^{2}}
\]
and the upper sum
\[
S(n)=\frac{8}{3}+\frac{4}{n}+\frac{4}{3 n^{2}}
\]
for \(n=10,100\), and 1000. Use your results to determine the area of the region.


The width of the \(i\) th subinterval is
\(\Delta x=x_{i}-x_{i-1}\).
Figure 4.13

Example 4 illustrates some important things about lower and upper sums. First, notice that for any value of \(n\), the lower sum is less than (or equal to) the upper sum.
\[
s(n)=\frac{8}{3}-\frac{4}{n}+\frac{4}{3 n^{2}}<\frac{8}{3}+\frac{4}{n}+\frac{4}{3 n^{2}}=S(n)
\]

Second, the difference between these two sums lessens as \(n\) increases. In fact, if you take the limits as \(n \rightarrow \infty\), both the upper sum and the lower sum approach \(\frac{8}{3}\).
\[
\begin{array}{ll}
\lim _{n \rightarrow \infty} s(n)=\lim _{n \rightarrow \infty}\left(\frac{8}{3}-\frac{4}{n}+\frac{4}{3 n^{2}}\right)=\frac{8}{3} & \text { Lower sum limit } \\
\lim _{n \rightarrow \infty} S(n)=\lim _{n \rightarrow \infty}\left(\frac{8}{3}+\frac{4}{n}+\frac{4}{3 n^{2}}\right)=\frac{8}{3} & \text { Upper sum limit }
\end{array}
\]

The next theorem shows that the equivalence of the limits (as \(n \rightarrow \infty\) ) of the upper and lower sums is not mere coincidence. It is true for all functions that are continuous and nonnegative on the closed interval \([a, b]\). The proof of this theorem is best left to a course in advanced calculus.

\section*{THEOREM 4.3 LIMITS OF THE LOWER AND UPPER SUMS}

Let \(f\) be continuous and nonnegative on the interval \([a, b]\). The limits as \(n \rightarrow \infty\) of both the lower and upper sums exist and are equal to each other. That is,
\[
\begin{aligned}
\lim _{n \rightarrow \infty} s(n) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} S(n)
\end{aligned}
\]
where \(\Delta x=(b-a) / n\) and \(f\left(m_{i}\right)\) and \(f\left(M_{i}\right)\) are the minimum and maximum values of \(f\) on the subinterval.

Because the same limit is attained for both the minimum value \(f\left(m_{i}\right)\) and the maximum value \(f\left(M_{i}\right)\), it follows from the Squeeze Theorem (Theorem 1.8) that the choice of \(x\) in the \(i\) th subinterval does not affect the limit. This means that you are free to choose an arbitrary \(x\)-value in the \(i\) th subinterval, as in the following definition of the area of a region in the plane.

\section*{DEFINITION OF THE AREA OF A REGION IN THE PLANE}

Let \(f\) be continuous and nonnegative on the interval \([a, b]\). The area of the region bounded by the graph of \(f\), the \(x\)-axis, and the vertical lines \(x=a\) and \(x=b\) is
\[
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x, \quad x_{i-1} \leq c_{i} \leq x_{i}
\]
where \(\Delta x=(b-a) / n\) (see Figure 4.13).


The area of the region bounded by the graph of \(f\), the \(x\)-axis, \(x=0\), and \(x=1\) is \(\frac{1}{4}\).
Figure 4.14


The area of the region bounded by the graph of \(f\), the \(x\)-axis, \(x=1\), and \(x=2\) is \(\frac{5}{3}\).
Figure 4.15

\section*{EXAMPLE 5 Finding Area by the Limit Definition}

Find the area of the region bounded by the graph \(f(x)=x^{3}\), the \(x\)-axis, and the vertical lines \(x=0\) and \(x=1\), as shown in Figure 4.14.
Solution Begin by noting that \(f\) is continuous and nonnegative on the interval \([0,1]\). Next, partition the interval \([0,1]\) into \(n\) subintervals, each of width \(\Delta x=1 / n\). According to the definition of area, you can choose any \(x\)-value in the \(i\) th subinterval. For this example, the right endpoints \(c_{i}=i / n\) are convenient.
\[
\begin{aligned}
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3}\left(\frac{1}{n}\right) \quad \text { Right endpoints: } c_{i}=\frac{i}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[\frac{n^{2}(n+1)^{2}}{4}\right] \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{2 n}+\frac{1}{4 n^{2}}\right) \\
& =\frac{1}{4}
\end{aligned}
\]

The area of the region is \(\frac{1}{4}\).

\section*{EXAMPLE 6 Finding Area by the Limit Definition}

Find the area of the region bounded by the graph of \(f(x)=4-x^{2}\), the \(x\)-axis, and the vertical lines \(x=1\) and \(x=2\), as shown in Figure 4.15.
Solution The function \(f\) is continuous and nonnegative on the interval [1, 2], and so begin by partitioning the interval into \(n\) subintervals, each of width \(\Delta x=1 / n\). Choosing the right endpoint
\[
c_{i}=a+i \Delta x=1+\frac{i}{n} \quad \text { Right endpoints }
\]
of each subinterval, you obtain
\[
\text { Area } \begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[4-\left(1+\frac{i}{n}\right)^{2}\right]\left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3-\frac{2 i}{n}-\frac{i^{2}}{n^{2}}\right)\left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} 3-\frac{2}{n^{2}} \sum_{i=1}^{n} i-\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left[3-\left(1+\frac{1}{n}\right)-\left(\frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}\right)\right] \\
& =3-1-\frac{1}{3} \\
& =\frac{5}{3} .
\end{aligned}
\]

The area of the region is \(\frac{5}{3}\).


The area of the region bounded by the graph of \(f\) and the \(y\)-axis for \(0 \leq y \leq 1\) is \(\frac{1}{3}\).
Figure 4.16

The last example in this section looks at a region that is bounded by the \(y\)-axis (rather than by the \(x\)-axis).

\section*{EXAMPLE 7 A Region Bounded by the \(y\)-axis}

Find the area of the region bounded by the graph of \(f(y)=y^{2}\) and the \(y\)-axis for \(0 \leq y \leq 1\), as shown in Figure 4.16.
Solution When \(f\) is a continuous, nonnegative function of \(y\), you still can use the same basic procedure shown in Examples 5 and 6 . Begin by partitioning the interval \([0,1]\) into \(n\) subintervals, each of width \(\Delta y=1 / n\). Then, using the upper endpoints \(c_{i}=i / n\), you obtain
\[
\begin{aligned}
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta y & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2}\left(\frac{1}{n}\right) \quad \text { Upper endpoints: } c_{i}=\frac{i}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right] \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}\right) \\
& =\frac{1}{3} .
\end{aligned}
\]

The area of the region is \(\frac{1}{3}\).

\subsection*{4.2 Exercises}

In Exercises 1-6, find the sum. Use the summation capabilities of a graphing utility to verify your result.
1. \(\sum_{i=1}^{6}(3 i+2)\)
2. \(\sum_{k=5}^{8} k(k-4)\)
3. \(\sum_{k=0}^{4} \frac{1}{k^{2}+1}\)
4. \(\sum_{j=4}^{7} \frac{2}{j}\)
5. \(\sum_{k=1}^{4} c\)
6. \(\sum_{i=1}^{4}\left[(i-1)^{2}+(i+1)^{3}\right]\)

In Exercises 7-14, use sigma notation to write the sum.
7. \(\frac{1}{5(1)}+\frac{1}{5(2)}+\frac{1}{5(3)}+\cdots+\frac{1}{5(11)}\)
8. \(\frac{9}{1+1}+\frac{9}{1+2}+\frac{9}{1+3}+\cdots+\frac{9}{1+14}\)
9. \(\left[7\left(\frac{1}{6}\right)+5\right]+\left[7\left(\frac{2}{6}\right)+5\right]+\cdots+\left[7\left(\frac{6}{6}\right)+5\right]\)
10. \(\left[1-\left(\frac{1}{4}\right)^{2}\right]+\left[1-\left(\frac{2}{4}\right)^{2}\right]+\cdots+\left[1-\left(\frac{4}{4}\right)^{2}\right]\)
11. \(\left[\left(\frac{2}{n}\right)^{3}-\frac{2}{n}\right]\left(\frac{2}{n}\right)+\cdots+\left[\left(\frac{2 n}{n}\right)^{3}-\frac{2 n}{n}\right]\left(\frac{2}{n}\right)\)
12. \(\left[1-\left(\frac{2}{n}-1\right)^{2}\right]\left(\frac{2}{n}\right)+\cdots+\left[1-\left(\frac{2 n}{n}-1\right)^{2}\right]\left(\frac{2}{n}\right)\)
13. \(\left[2\left(1+\frac{3}{n}\right)^{2}\right]\left(\frac{3}{n}\right)+\cdots+\left[2\left(1+\frac{3 n}{n}\right)^{2}\right]\left(\frac{3}{n}\right)\)
14. \(\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{0}{n}\right)^{2}}+\cdots+\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{n-1}{n}\right)^{2}}\)

In Exercises 15-22, use the properties of summation and Theorem 4.2 to evaluate the sum. Use the summation capabilities of a graphing utility to verify your result.
15. \(\sum_{i=1}^{12} 7\)
16. \(\sum_{i=1}^{30}-18\)
17. \(\sum_{i=1}^{24} 4 i\)
18. \(\sum_{i=1}^{16}(5 i-4)\)
19. \(\sum_{i=1}^{20}(i-1)^{2}\)
20. \(\sum_{i=1}^{10}\left(i^{2}-1\right)\)
21. \(\sum_{i=1}^{15} i(i-1)^{2}\)
22. \(\sum_{i=1}^{10} i\left(i^{2}+1\right)\)

In Exercises 23 and 24, use the summation capabilities of a graphing utility to evaluate the sum. Then use the properties of summation and Theorem 4.2 to verify the sum.
23. \(\sum_{i=1}^{20}\left(i^{2}+3\right)\)
24. \(\sum_{i=1}^{15}\left(i^{3}-2 i\right)\)
25. Consider the function \(f(x)=3 x+2\).
(a) Estimate the area between the graph of \(f\) and the \(x\)-axis between \(x=0\) and \(x=3\) using six rectangles and right endpoints. Sketch the graph and the rectangles.
(b) Repeat part (a) using left endpoints.
26. Consider the function \(g(x)=x^{2}+x-4\).
(a) Estimate the area between the graph of \(g\) and the \(x\)-axis between \(x=2\) and \(x=4\) using four rectangles and right endpoints. Sketch the graph and the rectangles.
(b) Repeat part (a) using left endpoints.

In Exercises 27-32, use left and right endpoints and the given number of rectangles to find two approximations of the area of the region between the graph of the function and the \(x\)-axis over the given interval.
27. \(f(x)=2 x+5,[0,2], 4\) rectangles
28. \(f(x)=9-x,[2,4], 6\) rectangles
29. \(g(x)=2 x^{2}-x-1,[2,5], 6\) rectangles
30. \(g(x)=x^{2}+1,[1,3], 8\) rectangles
31. \(f(x)=\cos x,\left[0, \frac{\pi}{2}\right], 4\) rectangles
32. \(g(x)=\sin x,[0, \pi], 6\) rectangles

In Exercises 33-36, bound the area of the shaded region by approximating the upper and lower sums. Use rectangles of width 1.
33.

35.

34.

36.


In Exercises 37-40, find the limit of \(s(n)\) as \(n \rightarrow \infty\).
37. \(s(n)=\frac{81}{n^{4}}\left[\frac{n^{2}(n+1)^{2}}{4}\right]\)
38. \(s(n)=\frac{64}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right]\)
39. \(s(n)=\frac{18}{n^{2}}\left[\frac{n(n+1)}{2}\right]\)
40. \(s(n)=\frac{1}{n^{2}}\left[\frac{n(n+1)}{2}\right]\)

In Exercises 41-44, use upper and lower sums to approximate the area of the region using the given number of subintervals (of equal width).
41. \(y=\sqrt{x}\)

42. \(y=\sqrt{x}+2\)

43. \(y=\frac{1}{x}\)

44. \(y=\sqrt{1-x^{2}}\)


In Exercises 45-48, use the summation formulas to rewrite the expression without the summation notation. Use the result to find the sums for \(\boldsymbol{n}=10,100,1000\), and 10,000 .
45. \(\sum_{i=1}^{n} \frac{2 i+1}{n^{2}}\)
46. \(\sum_{j=1}^{n} \frac{4 j+3}{n^{2}}\)
47. \(\sum_{k=1}^{n} \frac{6 k(k-1)}{n^{3}}\)
48. \(\sum_{i=1}^{n} \frac{4 i^{2}(i-1)}{n^{4}}\)

In Exercises 49-54, find a formula for the sum of \(\boldsymbol{n}\) terms. Use the formula to find the limit as \(n \rightarrow \infty\).
49. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{24 i}{n^{2}}\)
50. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)\left(\frac{2}{n}\right)\)
51. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n^{3}}(i-1)^{2}\)
52. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{2 i}{n}\right)^{2}\left(\frac{2}{n}\right)\)
53. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)\left(\frac{2}{n}\right)\)
54. \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{2 i}{n}\right)^{3}\left(\frac{2}{n}\right)\)
55. Numerical Reasoning Consider a triangle of area 2 bounded by the graphs of \(y=x, y=0\), and \(x=2\).
(a) Sketch the region.
(b) Divide the interval [0,2] into \(n\) subintervals of equal width and show that the endpoints are
\[
0<1\left(\frac{2}{n}\right)<\cdots<(n-1)\left(\frac{2}{n}\right)<n\left(\frac{2}{n}\right) .
\]
(c) Show that \(s(n)=\sum_{i=1}^{n}\left[(i-1)\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\).
(d) Show that \(S(n)=\sum_{i=1}^{n}\left[i\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\).
(e) Complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 50 & 100 \\
\hline\(s(n)\) & & & & \\
\hline\(S(n)\) & & & & \\
\hline
\end{tabular}
(f) Show that \(\lim _{n \rightarrow \infty} s(n)=\lim _{n \rightarrow \infty} S(n)=2\).
56. Numerical Reasoning Consider a trapezoid of area 4 bounded by the graphs of \(y=x, y=0, x=1\), and \(x=3\).
(a) Sketch the region.
(b) Divide the interval \([1,3]\) into \(n\) subintervals of equal width and show that the endpoints are
\[
1<1+1\left(\frac{2}{n}\right)<\cdots<1+(n-1)\left(\frac{2}{n}\right)<1+n\left(\frac{2}{n}\right)
\]
(c) Show that \(s(n)=\sum_{i=1}^{n}\left[1+(i-1)\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\).
(d) Show that \(S(n)=\sum_{i=1}^{n}\left[1+i\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\).
(e) Complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 50 & 100 \\
\hline\(s(n)\) & & & & \\
\hline\(S(n)\) & & & & \\
\hline
\end{tabular}
(f) Show that \(\lim _{n \rightarrow \infty} s(n)=\lim _{n \rightarrow \infty} S(n)=4\).

In Exercises 57-66, use the limit process to find the area of the region between the graph of the function and the \(x\)-axis over the given interval. Sketch the region.
57. \(y=-4 x+5, \quad[0,1]\)
58. \(y=3 x-2, \quad[2,5]\)
59. \(y=x^{2}+2, \quad[0,1]\)
60. \(y=x^{2}+1, \quad[0,3]\)
61. \(y=25-x^{2}, \quad[1,4]\)
62. \(y=4-x^{2}, \quad[-2,2]\)
63. \(\left.y=27-x^{3}, \quad \llbracket, 3\right]\)
64. \(y=2 x-x^{3}, \quad[0,1]\)
65. \(y=x^{2}-x^{3}, \quad[-1,1]\)
66. \(y=x^{2}-x^{3}, \quad[-1,0]\)

In Exercises 67-72, use the limit process to find the area of the region between the graph of the function and the \(y\)-axis over the given \(y\)-interval. Sketch the region.
67. \(f(y)=4 y, 0 \leq y \leq 2\)
68. \(g(y)=\frac{1}{2} y, 2 \leq y \leq 4\)
69. \(f(y)=y^{2}, 0 \leq y \leq 5\)
70. \(f(y)=4 y-y^{2}, 1 \leq y \leq 2\)
71. \(g(y)=4 y^{2}-y^{3}, 1 \leq y \leq 3\)
72. \(h(y)=y^{3}+1,1 \leq y \leq 2\)

In Exercises 73-76, use the Midpoint Rule
Area \(\approx \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i-1}}{2}\right) \Delta x\)
with \(n=4\) to approximate the area of the region bounded by the graph of the function and the \(\boldsymbol{x}\)-axis over the given interval.
73. \(f(x)=x^{2}+3, \quad[0,2]\)
74. \(f(x)=x^{2}+4 x, \quad[0,4]\)
75. \(f(x)=\tan x, \quad\left[0, \frac{\pi}{4}\right]\)
76. \(f(x)=\sin x, \quad\left[0, \frac{\pi}{2}\right]\)

Programming Write a program for a graphing utility to approximate areas by using the Midpoint Rule. Assume that the function is positive over the given interval and that the subintervals are of equal width. In Exercises 77-80, use the program to approximate the area of the region between the graph of the function and the \(x\)-axis over the given interval, and complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 4 & 8 & 12 & 16 & 20 \\
\hline Approximate Area & & & & & \\
\hline
\end{tabular}
77. \(f(x)=\sqrt{x}, \quad[0,4]\)
78. \(f(x)=\frac{8}{x^{2}+1}, \quad[2,6]\)
79. \(f(x)=\tan \left(\frac{\pi x}{8}\right), \quad[1,3]\)
80. \(f(x)=\cos \sqrt{x}, \quad[0,2]\)

\section*{WRITING ABOUT CONCEPTS}

Approximation In Exercises 81 and 82, determine which value best approximates the area of the region between the \(x\)-axis and the graph of the function over the given interval. (Make your selection on the basis of a sketch of the region and not by performing calculations.)
81. \(f(x)=4-x^{2}, \quad[0,2]\)
(a) -2
(b) 6
(c) 10
(d) 3
(e) 8
82. \(f(x)=\sin \frac{\pi x}{4},[0,4]\)
(a) 3
(b) 1
(c) -2
(d) 8
(e) 6
83. In your own words and using appropriate figures, describe the methods of upper sums and lower sums in approximating the area of a region.
84. Give the definition of the area of a region in the plane.
85. Graphical Reasoning Consider the region bounded by the graphs of \(f(x)=8 x /(x+1), x=0, x=4\), and \(y=0\), as shown in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a) Redraw the figure, and complete and shade the rectangles representing the lower sum when \(n=4\). Find this lower sum.
(b) Redraw the figure, and complete and shade the rectangles representing the upper sum when \(n=4\). Find this upper sum.

(c) Redraw the figure, and complete and shade the rectangles whose heights are determined by the functional values at the midpoint of each subinterval when \(n=4\). Find this sum using the Midpoint Rule.
(d) Verify the following formulas for approximating the area of the region using \(n\) subintervals of equal width.
Lower sum: \(s(n)=\sum_{i=1}^{n} f\left[(i-1) \frac{4}{n}\right]\left(\frac{4}{n}\right)\)
Upper sum: \(S(n)=\sum_{i=1}^{n} f\left[(i) \frac{4}{n}\right]\left(\frac{4}{n}\right)\)
Midpoint Rule: \(M(n)=\sum_{i=1}^{n} f\left[\left(i-\frac{1}{2}\right) \frac{4}{n}\right]\left(\frac{4}{n}\right)\)
(e) Use a graphing utility and the formulas in part (d) to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 4 & 8 & 20 & 100 & 200 \\
\hline\(s(n)\) & & & & & \\
\hline\(S(n)\) & & & & & \\
\hline\(M(n)\) & & & & & \\
\hline
\end{tabular}
(f) Explain why \(s(n)\) increases and \(S(n)\) decreases for increasing values of \(n\), as shown in the table in part (e).

\section*{CAPSTONE}
86. Consider a function \(f(x)\) that is increasing on the interval \([1,4]\). The interval \([1,4]\) is divided into 12 subintervals.
(a) What are the left endpoints of the first and last subintervals?
(b) What are the right endpoints of the first two subintervals?
(c) When using the right endpoints, will the rectangles lie above or below the graph of \(f(x)\) ? Use a graph to explain your answer.
(d) What can you conclude about the heights of the rectangles if a function is constant on the given interval?

True or False? In Exercises 87 and 88, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
87. The sum of the first \(n\) positive integers is \(n(n+1) / 2\).
88. If \(f\) is continuous and nonnegative on \([a, b]\), then the limits as \(n \rightarrow \infty\) of its lower sum \(s(n)\) and upper sum \(S(n)\) both exist and are equal.
89. Writing Use the figure to write a short paragraph explaining why the formula \(1+2+\cdots+n=\frac{1}{2} n(n+1)\) is valid for all positive integers \(n\).


Figure for 89


Figure for 90
90. Graphical Reasoning Consider an \(n\)-sided regular polygon inscribed in a circle of radius \(r\). Din the vertices of the polygon to the center of the circle, forming \(n\) congruent triangles (see figure).
(a) Determine the central angle \(\theta\) in terms of \(n\).
(b) Show that the area of each triangle is \(\frac{1}{2} r^{2} \sin \theta\).
(c) Let \(A_{n}\) be the sum of the areas of the \(n\) triangles. Find \(\lim _{n \rightarrow \infty} A_{n}\).
91. Modeling Data The table lists the measurements of a lot bounded by a stream and two straight roads that meet at right angles, where \(x\) and \(y\) are measured in feet (see figure).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 50 & 100 & 150 & 200 & 250 & 300 \\
\hline\(y\) & 450 & 362 & 305 & 268 & 245 & 156 & 0 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form \(y=a x^{3}+b x^{2}+c x+d\).
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the model in part (a) to estimate the area of the lot.


Figure for 91


Figure for 92
92. Building Blocks A child places \(n\) cubic building blocks in a row to form the base of a triangular design (see figure). Each successive row contains two fewer blocks than the preceding row. Find a formula for the number of blocks used in the design. (Hint: The number of building blocks in the design depends on whether \(n\) is odd or even.)
93. Prove each formula by mathematical induction. (You may need to review the method of proof by induction from a precalculus text.)
(a) \(\sum_{i=1}^{n} 2 i=n(n+1)\)
(b) \(\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}\)

\section*{PUTNAM EXAM CHALLENGE}
94. A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equally likely to be hit, find the probability that the point hit is nearer to the center than to any edge. Write your answer in the form \((a \sqrt{b}+c) / d\), where \(a, b, c\), and \(d\) are positive integers.
This problem was composed by the Committee on the Putnam Prize Competition. ©he Mathematical Association of America. All rights reserved.

\subsection*{4.3 Riemann Sums and Definite Integrals}

\section*{- Understand the definition of a Riemann sum. \\ Evaluate a definite integral using limits. \\ Evaluate a definite integral using properties of definite integrals.}

\section*{Riemann Sums}

In the definition of area given in Section 4.2, the partitions have subintervals of equal width. This was done only for computational convenience. The following example shows that it is not necessary to have subintervals of equal width.

\section*{EXAMPLE 1 A Partition with Subintervals of Unequal Widths}

Consider the region bounded by the graph of \(f(x)=\sqrt{x}\) and the \(x\)-axis for \(0 \leq x \leq 1\), as shown in Figure 4.17. Evaluate the limit
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
\]
where \(c_{i}\) is the right endpoint of the partition given by \(c_{i}=i^{2} / n^{2}\) and \(\Delta x_{i}\) is the width of the \(i\) th interval.

Solution The width of the \(i\) th interval is given by
\[
\begin{aligned}
\Delta x_{i} & =\frac{i^{2}}{n^{2}}-\frac{(i-1)^{2}}{n^{2}} \\
& =\frac{i^{2}-i^{2}+2 i-1}{n^{2}} \\
& =\frac{2 i-1}{n^{2}} .
\end{aligned}
\]

So, the limit is
\[
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{i^{2}}{n^{2}}}\left(\frac{2 i-1}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{i=1}^{n}\left(2 i^{2}-i\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[2\left(\frac{n(n+1)(2 n+1)}{6}\right)-\frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{3}+3 n^{2}-n}{6 n^{3}} \\
& =\frac{2}{3} .
\end{aligned}
\]

From Example 7 in Section 4.2, you know that the region shown in Figure 4.18 has an area of \(\frac{1}{3}\). Because the square bounded by \(0 \leq x \leq 1\) and \(0 \leq y \leq 1\) has an area of 1 , you can conclude that the area of the region shown in Figure 4.17 has an area of \(\frac{2}{3}\). This agrees with the limit found in Example 1, even though that example used a partition having subintervals of unequal widths. The reason this particular partition gave the proper area is that as \(n\) increases, the width of the largest subinterval approaches zero. This is a key feature of the development of definite integrals.

\(n \rightarrow \infty\) does not imply that \(\|\Delta\| \rightarrow 0\).
Figure 4.19

In the preceding section, the limit of a sum was used to define the area of a region in the plane. Finding area by this means is only one of many applications involving the limit of a sum. A similar approach can be used to determine quantities as diverse as arc lengths, average values, centroids, volumes, work, and surface areas. The following definition is named after Georg Friedrich Bernhard Riemann. Although the definite integral had been defined and used long before the time of Riemann, he generalized the concept to cover a broader category of functions.

In the following definition of a Riemann sum, note that the function \(f\) has no restrictions other than being defined on the interval \([a, b]\). (In the preceding section, the function \(f\) was assumed to be continuous and nonnegative because we were dealing with the area under a curve.)

\section*{DEFINITION OF RIEMANN SUM}

Let \(f\) be defined on the closed interval \([a, b]\), and let \(\Delta\) be a partition of \([a, b]\) given by
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
\]
where \(\Delta x_{i}\) is the width of the \(i\) th subinterval. If \(c_{i}\) is any point in the \(i\) th subinterval \(\left[x_{i-1}, x_{i}\right]\), then the sum
\[
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}, \quad x_{i-1} \leq c_{i} \leq x_{i}
\]
is called a Riemann sum of \(f\) for the partition \(\Delta\).

NOTE The sums in Section 4.2 are examples of Riemann sums, but there are more general Riemann sums than those covered there.

The width of the largest subinterval of a partition \(\Delta\) is the norm of the partition and is denoted by \(\|\Delta\|\). If every subinterval is of equal width, the partition is regular and the norm is denoted by
\[
\|\Delta\|=\Delta x=\frac{b-a}{n} . \quad \text { Regular partition }
\]

For a general partition, the norm is related to the number of subintervals of \([a, b]\) in the following way.
\[
\frac{b-a}{\|\Delta\|} \leq n
\]

General partition
So, the number of subintervals in a partition approaches infinity as the norm of the partition approaches 0 . That is, \(\|\Delta\| \rightarrow 0\) implies that \(n \rightarrow \infty\).

The converse of this statement is not true. For example, let \(\Delta_{n}\) be the partition of the interval \([0,1]\) given by
\[
0<\frac{1}{2^{n}}<\frac{1}{2^{n-1}}<\cdots<\frac{1}{8}<\frac{1}{4}<\frac{1}{2}<1
\]

As shown in Figure 4.19, for any positive value of \(n\), the norm of the partition \(\Delta_{n}\) is \(\frac{1}{2}\). So, letting \(n\) approach infinity does not force \(\|\Delta\|\) to approach 0 . In a regular partition, however, the statements \(\|\Delta\| \rightarrow 0\) and \(n \rightarrow \infty\) are equivalent.
- FOR FURTHER INFORMATION For
insight into the history of the definite integral, see the article "The Evolution of Integration" by A. Shenitzer and J Steprāns in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

STUDY TIP Later in this chapter, you will learn convenient methods for calculating \(\int_{a}^{b} f(x) d x\) for continuous functions. For now, you must use the limit definition.

\section*{Definite Integrals}

To define the definite integral, consider the following limit.
\[
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=L
\]

To say that this limit exists means there exists a real number \(L\) such that for each \(\varepsilon>0\) there exists a \(\delta>0\) so that for every partition with \(\|\Delta\|<\delta\) it follows that
\[
\left|L-\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}\right|<\varepsilon
\]
regardless of the choice of \(c_{i}\) in the \(i\) th subinterval of each partition \(\Delta\).

\section*{DEFINITION OF DEFINITE INTEGRAL}

If \(f\) is defined on the closed interval \([a, b]\) and the limit of Riemann sums over partitions \(\Delta\)
\[
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
\]
exists (as described above), then \(f\) is said to be integrable on \([a, b]\) and the limit is denoted by
\[
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x .
\]

The limit is called the definite integral of \(f\) from \(a\) to \(b\). The number \(a\) is the lower limit of integration, and the number \(b\) is the upper limit of integration.

It is not a coincidence that the notation for definite integrals is similar to that used for indefinite integrals. You will see why in the next section when the Fundamental Theorem of Calculus is introduced. For now it is important to see that definite integrals and indefinite integrals are different concepts. A definite integral is a number, whereas an indefinite integral is a family of functions.

Though Riemann sums were defined for functions with very few restrictions, a sufficient condition for a function \(f\) to be integrable on \([a, b]\) is that it is continuous on \([a, b]\). A proof of this theorem is beyond the scope of this text.

\section*{THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY}

If a function \(f\) is continuous on the closed interval \([a, b]\), then \(f\) is integrable on \([a, b]\). That is, \(\int_{a}^{b} f(x) d x\) exists.

\section*{EXPLORATION}

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is, if a function is integrable, does it have to be continuous? Explain your reasoning and give examples.

Describe the relationships among continuity, differentiability, and integrability. Which is the strongest condition? Which is the weakest? Which conditions imply other conditions?


Because the definite integral is negative, it does not represent the area of the region.
Figure 4.20


You can use a definite integral to find the area of the region bounded by the graph of \(f\), the \(x\)-axis, \(x=a\), and \(x=b\).
Figure 4.21

\section*{EXAMPLE 2 Evaluating a Definite Integral as a Limit}

Evaluate the definite integral \(\int_{-2}^{1} 2 x d x\).
Solution The function \(f(x)=2 x\) is integrable on the interval \([-2,1]\) because it is continuous on \([-2,1]\). Moreover, the definition of integrability implies that any partition whose norm approaches 0 can be used to determine the limit. For computational convenience, define \(\Delta\) by subdividing \([-2,1]\) into \(n\) subintervals of equal width
\[
\Delta x_{i}=\Delta x=\frac{b-a}{n}=\frac{3}{n} .
\]

Choosing \(c_{i}\) as the right endpoint of each subinterval produces
\[
c_{i}=a+i(\Delta x)=-2+\frac{3 i}{n} .
\]

So, the definite integral is given by
\[
\begin{aligned}
\int_{-2}^{1} 2 x d x & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2\left(-2+\frac{3 i}{n}\right)\left(\frac{3}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{6}{n} \sum_{i=1}^{n}\left(-2+\frac{3 i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{6}{n}\left\{-2 n+\frac{3}{n}\left[\frac{n(n+1)}{2}\right]\right\} \\
& =\lim _{n \rightarrow \infty}\left(-12+9+\frac{9}{n}\right) \\
& =-3 .
\end{aligned}
\]

Because the definite integral in Example 2 is negative, it does not represent the area of the region shown in Figure 4.20. Definite integrals can be positive, negative, or zero. For a definite integral to be interpreted as an area (as defined in Section 4.2), the function \(f\) must be continuous and nonnegative on \([a, b]\), as stated in the following theorem. The proof of this theorem is straightforward-you simply use the definition of area given in Section 4.2, because it is a Riemann sum.

\section*{THEOREM 4.5 THE DEFINITE INTEGRAL AS THE AREA OF A REGION}

If \(f\) is continuous and nonnegative on the closed interval \([a, b]\), then the area of the region bounded by the graph of \(f\), the \(x\)-axis, and the vertical lines \(x=a\) and \(x=b\) is given by
\[
\text { Area }=\int_{a}^{b} f(x) d x
\]
(See Figure 4.21.)


Area \(=\int_{0}^{4}\left(4 x-x^{2}\right) d x\)
Figure 4.22

NOTE The variable of integration in a definite integral is sometimes called a dummy variable because it can be replaced by any other variable without changing the value of the integral. For instance, the definite integrals
\[
\int_{0}^{3}(x+2) d x
\]
and
\[
\int_{0}^{3}(t+2) d t
\]
have the same value.

As an example of Theorem 4.5, consider the region bounded by the graph of
\[
f(x)=4 x-x^{2}
\]
and the \(x\)-axis, as shown in Figure 4.22. Because \(f\) is continuous and nonnegative on the closed interval \([0,4]\), the area of the region is
\[
\text { Area }=\int_{0}^{4}\left(4 x-x^{2}\right) d x
\]

A straightforward technique for evaluating a definite integral such as this will be discussed in Section 4.4. For now, however, you can evaluate a definite integral in two ways-you can use the limit definition or you can check to see whether the definite integral represents the area of a common geometric region such as a rectangle, triangle, or semicircle.

\section*{EXAMPLE 3 Areas of Common Geometric Figures}

Sketch the region corresponding to each definite integral. Then evaluate each integral using a geometric formula.
a. \(\int_{1}^{3} 4 d x\)
b. \(\int_{0}^{3}(x+2) d x\)
c. \(\int_{-2}^{2} \sqrt{4-x^{2}} d x\)

Solution A sketch of each region is shown in Figure 4.23.
a. This region is a rectangle of height 4 and width 2 .
\[
\int_{1}^{3} 4 d x=(\text { Area of rectangle })=4(2)=8
\]
b. This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and 5. The formula for the area of a trapezoid is \(\frac{1}{2} h\left(b_{1}+b_{2}\right)\).
\[
\int_{0}^{3}(x+2) d x=(\text { Area of trapezoid })=\frac{1}{2}(3)(2+5)=\frac{21}{2}
\]
c. This region is a semicircle of radius 2 . The formula for the area of a semicircle is \(\frac{1}{2} \pi r^{2}\).
\[
\int_{-2}^{2} \sqrt{4-x^{2}} d x=(\text { Area of semicircle })=\frac{1}{2} \pi\left(2^{2}\right)=2 \pi
\]

(a)

Figure 4.23

(b)

(c)


Figure 4.24

\section*{Properties of Definite Integrals}

The definition of the definite integral of \(f\) on the interval \([a, b]\) specifies that \(a<b\). Now, however, it is convenient to extend the definition to cover cases in which \(a=b\) or \(a>b\). Geometrically, the following two definitions seem reasonable. For instance, it makes sense to define the area of a region of zero width and finite height to be 0 .

\section*{DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS}
1. If \(f\) is defined at \(x=a\), then we define \(\int_{a}^{a} f(x) d x=0\).
2. If \(f\) is integrable on \([a, b]\), then we define \(\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x\).

\section*{EXAMPLE 4 Evaluating Definite Integrals}
a. Because the sine function is defined at \(x=\pi\), and the upper and lower limits of integration are equal, you can write
\[
\int_{\pi}^{\pi} \sin x d x=0
\]
b. The integral \(\int_{3}^{0}(x+2) d x\) is the same as that given in Example 3(b) except that the upper and lower limits are interchanged. Because the integral in Example 3(b) has a value of \(\frac{21}{2}\), you can write
\[
\int_{3}^{0}(x+2) d x=-\int_{0}^{3}(x+2) d x=-\frac{21}{2}
\]

In Figure 4.24, the larger region can be divided at \(x=c\) into two subregions whose intersection is a line segment. Because the line segment has zero area, it follows that the area of the larger region is equal to the sum of the areas of the two smaller regions.

\section*{THEOREM 4.6 ADDITIVE INTERVAL PROPERTY}

If \(f\) is integrable on the three closed intervals determined by \(a, b\), and \(c\), then
\[
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\]

\section*{EXAMPLE 5 Using the Additive Interval Property}
\[
\begin{array}{rlr}
\int_{-1}^{1}|x| d x & =\int_{-1}^{0}-x d x+\int_{0}^{1} x d x & \text { Theorem 4.6 } \\
& =\frac{1}{2}+\frac{1}{2} & \text { Area of a triangle } \\
& =1 &
\end{array}
\]

Because the definite integral is defined as the limit of a sum, it inherits the properties of summation given at the top of page 260.

\section*{THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS}

If \(f\) and \(g\) are integrable on \([a, b]\) and \(k\) is a constant, then the functions \(k f\) and \(f \pm g\) are integrable on \([a, b]\), and
1. \(\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x\)
2. \(\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x\).

Note that Property 2 of Theorem 4.7 can be extended to cover any finite number of functions. For example,
\[
\int_{a}^{b}[f(x)+g(x)+h(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x+\int_{a}^{b} h(x) d x
\]

\section*{EXAMPLE 6 Evaluation of a Definite Integral}

Evaluate \(\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x\) using each of the following values.
\[
\int_{1}^{3} x^{2} d x=\frac{26}{3}, \quad \int_{1}^{3} x d x=4, \quad \int_{1}^{3} d x=2
\]

\section*{Solution}
\[
\begin{aligned}
\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x & =\int_{1}^{3}\left(-x^{2}\right) d x+\int_{1}^{3} 4 x d x+\int_{1}^{3}(-3) d x \\
& =-\int_{1}^{3} x^{2} d x+4 \int_{1}^{3} x d x-3 \int_{1}^{3} d x \\
& =-\left(\frac{26}{3}\right)+4(4)-3(2) \\
& =\frac{4}{3}
\end{aligned}
\]

If \(f\) and \(g\) are continuous on the closed interval \([a, b]\) and
\[
0 \leq f(x) \leq g(x)
\]
for \(a \leq x \leq b\), the following properties are true. First, the area of the region bounded by the graph of \(f\) and the \(x\)-axis (between \(a\) and \(b\) ) must be nonnegative. Second, this area must be less than or equal to the area of the region bounded by the graph of \(g\) and the \(x\)-axis (between \(a\) and \(b\) ), as shown in Figure 4.25 . These two properties are generalized in Theorem 4.8. (A proof of this theorem is given in Appendix A.)

\section*{THEOREM 4.8 PRESERVATION OF INEQUALITY}
1. If \(f\) is integrable and nonnegative on the closed interval \([a, b]\), then
\[
0 \leq \int_{a}^{b} f(x) d x
\]
2. If \(f\) and \(g\) are integrable on the closed interval \([a, b]\) and \(f(x) \leq g(x)\) for every \(x\) in \([a, b]\), then
\[
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
\]

\subsection*{4.3 Exercises}

In Exercises 1 and 2, use Example 1 as a model to evaluate the limit
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
\]
over the region bounded by the graphs of the equations.
1. \(f(x)=\sqrt{x}, \quad y=0, \quad x=0, \quad x=3\) (Hint: Let \(c_{i}=3 i^{2} / n^{2}\).)
2. \(f(x)=\sqrt[3]{x}, \quad y=0, \quad x=0, \quad x=1\)
(Hint: Let \(c_{i}=i^{3} / n^{3}\).)
In Exercises 3-8, evaluate the definite integral by the limit definition.
3. \(\int_{2}^{6} 8 d x\)
4. \(\int_{-2}^{3} x d x\)
5. \(\int_{-1}^{1} x^{3} d x\)
6. \(\int_{1}^{4} 4 x^{2} d x\)
7. \(\int_{1}^{2}\left(x^{2}+1\right) d x\)
8. \(\int_{-2}^{1}\left(2 x^{2}+3\right) d x\)

In Exercises 9-12, write the limit as a definite integral on the interval \([a, b]\), where \(c_{i}\) is any point in the \(i\) th subinterval.

Limit
9. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n}\left(3 c_{i}+10\right) \Delta x_{i}\)
10. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} 6 c_{i}\left(4-c_{i}\right)^{2} \Delta x_{i}\)
11. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{c_{i}^{2}+4} \Delta x_{i}\)
12. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n}\left(\frac{3}{c_{i}^{2}}\right) \Delta x_{i}\)

Interval
\([-1,5]\)
\([0,3]\)

In Exercises 13-22, set up a definite integral that yields the area of the region. (Do not evaluate the integral.)
13. \(f(x)=5\)

14. \(f(x)=6-3 x\)

15. \(f(x)=4-|x|\)

17. \(f(x)=25-x^{2}\)

16. \(f(x)=x^{2}\)

18. \(f(x)=\frac{4}{x^{2}+2}\)

19. \(f(x)=\cos x\)

20. \(f(x)=\tan x\)

21. \(g(y)=y^{3}\)

22. \(f(y)=(y-2)^{2}\)


In Exercises 23-32, sketch the region whose area is given by the definite integral. Then use a geometric formula to evaluate the integral \((a>0, r>0)\)
23. \(\int_{0}^{3} 4 d x\)
24. \(\int_{-a}^{a} 4 d x\)
25. \(\int_{0}^{4} x d x\)
26. \(\int_{0}^{4} \frac{x}{2} d x\)
27. \(\int_{0}^{2}(3 x+4) d x\)
28. \(\int_{0}^{6}(6-x) d x\)
29. \(\int_{-1}^{1}(1-|x|) d x\)
30. \(\int_{-a}^{a}(a-|x|) d x\)
31. \(\int_{-7}^{7} \sqrt{49-x^{2}} d x\)
32. \(\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x\)

In Exercises 33-40, evaluate the integral using the following values.
\(\int_{2}^{4} x^{3} d x=60, \quad \int_{2}^{4} x d x=6, \quad \int_{2}^{4} d x=2\)
33. \(\int_{4}^{2} x d x\)
34. \(\int_{2}^{2} x^{3} d x\)
35. \(\int_{2}^{4} 8 x d x\)
36. \(\int_{2}^{4} 25 d x\)
37. \(\int_{2}^{4}(x-9) d x\)
38. \(\int_{2}^{4}\left(x^{3}+4\right) d x\)
39. \(\int_{2}^{4}\left(\frac{1}{2} x^{3}-3 x+2\right) d x\)
40. \(\int_{2}^{4}\left(10+4 x-3 x^{3}\right) d x\)
41. Given \(\int_{0}^{5} f(x) d x=10\) and \(\int_{5}^{7} f(x) d x=3\), evaluate
(a) \(\int_{0}^{7} f(x) d x\).
(b) \(\int_{5}^{0} f(x) d x\).
(c) \(\int_{5}^{5} f(x) d x\).
(d) \(\int_{0}^{5} 3 f(x) d x\).
42. Given \(\int_{0}^{3} f(x) d x=4\) and \(\int_{3}^{6} f(x) d x=-1\), evaluate
(a) \(\int_{0}^{6} f(x) d x\).
(b) \(\int_{6}^{3} f(x) d x\).
(c) \(\int_{3}^{3} f(x) d x\).
(d) \(\int_{3}^{6}-5 f(x) d x\).
43. Given \(\int_{2}^{6} f(x) d x=10\) and \(\int_{2}^{6} g(x) d x=-2\), evaluate
(a) \(\int_{2}^{6}[f(x)+g(x)] d x\).
(b) \(\int_{2}^{6}[g(x)-f(x)] d x\).
(c) \(\int_{2}^{6} 2 g(x) d x\).
(d) \(\int_{2}^{6} 3 f(x) d x\).
44. Given \(\int_{-1}^{1} f(x) d x=0\) and \(\int_{0}^{1} f(x) d x=5\), evaluate
(a) \(\int_{-1}^{0} f(x) d x\).
(b) \(\int_{0}^{1} f(x) d x-\int_{-1}^{0} f(x) d x\).
(c) \(\int_{-1}^{1} 3 f(x) d x\).
(d) \(\int_{0}^{1} 3 f(x) d x\).
45. Use the table of values to find lower and upper estimates of \(\int_{0}^{10} f(x) d x\). Assume that \(f\) is a decreasing function.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & 0 & 2 & 4 & 6 & 8 & 10 \\
\hline\(f(x)\) & 32 & 24 & 12 & -4 & -20 & -36 \\
\hline
\end{tabular}
46. Use the table of values to estimate \(\int_{0}^{6} f(x) d x\). Use three equal subintervals and the (a) left endpoints, (b) right endpoints, and (c) midpoints. If \(f\) is an increasing function, how does each estimate compare with the actual value? Explain your reasoning.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(f(x)\) & -6 & 0 & 8 & 18 & 30 & 50 & 80 \\
\hline
\end{tabular}
47. Think About It The graph of \(f\) consists of line segments and a semicircle, as shown in the figure. Evaluate each definite integral by using geometric formulas.

(a) \(\int_{0}^{2} f(x) d x\)
(b) \(\int_{2}^{6} f(x) d x\)
(c) \(\int_{-4}^{2} f(x) d x\)
(d) \(\int_{-4}^{6} f(x) d x\)
(e) \(\int_{-4}^{6}|f(x)| d x\)
(f) \(\int_{-4}^{6}[f(x)+2] d x\)
48. Think About It The graph of \(f\) consists of line segments, as shown in the figure. Evaluate each definite integral by using geometric formulas.

(a) \(\int_{0}^{1}-f(x) d x\)
(b) \(\int_{3}^{4} 3 f(x) d x\)
(c) \(\int_{0}^{7} f(x) d x\)
(d) \(\int_{5}^{11} f(x) d x\)
(e) \(\int_{0}^{11} f(x) d x\)
(f) \(\int_{4}^{10} f(x) d x\)
49. Think About It Consider the function \(f\) that is continuous on the interval \([-5,5]\) and for which
\[
\int_{0}^{5} f(x) d x=4
\]

Evaluate each integral.
(a) \(\int_{0}^{5}[f(x)+2] d x\)
(b) \(\int_{-2}^{3} f(x+2) d x\)
(c) \(\int_{-5}^{5} f(x) d x\) ( \(f\) is even.)
(d) \(\int_{-5}^{5} f(x) d x\) ( \(f\) is odd.)
50. Think About It A function \(f\) is defined below. Use geometric formulas to find \(\int_{0}^{8} f(x) d x\).
\(f(x)= \begin{cases}4, & x<4 \\ x, & x \geq 4\end{cases}\)
51. Think About It A function \(f\) is defined below. Use geometric formulas to find \(\int_{0}^{12} f(x) d x\).
\[
f(x)= \begin{cases}6, & x>6 \\ -\frac{1}{2} x+9, & x \leq 6\end{cases}
\]

\section*{CAPSTONE}
52. Find possible values of \(a\) and \(b\) that make the statement true. If possible, use a graph to support your answer. (There may be more than one correct answer.)
(a) \(\int_{-2}^{1} f(x) d x+\int_{1}^{5} f(x) d x=\int_{a}^{b} f(x) d x\)
(b) \(\int_{-3}^{3} f(x) d x+\int_{3}^{6} f(x) d x-\int_{a}^{b} f(x) d x=\int_{-1}^{6} f(x) d x\)
(c) \(\int_{a}^{b} \sin x d x<0\)
(d) \(\int_{a}^{b} \cos x d x=0\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 53 and 54, use the figure to fill in the blank with the symbol <, >, or \(=\).

53. The interval \([1,5]\) is partitioned into \(n\) subintervals of equal width \(\Delta x\), and \(x_{i}\) is the left endpoint of the \(i\) th subinterval.
\[
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \int_{1}^{5} f(x) d x
\]
54. The interval \([1,5]\) is partitioned into \(n\) subintervals of equal width \(\Delta x\), and \(x_{i}\) is the right endpoint of the \(i\) th subinterval.
\[
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \int_{1}^{5} f(x) d x
\]
55. Determine whether the function \(f(x)=\frac{1}{x-4}\) is integrable on the interval [3, 5]. Explain.
56. Give an example of a function that is integrable on the interval \([-1,1]\), but not continuous on \([-1,1]\).

In Exercises 57-60, determine which value best approximates the definite integral. Make your selection on the basis of a sketch.
57. \(\int_{0}^{4} \sqrt{x} d x\)
(a) 5
(b) -3
(c) 10
(d) 2
(e) 8
58. \(\int_{0}^{1 / 2} 4 \cos \pi x d x\)
(a) 4
(b) \(\frac{4}{3}\)
(c) 16
(d) \(2 \pi\)
(e) -6
59. \(\int_{0}^{1} 2 \sin \pi x d x\)
(a) 6
(b) \(\frac{1}{2}\)
(c) 4
(d) \(\frac{5}{4}\)
60. \(\int_{0}^{9}(1+\sqrt{x}) d x\)
(a) -3
(b) 9
(c) 27
(d) 3

Programming Write a program for your graphing utility to approximate a definite integral using the Riemann sum
\(\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}\)
where the subintervals are of equal width. The output should give three approximations of the integral, where \(c_{i}\) is the left-hand endpoint \(L(n)\), the midpoint \(M(n)\), and the right-hand endpoint \(R(n)\) of each subinterval. In Exercises 61-64, use the program to approximate the definite integral and complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 4 & 8 & 12 & 16 & 20 \\
\hline\(L(n)\) & & & & & \\
\hline\(M(n)\) & & & & & \\
\hline\(R(n)\) & & & & & \\
\hline
\end{tabular}
61. \(\int_{0}^{3} x \sqrt{3-x} d x\)
62. \(\int_{0}^{3} \frac{5}{x^{2}+1} d x\)
63. \(\int_{0}^{\pi / 2} \sin ^{2} x d x\)
64. \(\int_{0}^{3} x \sin x d x\)

True or False? In Exercises 65-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
65. \(\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x\)
66. \(\int_{a}^{b} f(x) g(x) d x=\left[\int_{a}^{b} f(x) d x\right]\left[\int_{a}^{b} g(x) d x\right]\)
67. If the norm of a partition approaches zero, then the number of subintervals approaches infinity.
68. If \(f\) is increasing on \([a, b]\), then the minimum value of \(f(x)\) on \([a, b]\) is \(f(a)\).
69. The value of \(\int_{a}^{b} f(x) d x\) must be positive.
70. The value of \(\int_{2}^{2} \sin \left(x^{2}\right) d x\) is 0 .
71. Find the Riemann sum for \(f(x)=x^{2}+3 x\) over the interval \([0,8]\), where \(x_{0}=0, x_{1}=1, x_{2}=3, x_{3}=7\), and \(x_{4}=8\), and where \(c_{1}=1, c_{2}=2, c_{3}=5\), and \(c_{4}=8\).


Figure for 71


Figure for 72
72. Find the Riemann sum for \(f(x)=\sin x\) over the interval \([0,2 \pi]\), where \(x_{0}=0, x_{1}=\pi / 4, x_{2}=\pi / 3, x_{3}=\pi\), and \(x_{4}=2 \pi\), and where \(c_{1}=\pi / 6, c_{2}=\pi / 3, c_{3}=2 \pi / 3\), and \(c_{4}=3 \pi / 2\).
73. Prove that \(\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}\).
74. Prove that \(\int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3}\).
75. Think About It Determine whether the Dirichlet function
\(f(x)= \begin{cases}1, & x \text { is rational } \\ 0, & x \text { is irrational }\end{cases}\)
is integrable on the interval \([0,1]\). Explain.
76. Suppose the function \(f\) is defined on \([0,1]\), as shown in the figure.
\(f(x)= \begin{cases}0, & x=0 \\ \frac{1}{x}, & 0<x \leq 1\end{cases}\)


Show that \(\int_{0}^{1} f(x) d x\) does not exist. Why doesn't this contradict Theorem 4.4?
77. Find the constants \(a\) and \(b\) that maximize the value of \(\int_{a}^{b}\left(1-x^{2}\right) d x\)

Explain your reasoning.
78. Evaluate, if possible, the integral \(\int_{0}^{2} \llbracket x \rrbracket d x\).
79. Determine
\[
\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right]
\]
by using an appropriate Riemann sum.

\section*{PUTNAM EXAM CHALLENGE}
80. For each continuous function \(f:[0,1] \rightarrow R\), let \(I(f)=\int_{0}^{1} x^{2} f(x) d x\) and \(J(x)=\int_{0}^{1} x(f(x))^{2} d x\). Find the maximum value of \(I(f)-J(f)\) over all such functions \(f\).
This problem was composed by the Committee on the Putnam Prize Competition. ©he Mathematical Association of America. All rights reserved.

\subsection*{4.4 The Fundamental Theorem of Calculus}
- Evaluate a definite integral using the Fundamental Theorem of Calculus.
- Understand and use the Mean Value Theorem for Integrals.
- Find the average value of a function over a closed interval.
- Understand and use the Second Fundamental Theorem of Calculus.
- Understand and use the Net Change Theorem.

\section*{E X P L ORATION}

Integration and Antidifferentiation
Throughout this chapter, you have been using the integral sign to denote an antiderivative (a family of functions) and a definite integral (a number).

Antidifferentiation: \(\int f(x) d x\)
Definite integration: \(\int_{a}^{b} f(x) d x\)
The use of this same symbol for both operations makes it appear that they are related. In the early work with calculus, however, it was not known that the two operations were related. Do you think the symbol \(\int\) was first applied to antidifferentiation or to definite integration? Explain your reasoning. (Hint: The symbol was first used by Leibniz and was derived from the letter \(S\).)

\section*{The Fundamental Theorem of Calculus}

You have now been introduced to the two major branches of calculus: differential calculus (introduced with the tangent line problem) and integral calculus (introduced with the area problem). At this point, these two problems might seem unrelated-but there is a very close connection. The connection was discovered independently by Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately called the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are inverse operations, in the same sense that division and multiplication are inverse operations. To see how Newton and Leibniz might have anticipated this relationship, consider the approximations shown in Figure 4.26. The slope of the tangent line was defined using the quotient \(\Delta y / \Delta x\) (the slope of the secant line). Similarly, the area of a region under a curve was defined using the product \(\Delta y \Delta x\) (the area of a rectangle). So, at least in the primitive approximation stage, the operations of differentiation and definite integration appear to have an inverse relationship in the same sense that division and multiplication are inverse operations. The Fundamental Theorem of Calculus states that the limit processes (used to define the derivative and definite integral) preserve this inverse relationship.


Figure 4.26

\section*{THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS}

If a function \(f\) is continuous on the closed interval \([a, b]\) and \(F\) is an antiderivative of \(f\) on the interval \([a, b]\), then
\[
\int_{a}^{b} f(x) d x=F(b)-F(a)
\]
(PR00F) The key to the proof is in writing the difference \(F(b)-F(a)\) in a convenient form. Let \(\Delta\) be any partition of \([a, b]\).
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
\]

By pairwise subtraction and addition of like terms, you can write
\[
\begin{aligned}
F(b)-F(a) & =F\left(x_{n}\right)-F\left(x_{n-1}\right)+F\left(x_{n-1}\right)-\cdots-F\left(x_{1}\right)+F\left(x_{1}\right)-F\left(x_{0}\right) \\
& =\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] .
\end{aligned}
\]

By the Mean Value Theorem, you know that there exists a number \(c_{i}\) in the \(i\) th subinterval such that
\[
F^{\prime}\left(c_{i}\right)=\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{x_{i}-x_{i-1}} .
\]

Because \(F^{\prime}\left(c_{i}\right)=f\left(c_{i}\right)\), you can let \(\Delta x_{i}=x_{i}-x_{i-1}\) and obtain
\[
F(b)-F(a)=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} .
\]

This important equation tells you that by repeatedly applying the Mean Value Theorem, you can always find a collection of \(c_{i}\) 's such that the constant \(F(b)-F(a)\) is a Riemann sum of \(f\) on \([a, b]\) for any partition. Theorem 4.4 guarantees that the limit of Riemann sums over the partition with \(\|\Delta\| \rightarrow 0\) exists. So, taking the limit (as \(\|\Delta\| \rightarrow 0\) ) produces
\[
F(b)-F(a)=\int_{a}^{b} f(x) d x
\]

The following guidelines can help you understand the use of the Fundamental Theorem of Calculus.

\section*{GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF CALCULUS}
1. Provided you can find an antiderivative of \(f\), you now have a way to evaluate a definite integral without having to use the limit of a sum.
2. When applying the Fundamental Theorem of Calculus, the following notation is convenient.
\[
\begin{aligned}
\int_{a}^{b} f(x) d x & =F(x)]_{a}^{b} \\
& =F(b)-F(a)
\end{aligned}
\]

For instance, to evaluate \(\int_{1}^{3} x^{3} d x\), you can write
\[
\left.\int_{1}^{3} x^{3} d x=\frac{x^{4}}{4}\right]_{1}^{3}=\frac{3^{4}}{4}-\frac{1^{4}}{4}=\frac{81}{4}-\frac{1}{4}=20
\]
3. It is not necessary to include a constant of integration \(C\) in the antiderivative because
\[
\begin{aligned}
\int_{a}^{b} f(x) d x & =[F(x)+C]_{a}^{b} \\
& =[F(b)+C]-[F(a)+C] \\
& =F(b)-F(a)
\end{aligned}
\]


The definite integral of \(y\) on \([0,2]\) is \(\frac{5}{2}\).
Figure 4.27


The area of the region bounded by the graph of \(y\), the \(x\)-axis, \(x=0\), and \(x=2\) is \(\frac{10}{3}\).
Figure 4.28

\section*{EXAMPLE 1 Evaluating a Definite Integral}

Evaluate each definite integral.
a. \(\int_{1}^{2}\left(x^{2}-3\right) d x\)
b. \(\int_{1}^{4} 3 \sqrt{x} d x\)
c. \(\int_{0}^{\pi / 4} \sec ^{2} x d x\)

Solution
a. \(\int_{1}^{2}\left(x^{2}-3\right) d x=\left[\frac{x^{3}}{3}-3 x\right]_{1}^{2}=\left(\frac{8}{3}-6\right)-\left(\frac{1}{3}-3\right)=-\frac{2}{3}\)
b. \(\int_{1}^{4} 3 \sqrt{x} d x=3 \int_{1}^{4} x^{1 / 2} d x=3\left[\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{4}=2(4)^{3 / 2}-2(1)^{3 / 2}=14\)
c. \(\left.\int_{0}^{\pi / 4} \sec ^{2} x d x=\tan x\right]_{0}^{\pi / 4}=1-0=1\)

\section*{EXAMPLE 2 A Definite Integral Involving Absolute Value}

Evaluate \(\int_{0}^{2}|2 x-1| d x\)
Solution Using Figure 4.27 and the definition of absolute value, you can rewrite the integrand as shown.
\[
|2 x-1|= \begin{cases}-(2 x-1), & x<\frac{1}{2} \\ 2 x-1, & x \geq \frac{1}{2}\end{cases}
\]

From this, you can rewrite the integral in two parts.
\[
\begin{aligned}
\int_{0}^{2}|2 x-1| d x & =\int_{0}^{1 / 2}-(2 x-1) d x+\int_{1 / 2}^{2}(2 x-1) d x \\
& =\left[-x^{2}+x\right]_{0}^{1 / 2}+\left[x^{2}-x\right]_{1 / 2}^{2} \\
& =\left(-\frac{1}{4}+\frac{1}{2}\right)-(0+0)+(4-2)-\left(\frac{1}{4}-\frac{1}{2}\right) \\
& =\frac{5}{2}
\end{aligned}
\]

\section*{EXAMPLE 3 Using the Fundamental Theorem to Find Area}

Find the area of the region bounded by the graph of \(y=2 x^{2}-3 x+2\), the \(x\)-axis, and the vertical lines \(x=0\) and \(x=2\), as shown in Figure 4.28.

Solution Note that \(y>0\) on the interval \([0,2]\).
\[
\begin{aligned}
\text { Area } & =\int_{0}^{2}\left(2 x^{2}-3 x+2\right) d x & & \text { Integrate between } x=0 \text { and } x=2 . \\
& =\left[\frac{2 x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{0}^{2} & & \text { Find antiderivative. } \\
& =\left(\frac{16}{3}-6+4\right)-(0-0+0) & & \text { Apply Fundamental Theorem. } \\
& =\frac{10}{3} & & \text { Simplify. }
\end{aligned}
\]


Mean value rectangle:
\(f(c)(b-a)=\int_{a}^{b} f(x) d x\)
Figure 4.29

\section*{The Mean Value Theorem for Integrals}

In Section 4.2, you saw that the area of a region under a curve is greater than the area of an inscribed rectangle and less than the area of a circumscribed rectangle. The Mean Value Theorem for Integrals states that somewhere "between" the inscribed and circumscribed rectangles there is a rectangle whose area is precisely equal to the area of the region under the curve, as shown in Figure 4.29.

\section*{THEOREM 4.10 MEAN VALUE THEOREM FOR INTEGRALS}

If \(f\) is continuous on the closed interval \([a, b]\), then there exists a number \(c\) in the closed interval \([a, b]\) such that
\[
\int_{a}^{b} f(x) d x=f(c)(b-a)
\]

\section*{PROOF}

Case 1: If \(f\) is constant on the interval \([a, b]\), the theorem is clearly valid because \(c\) can be any point in \([a, b]\).
Case 2: If \(f\) is not constant on \([a, b]\), then, by the Extreme Value Theorem, you can choose \(f(m)\) and \(f(M)\) to be the minimum and maximum values of \(f\) on \([a, b]\). Because \(f(m) \leq f(x) \leq f(M)\) for all \(x\) in \([a, b]\), you can apply Theorem 4.8 to write the following.
\[
\begin{aligned}
\int_{a}^{b} f(m) d x & \leq \int_{a}^{b} f(x) d x \\
f(m)(b-a) & \leq \int_{a}^{b} f(M) d x \quad \text { See Figure 4.30. } \\
f(m) & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
\]

From the third inequality, you can apply the Intermediate Value Theorem to conclude that there exists some \(c\) in \([a, b]\) such that
\[
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \quad \text { or } \quad f(c)(b-a)=\int_{a}^{b} f(x) d x
\]


Inscribed rectangle (less than actual area)
\(\int_{a}^{b} f(m) d x=f(m)(b-a)\)
Figure 4.30


Mean value rectangle (equal to actual area)
\[
\int_{a}^{b} f(x) d x
\]


Circumscribed rectangle (greater than actual area)
\(\int_{a}^{b} f(M) d x=f(M)(b-a)\)

NOTE Notice that Theorem 4.10 does not specify how to determine \(c\). It merely guarantees the existence of at least one number \(c\) in the interval.


Average value \(=\frac{1}{b-a} \int_{a}^{b} f(x) d x\)
Figure 4.31


Figure 4.32

\section*{Average Value of a Function}

The value of \(f(c)\) given in the Mean Value Theorem for Integrals is called the average value of \(f\) on the interval \([a, b]\).

\section*{DEFINITION OF THE AVERAGE VALUE OF A FUNCTION ON AN INTERVAL}

If \(f\) is integrable on the closed interval \([a, b]\), then the average value of \(f\) on the interval is
\[
\frac{1}{b-a} \int_{a}^{b} f(x) d x
\]

NOTE Notice in Figure 4.31 that the area of the region under the graph of \(f\) is equal to the area of the rectangle whose height is the average value.

To see why the average value of \(f\) is defined in this way, suppose that you partition \([a, b]\) into \(n\) subintervals of equal width \(\Delta x=(b-a) / n\). If \(c_{i}\) is any point in the \(i\) th subinterval, the arithmetic average (or mean) of the function values at the \(c_{i}\) 's is given by
\[
a_{n}=\frac{1}{n}\left[f\left(c_{1}\right)+f\left(c_{2}\right)+\cdots+f\left(c_{n}\right)\right] . \quad \text { Average of } f\left(c_{1}\right), \ldots, f\left(c_{n}\right)
\]

By multiplying and dividing by \((b-a)\), you can write the average as
\[
\begin{aligned}
a_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(c_{i}\right)\left(\frac{b-a}{b-a}\right) & =\frac{1}{b-a} \sum_{i=1}^{n} f\left(c_{i}\right)\left(\frac{b-a}{n}\right) \\
& =\frac{1}{b-a} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
\end{aligned}
\]

Finally, taking the limit as \(n \rightarrow \infty\) produces the average value of \(f\) on the interval \([a, b]\), as given in the definition above.

This development of the average value of a function on an interval is only one of many practical uses of definite integrals to represent summation processes. In Chapter 7, you will study other applications, such as volume, arc length, centers of mass, and work.

\section*{EXAMPLE 4 Finding the Average Value of a Function}

Find the average value of \(f(x)=3 x^{2}-2 x\) on the interval \([1,4]\).
Solution The average value is given by
\[
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{4-1} \int_{1}^{4}\left(3 x^{2}-2 x\right) d x \\
& =\frac{1}{3}\left[x^{3}-x^{2}\right]_{1}^{4} \\
& =\frac{1}{3}[64-16-(1-1)]=\frac{48}{3}=16
\end{aligned}
\]
(See Figure 4.32.)


The first person to fly at a speed greater than the speed of sound was Charles Yeager. On October 14, 1947, Yeager was clocked at 295.9 meters per second at an altitude of 12.2 kilometers. If Yeager had been flying at an altitude below 11.275 kilometers, this speed would not have "broken the sound barrier." The photo above shows an F-14 Tomcat, a supersonic, twin-engine strike fighter. Currently, the Tomcat can reach heights of 15.24 kilometers and speeds up to 2 mach (707.78 meters per second).

\section*{EXAMPLE 5 The Speed of Sound}

At different altitudes in Earth's atmosphere, sound travels at different speeds. The speed of sound \(s(x)\) (in meters per second) can be modeled by
\[
s(x)= \begin{cases}-4 x+341, & 0 \leq x<11.5 \\ 295, & 11.5 \leq x<22 \\ \frac{3}{4} x+278.5, & 22 \leq x<32 \\ \frac{3}{2} x+254.5, & 32 \leq x<50 \\ -\frac{3}{2} x+404.5, & 50 \leq x \leq 80\end{cases}
\]
where \(x\) is the altitude in kilometers (see Figure 4.33). What is the average speed of sound over the interval \([0,80]\) ?

Solution Begin by integrating \(s(x)\) over the interval [ 0,80 ]. To do this, you can break the integral into five parts.
\[
\begin{aligned}
& \int_{0}^{11.5} s(x) d x=\int_{0}^{11.5}(-4 x+341) d x=\left[-2 x^{2}+341 x\right]_{0}^{11.5}=3657 \\
& \int_{11.5}^{22} s(x) d x=\int_{11.5}^{22}(295) d x=[295 x]_{11.5}^{22}=3097.5 \\
& \int_{22}^{32} s(x) d x=\int_{22}^{32}\left(\frac{3}{4} x+278.5\right) d x=\left[\frac{3}{8} x^{2}+278.5 x\right]_{22}^{32}=2987.5 \\
& \int_{32}^{50} s(x) d x=\int_{32}^{50}\left(\frac{3}{2} x+254.5\right) d x=\left[\frac{3}{4} x^{2}+254.5 x\right]_{32}^{50}=5688 \\
& \int_{50}^{80} s(x) d x=\int_{50}^{80}\left(-\frac{3}{2} x+404.5\right) d x=\left[-\frac{3}{4} x^{2}+404.5 x\right]_{50}^{80}=9210
\end{aligned}
\]

By adding the values of the five integrals, you have
\[
\int_{0}^{80} s(x) d x=24,640
\]

So, the average speed of sound from an altitude of 0 kilometers to an altitude of 80 kilometers is

Average speed \(=\frac{1}{80} \int_{0}^{80} s(x) d x=\frac{24,640}{80}=308\) meters per second.


Speed of sound depends on altitude.
Figure 4.33

\section*{EXPLORATION}

Use a graphing utility to graph the function
\[
F(x)=\int_{0}^{x} \cos t d t
\]
for \(0 \leq x \leq \pi\). Do you recognize this graph? Explain.

\section*{The Second Fundamental Theorem of Calculus}

Earlier you saw that the definite integral of \(f\) on the interval \([a, b]\) was defined using the constant \(b\) as the upper limit of integration and \(x\) as the variable of integration. However, a slightly different situation may arise in which the variable \(x\) is used in the upper limit of integration. To avoid the confusion of using \(x\) in two different ways, \(t\) is temporarily used as the variable of integration. (Remember that the definite integral is not a function of its variable of integration.)


\section*{EXAMPLE 6 The Definite Integral as a Function}

Evaluate the function
\[
F(x)=\int_{0}^{x} \cos t d t
\]
at \(x=0, \pi / 6, \pi / 4, \pi / 3\), and \(\pi / 2\).
Solution You could evaluate five different definite integrals, one for each of the given upper limits. However, it is much simpler to fix \(x\) (as a constant) temporarily to obtain
\[
\left.\int_{0}^{x} \cos t d t=\sin t\right]_{0}^{x}=\sin x-\sin 0=\sin x
\]

Now, using \(F(x)=\sin x\), you can obtain the results shown in Figure 4.34.





\(F(x)=\int_{0}^{x} \cos t d t\) is the area under the curve \(f(t)=\cos t\) from 0 to \(x\).
Figure 4.34

You can think of the function \(F(x)\) as accumulating the area under the curve \(f(t)=\cos t\) from \(t=0\) to \(t=x\). For \(x=0\), the area is 0 and \(F(0)=0\). For \(x=\pi / 2\), \(F(\pi / 2)=1\) gives the accumulated area under the cosine curve on the entire interval \([0, \pi / 2]\). This interpretation of an integral as an accumulation function is used often in applications of integration.

In Example 6, note that the derivative of \(F\) is the original integrand (with only the variable changed). That is,
\[
\frac{d}{d x}[F(x)]=\frac{d}{d x}[\sin x]=\frac{d}{d x}\left[\int_{0}^{x} \cos t d t\right]=\cos x
\]

This result is generalized in the following theorem, called the Second Fundamental Theorem of Calculus.

\section*{THEOREM 4.11 THE SECOND FUNDAMENTAL THEOREM OF CALCULUS}

If \(f\) is continuous on an open interval \(I\) containing \(a\), then, for every \(x\) in the interval,
\[
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
\]

\section*{PROOF Begin by defining \(F\) as}
\[
F(x)=\int_{a}^{x} f(t) d t
\]

Then, by the definition of the derivative, you can write
\[
\begin{aligned}
F^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left[\int_{a}^{x+\Delta x} f(t) d t-\int_{a}^{x} f(t) d t\right] \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left[\int_{a}^{x+\Delta x} f(t) d t+\int_{x}^{a} f(t) d t\right] \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left[\int_{x}^{x+\Delta x} f(t) d t\right]
\end{aligned}
\]

From the Mean Value Theorem for Integrals (assuming \(\Delta x>0\) ), you know there exists a number \(c\) in the interval \([x, x+\Delta x]\) such that the integral in the expression above is equal to \(f(c) \Delta x\). Moreover, because \(x \leq c \leq x+\Delta x\), it follows that \(c \rightarrow x\) as \(\Delta x \rightarrow 0\). So, you obtain
\[
\begin{aligned}
F^{\prime}(x) & =\lim _{\Delta x \rightarrow 0}\left[\frac{1}{\Delta x} f(c) \Delta x\right] \\
& =\lim _{\Delta x \rightarrow 0} f(c) \\
& =f(x)
\end{aligned}
\]

A similar argument can be made for \(\Delta x<0\).

NOTE Using the area model for definite integrals, you can view the approximation
\[
f(x) \Delta x \approx \int_{x}^{x+\Delta x} f(t) d t
\]
as saying that the area of the rectangle of height \(f(x)\) and width \(\Delta x\) is approximately equal to the area of the region lying between the graph of \(f\) and the \(x\)-axis on the interval \([x, x+\Delta x]\), as shown in Figure 4.35.

Note that the Second Fundamental Theorem of Calculus tells you that if a function is continuous, you can be sure that it has an antiderivative. This antiderivative need not, however, be an elementary function. (Recall the discussion of elementary functions in Section P.3.)

\section*{EXAMPLE 7 Using the Second Fundamental Theorem of Calculus}

Evaluate \(\frac{d}{d x}\left[\int_{0}^{x} \sqrt{t^{2}+1} d t\right]\).
Solution Note that \(f(t)=\sqrt{t^{2}+1}\) is continuous on the entire real line. So, using the Second Fundamental Theorem of Calculus, you can write
\[
\frac{d}{d x}\left[\int_{0}^{x} \sqrt{t^{2}+1} d t\right]=\sqrt{x^{2}+1}
\]

The differentiation shown in Example 7 is a straightforward application of the Second Fundamental Theorem of Calculus. The next example shows how this theorem can be combined with the Chain Rule to find the derivative of a function.

\section*{EXAMPLE 8 Using the Second Fundamental Theorem of Calculus}

Find the derivative of \(F(x)=\int_{\pi / 2}^{x^{3}} \cos t d t\).
Solution Using \(u=x^{3}\), you can apply the Second Fundamental Theorem of Calculus with the Chain Rule as shown.
\[
\begin{aligned}
F^{\prime}(x) & =\frac{d F}{d u} \frac{d u}{d x} & & \text { Chain Rule } \\
& =\frac{d}{d u}[F(x)] \frac{d u}{d x} & & \text { Definition of } \frac{d F}{d u} \\
& =\frac{d}{d u}\left[\int_{\pi / 2}^{x^{3}} \cos t d t\right] \frac{d u}{d x} & & \text { Substitute } \int_{\pi / 2}^{x^{3}} \cos t d t \text { for } F(x) . \\
& =\frac{d}{d u}\left[\int_{\pi / 2}^{u} \cos t d t\right] \frac{d u}{d x} & & \text { Substitute } u \text { for } x^{3} . \\
& =(\cos u)\left(3 x^{2}\right) & & \text { Apply Second Fundamental Theorem of Calculus. } \\
& =\left(\cos x^{3}\right)\left(3 x^{2}\right) & & \text { Rewrite as function of } x .
\end{aligned}
\]

Because the integrand in Example 8 is easily integrated, you can verify the derivative as follows.
\[
\left.F(x)=\int_{\pi / 2}^{x^{3}} \cos t d t=\sin t\right]_{\pi / 2}^{x^{3}}=\sin x^{3}-\sin \frac{\pi}{2}=\left(\sin x^{3}\right)-1
\]

In this form, you can apply the Power Rule to verify that the derivative is the same as that obtained in Example 8.
\[
F^{\prime}(x)=\left(\cos x^{3}\right)\left(3 x^{2}\right)
\]

\section*{Net Change Theorem}

The Fundamental Theorem of Calculus (Theorem 4.9) states that if \(f\) is continuous on the closed interval \([a, b]\) and \(F\) is an antiderivative of \(f\) on \([a, b]\), then
\[
\int_{a}^{b} f(x) d x=F(b)-F(a)
\]

But because \(F^{\prime}(x)=f(x)\), this statement can be rewritten as
\[
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
\]
where the quantity \(F(b)-F(a)\) represents the net change of \(F\) on the interval \([a, b]\).

\section*{THEOREM 4.12 THE NET CHANGE THEOREM}

The definite integral of the rate of change of a quantity \(F^{\prime}(x)\) gives the total change, or net change, in that quantity on the interval \([a, b]\).
\[
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \quad \text { Net change of } F
\]

\section*{EXAMPLE 9 Using the Net Change Theorem}

A chemical flows into a storage tank at a rate of \(180+3 t\) liters per minute, where \(0 \leq t \leq 60\). Find the amount of the chemical that flows into the tank during the first 20 minutes.
Solution Let \(c(t)\) be the amount of the chemical in the tank at time \(t\). Then \(c^{\prime}(t)\) represents the rate at which the chemical flows into the tank at time \(t\). During the first 20 minutes, the amount that flows into the tank is
\[
\begin{aligned}
\int_{0}^{20} c^{\prime}(t) d t & =\int_{0}^{20}(180+3 t) d t \\
& =\left[180 t+\frac{3}{2} t^{2}\right]_{0}^{20} \\
& =3600+600=4200
\end{aligned}
\]

So, the amount that flows into the tank during the first 20 minutes is 4200 liters.

Another way to illustrate the Net Change Theorem is to examine the velocity of a particle moving along a straight line where \(s(t)\) is the position at time \(t\). Then its velocity is \(v(t)=s^{\prime}(t)\) and
\[
\int_{a}^{b} v(t) d t=s(b)-s(a)
\]

This definite integral represents the net change in position, or displacement, of the particle.

\(A_{1}, A_{2}\), and \(A_{3}\) are the areas of the shaded regions.

\section*{Figure 4.36}


Figure 4.37

When calculating the total distance traveled by the particle, you must consider the intervals where \(v(t) \leq 0\) and the intervals where \(v(t) \geq 0\). When \(v(t) \leq 0\), the particle moves to the left, and when \(v(t) \geq 0\), the particle moves to the right. To calculate the total distance traveled, integrate the absolute value of velocity \(|v(t)|\). So, the displacement of a particle and the total distance traveled by a particle over \([a, b]\) can be written as
\[
\text { Displacement on }[\boldsymbol{a}, \boldsymbol{b}]=\int_{a}^{b} v(t) d t=A_{1}-A_{2}+A_{3}
\]

Total distance traveled on \([\boldsymbol{a}, \boldsymbol{b}]=\int_{a}^{b}|v(t)| d t=A_{1}+A_{2}+A_{3}\)
(see Figure 4.36).

\section*{EXAMPLE 10 Solving a Particle Motion Problem}

A particle is moving along a line so that its velocity is \(v(t)=t^{3}-10 t^{2}+29 t-20\) feet per second at time \(t\).
a. What is the displacement of the particle on the time interval \(1 \leq t \leq 5\) ?
b. What is the total distance traveled by the particle on the time interval \(1 \leq t \leq 5\) ?

\section*{Solution}
a. By definition, you know that the displacement is
\[
\begin{aligned}
\int_{1}^{5} v(t) d t & =\int_{1}^{5}\left(t^{3}-10 t^{2}+29 t-20\right) d t \\
& =\left[\frac{t^{4}}{4}-\frac{10}{3} t^{3}+\frac{29}{2} t^{2}-20 t\right]_{1}^{5} \\
& =\frac{25}{12}-\left(-\frac{103}{12}\right) \\
& =\frac{128}{12} \\
& =\frac{32}{3}
\end{aligned}
\]

So, the particle moves \(\frac{32}{3}\) feet to the right.
b. To find the total distance traveled, calculate \(\int_{1}^{5}|v(t)| d t\). Using Figure 4.37 and the fact that \(v(t)\) can be factored as \((t-1)(t-4)(t-5)\), you can determine that \(v(t) \geq 0\) on \([1,4]\) and \(v(t) \leq 0\) on \([4,5]\). So, the total distance traveled is
\[
\begin{aligned}
\int_{1}^{5}|v(t)| d t & =\int_{1}^{4} v(t) d t-\int_{4}^{5} v(t) d t \\
& =\int_{1}^{4}\left(t^{3}-10 t^{2}+29 t-20\right) d t-\int_{4}^{5}\left(t^{3}-10 t^{2}+29 t-20\right) d t \\
& =\left[\frac{t^{4}}{4}-\frac{10}{3} t^{3}+\frac{29}{2} t^{2}-20 t\right]_{1}^{4}-\left[\frac{t^{4}}{4}-\frac{10}{3} t^{3}+\frac{29}{2} t^{2}-20 t\right]_{4}^{5} \\
& =\frac{45}{4}-\left(-\frac{7}{12}\right) \\
& =\frac{71}{6} \text { feet. }
\end{aligned}
\]

\subsection*{4.4 Exercises}

Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the integrand. Use the graph to determine whether the definite integral is positive, negative, or zero.
1. \(\int_{0}^{\pi} \frac{4}{x^{2}+1} d x\)
2. \(\int_{0}^{\pi} \cos x d x\)
3. \(\int_{-2}^{2} x \sqrt{x^{2}+1} d x\)
4. \(\int_{-2}^{2} x \sqrt{2-x} d x\)

In Exercises 5-26, evaluate the definite integral of the algebraic function. Use a graphing utility to verify your result.
5. \(\int_{0}^{2} 6 x d x\)
6. \(\int_{4}^{9} 5 d v\)
7. \(\int_{-1}^{0}(2 x-1) d x\)
8. \(\int_{2}^{5}(-3 v+4) d v\)
9. \(\int_{-1}^{1}\left(t^{2}-2\right) d t\)
10. \(\int_{1}^{7}\left(6 x^{2}+2 x-3\right) d x\)
11. \(\int_{0}^{1}(2 t-1)^{2} d t\)
12. \(\int_{-1}^{1}\left(t^{3}-9 t\right) d t\)
13. \(\int_{1}^{2}\left(\frac{3}{x^{2}}-1\right) d x\)
14. \(\int_{-2}^{-1}\left(u-\frac{1}{u^{2}}\right) d u\)
15. \(\int_{1}^{4} \frac{u-2}{\sqrt{u}} d u\)
16. \(\int_{-3}^{3} v^{1 / 3} d v\)
17. \(\int_{-1}^{1}(\sqrt[3]{t}-2) d t\)
18. \(\int_{1}^{8} \sqrt{\frac{2}{x}} d x\)
19. \(\int_{0}^{1} \frac{x-\sqrt{x}}{3} d x\)
20. \(\int_{0}^{2}(2-t) \sqrt{t} d t\)
21. \(\int_{-1}^{0}\left(t^{1 / 3}-t^{2 / 3}\right) d t\)
22. \(\int_{-8}^{-1} \frac{x-x^{2}}{2 \sqrt[3]{x}} d x\)
23. \(\int_{0}^{5}|2 x-5| d x\)
24. \(\int_{1}^{4}(3-|x-3|) d x\)
25. \(\int_{0}^{4}\left|x^{2}-9\right| d x\)
26. \(\int_{0}^{4}\left|x^{2}-4 x+3\right| d x\)

In Exercises 27-34, evaluate the definite integral of the trigonometric function. Use a graphing utility to verify your result.
27. \(\int_{0}^{\pi}(1+\sin x) d x\)
28. \(\int_{0}^{\pi}(2+\cos x) d x\)
29. \(\int_{0}^{\pi / 4} \frac{1-\sin ^{2} \theta}{\cos ^{2} \theta} d \theta\)
30. \(\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta}{\tan ^{2} \theta+1} d \theta\)
31. \(\int_{-\pi / 6}^{\pi / 6} \sec ^{2} x d x\)
32. \(\int_{\pi / 4}^{\pi / 2}\left(2-\csc ^{2} x\right) d x\)
33. \(\int_{-\pi / 3}^{\pi / 3} 4 \sec \theta \tan \theta d \theta\)
34. \(\int_{-\pi / 2}^{\pi / 2}(2 t+\cos t) d t\)

In Exercises 35-38, determine the area of the given region.
35. \(y=x-x^{2}\)
36. \(y=\frac{1}{x^{2}}\)


37. \(y=\cos x\)
38. \(y=x+\sin x\)


In Exercises 39-44, find the area of the region bounded by the graphs of the equations.
39. \(y=5 x^{2}+2, \quad x=0, \quad x=2, \quad y=0\)
40. \(y=x^{3}+x, \quad x=2, \quad y=0\)
41. \(y=1+\sqrt[3]{x}, \quad x=0, \quad x=8, \quad y=0\)
42. \(y=(3-x) \sqrt{x}, \quad y=0\)
43. \(y=-x^{2}+4 x, \quad y=0\)
44. \(y=1-x^{4}, \quad y=0\)

In Exercises 45-50, find the value(s) of \(c\) guaranteed by the Mean Value Theorem for Integrals for the function over the given interval.
45. \(f(x)=x^{3}, \quad[0,3]\)
46. \(f(x)=\frac{9}{x^{3}}, \quad[1,3]\)
47. \(f(x)=\sqrt{x}, \quad[4,9]\)
48. \(f(x)=x-2 \sqrt{x}, \quad[0,2]\)
49. \(f(x)=2 \sec ^{2} x, \quad[-\pi / 4, \pi / 4]\)
50. \(f(x)=\cos x, \quad[-\pi / 3, \pi / 3]\)

In Exercises 51-56, find the average value of the function over the given interval and all values of \(x\) in the interval for which the function equals its average value.
51. \(f(x)=9-x^{2}, \quad[-3,3]\)
52. \(f(x)=\frac{4\left(x^{2}+1\right)}{x^{2}},[1,3]\)
53. \(f(x)=x^{3}, \quad[0,1]\)
54. \(f(x)=4 x^{3}-3 x^{2}, \quad[-1,2]\)
55. \(f(x)=\sin x, \quad[0, \pi]\)
56. \(f(x)=\cos x, \quad[0, \pi / 2]\)
57. Velocity The graph shows the velocity, in feet per second, of a car accelerating from rest. Use the graph to estimate the distance the car travels in 8 seconds.


Figure for 57


Figure for 58
58. Velocity The graph shows the velocity, in feet per second, of a decelerating car after the driver applies the brakes. Use the graph to estimate how far the car travels before it comes to a stop.

\section*{WRITING ABOUT CONCEPTS}
59. The graph of \(f\) is shown in the figure.

(a) Evaluate \(\int_{1}^{7} f(x) d x\).
(b) Determine the average value of \(f\) on the interval \([1,7]\).
(c) Determine the answers to parts (a) and (b) if the graph is translated two units upward.
60. If \(r^{\prime}(t)\) represents the rate of growth of a dog in pounds per year, what does \(r(t)\) represent? What does \(\int_{2}^{6} r^{\prime}(t) d t\) represent about the dog?
61. Force The force \(F\) (in newtons) of a hydraulic cylinder in a press is proportional to the square of \(\sec x\), where \(x\) is the distance (in meters) that the cylinder is extended in its cycle. The domain of \(F\) is \([0, \pi / 3]\), and \(F(0)=500\).
(a) Find \(F\) as a function of \(x\).
(b) Find the average force exerted by the press over the interval \([0, \pi / 3]\).
62. Blood Flow The velocity \(v\) of the flow of blood at a distance \(r\) from the central axis of an artery of radius \(R\) is
\(v=k\left(R^{2}-r^{2}\right)\)
where \(k\) is the constant of proportionality. Find the average rate of flow of blood along a radius of the artery. (Use 0 and \(R\) as the limits of integration.)
63. Respiratory Cycle The volume \(V\), in liters, of air in the lungs during a five-second respiratory cycle is approximated by the model \(V=0.1729 t+0.1522 t^{2}-0.0374 t^{3}\), where \(t\) is the time in seconds. Approximate the average volume of air in the lungs during one cycle.
64. Average Sales A company fits a model to the monthly sales data for a seasonal product. The model is
\(S(t)=\frac{t}{4}+1.8+0.5 \sin \left(\frac{\pi t}{6}\right), \quad 0 \leq t \leq 24\)
where \(S\) is sales (in thousands) and \(t\) is time in months.
(a) Use a graphing utility to graph \(f(t)=0.5 \sin (\pi t / 6)\) for \(0 \leq t \leq 24\). Use the graph to explain why the average value of \(f(t)\) is 0 over the interval.
(b) Use a graphing utility to graph \(S(t)\) and the line \(g(t)=t / 4+1.8\) in the same viewing window. Use the graph and the result of part (a) to explain why \(g\) is called the trend line.
65. Modeling Data An experimental vehicle is tested on a straight track. It starts from rest, and its velocity \(v\) (in meters per second) is recorded every 10 seconds for 1 minute (see table).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(t\) & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\
\hline\(v\) & 0 & 5 & 21 & 40 & 62 & 78 & 83 \\
\hline
\end{tabular}
(a) Use a graphing utility to find a model of the form \(v=a t^{3}+b t^{2}+c t+d\) for the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Use the Fundamental Theorem of Calculus to approximate the distance traveled by the vehicle during the test.

\section*{CAPSTONE}
66. The graph of \(f\) is shown in the figure. The shaded region \(A\) has an area of 1.5 , and \(\int_{0}^{6} f(x) d x=3.5\). Use this information to fill in the blanks.
(a) \(\int_{0}^{2} f(x) d x=\) \(\qquad\)

(b) \(\int_{2}^{6} f(x) d x=\) \(\qquad\)
(c) \(\int_{0}^{6}|f(x)| d x=\)
(d) \(\int_{0}^{2}-2 f(x) d x=\) \(\qquad\)
(e) \(\int_{0}^{6}[2+f(x)] d x=\)
(f) The average value of \(f\) over the interval \([0,6]\) is

In Exercises 67-72, find \(F\) as a function of \(x\) and evaluate it at \(x=2, x=5\), and \(x=8\).
67. \(F(x)=\int_{0}^{x}(4 t-7) d t\)
68. \(F(x)=\int_{2}^{x}\left(t^{3}+2 t-2\right) d t\)
69. \(F(x)=\int_{1}^{x} \frac{20}{v^{2}} d v\)
70. \(F(x)=\int_{2}^{x}-\frac{2}{t^{3}} d t\)
71. \(F(x)=\int_{1}^{x} \cos \theta d \theta\)
72. \(F(x)=\int_{0}^{x} \sin \theta d \theta\)
73. Let \(g(x)=\int_{0}^{x} f(t) d t\), where \(f\) is the function whose graph is shown in the figure.
(a) Estimate \(g(0), g(2), g(4), g(6)\), and \(g(8)\).
(b) Find the largest open interval on which \(g\) is increasing. Find the largest open interval on which \(g\) is decreasing.
(c) Identify any extrema of \(g\).
(d) Sketch a rough graph of \(g\).


Figure for 73


Figure for 74
74. Let \(g(x)=\int_{0}^{x} f(t) d t\), where \(f\) is the function whose graph is shown in the figure.
(a) Estimate \(g(0), g(2), g(4), g(6)\), and \(g(8)\).
(b) Find the largest open interval on which \(g\) is increasing. Find the largest open interval on which \(g\) is decreasing.
(c) Identify any extrema of \(g\).
(d) Sketch a rough graph of \(g\).

In Exercises 75-80, (a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a).
75. \(F(x)=\int_{0}^{x}(t+2) d t\)
76. \(F(x)=\int_{0}^{x} t\left(t^{2}+1\right) d t\)
77. \(F(x)=\int_{8}^{x} \sqrt[3]{t} d t\)
78. \(F(x)=\int_{4}^{x} \sqrt{t} d t\)
79. \(F(x)=\int_{\pi / 4}^{x} \sec ^{2} t d t\)
80. \(F(x)=\int_{\pi / 3}^{x} \sec t \tan t d t\)

In Exercises 81-86, use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\).
81. \(F(x)=\int_{-2}^{x}\left(t^{2}-2 t\right) d t\)
82. \(F(x)=\int_{1}^{x} \frac{t^{2}}{t^{2}+1} d t\)
83. \(F(x)=\int_{-1}^{x} \sqrt{t^{4}+1} d t\)
84. \(F(x)=\int_{1}^{x} \sqrt[4]{t} d t\)
85. \(F(x)=\int_{0}^{x} t \cos t d t\)
86. \(F(x)=\int_{0}^{x} \sec ^{3} t d t\)

In Exercises 87-92, find \(F^{\prime}(x)\).
87. \(F(x)=\int_{x}^{x+2}(4 t+1) d t \quad\) 88. \(F(x)=\int_{-x}^{x} t^{3} d t\)
89. \(F(x)=\int_{0}^{\sin x} \sqrt{t} d t\)
90. \(F(x)=\int_{2}^{x^{2}} \frac{1}{t^{3}} d t\)
91. \(F(x)=\int_{0}^{x^{3}} \sin t^{2} d t\)
92. \(F(x)=\int_{0}^{x^{2}} \sin \theta^{2} d \theta\)
93. Graphical Analysis Sketch an approximate graph of \(g\) on the interval \(0 \leq x \leq 4\), where \(g(x)=\int_{0}^{x} f(t) d t\). Identify the \(x\)-coordinate of an extremum of \(g\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

94. Use the graph of the function \(f\) shown in the figure and the function \(g\) defined by \(g(x)=\int_{0}^{x} f(t) d t\).

(a) Complete the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(x\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(g(x)\) & & & & & & & & & & \\
\hline
\end{tabular}
(b) Plot the points from the table in part (a) and graph \(g\).
(c) Where does \(g\) have its minimum? Explain.
(d) Where does \(g\) have a maximum? Explain.
(e) On what interval does \(g\) increase at the greatest rate? Explain.
(f) Identify the zeros of \(g\).
95. Cost The total cost \(C\) (in dollars) of purchasing and maintaining a piece of equipment for \(x\) years is
\(C(x)=5000\left(25+3 \int_{0}^{x} t^{1 / 4} d t\right)\).
(a) Perform the integration to write \(C\) as a function of \(x\).
(b) Find \(C(1), C(5)\), and \(C(10)\).
96. Area The area \(A\) between the graph of the function \(g(t)=4-4 / t^{2}\) and the \(t\)-axis over the interval \([1, x]\) is
\(A(x)=\int_{1}^{x}\left(4-\frac{4}{t^{2}}\right) d t\).
(a) Find the horizontal asymptote of the graph of \(g\).
(b) Integrate to find \(A\) as a function of \(x\). Does the graph of \(A\) have a horizontal asymptote? Explain.

In Exercises 97-102, the velocity function, in feet per second, is given for a particle moving along a straight line. Find (a) the displacement and (b) the total distance that the particle travels over the given interval.
97. \(v(t)=5 t-7, \quad 0 \leq t \leq 3\)
98. \(v(t)=t^{2}-t-12, \quad 1 \leq t \leq 5\)
99. \(v(t)=t^{3}-10 t^{2}+27 t-18, \quad 1 \leq t \leq 7\)
100. \(v(t)=t^{3}-8 t^{2}+15 t, \quad 0 \leq t \leq 5\)
101. \(v(t)=\frac{1}{\sqrt{t}}, \quad 1 \leq t \leq 4 \quad\) 102. \(v(t)=\cos t, \quad 0 \leq t \leq 3 \pi\)
103. A particle is moving along the \(x\)-axis. The position of the particle at time \(t\) is given by \(x(t)=t^{3}-6 t^{2}+9 t-2\), \(0 \leq t \leq 5\). Find the total distance the particle travels in 5 units of time.
104. Repeat Exercise 103 for the position function given by \(x(t)=(t-1)(t-3)^{2}, 0 \leq t \leq 5\).
105. Water Flow Water flows from a storage tank at a rate of \(500-5 t\) liters per minute. Find the amount of water that flows out of the tank during the first 18 minutes.
106. Oil Leak At 1:00 P.M., oil begins leaking from a tank at a rate of \(4+0.75 t\) gallons per hour.
(a) How much oil is lost from 1:00 P.M. to 4:00 P.M.?
(b) How much oil is lost from 4:00 p.m. to 7:00 P.m.?
(c) Compare your answers from parts (a) and (b). What do you notice?

In Exercises 107-110, describe why the statement is incorrect.
107.

108. \(\int_{-2}^{1} \frac{2}{x^{3}} d x \equiv\left[\frac{1}{x^{2}}\right]_{-2}^{1}=-\frac{3}{4}\)
109. \(\int_{\pi / 4}^{3 \pi / 4} \sec ^{2} x d x=[\tan x]_{\pi / 4}^{3 \pi / 4}=-2\)
110. \(\int_{\pi / 2}^{3 \pi / 2} \csc x \cot x d x=[-\csc x]_{\pi / 2}^{3 \pi / 2}=2\)
111. Buffon's Needle Experiment A horizontal plane is ruled with parallel lines 2 inches apart. A two-inch needle is tossed randomly onto the plane. The probability that the needle will touch a line is
\(P=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \theta d \theta\)
where \(\theta\) is the acute angle between the needle and any one of the parallel lines. Find this probability.
\begin{tabular}{ll}
\hline & \\
\hline & \(\theta \lambda\) \\
\hline & \\
\hline
\end{tabular}
112. Prove that \(\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(t) d t\right]=f(v(x)) v^{\prime}(x)-f(u(x)) u^{\prime}(x)\).

True or False? In Exercises 113 and 114, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
113. If \(F^{\prime}(x)=G^{\prime}(x)\) on the interval \([a, b]\), then \(F(b)-F(a)=\) \(G(b)-G(a)\).
114. If \(f\) is continuous on \([a, b]\), then \(f\) is integrable on \([a, b]\).
115. Show that the function
\(f(x)=\int_{0}^{1 / x} \frac{1}{t^{2}+1} d t+\int_{0}^{x} \frac{1}{t^{2}+1} d t\)
is constant for \(x>0\).
116. Find the function \(f(x)\) and all values of \(c\) such that \(\int_{c}^{x} f(t) d t=x^{2}+x-2\).
117. Let \(G(x)=\int_{0}^{x}\left[s \int_{0}^{s} f(t) d t\right] d s\), where \(f\) is continuous for all real \(t\). Find (a) \(G(0)\), (b) \(G^{\prime}(0)\), (c) \(G^{\prime \prime}(x)\), and (d) \(G^{\prime \prime}(0)\).

\section*{SECTION PROJECT}

\section*{Demonstrating the Fundamental Theorem}

Use a graphing utility to graph the function \(y_{1}=\sin ^{2} t\) on the interval \(0 \leq t \leq \pi\). Let \(F(x)\) be the following function of \(x\).
\(F(x)=\int_{0}^{x} \sin ^{2} t d t\)
(a) Complete the table. Explain why the values of \(F\) are increasing.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & \(\pi / 6\) & \(\pi / 3\) & \(\pi / 2\) & \(2 \pi / 3\) & \(5 \pi / 6\) & \(\pi\) \\
\hline\(F(x)\) & & & & & & & \\
\hline
\end{tabular}
(b) Use the integration capabilities of a graphing utility to graph \(F\).
(c) Use the differentiation capabilities of a graphing utility to graph \(F^{\prime}(x)\). How is this graph related to the graph in part (b)?
(d) Verify that the derivative of \(y=(1 / 2) t-(\sin 2 t) / 4\) is \(\sin ^{2} t\). Graph \(y\) and write a short paragraph about how this graph is related to those in parts (b) and (c).

\subsection*{4.5 Integration by Substitution}

NOTE The statement of Theorem 4.13 doesn't tell how to distinguish between \(f(g(x))\) and \(g^{\prime}(x)\) in the integrand. As you become more experienced at integration, your skill in doing this will increase. Of course, part of the key is familiarity with derivatives.
- Use pattern recognition to find an indefinite integral.
- Use a change of variables to find an indefinite integral.

■ Use the General Power Rule for Integration to find an indefinite integral.
- Use a change of variables to evaluate a definite integral.
- Evaluate a definite integral involving an even or odd function.

\section*{Pattern Recognition}

In this section you will study techniques for integrating composite functions. The discussion is split into two parts—pattern recognition and change of variables. Both techniques involve a \(\boldsymbol{u}\)-substitution. With pattern recognition you perform the substitution mentally, and with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule in differentiation. Recall that for differentiable functions given by \(y=F(u)\) and \(u=g(x)\), the Chain Rule states that
\[
\frac{d}{d x}[F(g(x))]=F^{\prime}(g(x)) g^{\prime}(x)
\]

From the definition of an antiderivative, it follows that
\[
\int F^{\prime}(g(x)) g^{\prime}(x) d x=F(g(x))+C
\]

These results are summarized in the following theorem.

\section*{THEOREM 4.13 ANTIDIFFERENTIATION OF A COMPOSITE FUNCTION}

Let \(g\) be a function whose range is an interval \(I\), and let \(f\) be a function that is continuous on \(I\). If \(g\) is differentiable on its domain and \(F\) is an antiderivative of \(f\) on \(I\), then
\[
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
\]

Letting \(u=g(x)\) gives \(d u=g^{\prime}(x) d x\) and
\[
\int f(u) d u=F(u)+C
\]

Examples 1 and 2 show how to apply Theorem 4.13 directly, by recognizing the presence of \(f(g(x))\) and \(g^{\prime}(x)\). Note that the composite function in the integrand has an outside function \(f\) and an inside function \(g\). Moreover, the derivative \(g^{\prime}(x)\) is present as a factor of the integrand.


TECHNOLOGY Try using a computer algebra system, such as Maple, Mathematica, or the TI-89, to solve the integrals given in Examples 1 and 2. Do you obtain the same antiderivatives that are listed in the examples?

\section*{EXAMPLE 1 Recognizing the \(f(g(x)) g^{\prime}(x)\) Pattern}

Find \(\int\left(x^{2}+1\right)^{2}(2 x) d x\).
Solution Letting \(g(x)=x^{2}+1\), you obtain
\[
g^{\prime}(x)=2 x
\]
and
\[
f(g(x))=f\left(x^{2}+1\right)=\left(x^{2}+1\right)^{2}
\]

From this, you can recognize that the integrand follows the \(f(g(x)) g^{\prime}(x)\) pattern. Using the Power Rule for Integration and Theorem 4.13, you can write
\[
\int \overbrace{\left(x^{2}+1\right)^{2}(2 x)}^{f(g(x))} d x=\frac{1}{3}\left(x^{2}+1\right)^{3}+C .
\]

Try using the Chain Rule to check that the derivative of \(\frac{1}{3}\left(x^{2}+1\right)^{3}+C\) is the integrand of the original integral.

\section*{EXAMPLE 2 Recognizing the \(f(g(x)) g^{\prime}(x)\) Pattern}

Find \(\int 5 \cos 5 x d x\).
Solution Letting \(g(x)=5 x\), you obtain
\[
g^{\prime}(x)=5
\]
and
\[
f(g(x))=f(5 x)=\cos 5 x
\]

From this, you can recognize that the integrand follows the \(f(g(x)) g^{\prime}(x)\) pattern. Using the Cosine Rule for Integration and Theorem 4.13, you can write
\[
\int \overbrace{(\cos (5 x)}^{f(g(x))} \overbrace{(5)}^{g^{\prime}(x)} d x=\sin 5 x+C .
\]

You can check this by differentiating \(\sin 5 x+C\) to obtain the original integrand.

\section*{E X P L O R A T I O N}

Recognizing Patterns The integrand in each of the following integrals fits the pattern \(f(g(x)) g^{\prime}(x)\). Identify the pattern and use the result to evaluate the integral.
a. \(\int 2 x\left(x^{2}+1\right)^{4} d x\)
b. \(\int 3 x^{2} \sqrt{x^{3}+1} d x\)
c. \(\int \sec ^{2} x(\tan x+3) d x\)

The next three integrals are similar to the first three. Show how you can multiply and divide by a constant to evaluate these integrals.
d. \(\int x\left(x^{2}+1\right)^{4} d x\)
e. \(\int x^{2} \sqrt{x^{3}+1} d x\)
f. \(\int 2 \sec ^{2} x(\tan x+3) d x\)

The integrands in Examples 1 and 2 fit the \(f(g(x)) g^{\prime}(x)\) pattern exactlyyou only had to recognize the pattern. You can extend this technique considerably with the Constant Multiple Rule
\[
\int k f(x) d x=k \int f(x) d x
\]

Many integrands contain the essential part (the variable part) of \(g^{\prime}(x)\) but are missing a constant multiple. In such cases, you can multiply and divide by the necessary constant multiple, as shown in Example 3.

\section*{EXAMPLE 3 Multiplying and Dividing by a Constant}

Find \(\int x\left(x^{2}+1\right)^{2} d x\).
Solution This is similar to the integral given in Example 1, except that the integrand is missing a factor of 2 . Recognizing that \(2 x\) is the derivative of \(x^{2}+1\), you can let \(g(x)=x^{2}+1\) and supply the \(2 x\) as follows.
\[
\begin{aligned}
\int x\left(x^{2}+1\right)^{2} d x & =\int\left(x^{2}+1\right)^{2}\left(\frac{1}{2}\right)(2 x) d x & & \text { Multiply and divide by } 2 . \\
& =\frac{1}{2} \int \overbrace{\left(x^{2}+1\right)^{2}}^{f(2 x)} \overbrace{(2 x)}^{g^{\prime}(x)} d x & & \text { Constant Multiple Rule } \\
& =\frac{1}{2}\left[\frac{\left(x^{2}+1\right)^{3}}{3}\right]+C & & \text { Integrate. } \\
& =\frac{1}{6}\left(x^{2}+1\right)^{3}+C & & \text { Simplify. }
\end{aligned}
\]

In practice, most people would not write as many steps as are shown in Example 3. For instance, you could evaluate the integral by simply writing
\[
\begin{aligned}
\int x\left(x^{2}+1\right)^{2} d x & =\frac{1}{2} \int\left(x^{2}+1\right)^{2} 2 x d x \\
& =\frac{1}{2}\left[\frac{\left(x^{2}+1\right)^{3}}{3}\right]+C \\
& =\frac{1}{6}\left(x^{2}+1\right)^{3}+C .
\end{aligned}
\]

NOTE Be sure you see that the Constant Multiple Rule applies only to constants. You cannot multiply and divide by a variable and then move the variable outside the integral sign. For instance,
\[
\int\left(x^{2}+1\right)^{2} d x \neq \frac{1}{2 x} \int\left(x^{2}+1\right)^{2}(2 x) d x
\]

After all, if it were legitimate to move variable quantities outside the integral sign, you could move the entire integrand out and simplify the whole process. But the result would be incorrect.

STUDY TIP Because integration is usually more difficult than differentiation, you should always check your answer to an integration problem by differentiating. For instance, in Example 4 you should differentiate \(\frac{1}{3}(2 x-1)^{3 / 2}+C\) to verify that you obtain the original integrand.

\section*{Change of Variables}

With a formal change of variables, you completely rewrite the integral in terms of \(u\) and \(d u\) (or any other convenient variable). Although this procedure can involve more written steps than the pattern recognition illustrated in Examples 1 to 3, it is useful for complicated integrands. The change of variables technique uses the Leibniz notation for the differential. That is, if \(u=g(x)\), then \(d u=g^{\prime}(x) d x\), and the integral in Theorem 4.13 takes the form
\[
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u=F(u)+C
\]

\section*{EXAMPLE 4 Change of Variables}

Find \(\int \sqrt{2 x-1} d x\).
Solution First, let \(u\) be the inner function, \(u=2 x-1\). Then calculate the differential \(d u\) to be \(d u=2 d x\). Now, using \(\sqrt{2 x-1}=\sqrt{u}\) and \(d x=d u / 2\), substitute to obtain
\[
\begin{aligned}
\int \sqrt{2 x-1} d x & =\int \sqrt{u}\left(\frac{d u}{2}\right) & & \text { Integral in terms of } u \\
& =\frac{1}{2} \int u^{1 / 2} d u & & \text { Constant Multiple Rule } \\
& =\frac{1}{2}\left(\frac{u^{3 / 2}}{3 / 2}\right)+C & & \text { Antiderivative in terms of } u \\
& =\frac{1}{3} u^{3 / 2}+C & & \text { Simplify. } \\
& =\frac{1}{3}(2 x-1)^{3 / 2}+C . & & \text { Antiderivative in terms of } x
\end{aligned}
\]

\section*{EXAMPLE 5 Change of Variables}

Find \(\int x \sqrt{2 x-1} d x\).
Solution As in the previous example, let \(u=2 x-1\) and obtain \(d x=d u / 2\). Because the integrand contains a factor of \(x\), you must also solve for \(x\) in terms of \(u\), as shown.
\[
u=2 x-1 \quad \square \quad x=(u+1) / 2 \quad \text { Solve for } x \text { in terms of } u \text {. }
\]

Now, using substitution, you obtain
\[
\begin{aligned}
\int x \sqrt{2 x-1} d x & =\int\left(\frac{u+1}{2}\right) u^{1 / 2}\left(\frac{d u}{2}\right) \\
& =\frac{1}{4} \int\left(u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{1}{4}\left(\frac{u^{5 / 2}}{5 / 2}+\frac{u^{3 / 2}}{3 / 2}\right)+C \\
& =\frac{1}{10}(2 x-1)^{5 / 2}+\frac{1}{6}(2 x-1)^{3 / 2}+C .
\end{aligned}
\]

STUDY TIP When making a change of variables, be sure that your answer is written using the same variables as in the original integrand. For instance, in Example 6, you should not leave your answer as
\[
\frac{1}{9} u^{3}+C
\]
but rather, replace \(u\) by \(\sin 3 x\).

To complete the change of variables in Example 5, you solved for \(x\) in terms of \(u\). Sometimes this is very difficult. Fortunately it is not always necessary, as shown in the next example.

\section*{EXAMPLE 6 Change of Variables}

Find \(\int \sin ^{2} 3 x \cos 3 x d x\).
Solution Because \(\sin ^{2} 3 x=(\sin 3 x)^{2}\), you can let \(u=\sin 3 x\). Then
\[
d u=(\cos 3 x)(3) d x
\]

Now, because \(\cos 3 x d x\) is part of the original integral, you can write
\[
\frac{d u}{3}=\cos 3 x d x
\]

Substituting \(u\) and \(d u / 3\) in the original integral yields
\[
\begin{aligned}
\int \sin ^{2} 3 x \cos 3 x d x & =\int u^{2} \frac{d u}{3} \\
& =\frac{1}{3} \int u^{2} d u \\
& =\frac{1}{3}\left(\frac{u^{3}}{3}\right)+C \\
& =\frac{1}{9} \sin ^{3} 3 x+C .
\end{aligned}
\]

You can check this by differentiating.
\[
\begin{aligned}
\frac{d}{d x}\left[\frac{1}{9} \sin ^{3} 3 x\right] & =\left(\frac{1}{9}\right)(3)(\sin 3 x)^{2}(\cos 3 x)(3) \\
& =\sin ^{2} 3 x \cos 3 x
\end{aligned}
\]

Because differentiation produces the original integrand, you know that you have obtained the correct antiderivative.

The steps used for integration by substitution are summarized in the following guidelines.

\section*{GUIDELINES FOR MAKING A CHANGE OF VARIABLES}
1. Choose a substitution \(u=g(x)\). Usually, it is best to choose the inner part of a composite function, such as a quantity raised to a power.
2. Compute \(d u=g^{\prime}(x) d x\).
3. Rewrite the integral in terms of the variable \(u\).
4. Find the resulting integral in terms of \(u\).
5. Replace \(u\) by \(g(x)\) to obtain an antiderivative in terms of \(x\).
6. Check your answer by differentiating.

\section*{EXPLORATION}

Suppose you were asked to find one of the following integrals. Which one would you choose? Explain your reasoning.
a. \(\int \sqrt{x^{3}+1} d x\) or
\[
\int x^{2} \sqrt{x^{3}+1} d x
\]
b. \(\int \tan (3 x) \sec ^{2}(3 x) d x\) or
\[
\int \tan (3 x) d x
\]

\section*{The General Power Rule for Integration}

One of the most common \(u\)-substitutions involves quantities in the integrand that are raised to a power. Because of the importance of this type of substitution, it is given a special namethe General Power Rule for Integration. A proof of this rule follows directly from the (simple) Power Rule for Integration, together with Theorem 4.13.

\section*{THEOREM 4.14 THE GENERAL POWER RULE FOR INTEGRATION}

If \(g\) is a differentiable function of \(x\), then
\[
\int[g(x)]^{n} g^{\prime}(x) d x=\frac{[g(x)]^{n+1}}{n+1}+C, \quad n \neq-1
\]

Equivalently, if \(u=g(x)\), then
\[
\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1
\]

\section*{EXAMPLE 7 Substitution and the General Power Rule}
a. \(\int 3(3 x-1)^{4} d x=\int(3 x-1)^{4}(3) d x=\overbrace{\frac{(3 x-1)^{5}}{5}}^{u^{4}}+C\)
b. \(\int(2 x+1)\left(x^{2}+x\right) d x=\int \overbrace{\left(x^{2}+x\right)^{1}(2 x+1) d x}=\overbrace{\frac{\left(x^{2}+x\right)^{2}}{2}}+C\)
c. \(\int 3 x^{2} \sqrt{x^{3}-2} d x=\int \overbrace{\left(x^{3}-2\right)^{1 / 2}\left(3 x^{2}\right) d x}^{u^{1 / 2}} \overbrace{\frac{\left(x^{3}-2\right)^{3 / 2}}{3 / 2}}^{d u}+C=\frac{2}{3}\left(x^{3}-2\right)^{3 / 2}+C\)
\[
u^{-2} \quad d u \quad u^{-1} /(-1)
\]
d. \(\int \frac{-4 x}{\left(1-2 x^{2}\right)^{2}} d x=\int\left(1-2 x^{2}\right)^{-2}(-4 x) d x=\frac{\left(1-2 x^{2}\right)^{-1}}{-1}+C=-\frac{1}{1-2 x^{2}}+C\)
e. \(\int \cos ^{2} x \sin x d x=-\int \overbrace{(\cos x)^{2}(-\sin x) d x}^{u^{2}}=-\overbrace{\frac{(\cos x)^{3}}{3}}^{u^{3} / 3}+C\)

Some integrals whose integrands involve quantities raised to powers cannot be found by the eneral Power Rule. Consider the two integrals
\[
\int x\left(x^{2}+1\right)^{2} d x \text { and } \int\left(x^{2}+1\right)^{2} d x
\]

The substitution \(u=x^{2}+1\) works in the first integral but not in the second. In the second, the substitution fails because the integrand lacks the factor \(x\) needed for \(d u\). Fortunately, for this particular integral, you can expand the integrand as \(\left(x^{2}+1\right)^{2}=x^{4}+2 x^{2}+1\) and use the (simple) Power Rule to integrate each term.

\section*{Change of Variables for Definite Integrals}

When using \(u\)-substitution with a definite integral, it is often convenient to determine the limits of integration for the variable \(u\) rather than to convert the antiderivative back to the variable \(x\) and evaluate at the original limits. This change of variables is stated explicitly in the next theorem. The proof follows from Theorem 4.13 combined with the Fundamental Theorem of Calculus.

\section*{THEOREM 4.15 CHANGE OF VARIABLES FOR DEFINITE INTEGRALS}

If the function \(u=g(x)\) has a continuous derivative on the closed interval \([a, b]\) and \(f\) is continuous on the range of \(g\), then
\[
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
\]

\section*{EXAMPLE 8 Change of Variables}

Evaluate \(\int_{0}^{1} x\left(x^{2}+1\right)^{3} d x\)
Solution To evaluate this integral, let \(u=x^{2}+1\). Then, you obtain
\[
u=x^{2}+1 \Rightarrow d u=2 x d x
\]

Before substituting, determine the new upper and lower limits of integration.
\[
\begin{array}{ll}
\text { Lower Limit } & \text { Upper Limit } \\
\text { When } x=0, u=0^{2}+1=1 . & \text { When } x=1, u=1^{2}+1=2 .
\end{array}
\]

Now, you can substitute to obtain
\[
\begin{aligned}
\int_{0}^{1} x\left(x^{2}+1\right)^{3} d x & =\frac{1}{2} \int_{0}^{1}\left(x^{2}+1\right)^{3}(2 x) d x \\
& =\frac{1}{2} \int_{1}^{2} u^{3} d u \quad \text { Integration limits for } x \\
& =\frac{1}{2}\left[\frac{u^{4}}{4}\right]_{1}^{2} \\
& =\frac{1}{2}\left(4-\frac{1}{4}\right) \\
& =\frac{15}{8}
\end{aligned}
\]

Try rewriting the antiderivative \(\frac{1}{2}\left(u^{4} / 4\right)\) in terms of the variable \(x\) and evaluate the definite integral at the original limits of integration, as shown.
\[
\begin{aligned}
\frac{1}{2}\left[\frac{u^{4}}{4}\right]_{1}^{2} & =\frac{1}{2}\left[\frac{\left(x^{2}+1\right)^{4}}{4}\right]_{0}^{1} \\
& =\frac{1}{2}\left(4-\frac{1}{4}\right)=\frac{15}{8}
\end{aligned}
\]

Notice that you obtain the same result.


The region before substitution has an area of \(\frac{16}{3}\).
Figure 4.38


The region after substitution has an area of \(\frac{16}{3}\).
Figure 4.39

\section*{EXAMPLE 9 Change of Variables}

Evaluate \(A=\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x\).
Solution To evaluate this integral, let \(u=\sqrt{2 x-1}\). Then, you obtain
\[
\begin{aligned}
u^{2} & =2 x-1 \\
u^{2}+1 & =2 x \\
\frac{u^{2}+1}{2} & =x
\end{aligned}
\]
\[
u d u=d x . \quad \text { Differentiate each side. }
\]

Before substituting, determine the new upper and lower limits of integration.

\section*{Lower Limit}

When \(x=1, u=\sqrt{2-1}=1\).

\section*{Upper Limit}

When \(x=5, u=\sqrt{10-1}=3\).
Now, substitute to obtain
\[
\begin{aligned}
\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x & =\int_{1}^{3} \frac{1}{u}\left(\frac{u^{2}+1}{2}\right) u d u \\
& =\frac{1}{2} \int_{1}^{3}\left(u^{2}+1\right) d u \\
& =\frac{1}{2}\left[\frac{u^{3}}{3}+u\right]_{1}^{3} \\
& =\frac{1}{2}\left(9+3-\frac{1}{3}-1\right) \\
& =\frac{16}{3} .
\end{aligned}
\]

Cometrically, you can interpret the equation
\[
\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x=\int_{1}^{3} \frac{u^{2}+1}{2} d u
\]
to mean that the two different regions shown in Figures 4.38 and 4.39 have the same area.

When evaluating definite integrals by substitution, it is possible for the upper limit of integration of the \(u\)-variable form to be smaller than the lower limit. If this happens, don't rearrange the limits. Simply evaluate as usual. For example, after substituting \(u=\sqrt{1-x}\) in the integral
\[
\int_{0}^{1} x^{2}(1-x)^{1 / 2} d x
\]
you obtain \(u=\sqrt{1-1}=0\) when \(x=1\), and \(u=\sqrt{1-0}=1\) when \(x=0\). So, the correct \(u\)-variable form of this integral is
\[
-2 \int_{1}^{0}\left(1-u^{2}\right)^{2} u^{2} d u
\]


Even function


Odd function
Figure 4.40


Because \(f\) is an odd function, \(\int_{-\pi / 2}^{\pi / 2} f(x) d x=0\).
Figure 4.41

\section*{Integration of Even and Odd Functions}

Even with a change of variables, integration can be difficult. Occasionally, you can simplify the evaluation of a definite integral over an interval that is symmetric about the \(y\)-axis or about the origin by recognizing the integrand to be an even or odd function (see Figure 4.40).

\section*{THEOREM 4.16 INTEGRATION OF EVEN AND ODD FUNCTIONS}

Let \(f\) be integrable on the closed interval \([-a, a]\).
1. If \(f\) is an even function, then \(\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\).
2. If \(f\) is an \(o d d\) function, then \(\int_{-a}^{a} f(x) d x=0\).

PROOF Because \(f\) is even, you know that \(f(x)=f(-x)\). Using Theorem 4.13 with the substitution \(u=-x\) produces
\[
\int_{-a}^{0} f(x) d x=\int_{a}^{0} f(-u)(-d u)=-\int_{a}^{0} f(u) d u=\int_{0}^{a} f(u) d u=\int_{0}^{a} f(x) d x
\]

Finally, using Theorem 4.6, you obtain
\[
\begin{aligned}
\int_{-a}^{a} f(x) d x & =\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
\end{aligned}
\]

This proves the first property. The proof of the second property is left to you (see Exercise 137).

\section*{EXAMPLE 10 Integration of an Odd Function}

Evaluate \(\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{3} x \cos x+\sin x \cos x\right) d x\).
Solution Letting \(f(x)=\sin ^{3} x \cos x+\sin x \cos x\) produces
\[
\begin{aligned}
f(-x) & =\sin ^{3}(-x) \cos (-x)+\sin (-x) \cos (-x) \\
& =-\sin ^{3} x \cos x-\sin x \cos x=-f(x)
\end{aligned}
\]

So, \(f\) is an odd function, and because \(f\) is symmetric about the origin over \([-\pi / 2, \pi / 2]\), you can apply Theorem 4.16 to conclude that
\[
\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{3} x \cos x+\sin x \cos x\right) d x=0
\]

NOTE From Figure 4.41 you can see that the two regions on either side of the \(y\)-axis have the same area. However, because one lies below the \(x\)-axis and one lies above it, integration produces a cancellation effect. (More will be said about this in Section 7.1.)

\subsection*{4.5 Exercises}

In Exercises 1-6, complete the table by identifying \(u\) and \(d u\) for the integral.
\(\int f(g(x)) g^{\prime}(x) d x\)
\(u=g(x)\)
\(d u=g^{\prime}(x) d x\)
1. \(\int\left(8 x^{2}+1\right)^{2}(16 x) d x\)
2. \(\int x^{2} \sqrt{x^{3}+1} d x\)
3. \(\int \frac{x}{\sqrt{x^{2}+1}} d x\)
4. \(\int \sec 2 x \tan 2 x d x\)
5. \(\int \tan ^{2} x \sec ^{2} x d x\)
6. \(\int \frac{\cos x}{\sin ^{2} x} d x\)

In Exercises 7-10, determine whether it is necessary to use substitution to evaluate the integral. (Do not evaluate the integral.)
7. \(\int \sqrt{x}(6-x) d x\)
8. \(\int x \sqrt{x+4} d x\)
9. \(\int x \sqrt[3]{1+x^{2}} d x\)
10. \(\int x \cos x^{2} d x\)

In Exercises 11-38, find the indefinite integral and check the result by differentiation.
11. \(\int(1+6 x)^{4}(6) d x\)
12. \(\int\left(x^{2}-9\right)^{3}(2 x) d x\)
13. \(\int \sqrt{25-x^{2}}(-2 x) d x\)
14. \(\int \sqrt[3]{3-4 x^{2}}(-8 x) d x\)
15. \(\int x^{3}\left(x^{4}+3\right)^{2} d x\)
16. \(\int x^{2}\left(x^{3}+5\right)^{4} d x\)
17. \(\int x^{2}\left(x^{3}-1\right)^{4} d x\)
18. \(\int x\left(5 x^{2}+4\right)^{3} d x\)
19. \(\int t \sqrt{t^{2}+2} d t\)
21. \(\int 5 x \sqrt[3]{1-x^{2}} d x\)
23. \(\int \frac{x}{\left(1-x^{2}\right)^{3}} d x\)
25. \(\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x\)
27. \(\int \frac{x}{\sqrt{1-x^{2}}} d x\)
20. \(\int t^{3} \sqrt{t^{4}+5} d t\)
22. \(\int u^{2} \sqrt{u^{3}+2} d u\)
24. \(\int \frac{x^{3}}{\left(1+x^{4}\right)^{2}} d x\)
26. \(\int \frac{x^{2}}{\left(16-x^{3}\right)^{2}} d x\)
28. \(\int \frac{x^{3}}{\sqrt{1+x^{4}}} d x\)
29. \(\int\left(1+\frac{1}{t}\right)^{3}\left(\frac{1}{t^{2}}\right) d t\)
\(30 \int\left[x^{2}+\frac{1}{(3 x)^{2}}\right] d x\)
31. \(\int \frac{1}{\sqrt{2 x}} d x\)
32. \(\int \frac{1}{2 \sqrt{x}} d x\)
33. \(\int \frac{x^{2}+5 x-8}{\sqrt{x}} d x\)
34. \(\int \frac{t-9 t^{2}}{\sqrt{t}} d t\)
35. \(\int t^{2}\left(t-\frac{8}{t}\right) d t\)
36. \(\int\left(\frac{t^{3}}{3}+\frac{1}{4 t^{2}}\right) d t\)
37. \(\int(9-y) \sqrt{y} d y\)
38. \(\int 4 \pi y\left(6+y^{3 / 2}\right) d y\)

In Exercises 39-42, solve the differential equation.
39. \(\frac{d y}{d x}=4 x+\frac{4 x}{\sqrt{16-x^{2}}}\)
40. \(\frac{d y}{d x}=\frac{10 x^{2}}{\sqrt{1+x^{3}}}\)
41. \(\frac{d y}{d x}=\frac{x+1}{\left(x^{2}+2 x-3\right)^{2}}\)
42. \(\frac{d y}{d x}=\frac{x-4}{\sqrt{x^{2}-8 x+1}}\)

Slope Fields In Exercises 43-46, a differential equation, a point, and a slope field are given. A slope field consists of line segments with slopes given by the differential equation. These line segments give a visual perspective of the directions of the solutions of the differential equation. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (To print an enlarged copy of the graph, go to the website www.mathgraphs.com.) (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a).
43. \(\frac{d y}{d x}=x \sqrt{4-x^{2}}\)
\((2,2)\)

45. \(\frac{d y}{d x}=x \cos x^{2}\)
\((0,1)\)

44. \(\frac{d y}{d x}=x^{2}\left(x^{3}-1\right)^{2}\)
\((1,0)\)

46. \(\frac{d y}{d x}=-2 \sec (2 x) \tan (2 x)\)
\((0,-1)\)


In Exercises 47-60, find the indefinite integral.
47. \(\int \pi \sin \pi x d x\)
48. \(\int 4 x^{3} \sin x^{4} d x\)
49. \(\int \sin 4 x d x\)
50. \(\int \cos 8 x d x\)
51. \(\int \frac{1}{\theta^{2}} \cos \frac{1}{\theta} d \theta\)
52. \(\int x \sin x^{2} d x\)
53. \(\int \sin 2 x \cos 2 x d x\)
54. \(\int \sec (1-x) \tan (1-x) d x\)
55. \(\int \tan ^{4} x \sec ^{2} x d x\)
56. \(\int \sqrt{\tan x} \sec ^{2} x d x\)
57. \(\int \frac{\csc ^{2} x}{\cot ^{3} x} d x\)
58. \(\int \frac{\sin x}{\cos ^{3} x} d x\)
59. \(\int \cot ^{2} x d x\)
60. \(\int \csc ^{2}\left(\frac{x}{2}\right) d x\)

In Exercises 61-66, find an equation for the function \(f\) that has the given derivative and whose graph passes through the given point.

\section*{Derivative}

Point
61. \(f^{\prime}(x)=-\sin \frac{x}{2}\)
62. \(f^{\prime}(x)=\pi \sec \pi x \tan \pi x\)
63. \(f^{\prime}(x)=2 \sin 4 x\)
\(\left(\frac{\pi}{4},-\frac{1}{2}\right)\)
64. \(f^{\prime}(x)=\sec ^{2}(2 x)\)
\(\left(\frac{\pi}{2}, 2\right)\)
65. \(f^{\prime}(x)=2 x\left(4 x^{2}-10\right)^{2}\)
66. \(f^{\prime}(x)=-2 x \sqrt{8-x^{2}}\)

In Exercises 67-74, find the indefinite integral by the method shown in Example 5.
67. \(\int x \sqrt{x+6} d x\)
68. \(\int x \sqrt{4 x+1} d x\)
69. \(\int x^{2} \sqrt{1-x} d x\)
70. \(\int(x+1) \sqrt{2-x} d x\)
71. \(\int \frac{x^{2}-1}{\sqrt{2 x-1}} d x\)
72. \(\int \frac{2 x+1}{\sqrt{x+4}} d x\)
73. \(\int \frac{-x}{(x+1)-\sqrt{x+1}} d x\)
74. \(\int t \sqrt[3]{t+10} d t\)

In Exercises 75-86, evaluate the definite integral. Use a graphing utility to verify your result.
75. \(\int_{-1}^{1} x\left(x^{2}+1\right)^{3} d x\)
76. \(\int_{-2}^{4} x^{2}\left(x^{3}+8\right)^{2} d x\)
77. \(\int_{1}^{2} 2 x^{2} \sqrt{x^{3}+1} d x\)
78. \(\int_{0}^{1} x \sqrt{1-x^{2}} d x\)
79. \(\int_{0}^{4} \frac{1}{\sqrt{2 x+1}} d x\)
80. \(\int_{0}^{2} \frac{x}{\sqrt{1+2 x^{2}}} d x\)
81. \(\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x\)
82. \(\int_{0}^{2} x \sqrt[3]{4+x^{2}} d x\)
83. \(\int_{1}^{2}(x-1) \sqrt{2-x} d x\)
84. \(\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x\)
85. \(\int_{0}^{\pi / 2} \cos \left(\frac{2 x}{3}\right) d x\)
86. \(\int_{\pi / 3}^{\pi / 2}(x+\cos x) d x\)

Differential Equations In Exercises 87-90, the graph of a function \(f\) is shown. Use the differential equation and the given point to find an equation of the function.
87. \(\frac{d y}{d x}=18 x^{2}\left(2 x^{3}+1\right)^{2}\)
88. \(\frac{d y}{d x}=\frac{-48}{(3 x+5)^{3}}\)


89. \(\frac{d y}{d x}=\frac{2 x}{\sqrt{2 x^{2}-1}}\)
90. \(\frac{d y}{d x}=4 x+\frac{9 x^{2}}{\left(3 x^{3}+1\right)^{(3 / 2)}}\)



In Exercises 91-96, find the area of the region. Use a graphing utility to verify your result.
91. \(\int_{0}^{7} x \sqrt[3]{x+1} d x\)

92. \(\int_{-2}^{6} x^{2} \sqrt[3]{x+2} d x\)

93. \(y=2 \sin x+\sin 2 x\)

94. \(y=\sin x+\cos 2 x\)

95. \(\int_{\pi / 2}^{2 \pi / 3} \sec ^{2}\left(\frac{x}{2}\right) d x\)
96. \(\int_{\pi / 12}^{\pi / 4} \csc 2 x \cot 2 x d x\)



In Exercises 97-102, use a graphing utility to evaluate the integral. Graph the region whose area is given by the definite integral.
97. \(\int_{0}^{6} \frac{x}{\sqrt{4 x+1}} d x\)
98. \(\int_{0}^{2} x^{3} \sqrt{2 x+3} d x\)
99. \(\int_{3}^{7} x \sqrt{x-3} d x\)
100. \(\int_{1}^{5} x^{2} \sqrt{x-1} d x\)
101. \(\int_{1}^{4}\left(\theta+\sin \frac{\theta}{4}\right) d \theta\)
102. \(\int_{0}^{\pi / 6} \cos 3 x d x\)

In Exercises 103-106, evaluate the integral using the properties of even and odd functions as an aid.
103. \(\int_{-2}^{2} x^{2}\left(x^{2}+1\right) d x\)
104. \(\int_{-2}^{2} x\left(x^{2}+1\right)^{3} d x\)
105. \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x \cos x d x\)
106. \(\int_{-\pi / 2}^{\pi / 2} \sin x \cos x d x\)
107. Use \(\int_{0}^{4} x^{2} d x=\frac{64}{3}\) to evaluate each definite integral without using the Fundamental Theorem of Calculus.
(a) \(\int_{-4}^{0} x^{2} d x\)
(b) \(\int_{-4}^{4} x^{2} d x\)
(c) \(\int_{0}^{4}-x^{2} d x\)
(d) \(\int_{-4}^{0} 3 x^{2} d x\)
108. Use the symmetry of the graphs of the sine and cosine functions as an aid in evaluating each definite integral.
(a) \(\int_{-\pi / 4}^{\pi / 4} \sin x d x\)
(b) \(\int_{-\pi / 4}^{\pi / 4} \cos x d x\)
(c) \(\int_{-\pi / 2}^{\pi / 2} \cos x d x\)
(d) \(\int_{-\pi / 2}^{\pi / 2} \sin x \cos x d x\)

In Exercises 109 and 110, write the integral as the sum of the integral of an odd function and the integral of an even function. Use this simplification to evaluate the integral.
109. \(\int_{-3}^{3}\left(x^{3}+4 x^{2}-3 x-6\right) d x\)
110. \(\int_{-\pi / 2}^{\pi / 2}(\sin 4 x+\cos 4 x) d x\)

\section*{WRITING ABOUT CONCEPTS}
111. Describe why
\(\int x\left(5-x^{2}\right)^{3} d x \neq \int u^{3} d u\)
where \(u=5-x^{2}\).
112. Without integrating, explain why \(\int_{-2}^{2} x\left(x^{2}+1\right)^{2} d x=0\).
113. If \(f\) is continuous and \(\int_{0}^{8} f(x) d x=32\), find \(\int_{0}^{4} f(2 x) d x\).

\section*{CAPSTONE}
114. Writing Find the indefinite integral in two ways. Explain any difference in the forms of the answers.
(a) \(\int(2 x-1)^{2} d x\)
(b) \(\int \sin x \cos x d x\)
(c) \(\int \tan x \sec ^{2} x d x\)
115. Cash Flow The rate of disbursement \(d Q / d t\) of a 2 million dollar federal grant is proportional to the square of \(100-t\). Time \(t\) is measured in days ( \(0 \leq t \leq 100\) ), and \(Q\) is the amount that remains to be disbursed. Find the amount that remains to be disbursed after 50 days. Assume that all the money will be disbursed in 100 days.
116. Depreciation The rate of depreciation \(d V / d t\) of a machine is inversely proportional to the square of \(t+1\), where \(V\) is the value of the machine \(t\) years after it was purchased. The initial value of the machine was \(\$ 00,000\), and its value decreased \(\$ 00,000\) in the first year. Estimate its value after 4 years.
117. Precipitation The normal monthly precipitation at the Seattle-Tacoma airport can be approximated by the model
\(R=2.876+2.202 \sin (0.576 t+0.847)\)
where \(R\) is measured in inches and \(t\) is the time in months, with \(t=0\) corresponding to Jnuary 1. (Source: U.S. National Oceanic and Atmospheric Administration)
(a) Determine the extrema of the function over a one-year period.
(b) Use integration to approximate the normal annual precipitation. (Hint: Integrate over the interval [0, 12].)
(c) Approximate the average monthly precipitation during the months of October, November, and December.
118. Sales The sales \(S\) (in thousands of units) of a seasonal product are given by the model
\(S=74.50+43.75 \sin \frac{\pi t}{6}\)
where \(t\) is the time in months, with \(t=1\) corresponding to Inuary. Find the average sales for each time period.
(a) The first quarter \((0 \leq t \leq 3)\)
(b) The second quarter \((3 \leq t \leq 6)\)
(c) The entire year \((0 \leq t \leq 12)\)
119. Water Supply A model for the flow rate of water at a pumping station on a given day is
\(R(t)=53+7 \sin \left(\frac{\pi t}{6}+3.6\right)+9 \cos \left(\frac{\pi t}{12}+8.9\right)\)
where \(0 \leq t \leq 24\). \(R\) is the flow rate in thousands of gallons per hour, and \(t\) is the time in hours.
(a) Use a graphing utility to graph the rate function and approximate the maximum flow rate at the pumping station.
(b) Approximate the total volume of water pumped in 1 day.
120. Electricity The oscillating current in an electrical circuit is
\(I=2 \sin (60 \pi t)+\cos (120 \pi t)\)
where \(I\) is measured in amperes and \(t\) is measured in seconds. Find the average current for each time interval.
(a) \(0 \leq t \leq \frac{1}{60}\)
(b) \(0 \leq t \leq \frac{1}{240}\)
(c) \(0 \leq t \leq \frac{1}{30}\)

\section*{Probability In Exercises 121 and 122, the function}
\(f(x)=k x^{n}(1-x)^{m}, \quad 0 \leq x \leq 1\)
where \(n>0, m>0\), and \(k\) is a constant, can be used to represent various probability distributions. If \(k\) is chosen such that \(\int_{0}^{1} f(x) d x=1\)
the probability that \(x\) will fall between \(a\) and \(b(0 \leq a \leq b \leq 1)\) is
\(P_{a, b}=\int_{a}^{b} f(x) d x\).
121. The probability that a person will remember between \(100 a \%\) and \(100 \mathrm{~b} \%\) of material learned in an experiment is
\[
P_{a, b}=\int_{a}^{b} \frac{15}{4} x \sqrt{1-x} d x
\]
where \(x\) represents the proportion remembered. (See figure.)
(a) For a randomly chosen individual, what is the probability that he or she will recall between \(50 \%\) and \(75 \%\) f the material?
(b) What is the median percent recall? That is, for what value of \(b\) is it true that the probability of recalling 0 to \(b\) is 0.5 ?


Figure for 121
122. The probability that ore samples taken from a region contain between \(100 a \%\) and \(100 b \%\) iron is
\[
P_{a, b}=\int_{a}^{b} \frac{1155}{32} x^{3}(1-x)^{3 / 2} d x
\]
where \(x\) represents the proportion of iron. (See figure.) What is the probability that a sample will contain between
(a) 0\%nd 25\%on?
(b) 50\%nd \(100 \%\) \% ?

123. Temperature The temperature in degrees Fahrenheit in a house is
\(T=72+12 \sin \left[\frac{\pi(t-8)}{12}\right]\)
where \(t\) is time in hours, with \(t=0\) representing midnight. The hourly cost of cooling a house is \(\theta .10\) per degree.
(a) Find the cost \(C\) of cooling the house if its thermostat is set at \(72^{\circ} \mathrm{F}\) by evaluating the integral
\[
C=0.1 \int_{8}^{20}\left[72+12 \sin \frac{\pi(t-8)}{12}-72\right] d t . \text { (See figure.) }
\]

(b) Find the savings from resetting the thermostat to \(78^{\circ} \mathrm{F}\) by evaluating the integral
\(C=0.1 \int_{10}^{18}\left[72+12 \sin \frac{\pi(t-8)}{12}-78\right] d t\).
(See figure.)

124. Manufacturing A manufacturer of fertilizer finds that national sales of fertilizer follow the seasonal pattern
\(F=100,000\left[1+\sin \frac{2 \pi(t-60)}{365}\right]\)
where \(F\) is measured in pounds and \(t\) represents the time in days, with \(t=1\) corresponding to Inuary 1 . The manufacturer wants to set up a schedule to produce a uniform amount of fertilizer each day. What should this amount be?
125. Graphical Analysis Consider the functions \(f\) and \(g\), where \(f(x)=6 \sin x \cos ^{2} x\) and \(g(t)=\int_{0}^{t} f(x) d x\).
(a) Use a graphing utility to graph \(f\) and \(g\) in the same viewing window.
(b) Explain why \(g\) is nonnegative.
(c) Identify the points on the graph of \(g\) that correspond to the extrema of \(f\).
(d) Does each of the zeros of \(f\) correspond to an extremum of \(g\) ? Explain.
(e) Consider the function
\(h(t)=\int_{\pi / 2}^{t} f(x) d x\).
Use a graphing utility to graph \(h\). What is the relationship between \(g\) and \(h\) ? drify your conjecture.
126. Find \(\lim _{n \rightarrow+\infty} \sum_{i=1}^{n} \frac{\sin (i \pi / n)}{n} \quad\) by evaluating an appropriate definite integral over the interval \([0,1]\).
127. (a) Show that \(\int_{0}^{1} x^{2}(1-x)^{5} d x=\int_{0}^{1} x^{5}(1-x)^{2} d x\).
(b) Show that \(\int_{0}^{1} x^{a}(1-x)^{b} d x=\int_{0}^{1} x^{b}(1-x)^{a} d x\).
128. (a) Show that \(\int_{0}^{\pi / 2} \sin ^{2} x d x=\int_{0}^{\pi / 2} \cos ^{2} x d x\).
(b) Show that \(\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x\), where \(n\) is a positive integer.

True or False? In Exercises 129-134, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
129. \(\int(2 x+1)^{2} d x=\frac{1}{3}(2 x+1)^{3}+C\)
130. \(\int x\left(x^{2}+1\right) d x=\frac{1}{2} x^{2}\left(\frac{1}{3} x^{3}+x\right)+C\)
131. \(\int_{-10}^{10}\left(a x^{3}+b x^{2}+c x+d\right) d x=2 \int_{0}^{10}\left(b x^{2}+d\right) d x\)
132. \(\int_{a}^{b} \sin x d x=\int_{a}^{b+2 \pi} \sin x d x\)
133. \(4 \int \sin x \cos x d x=-\cos 2 x+C\)
134. \(\int \sin ^{2} 2 x \cos 2 x d x=\frac{1}{3} \sin ^{3} 2 x+C\)
135. Assume that \(f\) is continuous everywhere and that \(c\) is a constant. Show that
\(\int_{c a}^{c b} f(x) d x=c \int_{a}^{b} f(c x) d x\).
136. (a) Arify that \(\sin u-u \cos u+C=\int u \sin u d u\).
(b) Use part (a) to show that \(\int_{0}^{\pi^{2}} \sin \sqrt{x} d x=2 \pi\).
137. Complete the proof of Theorem 4.16.
138. Show that if \(f\) is continuous on the entire real number line, then
\[
\int_{a}^{b} f(x+h) d x=\int_{a+h}^{b+h} f(x) d x
\]

\section*{PUTNAM EXAM CHALLENGE}
139. If \(a_{0}, a_{1}, \ldots, a_{n}\) are real numbers satisfying
\(\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0\)
show that the equation
\(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0\)
has at least one real zero.
140. Find all the continuous positive functions \(f(x)\), for \(0 \leq x \leq 1\), such that
\(\int_{0}^{1} f(x) d x=1\)
\(\int_{0}^{1} f(x) x d x=\alpha\)
\(\int_{0}^{1} f(x) x^{2} d x=\alpha^{2}\)
where \(\alpha\) is a real number.
These problems were composed by the Committee on the Putnam Prize Competition. ©he Mathematical Association of America. All rights reserved.

\subsection*{4.6 Numerical Integration}


The area of the region can be approximated using four trapezoids.
Figure 4.42


The area of the first trapezoid is
\[
\left[\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}\right]\left(\frac{b-a}{n}\right) .
\]

Figure 4.43

\section*{- Approximate a definite integral using the Trapezoidal Rule. \\ - Approximate a definite integral using Simpson's Rule. \\ - Analyze the approximate errors in the Trapezoidal Rule and Simpson's Rule.}

\section*{The Trapezoidal Rule}

Some elementary functions simply do not have antiderivatives that are elementary functions. For example, there is no elementary function that has any of the following functions as its derivative.
\[
\sqrt[3]{x} \sqrt{1-x}, \quad \sqrt{x} \cos x, \quad \frac{\cos x}{x}, \quad \sqrt{1-x^{3}}, \quad \sin x^{2}
\]

If you need to evaluate a definite integral involving a function whose antiderivative cannot be found, then while the Fundamental Theorem of Calculus is still true, it cannot be easily applied. In this case, it is easier to resort to an approximation technique. Two such techniques are described in this section.

One way to approximate a definite integral is to use \(n\) trapezoids, as shown in Figure 4.42. In the development of this method, assume that \(f\) is continuous and positive on the interval \([a, b]\). So, the definite integral
\[
\int_{a}^{b} f(x) d x
\]
represents the area of the region bounded by the graph of \(f\) and the \(x\)-axis, from \(x=a\) to \(x=b\). First, partition the interval \([a, b]\) into \(n\) subintervals, each of width \(\Delta x=(b-a) / n\), such that
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
\]

Then form a trapezoid for each subinterval (see Figure 4.43). The area of the \(i\) th trapezoid is
\[
\text { Area of } i \text { th trapezoid }=\left[\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right]\left(\frac{b-a}{n}\right)
\]

This implies that the sum of the areas of the \(n\) trapezoids is
\[
\begin{aligned}
\text { Area } & =\left(\frac{b-a}{n}\right)\left[\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+\cdots+\frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}\right] \\
& =\left(\frac{b-a}{2 n}\right)\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& =\left(\frac{b-a}{2 n}\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
\]

Letting \(\Delta x=(b-a) / n\), you can take the limit as \(n \rightarrow \infty\) to obtain
\[
\begin{aligned}
\lim _{n \rightarrow \infty} & \left(\frac{b-a}{2 n}\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{[[f(a)-f(b)] \Delta x}{2}+\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right] \\
& =\lim _{n \rightarrow \infty} \frac{[f(a)-f(b)](b-a)}{2 n}+\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =0+\int_{a}^{b} f(x) d x
\end{aligned}
\]

The result is summarized in the following theorem.


Four subintervals


Eight subintervals
Trapezoidal approximations
Figure 4.44

\section*{THEOREM 4.17 THE TRAPEZOIDAL RULE}

Let \(f\) be continuous on \([a, b]\). The Trapezoidal Rule for approximating \(\int_{a}^{b} f(x) d x\) is given by
\[
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\]

Moreover, as \(n \rightarrow \infty\), the right-hand side approaches \(\int_{a}^{b} f(x) d x\).

NOTE Observe that the coefficients in the Trapezoidal Rule have the following pattern.
\(\begin{array}{llllllll}1 & 2 & 2 & 2 & \ldots & 2 & 1\end{array}\)

\section*{EXAMPLE 1 Approximation with the Trapezoidal Rule}

Use the Trapezoidal Rule to approximate
\[
\int_{0}^{\pi} \sin x d x
\]

Compare the results for \(n=4\) and \(n=8\), as shown in Figure 4.44.
Solution When \(n=4, \Delta x=\pi / 4\), and you obtain
\[
\begin{aligned}
\int_{0}^{\pi} \sin x d x & \approx \frac{\pi}{8}\left(\sin 0+2 \sin \frac{\pi}{4}+2 \sin \frac{\pi}{2}+2 \sin \frac{3 \pi}{4}+\sin \pi\right) \\
& =\frac{\pi}{8}(0+\sqrt{2}+2+\sqrt{2}+0)=\frac{\pi(1+\sqrt{2})}{4} \approx 1.896
\end{aligned}
\]

When \(n=8, \Delta x=\pi / 8\), and you obtain
\[
\begin{aligned}
\int_{0}^{\pi} \sin x d x \approx & \frac{\pi}{16}\left(\sin 0+2 \sin \frac{\pi}{8}+2 \sin \frac{\pi}{4}+2 \sin \frac{3 \pi}{8}+2 \sin \frac{\pi}{2}\right. \\
& \left.+2 \sin \frac{5 \pi}{8}+2 \sin \frac{3 \pi}{4}+2 \sin \frac{7 \pi}{8}+\sin \pi\right) \\
= & \frac{\pi}{16}\left(2+2 \sqrt{2}+4 \sin \frac{\pi}{8}+4 \sin \frac{3 \pi}{8}\right) \approx 1.974
\end{aligned}
\]

For this particular integral, you could have found an antiderivative and determined that the exact area of the region is 2 .

TECHNOLOGY Most graphing utilities and computer algebra systems have built-in programs that can be used to approximate the value of a definite integral. Try using such a program to approximate the integral in Example 1. How close is your approximation?

When you use such a program, you need to be aware of its limitations. Often, you are given no indication of the degree of accuracy of the approximation. Other times, you may be given an approximation that is completely wrong. For instance, try using a built-in numerical integration program to evaluate
\[
\int_{-1}^{2} \frac{1}{x} d x
\]

Your calculator should give an error message. Does yours?

It is interesting to compare the Trapezoidal Rule with the Midpoint Rule given in Section 4.2 (Exercises 73-76). For the Trapezoidal Rule, you average the function values at the endpoints of the subintervals, but for the Midpoint Rule you take the function values of the subinterval midpoints.
\[
\begin{array}{ll}
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i-1}}{2}\right) \Delta x & \text { Midpoint Rule } \\
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n}\left(\frac{f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2}\right) \Delta x & \text { Trapezoidal Rule }
\end{array}
\]

NOTE There are two important points that should be made concerning the Trapezoidal Rule (or the Midpoint Rule). First, the approximation tends to become more accurate as \(n\) increases. For instance, in Example 1, if \(n=16\), the Trapezoidal Rule yields an approximation of 1.994. Second, although you could have used the Fundamental Theorem to evaluate the integral in Example 1, this theorem cannot be used to evaluate an integral as simple as \(\int_{0}^{\pi} \sin x^{2} d x\) because \(\sin x^{2}\) has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to estimate this integral.

\section*{Simpson's Rule}

One way to view the trapezoidal approximation of a definite integral is to say that on each subinterval you approximate \(f\) by a first-degree polynomial. In Simpson's Rule, named after the English mathematician Thomas Simpson (1710-1761), you take this procedure one step further and approximate \(f\) by second-degree polynomials.

Before presenting Simpson's Rule, we list a theorem for evaluating integrals of polynomials of degree 2 (or less).

\section*{THEOREM 4.18 INTEGRAL OF \(p(x)=A x^{2}+B x+C\)}

If \(p(x)=A x^{2}+B x+C\), then
\[
\int_{a}^{b} p(x) d x=\left(\frac{b-a}{6}\right)\left[p(a)+4 p\left(\frac{a+b}{2}\right)+p(b)\right] .
\]

\section*{PROOF}
\[
\begin{aligned}
\int_{a}^{b} p(x) d x & =\int_{a}^{b}\left(A x^{2}+B x+C\right) d x \\
& =\left[\frac{A x^{3}}{3}+\frac{B x^{2}}{2}+C x\right]_{a}^{b} \\
& =\frac{A\left(b^{3}-a^{3}\right)}{3}+\frac{B\left(b^{2}-a^{2}\right)}{2}+C(b-a) \\
& =\left(\frac{b-a}{6}\right)\left[2 A\left(a^{2}+a b+b^{2}\right)+3 B(b+a)+6 C\right]
\end{aligned}
\]

By expansion and collection of terms, the expression inside the brackets becomes
\[
\begin{aligned}
& \quad \underbrace{\left(A a^{2}+B a+C\right)}_{p(a)}+\underbrace{4\left[A\left(\frac{b+a}{2}\right)^{2}+B\left(\frac{b+a}{2}\right)+C\right]}_{4 p\left(\frac{a+b}{2}\right)}+\underbrace{\left(A b^{2}+B b+C\right)}_{p(b)} \\
& \text { and you can write }
\end{aligned}
\]
\[
\int_{a}^{b} p(x) d x=\left(\frac{b-a}{6}\right)\left[p(a)+4 p\left(\frac{a+b}{2}\right)+p(b)\right] .
\]

\(\int_{x_{0}}^{x_{2}} p(x) d x \approx \int_{x_{0}}^{x_{2}} f(x) d x\)
Figure 4.45

To develop Simpson's Rule for approximating a definite integral, you again partition the interval \([a, b]\) into \(n\) subintervals, each of width \(\Delta x=(b-a) / n\). This time, however, \(n\) is required to be even, and the subintervals are grouped in pairs such that
\[
a=\underbrace{x_{0}<x_{1}<x_{2}<x_{3}<x_{4}}_{\left[x_{0}, x_{2}\right]}<\cdots<\underbrace{x_{n-2}<x_{n-1}<x_{n}}_{\left[x_{2}, x_{4}\right]}=b .
\]

On each (double) subinterval \(\left[x_{i-2}, x_{i}\right]\), you can approximate \(f\) by a polynomial \(p\) of degree less than or equal to 2. (See Exercise 56.) For example, on the subinterval \(\left[x_{0}, x_{2}\right]\), choose the polynomial of least degree passing through the points \(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\), and \(\left(x_{2}, y_{2}\right)\), as shown in Figure 4.45. Now, using \(p\) as an approximation of \(f\) on this subinterval, you have, by Theorem 4.18,
\[
\begin{aligned}
\int_{x_{0}}^{x_{2}} f(x) d x \approx \int_{x_{0}}^{x_{2}} p(x) d x & =\frac{x_{2}-x_{0}}{6}\left[p\left(x_{0}\right)+4 p\left(\frac{x_{0}+x_{2}}{2}\right)+p\left(x_{2}\right)\right] \\
& =\frac{2[(b-a) / n]}{6}\left[p\left(x_{0}\right)+4 p\left(x_{1}\right)+p\left(x_{2}\right)\right] \\
& =\frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] .
\end{aligned}
\]

Repeating this procedure on the entire interval \([a, b]\) produces the following theorem.

\section*{THEOREM 4.19 SIMPSON'S RULE}

Let \(f\) be continuous on \([a, b]\) and let \(n\) be an even integer. Simpson's Rule for approximating \(\int_{a}^{b} f(x) d x\) is
\[
\begin{aligned}
\int_{a}^{b} f(x) d x \approx \frac{b-a}{3 n}\left[f\left(x_{0}\right)\right. & +4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots \\
& \left.+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
\]

Moreover, as \(n \rightarrow \infty\), the right-hand side approaches \(\int_{a}^{b} f(x) d x\).

NOTE Observe that the coefficients in Simpson's Rule have the following pattern.
\[
142424 \ldots 4241
\]

In Example 1, the Trapezoidal Rule was used to estimate \(\int_{0}^{\pi} \sin x d x\). In the next example, Simpson's Rule is applied to the same integral.

\section*{EXAMPLE 2 Approximation with Simpson's Rule}

NOTE In Example 1, the Trapezoidal Rule with \(n=8\) approximates \(\int_{0}^{\pi} \sin x d x\) as 1.974. In Example 2, Simpson's Rule with \(n=8\) gives an approximation of 2.0003. The antiderivative would produce the true value of 2 .

Use Simpson's Rule to approximate
\[
\int_{0}^{\pi} \sin x d x
\]

Compare the results for \(n=4\) and \(n=8\).
Solution When \(n=4\), you have
\[
\int_{0}^{\pi} \sin x d x \approx \frac{\pi}{12}\left(\sin 0+4 \sin \frac{\pi}{4}+2 \sin \frac{\pi}{2}+4 \sin \frac{3 \pi}{4}+\sin \pi\right) \approx 2.005
\]

When \(n=8\), you have \(\int_{0}^{\pi} \sin x d x \approx 2.0003\).

\section*{Error Analysis}

If you must use an approximation technique, it is important to know how accurate you can expect the approximation to be. The following theorem, which is listed without proof, gives the formulas for estimating the errors involved in the use of Simpson's Rule and the Trapezoidal Rule. In general, when using an approximation, you can think of the error \(E\) as the difference between \(\int_{a}^{b} f(x) d x\) and the approximation.

\section*{THEOREM 4.20 ERRORS IN THE TRAPEZOIDAL RULE AND SIMPSON'S RULE}

If \(f\) has a continuous second derivative on \([a, b]\), then the error \(E\) in approximating \(\int_{a}^{b} f(x) d x\) by the Trapezoidal Rule is
\[
|E| \leq \frac{(b-a)^{3}}{12 n^{2}}\left[\max \left|f^{\prime \prime}(x)\right|\right], \quad a \leq x \leq b . \quad \text { Trapezoidal Rule }
\]

Moreover, if \(f\) has a continuous fourth derivative on \([a, b]\), then the error \(E\) in approximating \(\int_{a}^{b} f(x) d x\) by Simpson's Rule is
\[
|E| \leq \frac{(b-a)^{5}}{180 n^{4}}\left[\max \left|f^{(4)}(x)\right|\right], \quad a \leq x \leq b . \quad \text { Simpson's Rule }
\]

Theorem 4.20 states that the errors generated by the Trapezoidal Rule and Simpson's Rule have upper bounds dependent on the extreme values of \(f^{\prime \prime}(x)\) and \(f^{(4)}(x)\) in the interval \([a, b]\). Furthermore, these errors can be made arbitrarily small by increasing \(n\), provided that \(f^{\prime \prime}\) and \(f^{(4)}\) are continuous and therefore bounded in \([a, b]\).

\section*{EXAMPLE 3 The Approximate Error in the Trapezoidal Rule}

Determine a value of \(n\) such that the Trapezoidal Rule will approximate the value of \(\int_{0}^{1} \sqrt{1+x^{2}} d x\) with an error that is less than or equal to 0.01 .
Solution Begin by letting \(f(x)=\sqrt{1+x^{2}}\) and finding the second derivative of \(f\).
\[
f^{\prime}(x)=x\left(1+x^{2}\right)^{-1 / 2} \quad \text { and } \quad f^{\prime \prime}(x)=\left(1+x^{2}\right)^{-3 / 2}
\]

The maximum value of \(\left|f^{\prime \prime}(x)\right|\) on the interval \([0,1]\) is \(\left|f^{\prime \prime}(0)\right|=1\). So, by Theorem 4.20 , you can write
\[
|E| \leq \frac{(b-a)^{3}}{12 n^{2}}\left|f^{\prime \prime}(0)\right|=\frac{1}{12 n^{2}}(1)=\frac{1}{12 n^{2}}
\]

To obtain an error \(E\) that is less than 0.01 , you must choose \(n\) such that \(1 /\left(12 n^{2}\right) \leq 1 / 100\).
\[
100 \leq 12 n^{2} \quad \square \quad n \geq \sqrt{\frac{100}{12}} \approx 2.89
\]

So, you can choose \(n=3\) (because \(n\) must be greater than or equal to 2.89) and apply the Trapezoidal Rule, as shown in Figure 4.46, to obtain
\[
\begin{aligned}
\int_{0}^{1} \sqrt{1+x^{2}} d x & \approx \frac{1}{6}\left[\sqrt{1+0^{2}}+2 \sqrt{1+\left(\frac{1}{3}\right)^{2}}+2 \sqrt{1+\left(\frac{2}{3}\right)^{2}}+\sqrt{1+1^{2}}\right] \\
& \approx 1.154
\end{aligned}
\]

So, by adding and subtracting the error from this estimate, you know that
\[
1.144 \leq \int_{0}^{1} \sqrt{1+x^{2}} d x \leq 1.164
\]

\subsection*{4.6 Exercises}

In Exercises 1-10, use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the given value of \(n\). Round your answer to four decimal places and compare the results with the exact value of the definite integral.
1. \(\int_{0}^{2} x^{2} d x, \quad n=4\)
2. \(\int_{1}^{2}\left(\frac{x^{2}}{4}+1\right) d x, \quad n=4\)
3. \(\int_{0}^{2} x^{3} d x, \quad n=4\)
4. \(\int_{2}^{3} \frac{2}{x^{2}} d x, \quad n=4\)
5. \(\int_{1}^{3} x^{3} d x, \quad n=6\)
6. \(\int_{0}^{8} \sqrt[3]{x} d x, \quad n=8\)
7. \(\int_{4}^{9} \sqrt{x} d x, \quad n=8\)
8. \(\int_{1}^{4}\left(4-x^{2}\right) d x, \quad n=6\)
9. \(\int_{0}^{1} \frac{2}{(x+2)^{2}} d x, \quad n=4\)

In Exercises 11-20, approximate the definite integral using the Trapezoidal Rule and Simpson's Rule with \(n=4\). Compare these results with the approximation of the integral using a graphing utility.
11. \(\int_{0}^{2} \sqrt{1+x^{3}} d x\)
12. \(\int_{0}^{2} \frac{1}{\sqrt{1+x^{3}}} d x\)
13. \(\int_{0}^{1} \sqrt{x} \sqrt{1-x} d x\)
14. \(\int_{\pi / 2}^{\pi} \sqrt{x} \sin x d x\)
15. \(\int_{0}^{\sqrt{\pi / 2}} \sin x^{2} d x\)
16. \(\int_{0}^{\sqrt{\pi / 4}} \tan x^{2} d x\)
17. \(\int_{3}^{3.1} \cos x^{2} d x\)
18. \(\int_{0}^{\pi / 2} \sqrt{1+\sin ^{2} x} d x\)
19. \(\int_{0}^{\pi / 4} x \tan x d x\)
20. \(\int_{0}^{\pi} f(x) d x, \quad f(x)= \begin{cases}\frac{\sin x}{x}, & x>0 \\ 1, & x=0\end{cases}\)

\section*{WRITING ABOUT CONCEPTS}
21. The Trapezoidal Rule and Simpson's Rule yield approximations of a definite integral \(\int_{a}^{b} f(x) d x\) based on polynomial approximations of \(f\). What is the degree of the polynomials used for each?
22. Describe the size of the error when the Trapezoidal Rule is used to approximate \(\int_{a}^{b} f(x) d x\) when \(f(x)\) is a linear function. Use a graph to explain your answer.

In Exercises 23-28, use the error formulas in Theorem 4.20 to estimate the errors in approximating the integral, with \(n=4\), using (a) the Trapezoidal Rule and (b) Simpson's Rule.
23. \(\int_{1}^{3} 2 x^{3} d x\)
24. \(\int_{3}^{5}(5 x+2) d x\)
25. \(\int_{0}^{1} \frac{1}{x+1} d x\)
26. \(\int_{2}^{4} \frac{1}{(x-1)^{2}} d x\)
27. \(\int_{0}^{\pi} \cos x d x\)
28. \(\int_{0}^{1} \sin (\pi x) d x\)

In Exercises 29-34, use the error formulas in Theorem 4.20 to find \(n\) such that the error in the approximation of the definite integral is less than or equal to 0.00001 using (a) the Trapezoidal Rule and (b) Simpson's Rule.
29. \(\int_{1}^{3} \frac{1}{x} d x\)
30. \(\int_{0}^{1} \frac{1}{1+x} d x\)
31. \(\int_{0}^{2} \sqrt{x+2} d x\)
32. \(\int_{1}^{3} \frac{1}{\sqrt{x}} d x\)
33. \(\int_{0}^{1} \cos (\pi x) d x\)
34. \(\int_{0}^{\pi / 2} \sin x d x\)

In Exercises 35-38, use a computer algebra system and the error formulas to find \(n\) such that the error in the approximation of the definite integral is less than or equal to 0.00001 using (a) the Trapezoidal Rule and (b) Simpson's Rule.
35. \(\int_{0}^{2} \sqrt{1+x} d x\)
36. \(\int_{0}^{2}(x+1)^{2 / 3} d x\)
37. \(\int_{0}^{1} \tan x^{2} d x\)
38. \(\int_{0}^{1} \sin x^{2} d x\)
39. Approximate the area of the shaded region using (a) the Trapezoidal Rule and (b) Simpson's Rule with \(n=4\).


Figure for 39


Figure for 40
40. Approximate the area of the shaded region using (a) the Trapezoidal Rule and (b) Simpson's Rule with \(n=8\).
41. Programming Write a program for a graphing utility to approximate a definite integral using the Trapezoidal Rule and Simpson's Rule. Start with the program written in Section 4.3, Exercises 61-64, and note that the Trapezoidal Rule can be written as \(T(n)=\frac{1}{2}[L(n)+R(n)]\) and Simpson's Rule can be written as
\(S(n)=\frac{1}{3}[T(n / 2)+2 M(n / 2)]\).
[Recall that \(L(n), M(n)\), and \(R(n)\) represent the Riemann sums using the left-hand endpoints, midpoints, and right-hand endpoints of subintervals of equal width.]

Programming In Exercises 42-44, use the program in Exercise 41 to approximate the definite integral and complete the table.
\begin{tabular}{|c|l|l|l|l|l|}
\hline\(n\) & \(L(n)\) & \(M(n)\) & \(R(n)\) & \(T(n)\) & \(S(n)\) \\
\hline 4 & & & & & \\
\hline 8 & & & & & \\
\hline 10 & & & & & \\
\hline 12 & & & & & \\
\hline 16 & & & & & \\
\hline 20 & & & & & \\
\hline
\end{tabular}
42. \(\int_{0}^{4} \sqrt{2+3 x^{2}} d x\)
43. \(\int_{0}^{1} \sqrt{1-x^{2}} d x\)
44. \(\int_{0}^{4} \sin \sqrt{x} d x\)
45. Area Use Simpson's Rule with \(n=14\) to approximate the area of the region bounded by the graphs of \(y=\sqrt{x} \cos x\), \(y=0, x=0\), and \(x=\pi / 2\).

\section*{CAPSTONE}
46. Consider a function \(f(x)\) that is concave upward on the interval \([0,2]\) and a function \(g(x)\) that is concave downward on [0, 2].
(a) Using the Trapezoidal Rule, which integral would be overestimated? Which integral would be underestimated? Assume \(n=4\). Use graphs to explain your answer.
(b) Which rule would you use for more accurate approximations of \(\int_{0}^{2} f(x) d x\) and \(\int_{0}^{2} g(x) d x\), the Trapezoidal Rule or Simpson's Rule? Explain your reasoning.

\section*{47. Circumference The elliptic integral}
\(8 \sqrt{3} \int_{0}^{\pi / 2} \sqrt{1-\frac{2}{3} \sin ^{2} \theta} d \theta\)
gives the circumference of an ellipse. Use Simpson's Rule with \(n=8\) to approximate the circumference.
48. Work To determine the size of the motor required to operate a press, a company must know the amount of work done when the press moves an object linearly 5 feet. The variable force to move the object is \(F(x)=100 x \sqrt{125-x^{3}}\), where \(F\) is given in pounds and \(x\) gives the position of the unit in feet. Use Simpson's Rule with \(n=12\) to approximate the work \(W\) (in foot-pounds) done through one cycle if \(W=\int_{0}^{5} F(x) d x\).
49. The table lists several measurements gathered in an experiment to approximate an unknown continuous function \(y=f(x)\).
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 0.00 & 0.25 & 0.50 & 0.75 & 1.00 \\
\hline\(y\) & 4.32 & 4.36 & 4.58 & 5.79 & 6.14 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & 1.25 & 1.50 & 1.75 & 2.00 \\
\hline\(y\) & 7.25 & 7.64 & 8.08 & 8.14 \\
\hline
\end{tabular}
(a) Approximate the integral \(\int_{0}^{2} f(x) d x\) using the Trapezoidal Rule and Simpson's Rule.
(b) Use a graphing utility to find a model of the form \(y=a x^{3}+b x^{2}+c x+d\) for the data. Integrate the resulting polynomial over \([0,2]\) and compare the result with the integral from part (a).

Approximation of Pi In Exercises 50 and 51, use Simpson's Rule with \(n=\mathbf{6}\) to approximate \(\pi\) using the given equation. (In Section 5.7, you will be able to evaluate the integral using inverse trigonometric functions.)
50. \(\pi=\int_{0}^{1 / 2} \frac{6}{\sqrt{1-x^{2}}} d x \quad\) 51. \(\pi=\int_{0}^{1} \frac{4}{1+x^{2}} d x\)

Area In Exercises 52 and 53, use the Trapezoidal Rule to estimate the number of square meters of land in a lot where \(x\) and \(y\) are measured in meters, as shown in the figures. The land is bounded by a stream and two straight roads that meet at right angles.
52.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 100 & 200 & 300 & 400 & 500 \\
\hline\(y\) & 125 & 125 & 120 & 112 & 90 & 90 \\
\hline \begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 600 & 700 & 800 & 900 & 1000 \\
\hline\(y\) & 95 & 88 & 75 & 35 & 0 \\
\hline
\end{tabular}
\end{tabular}


Figure for 52
Figure for 53
53.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\
\hline\(y\) & 75 & 81 & 84 & 76 & 67 & 68 & 69 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 70 & 80 & 90 & 100 & 110 & 120 \\
\hline\(y\) & 72 & 68 & 56 & 42 & 23 & 0 \\
\hline
\end{tabular}
54. Prove that Simpson's Rule is exact when approximating the integral of a cubic polynomial function, and demonstrate the result for \(\int_{0}^{1} x^{3} d x, n=2\).
55. Use Simpson's Rule with \(n=10\) and a computer algebra system to approximate \(t\) in the integral equation \(\int_{0}^{t} \sin \sqrt{x} d x=2\).
56. Prove that you can find a polynomial \(p(x)=A x^{2}+B x+C\) that passes through any three points \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\), and \(\left(x_{3}, y_{3}\right)\), where the \(x_{i}\) 's are distinct.

\section*{4 REVIEW EXERCISES}

In Exercises 1 and 2, use the graph of \(f^{\prime}\) to sketch a graph of \(f\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
1.

2.


In Exercises 3-8, find the indefinite integral.
3. \(\int\left(4 x^{2}+x+3\right) d x\)
4. \(\int \frac{2}{\sqrt[3]{3 x}} d x\)
5. \(\int \frac{x^{4}+8}{x^{3}} d x\)
6. \(\int \frac{x^{4}-4 x^{2}+1}{x^{2}} d x\)
7. \(\int(2 x-9 \sin x) d x\)
8. \(\int\left(5 \cos x-2 \sec ^{2} x\right) d x\)
9. Find the particular solution of the differential equation \(f^{\prime}(x)=-6 x\) whose graph passes through the point \((1,-2)\).
10. Find the particular solution of the differential equation \(f^{\prime \prime}(x)=6(x-1)\) whose graph passes through the point \((2,1)\) and is tangent to the line \(3 x-y-5=0\) at that point.

Slope Fields In Exercises 11 and 12, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (To print an enlarged copy of the graph, go to the website www.mathgraphs.com.) (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution.
11. \(\frac{d y}{d x}=2 x-4, \quad(4,-2)\)
12. \(\frac{d y}{d x}=\frac{1}{2} x^{2}-2 x,(6,2)\)


13. Velocity and Acceleration An airplane taking off from a runway travels 3600 feet before lifting off. The airplane starts from rest, moves with constant acceleration, and makes the run in 30 seconds. With what speed does it lift off?
14. Velocity and Acceleration The speed of a car traveling in a straight line is reduced from 45 to 30 miles per hour in a distance of 264 feet. Find the distance in which the car can be brought to rest from 30 miles per hour, assuming the same constant deceleration.
15. Velocity and Acceleration A ball is thrown vertically upward from ground level with an initial velocity of 96 feet per second.
(a) How long will it take the ball to rise to its maximum height? What is the maximum height?
(b) After how many seconds is the velocity of the ball one-half the initial velocity?
(c) What is the height of the ball when its velocity is one-half the initial velocity?
16. Modeling Data The table shows the velocities (in miles per hour) of two cars on an entrance ramp to an interstate highway. The time \(t\) is in seconds.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(t\) & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline\(v_{1}\) & 0 & 2.5 & 7 & 16 & 29 & 45 & 65 \\
\hline\(v_{2}\) & 0 & 21 & 38 & 51 & 60 & 64 & 65 \\
\hline
\end{tabular}
(a) Rewrite the velocities in feet per second.
(b) Use the regression capabilities of a graphing utility to find quadratic models for the data in part (a).
(c) Approximate the distance traveled by each car during the 30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.
17. \(\frac{1}{3(1)}+\frac{1}{3(2)}+\frac{1}{3(3)}+\cdots+\frac{1}{3(10)}\)
18. \(\left(\frac{3}{n}\right)\left(\frac{1+1}{n}\right)^{2}+\left(\frac{3}{n}\right)\left(\frac{2+1}{n}\right)^{2}+\cdots+\left(\frac{3}{n}\right)\left(\frac{n+1}{n}\right)^{2}\)

In Exercises 19-22, use the properties of summation and Theorem 4.2 to evaluate the sum.
19. \(\sum_{i=1}^{20} 2 i\)
20. \(\sum_{i=1}^{20}(4 i-1)\)
21. \(\sum_{i=1}^{20}(i+1)^{2}\)
22. \(\sum_{i=1}^{12} i\left(i^{2}-1\right)\)
23. Write in sigma notation (a) the sum of the first ten positive odd integers, (b) the sum of the cubes of the first \(n\) positive integers, and (c) \(6+10+14+18+\cdots+42\).
24. Evaluate each sum for \(x_{1}=2, x_{2}=-1, x_{3}=5, x_{4}=3\), and \(x_{5}=7\).
(a) \(\frac{1}{5} \sum_{i=1}^{5} x_{i}\)
(b) \(\sum_{i=1}^{5} \frac{1}{x_{i}}\)
(c) \(\sum_{i=1}^{5}\left(2 x_{i}-x_{i}^{2}\right)\)
(d) \(\sum_{i=2}^{5}\left(x_{i}-x_{i-1}\right)\)

In Exercises 25 and 26, use upper and lower sums to approximate the area of the region using the indicated number of subintervals of equal width.
25. \(y=\frac{10}{x^{2}+1}\)
26. \(y=9-\frac{1}{4} x^{2}\)



In Exercises 27-30, use the limit process to find the area of the region between the graph of the function and the \(x\)-axis over the given interval. Sketch the region.
27. \(y=8-2 x, \quad[0,3]\)
28. \(y=x^{2}+3, \quad[0,2]\)
29. \(y=5-x^{2},[-2,1]\)
30. \(y=\frac{1}{4} x^{3}, \quad[2,4]\)
31. Use the limit process to find the area of the region bounded by \(x=5 y-y^{2}, x=0, y=2\), and \(y=5\).
32. Consider the region bounded by \(y=m x, y=0, x=0\), and \(x=b\).
(a) Find the upper and lower sums to approximate the area of the region when \(\Delta x=b / 4\).
(b) Find the upper and lower sums to approximate the area of the region when \(\Delta x=b / n\).
(c) Find the area of the region by letting \(n\) approach infinity in both sums in part (b). Show that in each case you obtain the formula for the area of a triangle.

In Exercises 33 and 34, write the limit as a definite integral on the interval \([a, b]\), where \(c_{i}\) is any point in the \(i\) th subinterval.
\begin{tabular}{lll}
\(\frac{\text { Limit }}{}\) & & Interval \\
33. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n}\left(2 c_{i}-3\right) \Delta x_{i}\) & {\([4,6]\)} \\
34. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} 3 c_{i}\left(9-c_{i}^{2}\right) \Delta x_{i}\) & {\([1,3]\)}
\end{tabular}

In Exercises 35 and 36, set up a definite integral that yields the area of the region. (Do not evaluate the integral.)
35. \(f(x)=2 x+8\)

36. \(f(x)=100-x^{2}\)


In Exercises 37 and 38, sketch the region whose area is given by the definite integral. Then use a geometric formula to evaluate the integral.
37. \(\int_{0}^{5}(5-|x-5|) d x\)
38. \(\int_{-6}^{6} \sqrt{36-x^{2}} d x\)
39. Given \(\int_{4}^{8} f(x) d x=12\) and \(\int_{4}^{8} g(x) d x=5\), evaluate
(a) \(\int_{4}^{8}[f(x)+g(x)] d x\).
(b) \(\int_{4}^{8}[f(x)-g(x)] d x\).
(c) \(\int_{4}^{8}[2 f(x)-3 g(x)] d x\).
(d) \(\int_{4}^{8} 7 f(x) d x\).
40. Given \(\int_{0}^{3} f(x) d x=4\) and \(\int_{3}^{6} f(x) d x=-1\), evaluate
(a) \(\int_{0}^{6} f(x) d x\).
(b) \(\int_{6}^{3} f(x) d x\).
(c) \(\int_{4}^{4} f(x) d x\).
(d) \(\int_{3}^{6}-10 f(x) d x\).

In Exercises 41-48, use the Fundamental Theorem of Calculus to evaluate the definite integral.
41. \(\int_{0}^{8}(3+x) d x\)
42. \(\int_{-3}^{3}\left(t^{2}+1\right) d t\)
43. \(\int_{-1}^{1}\left(4 t^{3}-2 t\right) d t\)
44. \(\int_{-2}^{-1}\left(x^{4}+3 x^{2}-4\right) d x\)
45. \(\int_{4}^{9} x \sqrt{x} d x\)
46. \(\int_{1}^{2}\left(\frac{1}{x^{2}}-\frac{1}{x^{3}}\right) d x\)
47. \(\int_{0}^{3 \pi / 4} \sin \theta d \theta\)
48. \(\int_{-\pi / 4}^{\pi / 4} \sec ^{2} t d t\)

In Exercises 49-54, sketch the graph of the region whose area is given by the integral, and find the area.
49. \(\int_{2}^{4}(3 x-4) d x\)
50. \(\int_{0}^{6}(8-x) d x\)
51. \(\int_{3}^{4}\left(x^{2}-9\right) d x\)
52. \(\int_{-2}^{3}\left(-x^{2}+x+6\right) d x\)
53. \(\int_{0}^{1}\left(x-x^{3}\right) d x\)
54. \(\int_{0}^{1} \sqrt{x}(1-x) d x\)

In Exercises 55 and 56, determine the area of the given region.
55. \(y=\sin x\)

56. \(y=x+\cos x\)


In Exercises 57 and 58, sketch the region bounded by the graphs of the equations, and determine its area.
57. \(y=\frac{4}{\sqrt{x}}, \quad y=0, \quad x=1, \quad x=9\)
58. \(y=\sec ^{2} x, \quad y=0, \quad x=0, \quad x=\frac{\pi}{3}\)

In Exercises 59 and 60, find the average value of the function over the given interval. Find the values of \(x\) at which the function assumes its average value, and graph the function.
59. \(f(x)=\frac{1}{\sqrt{x}}, \quad[4,9]\)
60. \(f(x)=x^{3}, \quad[0,2]\)

In Exercises 61-64, use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\).
61. \(F(x)=\int_{0}^{x} t^{2} \sqrt{1+t^{3}} d t\)
62. \(F(x)=\int_{1}^{x} \frac{1}{t^{2}} d t\)
63. \(F(x)=\int_{-3}^{x}\left(t^{2}+3 t+2\right) d t\)
64. \(F(x)=\int_{0}^{x} \csc ^{2} t d t\)

In Exercises 65-76, find the indefinite integral.
65. \(\int\left(3-x^{2}\right)^{3} d x\)
66. \(\int\left(x+\frac{1}{x}\right)^{2} d x\)
67. \(\int \frac{x^{2}}{\sqrt{x^{3}+3}} d x\)
68. \(\int 3 x^{2} \sqrt{2 x^{3}-5} d x\)
69. \(\int x\left(1-3 x^{2}\right)^{4} d x\)
70. \(\int \frac{x+4}{\left(x^{2}+8 x-7\right)^{2}} d x\)
71. \(\int \sin ^{3} x \cos x d x\)
72. \(\int x \sin 3 x^{2} d x\)
73. \(\int \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta\)
74. \(\int \frac{\sin x}{\sqrt{\cos x}} d x\)
75. \(\int(1+\sec \pi x)^{2} \sec \pi x \tan \pi x d x\)
76. \(\int \sec 2 x \tan 2 x d x\)

In Exercises 77-84, evaluate the definite integral. Use a graphing utility to verify your result.
77. \(\int_{-2}^{1} x\left(x^{2}-6\right) d x\)
78. \(\int_{0}^{1} x^{2}\left(x^{3}-2\right)^{3} d x\)
79. \(\int_{0}^{3} \frac{1}{\sqrt{1+x}} d x\)
80. \(\int_{3}^{6} \frac{x}{3 \sqrt{x^{2}-8}} d x\)
81. \(2 \pi \int_{0}^{1}(y+1) \sqrt{1-y} d y\)
82. \(2 \pi \int_{-1}^{0} x^{2} \sqrt{x+1} d x\)
83. \(\int_{0}^{\pi} \cos \frac{x}{2} d x\)
84. \(\int_{-\pi / 4}^{\pi / 4} \sin 2 x d x\)

Slope Fields In Exercises 85 and 86, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (To print an enlarged copy of the graph, go to the website www.mathgraphs.com.) (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution.
85. \(\frac{d y}{d x}=x \sqrt{9-x^{2}}\),
\((0,-4)\)
86. \(\frac{d y}{d x}=-\frac{1}{2} x \sin \left(x^{2}\right)\),



In Exercises 87 and 88, find the area of the region. Use a graphing utility to verify your result.
87. \(\int_{1}^{9} x \sqrt[3]{x-1} d x\)
88. \(\int_{0}^{\pi / 2}[\cos x+\sin (2 x)] d x\)


89. Precipitation The normal monthly precipitation in Portland, Oregon can be approximated by the model
\(R=2.880+2.125 \sin (0.578 t+0.745)\)
where \(R\) is measured in inches and \(t\) is the time in months, with \(t=0\) corresponding to January 1. (Source: U.S. National Oceanic and Atmospheric Administration)
(a) Write an integral and approximate the normal annual precipitation.
(b) Approximate the average monthly precipitation during the months of September and October.
90. Respiratory Cycle After exercising for a few minutes, a person has a respiratory cycle for which the rate of air intake is
\(v=1.75 \sin \frac{\pi t}{2}\).
Find the volume, in liters, of air inhaled during one cycle by integrating the function over the interval \([0,2]\).

In Exercises 91-94, use the Trapezoidal Rule and Simpson's Rule with \(n=4\), and use the integration capabilities of a graphing utility, to approximate the definite integral. Compare the results.
91. \(\int_{2}^{3} \frac{2}{1+x^{2}} d x\)
92. \(\int_{0}^{1} \frac{x^{3 / 2}}{3-x^{2}} d x\)
93. \(\int_{0}^{\pi / 2} \sqrt{x} \cos x d x\)
94. \(\int_{0}^{\pi} \sqrt{1+\sin ^{2} x} d x\)

\section*{P.S. PROBLEM SOLVING}
1. Let \(L(x)=\int_{1}^{x} \frac{1}{t} d t, x>0\).
(a) Find \(L(1)\).
(b) Find \(L^{\prime}(x)\) and \(L^{\prime}(1)\).
(c) Use a graphing utility to approximate the value of \(x\) (to three decimal places) for which \(L(x)=1\).
(d) Prove that \(L\left(x_{1} x_{2}\right)=L\left(x_{1}\right)+L\left(x_{2}\right)\) for all positive values of \(x_{1}\) and \(x_{2}\).
2. Let \(F(x)=\int_{2}^{x} \sin t^{2} d t\).
(a) Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 0 & 1.0 & 1.5 & 1.9 & 2.0 \\
\hline\(F(x)\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 2.1 & 2.5 & 3.0 & 4.0 & 5.0 \\
\hline\(F(x)\) & & & & & \\
\hline
\end{tabular}
(b) Let \(G(x)=\frac{1}{x-2} F(x)=\frac{1}{x-2} \int_{2}^{x} \sin t^{2} d t\). Use a graphing utility to complete the table and estimate \(\lim _{x \rightarrow 2} G(x)\).
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 1.9 & 1.95 & 1.99 & 2.01 & 2.1 \\
\hline\(G(x)\) & & & & & \\
\hline
\end{tabular}
(c) Use the definition of the derivative to find the exact value of the limit \(\lim _{x \rightarrow 2} G(x)\).
In Exercises 3 and 4, (a) write the area under the graph of the given function defined on the given interval as a limit. Then (b) evaluate the sum in part (a), and (c) evaluate the limit using the result of part (b).
3. \(y=x^{4}-4 x^{3}+4 x^{2}, \quad[0,2]\)
(Hint: \(\left.\sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}\right)\)
4. \(y=\frac{1}{2} x^{5}+2 x^{3}, \quad[0,2]\)
(Hint: \(\left.\sum_{i=1}^{n} i^{5}=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}\right)\)
5. The Fresnel function \(S\) is defined by the integral
\(S(x)=\int_{0}^{x} \sin \left(\frac{\pi t^{2}}{2}\right) d t\).
(a) Graph the function \(y=\sin \left(\frac{\pi x^{2}}{2}\right)\) on the interval \([0,3]\).
(b) Use the graph in part (a) to sketch the graph of \(S\) on the interval [0, 3].
(c) Locate all relative extrema of \(S\) on the interval \((0,3)\).
(d) Locate all points of inflection of \(S\) on the interval \((0,3)\).
6. The Two-Point Gaussian Quadrature Approximation for \(f\) is \(\int_{-1}^{1} f(x) d x \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)\).
(a) Use this formula to approximate \(\int_{-1}^{1} \cos x d x\). Find the error
of the approximation.
(b) Use this formula to approximate \(\int_{-1}^{1} \frac{1}{1+x^{2}} d x\).
(c) Prove that the Two-Point Gaussian Quadrature Approximation is exact for all polynomials of degree 3 or less.
7. Archimedes showed that the area of a parabolic arch is equal to \(\frac{2}{3}\) the product of the base and the height (see figure).

(a) Graph the parabolic arch bounded by \(y=9-x^{2}\) and the \(x\)-axis. Use an appropriate integral to find the area \(A\).
(b) Find the base and height of the arch and verify Archimedes' formula.
(c) Prove Archimedes' formula for a general parabola.
8. Galileo Galilei (1564-1642) stated the following proposition concerning falling objects:

The time in which any space is traversed by a uniformly accelerating body is equal to the time in which that same space would be traversed by the same body moving at a uniform speed whose value is the mean of the highest speed of the accelerating body and the speed just before acceleration began.
Use the techniques of this chapter to verify this proposition.
9. The graph of the function \(f\) consists of the three line segments joining the points \((0,0),(2,-2),(6,2)\), and \((8,3)\). The function \(F\) is defined by the integral
\(F(x)=\int_{0}^{x} f(t) d t\).
(a) Sketch the graph of \(f\).
(b) Complete the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(F(x)\) & & & & & & & & & \\
\hline
\end{tabular}
(c) Find the extrema of \(F\) on the interval \([0,8]\).
(d) Determine all points of inflection of \(F\) on the interval \((0,8)\).
10. A car travels in a straight line for 1 hour. Its velocity \(v\) in miles per hour at six-minute intervals is shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(t\) (hours) & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\hline\(v\) (mi/h) & 0 & 10 & 20 & 40 & 60 & 50 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) (hours) & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline\(v\) (mi/h) & 40 & 35 & 40 & 50 & 65 \\
\hline
\end{tabular}
(a) Produce a reasonable graph of the velocity function \(v\) by graphing these points and connecting them with a smooth curve.
(b) Find the open intervals over which the acceleration \(a\) is positive.
(c) Find the average acceleration of the car (in miles per hour squared) over the interval \([0,0.4]\).
(d) What does the integral \(\int_{0}^{1} v(t) d t\) signify? Approximate this integral using the Trapezoidal Rule with five subintervals.
(e) Approximate the acceleration at \(t=0.8\).
11. Prove \(\int_{0}^{x} f(t)(x-t) d t=\int_{0}^{x}\left(\int_{0}^{t} f(v) d v\right) d t\).
12. Prove \(\int_{a}^{b} f(x) f^{\prime}(x) d x=\frac{1}{2}\left([f(b)]^{2}-[f(a)]^{2}\right)\).
13. Use an appropriate Riemann sum to evaluate the limit
\[
\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}}{n^{3 / 2}}
\]
14. Use an appropriate Riemann sum to evaluate the limit
\(\lim _{n \rightarrow \infty} \frac{1^{5}+2^{5}+3^{5}+\cdots+n^{5}}{n^{6}}\).
15. Suppose that \(f\) is integrable on \([a, b]\) and \(0<m \leq f(x) \leq M\) for all \(x\) in the interval \([a, b]\). Prove that
\(m(a-b) \leq \int_{a}^{b} f(x) d x \leq M(b-a)\).
Use this result to estimate \(\int_{0}^{1} \sqrt{1+x^{4}} d x\).
16. Let \(f\) be continuous on the interval \([0, b]\), where \(f(x)+f(b-x) \neq 0\) on \([0, b]\).
(a) Show that \(\int_{0}^{b} \frac{f(x)}{f(x)+f(b-x)} d x=\frac{b}{2}\).
(b) Use the result in part (a) to evaluate
\[
\int_{0}^{1} \frac{\sin x}{\sin (1-x)+\sin x} d x
\]
(c) Use the result in part (a) to evaluate
\[
\int_{0}^{3} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{3-x}} d x
\]
17. Verify that
\[
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\]
by showing the following.
(a) \((1+i)^{3}-i^{3}=3 i^{2}+3 i+1\)
(b) \((n+1)^{3}=\sum_{i=1}^{n}\left(3 i^{2}+3 i+1\right)+1\)
(c) \(\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}\)
18. Prove that if \(f\) is a continuous function on a closed interval \([a, b]\), then
\(\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x\).
19. Let \(I=\int_{0}^{4} f(x) d x\), where \(f\) is shown in the figure. Let \(L(n)\) and \(R(n)\) represent the Riemann sums using the left-hand endpoints and right-hand endpoints of \(n\) subintervals of equal width. (Assume \(n\) is even.) Let \(T(n)\) and \(S(n)\) be the corresponding values of the Trapezoidal Rule and Simpson's Rule.
(a) For any \(n\), list \(L(n), R(n), T(n)\), and \(I\) in increasing order.
(b) Approximate \(S(4)\).

20. The sine integral function
\(\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t\)
is often used in engineering. The function \(f(t)=\frac{\sin t}{t}\) is not defined at \(t=0\), but its limit is 1 as \(t \rightarrow 0\). So, define \(f(0)=1\). Then \(f\) is continuous everywhere.
(a) Use a graphing utility to graph \(\operatorname{Si}(x)\).
(b) At what values of \(x\) does \(\operatorname{Si}(x)\) have relative maxima?
(c) Find the coordinates of the first inflection point where \(x>0\).
(d) Decide whether \(\operatorname{Si}(x)\) has any horizontal asymptotes. If so, identify each.
21. Determine the limits of integration where \(a \leq b\) such that
\(\int_{a}^{b}\left(x^{2}-16\right) d x\)
has minimal value.

\section*{Logarithmic, Exponential, and Other Transcendental Functions}

So far in this text, you have studied two types of elementary functions-algebraic functions and trigonometric functions. This chapter concludes the introduction of elementary functions. As each new type is introduced, you will study its properties, its derivative, and its antiderivative.

In this chapter, you should learn the following.
- The properties of the natural logarithmic function. How to find the derivative and antiderivative of the natural logarithmic function. (5.1, 5.2)
- How to determine whether a function has an inverse function. (5.3)
- The properties of the natural exponential function. How to find the derivative and antiderivative of the natural exponential function. (5.4)
- The properties, derivatives, and antiderivatives of logarithmic and exponential functions that have bases other than \(e\). (5.5)
- The properties of inverse trigonometric functions. How to find derivatives and antiderivatives of inverse trigonometric functions. (5.6, 5.7)
- The properties of hyperbolic functions. How to find derivatives and antiderivatives of hyperbolic functions. (5.8)


Owaki-Kulla/Photolibrary
The Gateway Arch in St. Louis, Missouri is over 600 feet high and covered with 886 tons of quarter-inch stainless steel. A mathematical equation used to construct the arch involves which function? (See Section 5.8, Section Project.)





In Section 5.1, you will see how the function \(f(x)=1 / x\) can be used to define the natural logarithmic function. To do this, consider the definite integral \(\int_{1}^{x} 1 / t d t\). When \(x<1\), the value of this definite integral is negative. When \(x=1\), the value is 0 . When \(x>1\), the value is positive.

\subsection*{5.1 The Natural Logarithmic Function: Differentiation}


Logarithms were invented by the Scottish mathematician John Napier. Napier coined the term logarithm, from the two Greek words logos (or ratio) and arithmos (or number), to describe the theory that he spent 20 years developing and that first appeared in the book Mirifici Logarithmorum canonis descriptio (A Description of the Marvelous Rule of Logarithms). Although he did not introduce the natural logarithmic function, it is sometimes called the Napierian logarithm.
- Develop and use properties of the natural logarithmic function.
- Understand the definition of the number \(e\).
- Find derivatives of functions involving the natural logarithmic function.

\section*{The Natural Logarithmic Function}

Recall that the General Power Rule
\[
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1 \quad \text { General Power Rule }
\]
has an important disclaimer-it doesn't apply when \(n=-1\). Consequently, you have not yet found an antiderivative for the function \(f(x)=1 / x\). In this section, you will use the Second Fundamental Theorem of Calculus to define such a function. This antiderivative is a function that you have not encountered previously in the text. It is neither algebraic nor trigonometric, but falls into a new class of functions called logarithmic functions. This particular function is the natural logarithmic function.

\section*{DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION}

The natural logarithmic function is defined by
\[
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
\]

The domain of the natural logarithmic function is the set of all positive real numbers.

From this definition, you can see that \(\ln x\) is positive for \(x>1\) and negative for \(0<x<1\), as shown in Figure 5.1. Moreover, \(\ln (1)=0\), because the upper and lower limits of integration are equal when \(x=1\).


If \(x>1\), then \(\ln x>0\).
Figure 5.1


If \(0<x<1\), then \(\ln x<0\).

\section*{EXPLORATION}

Graphing the Natural Logarithmic Function Using only the definition of the natural logarithmic function, sketch a graph of the function. Explain your reasoning.


Each small line segment has a slope of \(\frac{1}{x}\).
Figure 5.2

To sketch the graph of \(y=\ln x\), you can think of the natural logarithmic function as an antiderivative given by the differential equation
\[
\frac{d y}{d x}=\frac{1}{x} .
\]

Figure 5.2 is a computer-generated graph, called a slope (or direction) field, showing small line segments of slope \(1 / x\). The graph of \(y=\ln x\) is the solution that passes through the point \((1,0)\). You will study slope fields in Section 6.1.

The following theorem lists some basic properties of the natural logarithmic function.

\section*{THEOREM 5.1 PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION}

The natural logarithmic function has the following properties.
1. The domain is \((0, \infty)\) and the range is \((-\infty, \infty)\).
2. The function is continuous, increasing, and one-to-one.
3. The graph is concave downward.

PR00F The domain of \(f(x)=\ln x\) is \((0, \infty)\) by definition. Moreover, the function is continuous because it is differentiable. It is increasing because its derivative
\[
f^{\prime}(x)=\frac{1}{x} \quad \text { First derivative }
\]
is positive for \(x>0\), as shown in Figure 5.3. It is concave downward because
\[
f^{\prime \prime}(x)=-\frac{1}{x^{2}} \quad \text { Second derivative }
\]
is negative for \(x>0\). The proof that \(f\) is one-to-one is given in Appendix A. The following limits imply that its range is the entire real line.
\[
\lim _{x \rightarrow 0^{+}} \ln x=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln x=\infty
\]

Verification of these two limits is given in Appendix A.

Using the definition of the natural logarithmic function, you can prove several important properties involving operations with natural logarithms. If you are already familiar with logarithms, you will recognize that these properties are characteristic of all logarithms.

\section*{THEOREM 5.2 LOGARITHMIC PROPERTIES}

If \(a\) and \(b\) are positive numbers and \(n\) is rational, then the following properties are true.
1. \(\ln (1)=0\)
2. \(\ln (a b)=\ln a+\ln b\)
3. \(\ln \left(a^{n}\right)=n \ln a\)
4. \(\ln \left(\frac{a}{b}\right)=\ln a-\ln b\)



Figure 5.4

PROOF The first property has already been discussed. The proof of the second property follows from the fact that two antiderivatives of the same function differ at most by a constant. From the Second Fundamental Theorem of Calculus and the definition of the natural logarithmic function, you know that
\[
\frac{d}{d x}[\ln x]=\frac{d}{d x}\left[\int_{1}^{x} \frac{1}{t} d t\right]=\frac{1}{x}
\]

So, consider the two derivatives
\[
\frac{d}{d x}[\ln (a x)]=\frac{a}{a x}=\frac{1}{x}
\]
and
\[
\frac{d}{d x}[\ln a+\ln x]=0+\frac{1}{x}=\frac{1}{x}
\]

Because \(\ln (a x)\) and \((\ln a+\ln x)\) are both antiderivatives of \(1 / x\), they must differ at most by a constant.
\[
\ln (a x)=\ln a+\ln x+C
\]

By letting \(x=1\), you can see that \(C=0\). The third property can be proved similarly by comparing the derivatives of \(\ln \left(x^{n}\right)\) and \(n \ln x\). Finally, using the second and third properties, you can prove the fourth property.
\[
\ln \left(\frac{a}{b}\right)=\ln \left[a\left(b^{-1}\right)\right]=\ln a+\ln \left(b^{-1}\right)=\ln a-\ln b
\]

Example 1 shows how logarithmic properties can be used to expand logarithmic expressions.

\section*{EXAMPLE 1 Expanding Logarithmic Expressions}
a. \(\ln \frac{10}{9}=\ln 10-\ln 9\)

Property 4
b. \(\ln \sqrt{3 x+2}=\ln (3 x+2)^{1 / 2} \quad\) Rewrite with rational exponent.
\[
=\frac{1}{2} \ln (3 x+2) \quad \text { Property } 3
\]
c. \(\ln \frac{6 x}{5}=\ln (6 x)-\ln 5\)

Property 4
\[
=\ln 6+\ln x-\ln 5
\]

Property 2
d. \(\ln \frac{\left(x^{2}+3\right)^{2}}{x \sqrt[3]{x^{2}+1}}=\ln \left(x^{2}+3\right)^{2}-\ln \left(x \sqrt[3]{x^{2}+1}\right)\)
\[
\begin{aligned}
& =2 \ln \left(x^{2}+3\right)-\left[\ln x+\ln \left(x^{2}+1\right)^{1 / 3}\right] \\
& =2 \ln \left(x^{2}+3\right)-\ln x-\ln \left(x^{2}+1\right)^{1 / 3} \\
& =2 \ln \left(x^{2}+3\right)-\ln x-\frac{1}{3} \ln \left(x^{2}+1\right)
\end{aligned}
\]

When using the properties of logarithms to rewrite logarithmic functions, you must check to see whether the domain of the rewritten function is the same as the domain of the original. For instance, the domain of \(f(x)=\ln x^{2}\) is all real numbers except \(x=0\), and the domain of \(g(x)=2 \ln x\) is all positive real numbers. (See Figure 5.4.)

\(e\) is the base for the natural logarithm because \(\ln e=1\).
Figure 5.5


If \(x=e^{n}\), then \(\ln x=n\).
Figure 5.6

\section*{The Number \(e\)}

It is likely that you have studied logarithms in an algebra course. There, without the benefit of calculus, logarithms would have been defined in terms of a base number. For example, common logarithms have a base of 10 and therefore \(\log _{10} 10=1\). (You will learn more about this in Section 5.5.)

The base for the natural logarithm is defined using the fact that the natural logarithmic function is continuous, is one-to-one, and has a range of \((-\infty, \infty)\). So, there must be a unique real number \(x\) such that \(\ln x=1\), as shown in Figure 5.5. This number is denoted by the letter \(e\). It can be shown that \(e\) is irrational and has the following decimal approximation.
\[
e \approx 2.71828182846
\]

\section*{DEFINITION OF \(e\)}

The letter \(e\) denotes the positive real number such that
\[
\ln e=\int_{1}^{e} \frac{1}{t} d t=1
\]

FOR FURTHER INFORMATION To learn more about the number \(e\), see the article "Unexpected Occurrences of the Number \(e\) " by Harris S. Shultz and Bill Leonard in Mathematics Magazine. To view this article, go to the website www.matharticles.com.

Once you know that \(\ln e=1\), you can use logarithmic properties to evaluate the natural logarithms of several other numbers. For example, by using the property
\[
\begin{aligned}
\ln \left(e^{n}\right) & =n \ln e \\
& =n(1) \\
& =n
\end{aligned}
\]
you can evaluate \(\ln \left(e^{n}\right)\) for various values of \(n\), as shown in the table and in Figure 5.6.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & \(\frac{1}{e^{3}} \approx 0.050\) & \(\frac{1}{e^{2}} \approx 0.135\) & \(\frac{1}{e} \approx 0.368\) & \(e^{0}=1\) & \(e \approx 2.718\) & \(e^{2} \approx 7.389\) \\
\hline \(\ln x\) & -3 & -2 & -1 & 0 & 1 & 2 \\
\hline
\end{tabular}

The logarithms shown in the table above are convenient because the \(x\)-values are integer powers of \(e\). Most logarithmic expressions are, however, best evaluated with a calculator.

\section*{EXAMPLE 2 Evaluating Natural Logarithmic Expressions}
a. \(\ln 2 \approx 0.693\)
b. \(\ln 32 \approx 3.466\)
c. \(\ln 0.1 \approx-2.303\)

\section*{E X P L ORATION}

Use a graphing utility to graph
\[
y_{1}=\frac{1}{x}
\]
and
\[
y_{2}=\frac{d}{d x}[\ln x]
\]
in the same viewing window, in which \(0.1 \leq x \leq 5\) and \(-2 \leq y \leq 8\). Explain why the graphs appear to be identical.

\section*{The Derivative of the Natural Logarithmic Function}

The derivative of the natural logarithmic function is given in Theorem 5.3. The first part of the theorem follows from the definition of the natural logarithmic function as an antiderivative. The second part of the theorem is simply the Chain Rule version of the first part.

\section*{THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION}

Let \(u\) be a differentiable function of \(x\).
1. \(\frac{d}{d x}[\ln x]=\frac{1}{x}, \quad x>0\)
2. \(\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}}{u}, \quad u>0\)

\section*{EXAMPLE 3 Differentiation of Logarithmic Functions}
a. \(\frac{d}{d x}[\ln (2 x)]=\frac{u^{\prime}}{u}=\frac{2}{2 x}=\frac{1}{x} \quad u=2 x\)
b. \(\frac{d}{d x}\left[\ln \left(x^{2}+1\right)\right]=\frac{u^{\prime}}{u}=\frac{2 x}{x^{2}+1} \quad u=x^{2}+1\)
c. \(\frac{d}{d x}[x \ln x]=x\left(\frac{d}{d x}[\ln x]\right)+(\ln x)\left(\frac{d}{d x}[x]\right) \quad\) Product Rule
\[
=x\left(\frac{1}{x}\right)+(\ln x)(1)=1+\ln x
\]
d. \(\frac{d}{d x}\left[(\ln x)^{3}\right]=3(\ln x)^{2} \frac{d}{d x}[\ln x]\)

Chain Rule
\[
=3(\ln x)^{2} \frac{1}{x}
\]

Napier used logarithmic properties to simplify calculations involving products, quotients, and powers. Of course, given the availability of calculators, there is now little need for this particular application of logarithms. However, there is great value in using logarithmic properties to simplify differentiation involving products, quotients, and powers.

\section*{EXAMPLE 4 Logarithmic Properties as Aids to Differentiation}

Differentiate \(f(x)=\ln \sqrt{x+1}\).
Solution Because
\[
f(x)=\ln \sqrt{x+1}=\ln (x+1)^{1 / 2}=\frac{1}{2} \ln (x+1) \quad \text { Rewrite before differentiating. }
\]
you can write
\[
f^{\prime}(x)=\frac{1}{2}\left(\frac{1}{x+1}\right)=\frac{1}{2(x+1)} \quad \quad \text { Differentiate. }
\]

The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.

\section*{EXAMPLE 5 Logarithmic Properties as Aids to Differentiation}

Differentiate \(f(x)=\ln \frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{3}-1}}\).
Solution
\[
\begin{aligned}
f(x) & =\ln \frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{3}-1}} & & \text { Write original function. } \\
& =\ln x+2 \ln \left(x^{2}+1\right)-\frac{1}{2} \ln \left(2 x^{3}-1\right) & & \text { Rewrite before differentiating. } \\
f^{\prime}(x) & =\frac{1}{x}+2\left(\frac{2 x}{x^{2}+1}\right)-\frac{1}{2}\left(\frac{6 x^{2}}{2 x^{3}-1}\right) & & \text { Differentiate. } \\
& =\frac{1}{x}+\frac{4 x}{x^{2}+1}-\frac{3 x^{2}}{2 x^{3}-1} & & \text { Simplify. }
\end{aligned}
\]

NOTE In Examples 4 and 5, be sure you see the benefit of applying logarithmic properties before differentiating. Consider, for instance, the difficulty of direct differentiation of the function given in Example 5.

On occasion, it is convenient to use logarithms as aids in differentiating nonlogarithmic functions. This procedure is called logarithmic differentiation.

\section*{EXAMPLE 6 Logarithmic Differentiation}

Find the derivative of
\[
y=\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}, \quad x \neq 2
\]

Solution Note that \(y>0\) for all \(x \neq 2\). So, \(\ln y\) is defined. Begin by taking the natural logarithm of each side of the equation. Then apply logarithmic properties and differentiate implicitly. Finally, solve for \(y^{\prime}\).
\[
\begin{aligned}
y & =\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}, \quad x \neq 2 & & \text { Write original equation. } \\
\ln y & =\ln \frac{(x-2)^{2}}{\sqrt{x^{2}+1}} & & \text { Take natural log of each side. } \\
\ln y & =2 \ln (x-2)-\frac{1}{2} \ln \left(x^{2}+1\right) & & \text { Logarithmic properties } \\
\frac{y^{\prime}}{y} & =2\left(\frac{1}{x-2}\right)-\frac{1}{2}\left(\frac{2 x}{x^{2}+1}\right) & & \text { Differentiate. } \\
& =\frac{x^{2}+2 x+2}{(x-2)\left(x^{2}+1\right)} & & \text { Simplify. } \\
y^{\prime} & =y\left[\frac{x^{2}+2 x+2}{(x-2)\left(x^{2}+1\right)}\right] & & \text { Solve for } y^{\prime} . \\
& =\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}\left[\frac{x^{2}+2 x+2}{(x-2)\left(x^{2}+1\right)}\right] & & \text { Substitute for } y . \\
& =\frac{(x-2)\left(x^{2}+2 x+2\right)}{\left(x^{2}+1\right)^{3 / 2}} & & \text { Simplify. }
\end{aligned}
\]


The derivative of \(y\) changes from negative to positive at \(x=-1\).
Figure 5.7

Because the natural logarithm is undefined for negative numbers, you will often encounter expressions of the form \(\ln |u|\). The following theorem states that you can differentiate functions of the form \(y=\ln |u|\) as if the absolute value notation was not present.

\section*{THEOREM 5.4 DERIVATIVE INVOLVING ABSOLUTE VALUE}

If \(u\) is a differentiable function of \(x\) such that \(u \neq 0\), then
\[
\frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u}
\]

PROOF If \(u>0\), then \(|u|=u\), and the result follows from Theorem 5.3. If \(u<0\), then \(|u|=-u\), and you have
\[
\begin{aligned}
\frac{d}{d x}[\ln |u|] & =\frac{d}{d x}[\ln (-u)] \\
& =\frac{-u^{\prime}}{-u} \\
& =\frac{u^{\prime}}{u}
\end{aligned}
\]

\section*{EXAMPLE 7 Derivative Involving Absolute Value}

Find the derivative of
\[
f(x)=\ln |\cos x|
\]

Solution Using Theorem 5.4, let \(u=\cos x\) and write
\[
\begin{aligned}
\frac{d}{d x}[\ln |\cos x|] & =\frac{u^{\prime}}{u} & & \frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u} \\
& =\frac{-\sin x}{\cos x} & & u=\cos x \\
& =-\tan x . & & \text { Simplify. }
\end{aligned}
\]

\section*{EXAMPLE 8 Finding Relative Extrema}

Locate the relative extrema of
\[
y=\ln \left(x^{2}+2 x+3\right)
\]

Solution Differentiating \(y\), you obtain
\[
\frac{d y}{d x}=\frac{2 x+2}{x^{2}+2 x+3}
\]

Because \(d y / d x=0\) when \(x=-1\), you can apply the First Derivative Test and conclude that the point \((-1, \ln 2)\) is a relative minimum. Because there are no other critical points, it follows that this is the only relative extremum (see Figure 5.7).

\subsection*{5.1 Exercises}
1. Complete the table below. Use a graphing utility and Simpson's Rule with \(n=10\) to approximate the integral \(\int_{1}^{x}(1 / t) d t\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & 0.5 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \\
\hline \(\int_{1}^{x}(\mathbb{1} / t) d t\) & & & & & & & \\
\hline
\end{tabular}
2. (a) Plot the points generated in Exercise 1 and connect them with a smooth curve. Compare the result with the graph of \(y=\ln x\).
(b) Use a graphing utility to graph \(y=\int_{1}^{x}(1 / t) d t\) for \(0.2 \leq x \leq 4\). Compare the result with the graph of \(y=\ln x\).

In Exercises 3-6, use a graphing utility to evaluate the logarithm by (a) using the natural logarithm key and (b) using the integration capabilities to evaluate the integral \(\int_{1}^{x}(1 / t) d t\).
3. \(\ln 45\)
4. \(\ln 8.3\)
5. \(\ln 0.8\)
6. \(\ln 0.6\)

In Exercises 7-10, match the function with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

7. \(f(x)=\ln x+1\)
8. \(f(x)=-\ln x\)
9. \(f(x)=\ln (x-1)\)
10. \(f(x)=-\ln (-x)\)

In Exercises 11-18, sketch the graph of the function and state its domain.
11. \(f(x)=3 \ln x\)
12. \(f(x)=-2 \ln x\)
13. \(f(x)=\ln 2 x\)
14. \(f(x)=\ln |x|\)
15. \(f(x)=\ln (x-1)\)
16. \(g(x)=2+\ln x\)
17. \(h(x)=\ln (x+2)\)
18. \(f(x)=\ln (x-2)+1\)

In Exercises 19 and 20, use the properties of logarithms to approximate the indicated logarithms, given that \(\ln 2 \approx 0.6931\) and \(\ln 3 \approx 1.0986\).
19. (a) \(\ln 6\)
(b) \(\ln \frac{2}{3}\)
(c) \(\ln 81\)
(d) \(\ln \sqrt{3}\)
20. (a) \(\ln 0.25\)
(b) \(\ln 24\)
(c) \(\ln \sqrt[3]{12}\)
(d) \(\ln \frac{1}{72}\)

In Exercises 21-30, use the properties of logarithms to expand the logarithmic expression.
21. \(\ln \frac{x}{4}\)
22. \(\ln \sqrt{x^{5}}\)
23. \(\ln \frac{x y}{z}\)
24. \(\ln (x y z)\)
25. \(\ln \left(x \sqrt{x^{2}+5}\right)\)
26. \(\ln \sqrt{a-1}\)
27. \(\ln \sqrt{\frac{x-1}{x}}\)
28. \(\ln \left(3 e^{2}\right)\)
29. \(\ln z(z-1)^{2}\)
30. \(\ln \frac{1}{e}\)

In Exercises 31-36, write the expression as a logarithm of a single quantity.
31. \(\ln (x-2)-\ln (x+2)\) 32. \(3 \ln x+2 \ln y-4 \ln z\)
33. \(\frac{1}{3}\left[2 \ln (x+3)+\ln x-\ln \left(x^{2}-1\right)\right]\)
34. \(2[\ln x-\ln (x+1)-\ln (x-1)]\)
35. \(2 \ln 3-\frac{1}{2} \ln \left(x^{2}+1\right)\)
36. \(\frac{3}{2}\left[\ln \left(x^{2}+1\right)-\ln (x+1)-\ln (x-1)\right]\)

In Exercises 37 and 38, (a) verify that \(f=g\) by using a graphing utility to graph \(f\) and \(g\) in the same viewing window and (b) verify that \(f=g\) algebraically.
37. \(f(x)=\ln \frac{x^{2}}{4}, \quad x>0, \quad g(x)=2 \ln x-\ln 4\)
38. \(f(x)=\ln \sqrt{x\left(x^{2}+1\right)}, \quad g(x)=\frac{1}{2}\left[\ln x+\ln \left(x^{2}+1\right)\right]\)

In Exercises 39-42, find the limit.
39. \(\lim _{x \rightarrow 3^{+}} \ln (x-3)\)
40. \(\lim _{x \rightarrow 6^{-}} \ln (6-x)\)
41. \(\lim _{x \rightarrow 2^{-}} \ln \left[x^{2}(3-x)\right]\)
42. \(\lim _{x \rightarrow 5^{+}} \ln \frac{x}{\sqrt{x-4}}\)

In Exercises 43-46, find an equation of the tangent line to the graph of the logarithmic function at the point \((1,0)\).
43. \(y=\ln x^{3}\)
44. \(y=\ln x^{3 / 2}\)
45. \(y=x^{4}\)
46. \(y=\ln x^{1 / 2}\)

In Exercises 47-76, find the derivative of the function.
47. \(f(x)=\ln (3 x)\)
48. \(f(x)=\ln (x-1)\)
49. \(g(x)=\ln x^{2}\)
50. \(h(x)=\ln \left(2 x^{2}+1\right)\)
51. \(y=(\ln x)^{4}\)
52. \(y=x^{2} \ln x\)
53. \(y=\ln (t+1)^{2}\)
54. \(y=\ln \sqrt{x^{2}-4}\)
55. \(y=\ln \left(x \sqrt{x^{2}-1}\right)\)
56. \(y=\ln \left[t\left(t^{2}+3\right)^{3}\right]\)
57. \(f(x)=\ln \left(\frac{x}{x^{2}+1}\right)\)
58. \(f(x)=\ln \left(\frac{2 x}{x+3}\right)\)
59. \(g(t)=\frac{\ln t}{t^{2}}\)
60. \(h(t)=\frac{\ln t}{t}\)
61. \(y=\ln \left(\ln x^{2}\right)\)
62. \(y=\ln (\ln x)\)
63. \(y=\ln \sqrt{\frac{x+1}{x-1}}\)
64. \(y=\ln \sqrt[3]{\frac{x-1}{x+1}}\)
65. \(f(x)=\ln \left(\frac{\sqrt{4+x^{2}}}{x}\right)\)
66. \(f(x)=\ln \left(x+\sqrt{4+x^{2}}\right)\)
67. \(y=\frac{-\sqrt{x^{2}+1}}{x}+\ln \left(x+\sqrt{x^{2}+1}\right)\)
68. \(y=\frac{-\sqrt{x^{2}+4}}{2 x^{2}}-\frac{1}{4} \ln \left(\frac{2+\sqrt{x^{2}+4}}{x}\right)\)
69. \(y=\ln |\sin x|\)
70. \(y=\ln |\csc x|\)
71. \(y=\ln \left|\frac{\cos x}{\cos x-1}\right|\)
72. \(y=\ln |\sec x+\tan x|\)
73. \(y=\ln \left|\frac{-1+\sin x}{2+\sin x}\right|\)
74. \(y=\ln \sqrt{2+\cos ^{2} x}\)
75. \(f(x)=\int_{2}^{\ln (2 x)}(t+1) d t\)
76. \(g(x)=\int_{1}^{\ln x}\left(t^{2}+3\right) d t\)

In Exercises 77-82, (a) find an equation of the tangent line to the graph of \(f\) at the given point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.
77. \(f(x)=3 x^{2}-\ln x, \quad(1,3)\)
78. \(f(x)=4-x^{2}-\ln \left(\frac{1}{2} x+1\right), \quad(0,4)\)
79. \(f(x)=\ln \sqrt{1+\sin ^{2} x}, \quad\left(\frac{\pi}{4}, \ln \sqrt{\frac{3}{2}}\right)\)
80. \(f(x)=\sin 2 x \ln x^{2}, \quad(1,0)\)
81. \(f(x)=x^{3} \ln x, \quad(1,0)\)
82. \(f(x)=\frac{1}{2} x \ln x^{2}, \quad(-1,0)\)

In Exercises 83-86, use implicit differentiation to find \(d y / d x\).
83. \(x^{2}-3 \ln y+y^{2}=10\)
84. \(\ln x y+5 x=30\)
85. \(4 x^{3}+\ln y^{2}+2 y=2 x\)
86. \(4 x y+\ln x^{2} y=7\)

In Exercises 87 and 88, use implicit differentiation to find an equation of the tangent line to the graph at the given point.
87. \(x+y-1=\ln \left(x^{2}+y^{2}\right), \quad(1,0)\)
88. \(y^{2}+\ln x y=2, \quad(e, 1)\)

In Exercises 89 and 90, show that the function is a solution of the differential equation.

\section*{Function}

Differential Equation
89. \(y=2 \ln x+3\)
90. \(y=x \ln x-4 x\)
\(x y^{\prime \prime}+y^{\prime}=0\)
\(x+y-x y^{\prime}=0\)

In Exercises 91-96, locate any relative extrema and inflection points. Use a graphing utility to confirm your results.
91. \(y=\frac{x^{2}}{2}-\ln x\)
92. \(y=x-\ln x\)
93. \(y=x \ln x\)
94. \(y=\frac{\ln x}{x}\)
95. \(y=\frac{x}{\ln x}\)
96. \(y=x^{2} \ln \frac{x}{4}\)

Linear and Quadratic Approximations In Exercises 97 and 98, use a graphing utility to graph the function. Then graph
\(P_{1}(x)=f(1)+f^{\prime}(1)(x-1)\)
and
\(P_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2}\)
in the same viewing window. Compare the values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives at \(\boldsymbol{x}=1\).
97. \(f(x)=\ln x\)
98. \(f(x)=x \ln x\)

In Exercises 99 and 100, use Newton's Method to approximate, to three decimal places, the \(x\)-coordinate of the point of intersection of the graphs of the two equations. Use a graphing utility to verify your result.
99. \(y=\ln x, \quad y=-x\)
100. \(y=\ln x, \quad y=3-x\)

In Exercises 101-106, use logarithmic differentiation to find \(d y / d x\).
101. \(y=x \sqrt{x^{2}+1}, \quad x>0\)
102. \(y=\sqrt{x^{2}(x+1)(x+2)}, \quad x>0\)
103. \(y=\frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}}, \quad x>\frac{2}{3} \quad\) 104. \(y=\sqrt{\frac{x^{2}-1}{x^{2}+1}}, \quad x>1\)
105. \(y=\frac{x(x-1)^{3 / 2}}{\sqrt{x+1}}, \quad x>1\)
106. \(y=\frac{(x+1)(x-2)}{(x-1)(x+2)}, \quad x>2\)

\section*{WRITING ABOUT CONCEPTS}
107. In your own words, state the properties of the natural logarithmic function.
108. Define the base for the natural logarithmic function.
109. Let \(f\) be a function that is positive and differentiable on the entire real line. Let \(g(x)=\ln f(x)\).
(a) If \(g\) is increasing, must \(f\) be increasing? Explain.
(b) If the graph of \(f\) is concave upward, must the graph of \(g\) be concave upward? Explain.
110. Consider the function \(f(x)=x-2 \ln x\) on \([1,3]\).
(a) Explain why Rolle's Theorem (Section 3.2) does not apply.
(b) Do you think the conclusion of Rolle's Theorem is true for \(f\) ? Explain

True or False? In Exercises 111-114, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
111. \(\ln (x+25)=\ln x+\ln 25\)
112. \(\ln x y=\ln x \ln y\)
113. If \(y=\ln \pi\), then \(y^{\prime}=1 / \pi\).
114. If \(y=\ln e\), then \(y^{\prime}=1\).
115. Home Mortgage The term \(t\) (in years) of a \(\$ 200,000\) home mortgage at \(7.5 \%\) interest can be approximated by
\(t=13.375 \ln \left(\frac{x}{x-1250}\right), \quad x>1250\)
where \(x\) is the monthly payment in dollars.
(a) Use a graphing utility to graph the model.
(b) Use the model to approximate the term of a home mortgage for which the monthly payment is \(\$ 1398.43\). What is the total amount paid?
(c) Use the model to approximate the term of a home mortgage for which the monthly payment is \(\$ 1611.19\). What is the total amount paid?
(d) Find the instantaneous rates of change of \(t\) with respect to \(x\) when \(x=\$ 1398.43\) and \(x=\$ 1611.19\).
(e) Write a short paragraph describing the benefit of the higher monthly payment.
116. Sound Intensity The relationship between the number of decibels \(\beta\) and the intensity of a sound \(I\) in watts per centimeter squared is
\(\beta=10 \log _{10}\left(\frac{I}{10^{-16}}\right)\).
Use the properties of logarithms to write the formula in simpler form, and determine the number of decibels of a sound with an intensity of \(10^{-10}\) watt per square centimeter.
117. Modeling Data The table shows the temperatures \(T\left({ }^{\circ} \mathrm{F}\right)\) at which water boils at selected pressures \(p\) (pounds per square inch). (Source: Standard Handbook of Mechanical Engineers)
\begin{tabular}{|c|c|c|c|c|}
\hline\(p\) & 5 & 10 & \(14.696(1 \mathrm{~atm})\) & 20 \\
\hline\(T\) & \(162.24^{\circ}\) & \(193.21^{\circ}\) & \(212.00^{\circ}\) & \(227.96^{\circ}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(p\) & 30 & 40 & 60 & 80 & 100 \\
\hline\(T\) & \(250.33^{\circ}\) & \(267.25^{\circ}\) & \(292.71^{\circ}\) & \(312.03^{\circ}\) & \(327.81^{\circ}\) \\
\hline
\end{tabular}

A model that approximates the data is
\(T=87.97+34.96 \ln p+7.91 \sqrt{p}\).
(a) Use a graphing utility to plot the data and graph the model.
(b) Find the rates of change of \(T\) with respect to \(p\) when \(p=10\) and \(p=70\).
(c) Use a graphing utility to graph \(T^{\prime}\). Find \(\lim _{p \rightarrow \infty} T^{\prime}(p)\) and interpret the result in the context of the problem.
118. Modeling Data The atmospheric pressure decreases with increasing altitude. At sea level, the average air pressure is one atmosphere ( 1.033227 kilograms per square centimeter). The table shows the pressures \(p\) (in atmospheres) at selected altitudes \(h\) (in kilometers).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(h\) & 0 & 5 & 10 & 15 & 20 & 25 \\
\hline\(p\) & 1 & 0.55 & 0.25 & 0.12 & 0.06 & 0.02 \\
\hline
\end{tabular}
(a) Use a graphing utility to find a model of the form \(p=a+b \ln h\) for the data. Explain why the result is an error message.
(b) Use a graphing utility to find the logarithmic model \(h=a+b \ln p\) for the data.
(c) Use a graphing utility to plot the data and graph the model.
(d) Use the model to estimate the altitude when \(p=0.75\).
(e) Use the model to estimate the pressure when \(h=13\).
(f) Use the model to find the rates of change of pressure when \(h=5\) and \(h=20\). Interpret the results.
119. Tractrix A person walking along a dock drags a boat by a 10 -meter rope. The boat travels along a path known as a tractrix (see figure). The equation of this path is
\[
y=10 \ln \left(\frac{10+\sqrt{100-x^{2}}}{x}\right)-\sqrt{100-x^{2}} .
\]
(a) Use a graphing utility to graph the function.
(b) What are the slopes of this path when \(x=5\) and \(x=9\) ?
(c) What does the slope of the path approach as \(x \rightarrow 10\) ?


\section*{CAPSTONE}
120. Given that \(f(x)=\ln x^{a}\), where \(a\) is a real number such that \(a>0\), determine the rates of change of \(f\) when (a) \(x=10\) and (b) \(x=100\).
121. Conjecture Use a graphing utility to graph \(f\) and \(g\) in the same viewing window and determine which is increasing at the greater rate for large values of \(x\). What can you conclude about the rate of growth of the natural logarithmic function?
(a) \(f(x)=\ln x, \quad g(x)=\sqrt{x}\)
(b) \(f(x)=\ln x, \quad g(x)=\sqrt[4]{x}\)
122. To approximate \(e^{x}\), you can use a function of the form \(f(x)=\frac{a+b x}{1+c x}\). (This function is known as a Padé approximation.) The values of \(f(0), f^{\prime}(0)\), and \(f^{\prime \prime}(0)\) are equal to the corresponding values of \(e^{x}\). Show that these values are equal to 1 and find the values of \(a, b\), and \(c\) such that \(f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=1\). Then use a graphing utility to compare the graphs of \(f\) and \(e^{x}\).

\subsection*{5.2 The Natural Logarithmic Function: Integration}
- Use the Log Rule for Integration to integrate a rational function.
- Integrate trigonometric functions.

\section*{Log Rule for Integration}

The differentiation rules
\[
\frac{d}{d x}[\ln |x|]=\frac{1}{x} \quad \text { and } \quad \frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u}
\]
that you studied in the preceding section produce the following integration rule.

\section*{THEOREM 5.5 LOG RULE FOR INTEGRATION}

Let \(u\) be a differentiable function of \(x\).
1. \(\int \frac{1}{x} d x=\ln |x|+C\)
2. \(\int \frac{1}{u} d u=\ln |u|+C\)

Because \(d u=u^{\prime} d x\), the second formula can also be written as
\[
\int \frac{u^{\prime}}{u} d x=\ln |u|+C
\]

Alternative form of Log Rule

\section*{EXAMPLE 1 Using the Log Rule for Integration}
\[
\begin{aligned}
\int \frac{2}{x} d x & =2 \int \frac{1}{x} d x & & \text { Constant Multiple Rule } \\
& =2 \ln |x|+C & & \text { Log Rule for Integration } \\
& =\ln \left(x^{2}\right)+C & & \text { Property of logarithms }
\end{aligned}
\]

Because \(x^{2}\) cannot be negative, the absolute value notation is unnecessary in the final form of the antiderivative.

\section*{EXAMPLE 2 Using the Log Rule with a Change of Variables}

Find \(\int \frac{1}{4 x-1} d x\).
Solution If you let \(u=4 x-1\), then \(d u=4 d x\).
\[
\begin{aligned}
\int \frac{1}{4 x-1} d x & =\frac{1}{4} \int\left(\frac{1}{4 x-1}\right) 4 d x & & \text { Multiply and divide by } 4 . \\
& =\frac{1}{4} \int \frac{1}{u} d u & & \text { Substitute: } u=4 x-1 . \\
& =\frac{1}{4} \ln |u|+C & & \text { Apply Log Rule. } \\
& =\frac{1}{4} \ln |4 x-1|+C & & \text { Back-substitute. }
\end{aligned}
\]


Area \(=\int_{0}^{3} \frac{x}{x^{2}+1} d x\)
The area of the region bounded by the graph of \(y\), the \(x\)-axis, and \(x=3\) is \(\frac{1}{2} \ln 10\).
Figure 5.8

Example 3 uses the alternative form of the Log Rule. To apply this rule, look for quotients in which the numerator is the derivative of the denominator.

\section*{EXAMPLE 3 Finding Area with the Log Rule}

Find the area of the region bounded by the graph of
\[
y=\frac{x}{x^{2}+1}
\]
the \(x\)-axis, and the line \(x=3\).
Solution In Figure 5.8, you can see that the area of the region is given by the definite integral
\[
\int_{0}^{3} \frac{x}{x^{2}+1} d x
\]

If you let \(u=x^{2}+1\), then \(u^{\prime}=2 x\). To apply the \(\log\) Rule, multiply and divide by 2 as shown.
\[
\begin{array}{rlrl}
\int_{0}^{3} \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int_{0}^{3} \frac{2 x}{x^{2}+1} d x & & \text { Multiply and divide by } 2 . \\
& =\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{0}^{3} & & \int \frac{u^{\prime}}{u} d x=\ln |u|+C \\
& =\frac{1}{2}(\ln 10-\ln 1) & \\
& =\frac{1}{2} \ln 10 & & \ln 1=0 \\
& \approx 1.151 &
\end{array}
\]

\section*{EXAMPLE 4 Recognizing Quotient Forms of the Log Rule}
a. \(\int \frac{3 x^{2}+1}{x^{3}+x} d x=\ln \left|x^{3}+x\right|+C \quad u=x^{3}+x\)
b. \(\int \frac{\sec ^{2} x}{\tan x} d x=\ln |\tan x|+C \quad u=\tan x\)
c. \(\int \frac{x+1}{x^{2}+2 x} d x=\frac{1}{2} \int \frac{2 x+2}{x^{2}+2 x} d x \quad u=x^{2}+2 x\) \(=\frac{1}{2} \ln \left|x^{2}+2 x\right|+C\)
d. \(\int \frac{1}{3 x+2} d x=\frac{1}{3} \int \frac{3}{3 x+2} d x \quad u=3 x+2\)
\[
=\frac{1}{3} \ln |3 x+2|+C
\]

With antiderivatives involving logarithms, it is easy to obtain forms that look quite different but are still equivalent. For instance, both of the following are equivalent to the antiderivative listed in Example 4(d).
\[
\ln \left|(3 x+2)^{1 / 3}\right|+C \quad \text { and } \quad \ln |3 x+2|^{1 / 3}+C
\]

Integrals to which the Log Rule can be applied often appear in disguised form. For instance, if a rational function has a numerator of degree greater than or equal to that of the denominator, division may reveal a form to which you can apply the Log Rule. This is shown in Example 5.

\section*{EXAMPLE 5 Using Long Division Before Integrating}

Find \(\int \frac{x^{2}+x+1}{x^{2}+1} d x\).
Solution Begin by using long division to rewrite the integrand.
\[
\frac{x^{2}+x+1}{x^{2}+1} \square x^{2}+1 \begin{array}{r}
\frac{1}{x^{2}+x+1} \\
\frac{x^{2}+1}{x}
\end{array} 1+\frac{x}{x^{2}+1}
\]

Now, you can integrate to obtain
\[
\begin{aligned}
\int \frac{x^{2}+x+1}{x^{2}+1} d x & =\int\left(1+\frac{x}{x^{2}+1}\right) d x & & \text { Rewrite using long division. } \\
& =\int d x+\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x & & \text { Rewrite as two integrals. } \\
& =x+\frac{1}{2} \ln \left(x^{2}+1\right)+C . & & \text { Integrate. }
\end{aligned}
\]

Check this result by differentiating to obtain the original integrand.

The next example presents another instance in which the use of the Log Rule is disguised. In this case, a change of variables helps you recognize the Log Rule.

\section*{EXAMPLE 6 Change of Variables with the Log Rule}

Find \(\int \frac{2 x}{(x+1)^{2}} d x\).
Solution If you let \(u=x+1\), then \(d u=d x\) and \(x=u-1\).
\[
\begin{aligned}
\int \frac{2 x}{(x+1)^{2}} d x & =\int \frac{2(u-1)}{u^{2}} d u & & \text { Substitute. } \\
& =2 \int\left(\frac{u}{u^{2}}-\frac{1}{u^{2}}\right) d u & & \text { Rewrite as two fractions. } \\
& =2 \int \frac{d u}{u}-2 \int u^{-2} d u & & \text { Rewrite as two integrals. } \\
& =2 \ln |u|-2\left(\frac{u^{-1}}{-1}\right)+C & & \text { Integrate. } \\
& =2 \ln |u|+\frac{2}{u}+C & & \text { Simplify. } \\
& =2 \ln |x+1|+\frac{2}{x+1}+C & & \text { Back-substitute. }
\end{aligned}
\]

Check this result by differentiating to obtain the original integrand.

STUDY TIP Keep in mind that you can check your answer to an integration problem by differentiating the answer. For instance, in Example 7, the derivative of \(y=\ln |\ln x|+C\) is \(y^{\prime}=1 /(x \ln x)\).

As you study the methods shown in Examples 5 and 6, be aware that both methods involve rewriting a disguised integrand so that it fits one or more of the basic integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter 8 , much time will be devoted to integration techniques. To master these techniques, you must recognize the "form-fitting" nature of integration. In this sense, integration is not nearly as straightforward as differentiation. Differentiation takes the form
"Here is the question; what is the answer?"
Integration is more like

\section*{"Here is the answer; what is the question?"}

The following are guidelines you can use for integration.

\section*{GUIDELINES FOR INTEGRATION}
1. Learn a basic list of integration formulas. (Including those given in this section, you now have 12 formulas: the Power Rule, the Log Rule, and ten trigonometric rules. By the end of Section 5.7, this list will have expanded to 20 basic rules.)
2. Find an integration formula that resembles all or part of the integrand, and, by trial and error, find a choice of \(u\) that will make the integrand conform to the formula.
3. If you cannot find a \(u\)-substitution that works, try altering the integrand. You might try a trigonometric identity, multiplication and division by the same quantity, addition and subtraction of the same quantity, or long division. Be creative.
4. If you have access to computer software that will find antiderivatives symbolically, use it.

\section*{EXAMPLE 7 u-Substitution and the Log Rule}

Solve the differential equation \(\frac{d y}{d x}=\frac{1}{x \ln x}\).
Solution The solution can be written as an indefinite integral.
\[
y=\int \frac{1}{x \ln x} d x
\]

Because the integrand is a quotient whose denominator is raised to the first power, you should try the Log Rule. There are three basic choices for \(u\). The choices \(u=x\) and \(u=x \ln x\) fail to fit the \(u^{\prime} / u\) form of the Log Rule. However, the third choice does fit. Letting \(u=\ln x\) produces \(u^{\prime}=1 / x\), and you obtain the following.
\[
\begin{aligned}
\int \frac{1}{x \ln x} d x & =\int \frac{1 / x}{\ln x} d x & & \text { Divide numerator and denominator by } x . \\
& =\int \frac{u^{\prime}}{u} d x & & \text { Substitute: } u=\ln x . \\
& =\ln |u|+C & & \text { Apply Log Rule. } \\
& =\ln |\ln x|+C & & \text { Back-substitute. }
\end{aligned}
\]

So, the solution is \(y=\ln |\ln x|+C\).

\section*{Integrals of Trigonometric Functions}

In Section 4.1, you looked at six trigonometric integration rules-the six that correspond directly to differentiation rules. With the Log Rule, you can now complete the set of basic trigonometric integration formulas.

\section*{EXAMPLE 8 Using a Trigonometric Identity}

Find \(\int \tan x d x\).
Solution This integral does not seem to fit any formulas on our basic list. However, by using a trigonometric identity, you obtain
\[
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
\]

Knowing that \(D_{x}[\cos x]=-\sin x\), you can let \(u=\cos x\) and write
\[
\begin{aligned}
\int \tan x d x & =-\int \frac{-\sin x}{\cos x} d x & & \text { Trigonometric identity } \\
& =-\int \frac{u^{\prime}}{u} d x & & \text { Substitute: } u=\cos x . \\
& =-\ln |u|+C & & \text { Apply Log Rule. } \\
& =-\ln |\cos x|+C . & & \text { Back-substitute. }
\end{aligned}
\]

Example 8 uses a trigonometric identity to derive an integration rule for the tangent function. The next example takes a rather unusual step (multiplying and dividing by the same quantity) to derive an integration rule for the secant function.

\section*{EXAMPLE 9 Derivation of the Secant Formula}

Find \(\int \sec x d x\).
Solution Consider the following procedure.
\[
\begin{aligned}
\int \sec x d x & =\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) d x \\
& =\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x
\end{aligned}
\]

Letting \(u\) be the denominator of this quotient produces
\[
u=\sec x+\tan x \quad \square u^{\prime}=\sec x \tan x+\sec ^{2} x .
\]

So, you can conclude that
\[
\begin{aligned}
\int \sec x d x & =\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x & & \text { Rewrite integrand. } \\
& =\int \frac{u^{\prime}}{u} d x & & \text { Substitute: } u=\sec x+\tan x . \\
& =\ln |u|+C & & \text { Apply Log Rule. } \\
& =\ln |\sec x+\tan x|+C . & & \text { Back-substitute. }
\end{aligned}
\]

NOTE Using trigonometric identities and properties of logarithms, you could rewrite these six integration rules in other forms. For instance, you could write
\[
\int \csc u d u=\ln |\csc u-\cot u|+C
\]
(See Exercises 93-96.)

With the results of Examples 8 and 9, you now have integration formulas for \(\sin x, \cos x, \tan x\), and \(\sec x\). All six trigonometric rules are summarized below. (For proofs of \(\cot u\) and \(\csc u\), see Exercises 91 and 92.)

\section*{INTEGRALS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS}
\(\int \sin u d u=-\cos u+C \quad \int \cos u d u=\sin u+C\)
\(\int \tan u d u=-\ln |\cos u|+C \quad \int \cot u d u=\ln |\sin u|+C\)
\(\int \sec u d u=\ln |\sec u+\tan u|+C \quad \int \csc u d u=-\ln |\csc u+\cot u|+C\)

\section*{EXAMPLE 10 Integrating Trigonometric Functions}

Evaluate \(\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x\).
Solution Using \(1+\tan ^{2} x=\sec ^{2} x\), you can write
\[
\begin{aligned}
\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x & =\int_{0}^{\pi / 4} \sqrt{\sec ^{2} x} d x \\
& =\int_{0}^{\pi / 4} \sec x d x \\
& =\ln |\sec x+\tan x|]_{0}^{\pi / 4} \\
& =\ln (\sqrt{2}+1)-\ln 1 \\
& \approx 0.881
\end{aligned}
\]

\section*{EXAMPLE 11 Finding an Average Value}

Find the average value of \(f(x)=\tan x\) on the interval \(\left[0, \frac{\pi}{4}\right]\).

\section*{Solution}
\[
\begin{array}{rlrl}
\text { Average value } & =\frac{1}{(\pi / 4)-0} \int_{0}^{\pi / 4} \tan x d x & & \text { Average value }=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& =\frac{4}{\pi} \int_{0}^{\pi / 4} \tan x d x & & \text { Simplify. } \\
& =\frac{4}{\pi}[-\ln |\cos x|]_{0}^{\pi / 4} & \text { Integrate. } \\
& =-\frac{4}{\pi}\left[\ln \left(\frac{\sqrt{2}}{2}\right)-\ln (1)\right] & \\
& =-\frac{4}{\pi} \ln \left(\frac{\sqrt{2}}{2}\right) & \\
& \approx 0.441
\end{array}
\]

The average value is about 0.441 , as shown in Figure 5.9.

\subsection*{5.2 Exercises}

In Exercises 1-26, find the indefinite integral.
1. \(\int \frac{5}{x} d x\)
3. \(\int \frac{1}{x+1} d x\)
5. \(\int \frac{1}{2 x+5} d x\)
7. \(\int \frac{x}{x^{2}-3} d x\)
9. \(\int \frac{4 x^{3}+3}{x^{4}+3 x} d x\)
11. \(\int \frac{x^{2}-4}{x} d x\)
13. \(\int \frac{x^{2}+2 x+3}{x^{3}+3 x^{2}+9 x} d x\)
15. \(\int \frac{x^{2}-3 x+2}{x+1} d x\)
17. \(\int \frac{x^{3}-3 x^{2}+5}{x-3} d x\)
19. \(\int \frac{x^{4}+x-4}{x^{2}+2} d x\)
21. \(\int \frac{(\ln x)^{2}}{x} d x\)
23. \(\int \frac{1}{\sqrt{x+1}} d x\)
25. \(\int \frac{2 x}{(x-1)^{2}} d x\)
2. \(\int \frac{10}{x} d x\)
4. \(\int \frac{1}{x-5} d x\)
6. \(\int \frac{1}{4-3 x} d x\)
8. \(\int \frac{x^{2}}{5-x^{3}} d x\)
10. \(\int \frac{x^{2}-2 x}{x^{3}-3 x^{2}} d x\)
12. \(\int \frac{x}{\sqrt{9-x^{2}}} d x\)
14. \(\int \frac{x(x+2)}{x^{3}+3 x^{2}-4} d x\)
16. \(\int \frac{2 x^{2}+7 x-3}{x-2} d x\)
18. \(\int \frac{x^{3}-6 x-20}{x+5} d x\)
20. \(\int \frac{x^{3}-3 x^{2}+4 x-9}{x^{2}+3} d x\)
22. \(\int \frac{1}{x \ln x^{3}} d x\)
24. \(\int \frac{1}{x^{2 / 3}\left(1+x^{1 / 3}\right)} d x\)
26. \(\int \frac{x(x-2)}{(x-1)^{3}} d x\)

In Exercises 27-30, find the indefinite integral by \(\boldsymbol{u}\)-substitution. (Hint: Let \(\boldsymbol{u}\) be the denominator of the integrand.)
27. \(\int \frac{1}{1+\sqrt{2 x}} d x\)
28. \(\int \frac{1}{1+\sqrt{3 x}} d x\)
29. \(\int \frac{\sqrt{x}}{\sqrt{x}-3} d x\)
30. \(\int \frac{\sqrt[3]{x}}{\sqrt[3]{x}-1} d x\)

In Exercises 31-40, find the indefinite integral.
31. \(\int \cot \frac{\theta}{3} d \theta\)
32. \(\int \tan 5 \theta d \theta\)
33. \(\int \csc 2 x d x\)
34. \(\int \sec \frac{x}{2} d x\)
35. \(\int(\cos 3 \theta-1) d \theta\)
36. \(\int\left(2-\tan \frac{\theta}{4}\right) d \theta\)
37. \(\int \frac{\cos t}{1+\sin t} d t\)
38. \(\int \frac{\csc ^{2} t}{\cot t} d t\)
39. \(\int \frac{\sec x \tan x}{\sec x-1} d x\)
40. \(\int(\sec 2 x+\tan 2 x) d x\)

In Exercises 41-46, solve the differential equation. Use a graphing utility to graph three solutions, one of which passes through the given point.
41. \(\frac{d y}{d x}=\frac{4}{x}\),
42. \(\frac{d y}{d x}=\frac{x-2}{x}, \quad(-1,0)\)
43. \(\frac{d y}{d x}=\frac{3}{2-x}\),
44. \(\frac{d y}{d x}=\frac{2 x}{x^{2}-9}\),
45. \(\frac{d s}{d \theta}=\tan 2 \theta\),
46. \(\frac{d r}{d t}=\frac{\sec ^{2} t}{\tan t+1}, \quad(\pi, 4)\)
47. Determine the function \(f\) if \(f^{\prime \prime}(x)=\frac{2}{x^{2}}, f(1)=1\), \(f^{\prime}(1)=1, x>0\).
48. Determine the function \(f\) if \(f^{\prime \prime}(x)=-\frac{4}{(x-1)^{2}}-2, f(2)=3\), \(f^{\prime}(2)=0, x>1\).

Slope Fields In Exercises 49-52, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. ©mpare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website ww.mathgraphs.com.
49. \(\frac{d y}{d x}=\frac{1}{x+2}\),
50. \(\frac{d y}{d x}=\frac{\ln x}{x}, \quad(1,-2)\)


51. \(\frac{d y}{d x}=1+\frac{1}{x}, \quad(1,4)\)
52. \(\frac{d y}{d x}=\sec x\),



In Exercises 53-60, evaluate the definite integral. Use a graphing utility to verify your result.
53. \(\int_{0}^{4} \frac{5}{3 x+1} d x\)
54. \(\int_{-1}^{1} \frac{1}{2 x+3} d x\)
55. \(\int_{1}^{e} \frac{(1+\ln x)^{2}}{x} d x\)
56. \(\int_{e}^{e^{2}} \frac{1}{x \ln x} d x\)
57. \(\int_{0}^{2} \frac{x^{2}-2}{x+1} d x\)
58. \(\int_{0}^{1} \frac{x-1}{x+1} d x\)
59. \(\int_{1}^{2} \frac{1-\cos \theta}{\theta-\sin \theta} d \theta\)
60. \(\int_{0.1}^{0.2}(\csc 2 \theta-\cot 2 \theta)^{2} d \theta\)

CAS In Exercises 61-66, use a computer algebra system to find or evaluate the integral.
61. \(\int \frac{1}{1+\sqrt{x}} d x\)
62. \(\int \frac{1-\sqrt{x}}{1+\sqrt{x}} d x\)
63. \(\int \frac{\sqrt{x}}{x-1} d x\)
64. \(\int \frac{x^{2}}{x-1} d x\)
65. \(\int_{\pi / 4}^{\pi / 2}(\csc x-\sin x) d x\)
66. \(\int_{-\pi / 4}^{\pi / 4} \frac{\sin ^{2} x-\cos ^{2} x}{\cos x} d x\)

In Exercises 67-70, find \(\boldsymbol{F}^{\prime}(\boldsymbol{x})\).
67. \(F(x)=\int_{1}^{x} \frac{1}{t} d t\)
68. \(F(x)=\int_{0}^{x} \tan t d t\)
69. \(F(x)=\int_{1}^{3 x} \frac{1}{t} d t\)
70. \(F(x)=\int_{1}^{x^{2}} \frac{1}{t} d t\)

Approximation In Exercises 71 and 72, determine which value best approximates the area of the region between the \(\boldsymbol{x}\)-axis and the graph of the function over the given interval. (ate your selection on the basis of a sketch of the region and not by performing any calculations.)
71. \(f(x)=\sec x, \quad[0,1]\)
(a) 6
(b) -6
(c) \(\frac{1}{2}\)
(d) 1.25
(e) 3
72. \(f(x)=\frac{2 x}{x^{2}+1}, \quad[0,4]\)
(a) 3
(b) 7
(c) -2
(d) 5
(e) 1

Area In Exercises 73-76, find the area of the given region. Use a graphing utility to verify your result.
73. \(y=\frac{6}{x}\)

74. \(y=\frac{2}{x \ln x}\)

75. \(y=\tan x\)

76. \(y=\frac{\sin x}{1+\cos x}\)


Area In Exercises 77-80, find the area of the region bounded by the graphs of the equations. Use a graphing utility to verify your result.
77. \(y=\frac{x^{2}+4}{x}, x=1, x=4, y=0\)
78. \(y=\frac{x+6}{x}, x=1, x=5, y=0\)
79. \(y=2 \sec \frac{\pi x}{6}, x=0, x=2, y=0\)
80. \(y=2 x-\tan 0.3 x, x=1, x=4, y=0\)

Numerical Integration In Exercises 81-84, use the Trapezoidal Rle and Simpsons ile to approximate the value of the definite integral. Let \(n=4\) and round your answer to four decimal places. Use a graphing utility to verify your result.
81. \(\int_{1}^{5} \frac{12}{x} d x\)
82. \(\int_{0}^{4} \frac{8 x}{x^{2}+4} d x\)
83. \(\int_{2}^{6} \ln x d x\)
84. \(\int_{-\pi / 3}^{\pi / 3} \sec x d x\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 85-88, state the integration formula you would use to perform the integration. Do not integrate.
85. \(\int \sqrt[3]{x} d x\)
86. \(\int \frac{x}{\left(x^{2}+4\right)^{3}} d x\)
87. \(\int \frac{x}{x^{2}+4} d x\)
88. \(\int \frac{\sec ^{2} x}{\tan x} d x\)
89. Find a value of \(x\) such that \(\int_{1}^{x} \frac{3}{t} d t=\int_{1 / 4}^{x} \frac{1}{t} d t\).

\section*{CAPSTONE}
90. Find a value of \(x\) such that
\(\int_{1}^{x} \frac{1}{t} d t\)
is equal to (a) \(\ln 5\) and (b) 1 .
91. Show that \(\int \cot u d u=\ln |\sin u|+C\).
92. Show that \(\int \csc u d u=-\ln |\csc u+\cot u|+C\).

In Exercises 93-96, show that the two formulas are equivalent.
93. \(\int \tan x d x=-\ln |\cos x|+C\)
\(\int \tan x d x=\ln |\sec x|+C\)
94. \(\int \cot x d x=\ln |\sin x|+C\)
\(\int \cot x d x=-\ln |\csc x|+C\)
95. \(\int \sec x d x=\ln |\sec x+\tan x|+C\)
\(\int \sec x d x=-\ln |\sec x-\tan x|+C\)
96. \(\int \csc x d x=-\ln |\csc x+\cot x|+C\)
\(\int \csc x d x=\ln |\csc x-\cot x|+C\)
In Exercises 97-100, find the average value of the function over the given interval.
97. \(f(x)=\frac{8}{x^{2}}, \quad[2,4]\)
98. \(f(x)=\frac{4(x+1)}{x^{2}}\),


99. \(f(x)=\frac{2 \ln x}{x}, \quad[1, e]\)
100. \(f(x)=\sec \frac{\pi x}{6}, \quad[0,2]\)
101. Population Growth A population of bacteria is changing at a rate of
\(\frac{d P}{d t}=\frac{3000}{1+0.25 t}\)
where \(t\) is the time in days. The initial population (when \(t=0\) ) is 1000 . Write an equation that gives the population at any time \(t\), and find the population when \(t=3\) days.
102. Heat Transfer Find the time required for an object to cool from \(300^{\circ} \mathrm{F}\) to \(250^{\circ} \mathrm{F}\) by evaluating
\(t=\frac{10}{\ln 2} \int_{250}^{300} \frac{1}{T-100} d T\)
where \(t\) is time in minutes.
103. Average Price The demand equation for a product is
\[
p=\frac{90,000}{400+3 x}
\]

Find the average price \(p\) on the interval \(40 \leq x \leq 50\).
104. Sales The rate of change in sales \(S\) is inversely proportional to time \(t(t>1)\) measured in weeks. Find \(S\) as a function of \(t\) if sales after 2 and 4 weeks are 200 units and 300 units, respectively.

True or False? In Exercises 105-108, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
105. \((\ln x)^{1 / 2}=\frac{1}{2}(\ln x)\)
106. \(\int \ln x d x=(1 / x)+C\)
107. \(\int \frac{1}{x} d x=\ln |c x|, \quad c \neq 0\)
108. \(\int_{-1}^{2} \frac{1}{x} d x=[\ln |x|]_{-1}^{2}=\ln 2-\ln 1=\ln 2\)

\section*{109. Orthogonal Trajectory}
(a) Use a graphing utility to graph the equation \(2 x^{2}-y^{2}=8\).
(b) Evaluate the integral to find \(y^{2}\) in terms of \(x\).
\(y^{2}=e^{-\int(1 / x) d x}\)
For a particular value of the constant of integration, graph the result in the same viewing window used in part (a).
(c) Verify that the tangents to the graphs in parts (a) and (b) are perpendicular at the points of intersection.
110. Graph the function
\(f(x)=\frac{x}{1+x^{2}}\)
on the interval \([0, \infty)\).
(a) Find the area bounded by the graph of \(f\) and the line \(y=\frac{1}{2} x\).
(b) Determine the values of the slope \(m\) such that the line \(y=m x\) and the graph of \(f\) enclose a finite region.
(c) Calculate the area of this region as a function of \(m\).
111. Napier's Inequality For \(0<x<y\), show that
\(\frac{1}{y}<\frac{\ln y-\ln x}{y-x}<\frac{1}{x}\).
112. Prove that the function
\(F(x)=\int_{x}^{2 x} \frac{1}{t} d t\)
is constant on the interval \((0, \infty)\).

\subsection*{5.3 Inverse Functions}

\section*{- Verify that one function is the inverse function of another function. \\ - Determine whether a function has an inverse function. \\ Find the derivative of an inverse function.}

\section*{Inverse Functions}


Domain of \(f=\) range of \(f^{-1}\)
Domain of \(f^{-1}=\) range of \(f\)
Figure 5.10

\section*{EXPLORATION}

\section*{Finding Inverse Functions}

Explain how to "undo" each of the following functions. Then use your explanation to write the inverse function of \(f\).
a. \(f(x)=x-5\)
b. \(f(x)=6 x\)
c. \(f(x)=\frac{x}{2}\)
d. \(f(x)=3 x+2\)
e. \(f(x)=x^{3}\)
f. \(f(x)=4(x-2)\)

Use a graphing utility to graph each function and its inverse function in the same "square" viewing window. What observation can you make about each pair of graphs?

Recall from Section P. 3 that a function can be represented by a set of ordered pairs. For instance, the function \(f(x)=x+3\) from \(A=\{1,2,3,4\}\) to \(B=\{4,5,6,7\}\) can be written as
\[
f:\{(1,4),(2,5),(3,6),(4,7)\} .
\]

By interchanging the first and second coordinates of each ordered pair, you can form the inverse function of \(f\). This function is denoted by \(f^{-1}\). It is a function from \(B\) to \(A\), and can be written as
\[
f^{-1}:\{(4,1),(5,2),(6,3),(7,4)\}
\]

Note that the domain of \(f\) is equal to the range of \(f^{-1}\), and vice versa, as shown in Figure 5.10. The functions \(f\) and \(f^{-1}\) have the effect of "undoing" each other. That is, when you form the composition of \(f\) with \(f^{-1}\) or the composition of \(f^{-1}\) with \(f\), you obtain the identity function.
\[
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x
\]

\section*{DEFINITION OF INVERSE FUNCTION}

A function \(g\) is the inverse function of the function \(f\) if
\[
f(g(x))=x \text { for each } x \text { in the domain of } g
\]
and
\[
g(f(x))=x \text { for each } x \text { in the domain of } f
\]

The function \(g\) is denoted by \(f^{-1}\) (read " \(f\) inverse").

NOTE Although the notation used to denote an inverse function resembles exponential notation, it is a different use of -1 as a superscript. That is, in general, \(f^{-1}(x) \neq 1 / f(x)\).

Here are some important observations about inverse functions.
1. If \(g\) is the inverse function of \(f\), then \(f\) is the inverse function of \(g\).
2. The domain of \(f^{-1}\) is equal to the range of \(f\), and the range of \(f^{-1}\) is equal to the domain of \(f\).
3. A function need not have an inverse function, but if it does, the inverse function is unique (see Exercise 108).
You can think of \(f^{-1}\) as undoing what has been done by \(f\). For example, subtraction can be used to undo addition, and division can be used to undo multiplication. Use the definition of an inverse function to check the following.
\(f(x)=x+c \quad\) and \(\quad f^{-1}(x)=x-c \quad\) are inverse functions of each other.
\(f(x)=c x \quad\) and \(\quad f^{-1}(x)=\frac{x}{c}, c \neq 0, \quad\) are inverse functions of each other.

\(f\) and \(g\) are inverse functions of each other. Figure 5.11


The graph of \(f^{-1}\) is a reflection of the graph of \(f\) in the line \(y=x\).
Figure 5.12

\section*{EXAMPLE 1 Verifying Inverse Functions}

Show that the functions are inverse functions of each other.
\[
f(x)=2 x^{3}-1 \quad \text { and } \quad g(x)=\sqrt[3]{\frac{x+1}{2}}
\]

Solution Because the domains and ranges of both \(f\) and \(g\) consist of all real numbers, you can conclude that both composite functions exist for all \(x\). The composition of \(f\) with \(g\) is given by
\[
\begin{aligned}
f(g(x)) & =2\left(\sqrt[3]{\frac{x+1}{2}}\right)^{3}-1 \\
& =2\left(\frac{x+1}{2}\right)-1 \\
& =x+1-1 \\
& =x
\end{aligned}
\]

The composition of \(g\) with \(f\) is given by
\[
\begin{aligned}
g(f(x)) & =\sqrt[3]{\frac{\left(2 x^{3}-1\right)+1}{2}} \\
& =\sqrt[3]{\frac{2 x^{3}}{2}} \\
& =\sqrt[3]{x^{3}} \\
& =x
\end{aligned}
\]

Because \(f(g(x))=x\) and \(g(f(x))=x\), you can conclude that \(f\) and \(g\) are inverse functions of each other (see Figure 5.11).

STUDY TIP In Example 1, try comparing the functions \(f\) and \(g\) verbally.
For \(f\) : First cube \(x\), then multiply by 2 , then subtract 1 .
For \(g\) : First add 1, then divide by 2, then take the cube root.
Do you see the "undoing pattern"?

In Figure 5.11, the graphs of \(f\) and \(g=f^{-1}\) appear to be mirror images of each other with respect to the line \(y=x\). The graph of \(f^{-1}\) is a reflection of the graph of \(f\) in the line \(y=x\). This idea is generalized in the following theorem.

\section*{THEOREM 5.6 REFLECTIVE PROPERTY OF INVERSE FUNCTIONS}

The graph of \(f\) contains the point \((a, b)\) if and only if the graph of \(f^{-1}\) contains the point \((b, a)\).

PROOF If \((a, b)\) is on the graph of \(f\), then \(f(a)=b\) and you can write
\[
f^{-1}(b)=f^{-1}(f(a))=a
\]

So, \((b, a)\) is on the graph of \(f^{-1}\), as shown in Figure 5.12. A similar argument will prove the theorem in the other direction.


If a horizontal line intersects the graph of \(f\) twice, then \(f\) is not one-to-one.
Figure 5.13

(a) Because \(f\) is increasing over its entire domain, it has an inverse function.

(b) Because \(f\) is not one-to-one, it does not have an inverse function.
Figure 5.14

\section*{Existence of an Inverse Function}

Not every function has an inverse function, and Theorem 5.6 suggests a graphical test for those that do-the Horizontal Line Test for an inverse function. This test states that a function \(f\) has an inverse function if and only if every horizontal line intersects the graph of \(f\) at most once (see Figure 5.13). The following theorem formally states why the Horizontal Line Test is valid. (Recall from Section 3.3 that a function is strictly monotonic if it is either increasing on its entire domain or decreasing on its entire domain.)

\section*{THEOREM 5.7 THE EXISTENCE OF AN INVERSE FUNCTION}
1. A function has an inverse function if and only if it is one-to-one.
2. If \(f\) is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

PROOF To prove the second part of the theorem, recall from Section P. 3 that \(f\) is one-to-one if for \(x_{1}\) and \(x_{2}\) in its domain
\[
x_{1} \neq x_{2} \quad \square f\left(x_{1}\right) \neq f\left(x_{2}\right) .
\]

Now, choose \(x_{1}\) and \(x_{2}\) in the domain of \(f\). If \(x_{1} \neq x_{2}\), then, because \(f\) is strictly monotonic, it follows that either
\[
f\left(x_{1}\right)<f\left(x_{2}\right) \quad \text { or } \quad f\left(x_{1}\right)>f\left(x_{2}\right)
\]

In either case, \(f\left(x_{1}\right) \neq f\left(x_{2}\right)\). So, \(f\) is one-to-one on the interval. The proof of the first part of the theorem is left as an exercise (see Exercise 109).

\section*{EXAMPLE 2 The Existence of an Inverse Function}

Which of the functions has an inverse function?
a. \(f(x)=x^{3}+x-1\)
b. \(f(x)=x^{3}-x+1\)

\section*{Solution}
a. From the graph of \(f\) shown in Figure 5.14(a), it appears that \(f\) is increasing over its entire domain. To verify this, note that the derivative, \(f^{\prime}(x)=3 x^{2}+1\), is positive for all real values of \(x\). So, \(f\) is strictly monotonic and it must have an inverse function.
b. From the graph of \(f\) shown in Figure 5.14(b), you can see that the function does not pass the horizontal line test. In other words, it is not one-to-one. For instance, \(f\) has the same value when \(x=-1,0\), and 1 .
\[
f(-1)=f(1)=f(0)=1 \quad \text { Not one-to-one }
\]

So, by Theorem 5.7, \(f\) does not have an inverse function.

NOTE Often it is easier to prove that a function has an inverse function than to find the inverse function. For instance, it would be difficult algebraically to find the inverse function of the function in Example 2(a).


The domain of \(f^{-1},[0, \infty)\), is the range of \(f\). Figure 5.15

The following guidelines suggest a procedure for finding an inverse function.

\section*{GUIDELINES FOR FINDING AN INVERSE FUNCTION}
1. Use Theorem 5.7 to determine whether the function given by \(y=f(x)\) has an inverse function.
2. Solve for \(x\) as a function of \(y: x=g(y)=f^{-1}(y)\).
3. Interchange \(x\) and \(y\). The resulting equation is \(y=f^{-1}(x)\).
4. Define the domain of \(f^{-1}\) as the range of \(f\).
5. Verify that \(f\left(f^{-1}(x)\right)=x\) and \(f^{-1}(f(x))=x\).

\section*{EXAMPLE 3 Finding an Inverse Function}

Find the inverse function of
\[
f(x)=\sqrt{2 x-3}
\]

Solution From the graph of \(f\) in Figure 5.15, it appears that \(f\) is increasing over its entire domain, \(\left[\frac{3}{2}, \infty\right)\). To verify this, note that \(f^{\prime}(x)=\frac{1}{\sqrt{2 x-3}}\) is positive on the domain of \(f\). So, \(f\) is strictly monotonic and it must have an inverse function. To find an equation for the inverse function, let \(y=f(x)\) and solve for \(x\) in terms of \(y\).
\[
\begin{aligned}
\sqrt{2 x-3} & =y & & \text { Let } y=f(x) . \\
2 x-3 & =y^{2} & & \text { Square each side. } \\
x & =\frac{y^{2}+3}{2} & & \text { Solve for } x . \\
y & =\frac{x^{2}+3}{2} & & \text { Interchange } x \text { and } y . \\
f^{-1}(x) & =\frac{x^{2}+3}{2} & & \text { Replace } y \text { by } f^{-1}(x) .
\end{aligned}
\]

The domain of \(f^{-1}\) is the range of \(f\), which is \([0, \infty)\). You can verify this result as shown.
\[
\begin{aligned}
& f\left(f^{-1}(x)\right)=\sqrt{2\left(\frac{x^{2}+3}{2}\right)-3}=\sqrt{x^{2}}=x, \quad x \geq 0 \\
& f^{-1}(f(x))=\frac{(\sqrt{2 x-3})^{2}+3}{2}=\frac{2 x-3+3}{2}=x, \quad x \geq \frac{3}{2}
\end{aligned}
\]

NOTE Remember that any letter can be used to represent the independent variable. So,
\[
\begin{aligned}
f^{-1}(y) & =\frac{y^{2}+3}{2} \\
f^{-1}(x) & =\frac{x^{2}+3}{2} \\
f^{-1}(s) & =\frac{s^{2}+3}{2}
\end{aligned}
\]
all represent the same function.

\(f\) is one-to-one on the interval
\([-\pi / 2, \pi / 2]\).
Figure 5.16

Theorem 5.7 is useful in the following type of problem. Suppose you are given a function that is not one-to-one on its domain. By restricting the domain to an interval on which the function is strictly monotonic, you can conclude that the new function is one-to-one on the restricted domain.

\section*{EXAMPLE 4 Testing Whether a Function Is One-to-One}

Show that the sine function
\[
f(x)=\sin x
\]
is not one-to-one on the entire real line. Then show that \([-\pi / 2, \pi / 2]\) is the largest interval, centered at the origin, on which \(f\) is strictly monotonic.

Solution It is clear that \(f\) is not one-to-one, because many different \(x\)-values yield the same \(y\)-value. For instance,
\[
\sin (0)=0=\sin (\pi)
\]

Moreover, \(f\) is increasing on the open interval \((-\pi / 2, \pi / 2)\), because its derivative
\[
f^{\prime}(x)=\cos x
\]
is positive there. Finally, because the left and right endpoints correspond to relative extrema of the sine function, you can conclude that \(f\) is increasing on the closed interval \([-\pi / 2, \pi / 2]\) and that on any larger interval the function is not strictly monotonic (see Figure 5.16).

\section*{Derivative of an Inverse Function}

The next two theorems discuss the derivative of an inverse function. The reasonableness of Theorem 5.8 follows from the reflective property of inverse functions, as shown in Figure 5.12. Proofs of the two theorems are given in Appendix A.

\section*{THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE FUNCTIONS}

Let \(f\) be a function whose domain is an interval \(I\). If \(f\) has an inverse function, then the following statements are true.
1. If \(f\) is continuous on its domain, then \(f^{-1}\) is continuous on its domain.
2. If \(f\) is increasing on its domain, then \(f^{-1}\) is increasing on its domain.
3. If \(f\) is decreasing on its domain, then \(f^{-1}\) is decreasing on its domain.
4. If \(f\) is differentiable on an interval containing \(c\) and \(f^{\prime}(c) \neq 0\), then \(f^{-1}\) is differentiable at \(f(c)\).

\section*{THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION}

Let \(f\) be a function that is differentiable on an interval \(I\). If \(f\) has an inverse function \(g\), then \(g\) is differentiable at any \(x\) for which \(f^{\prime}(g(x)) \neq 0\). Moreover,
\[
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0
\]


The graphs of the inverse functions \(f\) and \(f^{-1}\) have reciprocal slopes at points \((a, b)\) and ( \(b, a\) ).
Figure 5.17


At \((0,0)\), the derivative of \(f\) is 0 , and the derivative of \(f^{-1}\) does not exist.
Figure 5.18

\section*{EXAMPLE 5 Evaluating the Derivative of an Inverse Function}

Let \(f(x)=\frac{1}{4} x^{3}+x-1\).
a. What is the value of \(f^{-1}(x)\) when \(x=3\) ?
b. What is the value of \(\left(f^{-1}\right)^{\prime}(x)\) when \(x=3\) ?

Solution Notice that \(f\) is one-to-one and therefore has an inverse function.
a. Because \(f(x)=3\) when \(x=2\), you know that \(f^{-1}(3)=2\).
b. Because the function \(f\) is differentiable and has an inverse function, you can apply Theorem 5.9 (with \(g=f^{-1}\) ) to write
\[
\left(f^{-1}\right)^{\prime}(3)=\frac{1}{f^{\prime}\left(f^{-1}(3)\right)}=\frac{1}{f^{\prime}(2)}
\]

Moreover, using \(f^{\prime}(x)=\frac{3}{4} x^{2}+1\), you can conclude that
\[
\left(f^{-1}\right)^{\prime}(3)=\frac{1}{f^{\prime}(2)}=\frac{1}{\frac{3}{4}\left(2^{2}\right)+1}=\frac{1}{4}
\]

In Example 5, note that at the point \((2,3)\) the slope of the graph of \(f\) is 4 and at the point \((3,2)\) the slope of the graph of \(f^{-1}\) is \(\frac{1}{4}\) (see Figure 5.17). This reciprocal relationship (which follows from Theorem 5.9) can be written as shown below. If \(y=g(x)=f^{-1}(x)\), then \(f(y)=x\) and \(f^{\prime}(y)=\frac{d x}{d y}\). Theorem 5.9 says that
\[
g^{\prime}(x)=\frac{d y}{d x}=\frac{1}{f^{\prime}(g(x))}=\frac{1}{f^{\prime}(y)}=\frac{1}{(d x / d y)}
\]

So, \(\quad \frac{d y}{d x}=\frac{1}{d x / d y}\).

\section*{EXAMPLE 6 Graphs of Inverse Functions Have Reciprocal Slopes}

Let \(f(x)=x^{2}\) (for \(x \geq 0\) ) and let \(f^{-1}(x)=\sqrt{x}\). Show that the slopes of the graphs of \(f\) and \(f^{-1}\) are reciprocals at each of the following points.
a. \((2,4)\) and \((4,2)\)
b. \((3,9)\) and \((9,3)\)

Solution The derivatives of \(f\) and \(f^{-1}\) are given by
\[
f^{\prime}(x)=2 x \quad \text { and } \quad\left(f^{-1}\right)^{\prime}(x)=\frac{1}{2 \sqrt{x}}
\]
a. At \((2,4)\), the slope of the graph of \(f\) is \(f^{\prime}(2)=2(2)=4\). At \((4,2)\), the slope of the graph of \(f^{-1}\) is
\[
\left(f^{-1}\right)^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{2(2)}=\frac{1}{4}
\]
b. At \((3,9)\), the slope of the graph of \(f\) is \(f^{\prime}(3)=2(3)=6\). At \((9,3)\), the slope of the graph of \(f^{-1}\) is
\[
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{2(3)}=\frac{1}{6}
\]

So, in both cases, the slopes are reciprocals, as shown in Figure 5.18.

\subsection*{5.3 Exercises}

In Exercises 1-8, show that \(f\) and \(g\) are inverse functions (a) analytically and (b) graphically.
1. \(f(x)=5 x+1\),
\(g(x)=\frac{x-1}{5}\)
2. \(f(x)=3-4 x\),
\(g(x)=\frac{3-x}{4}\)
3. \(f(x)=x^{3}\),
\(g(x)=\sqrt[3]{x}\)
4. \(f(x)=1-x^{3}\),
\(g(x)=\sqrt[3]{1-x}\)
5. \(f(x)=\sqrt{x-4}\),
\(g(x)=x^{2}+4, \quad x \geq 0\)
6. \(f(x)=16-x^{2}, \quad x \geq 0\),
\(g(x)=\sqrt{16-x}\)
7. \(f(x)=\frac{1}{x}\),
\(g(x)=\frac{1}{x}\)
8. \(f(x)=\frac{1}{1+x}, \quad x \geq 0\),
\(g(x)=\frac{1-x}{x}, \quad 0<x \leq 1\)

In Exercises 9-12, match the graph of the function with the graph of its inverse function. [The graphs of the inverse functions are labeled (a), (b), (c), and (d).]

(c)

9.

10.

(b)

(d)

11.

12.


In Exercises 13-22, use a graphing utility to graph the function. Then use the Horizontal Line Test to determine whether the function is one-to-one on its entire domain and therefore has an inverse function.
13. \(f(x)=\frac{3}{4} x+6\)
14. \(f(x)=5 x-3\)
15. \(f(\theta)=\sin \theta\)
16. \(f(x)=\frac{x^{2}}{x^{2}+4}\)
17. \(h(s)=\frac{1}{s-2}-3\)
18. \(g(t)=\frac{1}{\sqrt{t^{2}+1}}\)
19. \(f(x)=\ln x\)
20. \(f(x)=5 x \sqrt{x-1}\)
21. \(g(x)=(x+5)^{3}\)
22. \(h(x)=|x+4|-|x-4|\)

In Exercises 23-30, (a) find the inverse function of \(f\), (b) graph \(f\) and \(f^{-1}\) on the same set of coordinate axes, (c) describe the relationship between the graphs, and (d) state the domain and range of \(f\) and \(f^{-1}\).
23. \(f(x)=2 x-3\)
24. \(f(x)=3 x\)
25. \(f(x)=x^{5}\)
26. \(f(x)=x^{3}-1\)
27. \(f(x)=\sqrt{x}\)
28. \(f(x)=x^{2}, \quad x \geq 0\)
29. \(f(x)=\sqrt{4-x^{2}}, \quad 0 \leq x \leq 2\)
30. \(f(x)=\sqrt{x^{2}-4}, \quad x \geq 2\)

In Exercises 31-36, (a) find the inverse function of \(f\), (b) use a graphing utility to graph \(f\) and \(f^{-1}\) in the same viewing window, (c) describe the relationship between the graphs, and (d) state the domain and range of \(f\) and \(f^{-1}\).
31. \(f(x)=\sqrt[3]{x-1}\)
32. \(f(x)=3 \sqrt[5]{2 x-1}\)
33. \(f(x)=x^{2 / 3}, \quad x \geq 0\)
34. \(f(x)=x^{3 / 5}\)
35. \(f(x)=\frac{x}{\sqrt{x^{2}+7}}\)
36. \(f(x)=\frac{x+2}{x}\)

In Exercises 37 and 38, use the graph of the function \(f\) to make a table of values for the given points. Then make a second table that can be used to find \(f^{-1}\), and sketch the graph of \(f^{-1}\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
37.

38.

39. Cost You need 50 pounds of two commodities costing \(\$ 1.25\) and \(\$ 1.60\) per pound.
(a) Verify that the total cost is \(y=1.25 x+1.60(50-x)\), where \(x\) is the number of pounds of the less expensive commodity.
(b) Find the inverse function of the cost function. What does each variable represent in the inverse function?
(c) What is the domain of the inverse function? Validate or explain your answer using the context of the problem.
(d) Determine the number of pounds of the less expensive commodity purchased if the total cost is \(\$ 73\).
40. Temperature The formula \(C=\frac{5}{9}(F-32)\), where \(F \geq-459.6\), represents Celsius temperature \(C\) as a function of Fahrenheit temperature \(F\).
(a) Find the inverse function of \(C\).
(b) What does the inverse function represent?
(c) What is the domain of the inverse function? Validate or explain your answer using the context of the problem.
(d) The temperature is \(22^{\circ} \mathrm{C}\). What is the corresponding temperature in degrees Fahrenheit?

In Exercises 41-46, use the derivative to determine whether the function is strictly monotonic on its entire domain and therefore has an inverse function.
41. \(f(x)=2-x-x^{3}\)
42. \(f(x)=x^{3}-6 x^{2}+12 x\)
43. \(f(x)=\frac{x^{4}}{4}-2 x^{2}\)
44. \(f(x)=(x+a)^{3}+b\)
45. \(f(x)=\ln (x-3)\)
46. \(f(x)=\cos \frac{3 x}{2}\)

In Exercises 47-52, show that \(f\) is strictly monotonic on the given interval and therefore has an inverse function on that interval.
47. \(f(x)=(x-4)^{2}, \quad[4, \infty)\)
48. \(f(x)=|x+2|, \quad[-2, \infty)\)
49. \(f(x)=\frac{4}{x^{2}}, \quad(0, \infty)\)
50. \(f(x)=\cot x, \quad(0, \pi)\)
51. \(f(x)=\cos x, \quad[0, \pi]\)
52. \(f(x)=\sec x, \quad\left[0, \frac{\pi}{2}\right)\)

In Exercises 53 and 54, find the inverse function of \(\boldsymbol{f}\) over the given interval. Use a graphing utility to graph \(f\) and \(f^{-1}\) in the same viewing window. Describe the relationship between the graphs.
53. \(f(x)=\frac{x}{x^{2}-4}, \quad(-2,2)\)
54. \(f(x)=2-\frac{3}{x^{2}}\),

Graphical Reasoning In Exercises 55-58, (a) use a graphing utility to graph the function, (b) use the drawing feature of a graphing utility to draw the inverse function of the function, and (c) determine whether the graph of the inverse relation is an inverse function. Explain your reasoning.
55. \(f(x)=x^{3}+x+4\)
56. \(h(x)=x \sqrt{4-x^{2}}\)
57. \(g(x)=\frac{3 x^{2}}{x^{2}+1}\)
58. \(f(x)=\frac{4 x}{\sqrt{x^{2}+15}}\)

In Exercises 59-62, determine whether the function is one-toone. If it is, find its inverse function.
59. \(f(x)=\sqrt{x-2}\)
60. \(f(x)=-3\)
61. \(f(x)=|x-2|, \quad x \leq 2\)
62. \(f(x)=a x+b, \quad a \neq 0\)

In Exercises 63-66, delete part of the domain so that the function that remains is one-to-one. Find the inverse function of the remaining function and give the domain of the inverse function. (Note: There is more than one correct answer.)
63. \(f(x)=(x-3)^{2}\)

64. \(f(x)=16-x^{4}\)

65. \(f(x)=|x+3|\)

66. \(f(x)=|x-3|\)


Think About It In Exercises 67-70, decide whether the function has an inverse function. If so, what is the inverse function?
67. \(g(t)\) is the volume of water that has passed through a water line \(t\) minutes after a control valve is opened.
68. \(h(t)\) is the height of the tide \(t\) hours after midnight, where \(0 \leq t<24\).
69. \(C(t)\) is the cost of a long distance call lasting \(t\) minutes.
70. \(A(r)\) is the area of a circle of radius \(r\).

In Exercises 71-80, verify that \(f\) has an inverse. Then use the function \(f\) and the given real number \(a\) to find \(\left(f^{-1}\right)^{\prime}(a)\). (Hint: See Example 5.)
71. \(f(x)=x^{3}-1, \quad a=26 \quad\) 72. \(f(x)=5-2 x^{3}, \quad a=7\)
73. \(f(x)=x^{3}+2 x-1, \quad a=2\)
74. \(f(x)=\frac{1}{27}\left(x^{5}+2 x^{3}\right), \quad a=-11\)
75. \(f(x)=\sin x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \quad a=\frac{1}{2}\)
76. \(f(x)=\cos 2 x, \quad 0 \leq x \leq \frac{\pi}{2}, \quad a=1\)
77. \(f(x)=\frac{x+6}{x-2}, \quad x>2, \quad a=3\)
78. \(f(x)=\frac{x+3}{x+1}, \quad x>-1, \quad a=2\)
79. \(f(x)=x^{3}-\frac{4}{x}, \quad x>0, \quad a=6\)
80. \(f(x)=\sqrt{x-4}, \quad a=2\)

In Exercises 81-84, (a) find the domains of \(f\) and \(f^{-1}\), (b) find the ranges of \(f\) and \(f^{-1}\), (c) graph \(f\) and \(f^{-1}\), and (d) show that the slopes of the graphs of \(f\) and \(f^{-1}\) are reciprocals at the given points.
\begin{tabular}{ll} 
Functions & \(\frac{\text { Point }}{\left(\frac{1}{2}, \frac{1}{8}\right)}\) \\
\(f^{-1}(x)=\sqrt[3]{x}\) & \(\left(\frac{1}{8}, \frac{1}{2}\right)\)
\end{tabular}
82. \(f(x)=3-4 x\) \((1,-1)\)
\(f^{-1}(x)=\frac{3-x}{4}\) \((-1,1)\)
83. \(f(x)=\sqrt{x-4}\)
\[
\begin{equation*}
f^{-1}(x)=x^{2}+4, \quad x \geq 0 \tag{5,1}
\end{equation*}
\]
84. \(f(x)=\frac{4}{1+x^{2}}, \quad x \geq 0\)
\[
\begin{equation*}
f^{-1}(x)=\sqrt{\frac{4-x}{x}} \tag{1,2}
\end{equation*}
\]

In Exercises 85 and 86, find \(d y / d x\) for the equation at the given point.
85. \(x=y^{3}-7 y^{2}+2, \quad(-4,1)\)
86. \(x=2 \ln \left(y^{2}-3\right), \quad(0,2)\)

In Exercises 87-90, use the functions \(f(x)=\frac{1}{8} x-3\) and \(g(x)=x^{3}\) to find the given value.
87. \(\left(f^{-1} \circ g^{-1}\right)(1)\)
88. \(\left(g^{-1} \circ f^{-1}\right)(-3)\)
89. \(\left(f^{-1} \circ f^{-1}\right)(6)\)
90. \(\left(g^{-1} \circ g^{-1}\right)(-4)\)

In Exercises 91-94, use the functions \(f(x)=x+4\) and \(g(x)=2 x-5\) to find the given function.
91. \(g^{-1} \circ f^{-1}\)
92. \(f^{-1} \circ g^{-1}\)
93. \((f \circ g)^{-1}\)
94. \((g \circ f)^{-1}\)

\section*{WRITING ABOUT CONCEPTS}
95. Describe how to find the inverse function of a one-to-one function given by an equation in \(x\) and \(y\). Give an example.
96. Describe the relationship between the graph of a function and the graph of its inverse function.

In Exercises 97 and 98, the derivative of the function has the same sign for all \(x\) in its domain, but the function is not one-to-one. Explain.
97. \(f(x)=\tan x\)
98. \(f(x)=\frac{x}{x^{2}-4}\)
99. Think About It The function \(f(x)=k\left(2-x-x^{3}\right)\) is one-to-one and \(f^{-1}(3)=-2\). Find \(k\).

\section*{CAPSTONE}
100. Think About It The point \((1,3)\) lies on the graph of \(f\), and the slope of the tangent line through this point is \(m=2\). Assume \(f^{-1}\) exists. What is the slope of the tangent line to the graph of \(f^{-1}\) at the point \((3,1)\) ?

True or False? In Exercises 101-104, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
101. If \(f\) is an even function, then \(f^{-1}\) exists.
102. If the inverse function of \(f\) exists, then the \(y\)-intercept of \(f\) is an \(x\)-intercept of \(f^{-1}\).
103. If \(f(x)=x^{n}\), where \(n\) is odd, then \(f^{-1}\) exists.
104. There exists no function \(f\) such that \(f=f^{-1}\).
105. (a) Show that \(f(x)=2 x^{3}+3 x^{2}-36 x\) is not one-to-one on \((-\infty, \infty)\)
(b) Determine the greatest value \(c\) such that \(f\) is one-to-one on \((-c, c)\).
106. Let \(f\) and \(g\) be one-to-one functions. Prove that (a) \(f \circ g\) is one-to-one and (b) \((f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)\).
107. Prove that if \(f\) has an inverse function, then \(\left(f^{-1}\right)^{-1}=f\).
108. Prove that if a function has an inverse function, then the inverse function is unique.
109. Prove that a function has an inverse function if and only if it is one-to-one.
110. Is the converse of the second part of Theorem 5.7 true? That is, if a function is one-to-one (and therefore has an inverse function), then must the function be strictly monotonic? If so, prove it. If not, give a counterexample.
111. Let \(f\) be twice-differentiable and one-to-one on an open interval \(I\). Show that its inverse function \(g\) satisfies
\(g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(g(x))}{\left[f^{\prime}(g(x))\right]^{3}}\).
If \(f\) is increasing and concave downward, what is the concavity of \(f^{-1}=g\) ?
112. If \(f(x)=\int_{2}^{x} \frac{d t}{\sqrt{1+t^{4}}}\), find \(\left(f^{-1}\right)^{\prime}(0)\).
113. Show that \(f(x)=\int_{2}^{x} \sqrt{1+t^{2}} d t\) is one-to-one and find \(\left(f^{-1}\right)^{\prime}(0)\).
114. Let \(y=\frac{x-2}{x-1}\). Show that \(y\) is its own inverse function. What can you conclude about the graph of \(f\) ? Explain.
115. Let \(f(x)=\frac{a x+b}{c x+d}\).
(a) Show that \(f\) is one-to-one if and only if \(b c-a d \neq 0\).
(b) Given \(b c-a d \neq 0\), find \(f^{-1}\).
(c) Determine the values of \(a, b, c\), and \(d\) such that \(f=f^{-1}\).

\subsection*{5.4 Exponential Functions: Differentiation and Integration}


The inverse function of the natural logarithmic function is the natural exponential function.
Figure 5.19
- Develop properties of the natural exponential function.
- Differentiate natural exponential functions.
- Integrate natural exponential functions.

\section*{The Natural Exponential Function}

The function \(f(x)=\ln x\) is increasing on its entire domain, and therefore it has an inverse function \(f^{-1}\). The domain of \(f^{-1}\) is the set of all reals, and the range is the set of positive reals, as shown in Figure 5.19. So, for any real number \(x\),
\[
f\left(f^{-1}(x)\right)=\ln \left[f^{-1}(x)\right]=x . \quad x \text { is any real number. }
\]

If \(x\) happens to be rational, then
\[
\ln \left(e^{x}\right)=x \ln e=x(1)=x . \quad x \text { is a rational number. }
\]

Because the natural logarithmic function is one-to-one, you can conclude that \(f^{-1}(x)\) and \(e^{x}\) agree for rational values of \(x\). The following definition extends the meaning of \(e^{x}\) to include all real values of \(x\).

\section*{DEFINITION OF THE NATURAL EXPONENTIAL FUNCTION}

The inverse function of the natural logarithmic function \(f(x)=\ln x\) is called the natural exponential function and is denoted by
\[
f^{-1}(x)=e^{x}
\]

That is,
\[
y=e^{x} \quad \text { if and only if } \quad x=\ln y
\]

The inverse relationship between the natural logarithmic function and the natural exponential function can be summarized as follows.
\[
\ln \left(e^{x}\right)=x \quad \text { and } \quad e^{\ln x}=x \quad \text { Inverse relationship }
\]

\section*{EXAMPLE 1 Solving Exponential Equations}

Solve \(7=e^{x+1}\).
Solution du can convert from exponential form to logarithmic form by taking the natural logarithm of each side of the equation.
\[
\begin{aligned}
7 & =e^{x+1} & & \text { Write original equation. } \\
\ln 7 & =\ln \left(e^{x+1}\right) & & \text { Take natural logarithm of each side. } \\
\ln 7 & =x+1 & & \text { Apply inverse property. } \\
-1+\ln 7 & =x & & \text { Solve for } x . \\
0.946 & \approx x & & \text { Use a calculator. }
\end{aligned}
\]

Check this solution in the original equation.

\section*{EXAMPLE 2 Solving a Logarithmic Equation}

Solve \(\ln (2 x-3)=5\).
Solution To convert from logarithmic form to exponential form, you can exponentiate each side of the logarithmic equation.
\[
\begin{aligned}
\ln (2 x-3) & =5 & & \text { Write original equation. } \\
e^{\ln (2 x-3)} & =e^{5} & & \text { Exponentiate each side. } \\
2 x-3 & =e^{5} & & \text { Apply inverse property. } \\
x & =\frac{1}{2}\left(e^{5}+3\right) & & \text { Solve for } x . \\
x & \approx 75.707 & & \text { Use a calculator. }
\end{aligned}
\]

The familiar rules for operating with rational exponents can be extended to the natural exponential function, as shown in the following theorem.

\section*{THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS}

Let \(a\) and \(b\) be any real numbers.
1. \(e^{a} e^{b}=e^{a+b}\)
2. \(\frac{e^{a}}{e^{b}}=e^{a-b}\)

PR00F To prove Property 1, you can write
\[
\begin{aligned}
\ln \left(e^{a} e^{b}\right) & =\ln \left(e^{a}\right)+\ln \left(e^{b}\right) \\
& =a+b \\
& =\ln \left(e^{a+b}\right) .
\end{aligned}
\]

Because the natural logarithmic function is one-to-one, you can conclude that
\[
e^{a} e^{b}=e^{a+b}
\]

The proof of the other property is given in Appendix A.
In Section 5.3, you learned that an inverse function \(f^{-1}\) shares many properties with \(f\). So, the natural exponential function inherits the following properties from the natural logarithmic function (see Figure 5.20).

\section*{PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION}
1. The domain of \(f(x)=e^{x}\) is \((-\infty, \infty)\), and the range is \((0, \infty)\).
2. The function \(f(x)=e^{x}\) is continuous, increasing, and one-to-one on its entire domain.
3. The graph of \(f(x)=e^{x}\) is concave upward on its entire domain.
4. \(\lim _{x \rightarrow-\infty} e^{x}=0\) and \(\lim _{x \rightarrow \infty} e^{x}=\infty\)

FOR FURTHER INFORMATION To
find out about derivatives of exponential functions of order \(1 / 2\), see the article "A Child's Garden of Fractional Derivatives" by Marcia Kinz and Thomas J Osler in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.


The derivative of \(f\) changes from negative to positive at \(x=-1\).
Figure 5.21

\section*{Derivatives of Exponential Functions}

One of the most intriguing (and useful) characteristics of the natural exponential function is that it is its own derivative. In other words, it is a solution to the differential equation \(y^{\prime}=y\). This result is stated in the next theorem.

\section*{THEOREM 5.11 DERIVATIVES OF THE NATURAL EXPONENTIAL FUNCTION}

Let \(u\) be a differentiable function of \(x\).
1. \(\frac{d}{d x}\left[e^{x}\right]=e^{x}\)
2. \(\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}\)

PROOF To prove Property 1, use the fact that \(\ln e^{x}=x\), and differentiate each side of the equation.
\[
\begin{aligned}
\ln e^{x} & =x & & \text { Definition of exponential function } \\
\frac{d}{d x}\left[\ln e^{x}\right] & =\frac{d}{d x}[x] & & \text { Differentiate each side with respect to } x . \\
\frac{1}{e^{x}} \frac{d}{d x}\left[e^{x}\right] & =1 & & \\
\frac{d}{d x}\left[e^{x}\right] & =e^{x} & &
\end{aligned}
\]

The derivative of \(e^{u}\) follows from the Chain Rule.

NOTE da can interpret this theorem geometrically by saying that the slope of the graph of \(f(x)=e^{x}\) at any point \(\left(x, e^{x}\right)\) is equal to the \(y\)-coordinate of the point.

\section*{EXAMPLE 3 Differentiating Exponential Functions}
a. \(\frac{d}{d x}\left[e^{2 x-1}\right]=e^{u} \frac{d u}{d x}=2 e^{2 x-1} \quad u=2 x-1\)
b. \(\frac{d}{d x}\left[e^{-3 / x}\right]=e^{u} \frac{d u}{d x}=\left(\frac{3}{x^{2}}\right) e^{-3 / x}=\frac{3 e^{-3 / x}}{x^{2}} \quad u=-\frac{3}{x}\)

\section*{EXAMPLE 4 Locating Relative Extrema}

Find the relative extrema of \(f(x)=x e^{x}\).
Solution The derivative of \(f\) is given by
\[
\begin{aligned}
f^{\prime}(x) & =x\left(e^{x}\right)+e^{x}(1) \\
& =e^{x}(x+1)
\end{aligned}
\]

Product Rule

Because \(e^{x}\) is never 0 , the derivative is 0 only when \(x=-1\). Moreover, by the First Derivative Test, you can determine that this corresponds to a relative minimum, as shown in Figure 5.21. Because the derivative \(f^{\prime}(x)=e^{x}(x+1)\) is defined for all \(x\), there are no other critical points.


The bell-shaped curve given by a standard normal probability density function Figure 5.22


Figure 5.23

\section*{EXAMPLE 5 The Standard Normal Probability Density Function}

Show that the standard normal probability density function
\[
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
\]
has points of inflection when \(x= \pm 1\).
Solution To locate possible points of inflection, find the \(x\)-values for which the second derivative is 0 .
\[
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} & & \text { Write original function. } \\
f^{\prime}(x) & =\frac{1}{\sqrt{2 \pi}}(-x) e^{-x^{2} / 2} & & \text { First derivative } \\
f^{\prime \prime}(x) & =\frac{1}{\sqrt{2 \pi}}\left[(-x)(-x) e^{-x^{2} / 2}+(-1) e^{-x^{2} / 2}\right] & & \text { Product Rule } \\
& =\frac{1}{\sqrt{2 \pi}}\left(e^{-x^{2} / 2}\right)\left(x^{2}-1\right) & & \text { Second derivative }
\end{aligned}
\]

So, \(f^{\prime \prime}(x)=0\) when \(x= \pm 1\), and you can apply the techniques of Chapter 3 to conclude that these values yield the two points of inflection shown in Figure 5.22.

NOTE The general form of a normal probability density function (whose mean is 0 ) is given by
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}
\]
where \(\sigma\) is the standard deviation ( \(\sigma\) is the lowercase Greek letter sigma). This "bell-shaped curve" has points of inflection when \(x= \pm \sigma\).

\section*{EXAMPLE 6 Shares Traded}

The numbers \(y\) of shares traded (in millions) on the New drk Stock Exchange from 1990 through 2005 can be modeled by
\[
y=39,811 e^{0.1715 t}
\]
where \(t\) represents the year, with \(t=0\) corresponding to 1990 . At what rate was the number of shares traded changing in 2000? (Source: New York Stock Exchange, Inc.)

Solution The derivative of the given model is
\[
\begin{aligned}
y^{\prime} & =(0.1715)(39,811) e^{0.1715 t} \\
& \approx 6828 e^{0.1715 t} .
\end{aligned}
\]

By evaluating the derivative when \(t=10\), you can conclude that the rate of change in 2000 was about

37,941 million shares per year.
The graph of this model is shown in Figure 5.23.

\section*{Integrals of Exponential Functions}

Each differentiation formula in Theorem 5.11 has a corresponding integration formula.

\section*{THEOREM 5.12 INTEGRATION RULES FOR EXPONENTIAL FUNCTIONS}

Let \(u\) be a differentiable function of \(x\).
1. \(\int e^{x} d x=e^{x}+C\)
2. \(\int e^{u} d u=e^{u}+C\)

\section*{EXAMPLE 7 Integrating Exponential Functions}

Find \(\int e^{3 x+1} d x\).
Solution If you let \(u=3 x+1\), then \(d u=3 d x\).
\[
\begin{aligned}
\int e^{3 x+1} d x & =\frac{1}{3} \int e^{3 x+1}(3) d x & & \text { Multiply and divide by } 3 . \\
& =\frac{1}{3} \int e^{u} d u & & \text { Substitute: } u=3 x+1 \\
& =\frac{1}{3} e^{u}+C & & \text { Apply Exponential Rule. } \\
& =\frac{e^{3 x+1}}{3}+C & & \text { Back-substitute. }
\end{aligned}
\]

NOTE In Example 7, the missing constant factor 3 was introduced to create \(d u=3 d x\). However, remember that you cannot introduce a missing variable factor in the integrand. For instance,
\[
\int e^{-x^{2}} d x \neq \frac{1}{x} \int e^{-x^{2}}(x d x)
\]

\section*{EXAMPLE 8 Integrating Exponential Functions}

Find \(\int 5 x e^{-x^{2}} d x\).
Solution If you let \(u=-x^{2}\), then \(d u=-2 x d x\) or \(x d x=-d u / 2\).
\[
\begin{aligned}
\int 5 x e^{-x^{2}} d x & =\int 5 e^{-x^{2}}(x d x) & & \text { Regroup integrand. } \\
& =\int 5 e^{u}\left(-\frac{d u}{2}\right) & & \text { Substitute: } u=-x^{2} \\
& =-\frac{5}{2} \int e^{u} d u & & \text { Constant Multiple Rule } \\
& =-\frac{5}{2} e^{u}+C & & \text { Apply Exponential Rule. } \\
& =-\frac{5}{2} e^{-x^{2}+C} & & \text { Back-substitute. }
\end{aligned}
\]

\section*{EXAMPLE 9 Integrating Exponential Functions}
a. \(\int \frac{e^{1 / x}}{x^{2}} d x=-\int \overbrace{e^{1 / x}}^{e^{u}} \overbrace{\left(-\frac{1}{x^{2}}\right) d x}^{d u}\)
\(u=\frac{1}{x}\)
\[
=-e^{1 / x}+C
\]
b. \(\int \sin x e^{\cos x} d x=-\int \overbrace{e^{\cos x}(-\sin x d x)}^{e^{u}} \overbrace{}^{d u} u=\cos x\)
\[
=-e^{\cos x}+C
\]

\section*{EXAMPLE 10 Finding Areas Bounded by Exponential Functions}

Evaluate each definite integral.
a. \(\int_{0}^{1} e^{-x} d x\)
b. \(\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x\)
c. \(\int_{-1}^{0}\left[e^{x} \cos \left(e^{x}\right)\right] d x\)

\section*{Solution}
a. \(\left.\int_{0}^{1} e^{-x} d x=-e^{-x}\right]_{0}^{1}\)

See Figure 5.24(a).
\(=-e^{-1}-(-1)\)
\(=1-\frac{1}{e}\)
\(\approx 0.632\)
b. \(\left.\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x=\ln \left(1+e^{x}\right)\right]_{0}^{1} \quad\) See Figure 5.24(b).
\[
\begin{aligned}
& =\ln (1+e)-\ln 2 \\
& \approx 0.620
\end{aligned}
\]
c. \(\left.\int_{-1}^{0}\left[e^{x} \cos \left(e^{x}\right)\right] d x=\sin \left(e^{x}\right)\right]_{-1}^{0}\)

See Figure 5.24(c).
\[
\begin{aligned}
& =\sin 1-\sin \left(e^{-1}\right) \\
& \approx 0.482
\end{aligned}
\]

(a)

(b)

(c)

Figure 5.24

\subsection*{5.4 Exercises}

In Exercises 1-16, solve for \(x\) accurate to three decimal places.
1. \(e^{\ln x}=4\)
2. \(e^{\ln 2 x}=12\)
3. \(e^{x}=12\)
4. \(4 e^{x}=83\)
5. \(9-2 e^{x}=7\)
6. \(-6+3 e^{x}=8\)
7. \(50 e^{-x}=30\)
8. \(200 e^{-4 x}=15\)
9. \(\frac{800}{100-e^{x / 2}}=50\)
10. \(\frac{5000}{1+e^{2 x}}=2\)
11. \(\ln x=2\)
12. \(\ln x^{2}=10\)
13. \(\ln (x-3)=2\)
14. \(\ln 4 x=1\)
15. \(\ln \sqrt{x+2}=1\)
16. \(\ln (x-2)^{2}=12\)

In Exercises 17-22, sketch the graph of the function.
17. \(y=e^{-x}\)
18. \(y=\frac{1}{2} e^{x}\)
19. \(y=e^{x}+2\)
20. \(y=e^{x-1}\)
21. \(y=e^{-x^{2}}\)
22. \(y=e^{-x / 2}\)
23. Use a graphing utility to graph \(f(x)=e^{x}\) and the given function in the same viewing window. How are the two graphs related?
(a) \(g(x)=e^{x-2}\)
(b) \(h(x)=-\frac{1}{2} e^{x}\)
(c) \(q(x)=e^{-x}+3\)
24. Use a graphing utility to graph the function. Use the graph to determine any asymptotes of the function.
(a) \(f(x)=\frac{8}{1+e^{-0.5 x}}\)
(b) \(g(x)=\frac{8}{1+e^{-0.5 / x}}\)

In Exercises 25-28, match the equation with the correct graph. Assume that \(a\) and \(C\) are positive real numbers. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

25. \(y=C e^{a x}\)
27. \(y=C\left(1-e^{-a x}\right)\)
26. \(y=C e^{-a x}\)
28. \(y=\frac{C}{1+e^{-a x}}\)

In Exercises 29-32, illustrate that the functions are inverses of each other by graphing both functions on the same set of coordinate axes.
29. \(f(x)=e^{2 x}\)
\(g(x)=\ln \sqrt{x}\)
30. \(f(x)=e^{x / 3}\)
\(g(x)=\ln x^{3}\)
31. \(f(x)=e^{x}-1\)
\(g(x)=\ln (x+1)\)
32. \(f(x)=e^{x-1}\)
\(g(x)=1+\ln x\)
33. Graphical Analysis Use a graphing utility to graph \(f(x)=\left(1+\frac{0.5}{x}\right)^{x} \quad\) and \(\quad g(x)=e^{0.5}\)
in the same viewing window. What is the relationship between \(f\) and \(g\) as \(x \rightarrow \infty\) ?
34. Conjecture Use the result of Exercise 33 to make a conjecture about the value of
\(\left(1+\frac{r}{x}\right)^{x}\)
as \(x \rightarrow \infty\).
In Exercises 35 and 36, compare the given number with the number \(e\). Is the number less than or greater than \(e\) ?
35. \(\left(1+\frac{1}{1,000,000}\right)^{1,000,000} \quad\) (See Exercise 34.)
36. \(1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}\)

In Exercises 37 and 38, find an equation of the tangent line to the graph of the function at the point \((0,1)\).
37. (a) \(y=e^{3 x}\)
(b) \(y=e^{-3 x}\)


38. (a) \(y=e^{2 x}\)

(b) \(y=e^{-2 x}\)


In Exercises 39-60, find the derivative.
39. \(f(x)=e^{2 x}\)
40. \(y=e^{-5 x}\)
41. \(y=e^{\sqrt{x}}\)
42. \(y=e^{-x^{2}}\)
43. \(y=e^{x-4}\)
44. \(f(x)=3 e^{1-x^{2}}\)
45. \(y=e^{x} \ln x\)
46. \(y=x e^{x}\)
47. \(y=x^{3} e^{x}\)
48. \(y=x^{2} e^{-x}\)
49. \(g(t)=\left(e^{-t}+e^{t}\right)^{3}\)
50. \(g(t)=e^{-3 / t^{2}}\)
51. \(y=\ln \left(1+e^{2 x}\right)\)
52. \(y=\ln \left(\frac{1+e^{x}}{1-e^{x}}\right)\)
53. \(y=\frac{2}{e^{x}+e^{-x}}\)
54. \(y=\frac{e^{x}-e^{-x}}{2}\)
55. \(y=\frac{e^{x}+1}{e^{x}-1}\)
56. \(y=\frac{e^{2 x}}{e^{2 x}+1}\)
57. \(y=e^{x}(\sin x+\cos x)\)
58. \(y=\ln e^{x}\)
59. \(F(x)=\int_{\pi}^{\ln x} \cos e^{t} d t\)
60. \(F(x)=\int_{0}^{e^{2 x}} \ln (t+1) d t\)

In Exercises 61-68, find an equation of the tangent line to the graph of the function at the given point.
61. \(f(x)=e^{1-x}, \quad(1,1)\)
62. \(y=e^{-2 x+x^{2}}, \quad(2,1)\)
63. \(y=\ln \left(e^{x^{2}}\right), \quad(-2,4)\)
64. \(y=\ln \frac{e^{x}+e^{-x}}{2}, \quad(0,0)\)
65. \(y=x^{2} e^{x}-2 x e^{x}+2 e^{x}, \quad(1, e)\)
66. \(y=x e^{x}-e^{x}, \quad(1,0)\)
67. \(f(x)=e^{-x} \ln x, \quad(1,0)\)
68. \(f(x)=e^{3} \ln x, \quad(1,0)\)

In Exercises 69 and 70, use implicit differentiation to find \(d y / d x\).
69. \(x e^{y}-10 x+3 y=0\)
70. \(e^{x y}+x^{2}-y^{2}=10\)

In Exercises 71 and 72, find an equation of the tangent line to the graph of the function at the given point.
71. \(x e^{y}+y e^{x}=1, \quad(0,1)\)
72. \(1+\ln x y=e^{x-y}\),

In Exercises 73 and 74, find the second derivative of the function.
73. \(f(x)=(3+2 x) e^{-3 x}\)
74. \(g(x)=\sqrt{x}+e^{x} \ln x\)

In Exercises 75-78, show that the function \(y=f(x)\) is a solution of the differential equation.
75. \(y=4 e^{-x}\)
76. \(y=e^{3 x}+e^{-3 x}\)
\(y^{\prime \prime}-9 y=0\)
77. \(y=e^{x}(\cos \sqrt{2} x+\sin \sqrt{2} x)\)
78. \(y=e^{x}(3 \cos 2 x-4 \sin 2 x)\)
\[
y^{\prime \prime}-2 y^{\prime}+3 y=0
\]
\[
y^{\prime \prime}-2 y^{\prime}+5 y=0
\]

In Exercises 79-86, find the extrema and the points of inflection (if any exist) of the function. Use a graphing utility to graph the function and confirm your results.
79. \(f(x)=\frac{e^{x}+e^{-x}}{2}\)
80. \(f(x)=\frac{e^{x}-e^{-x}}{2}\)
81. \(g(x)=\frac{1}{\sqrt{2 \pi}} e^{-(x-2)^{2} / 2}\)
82. \(g(x)=\frac{1}{\sqrt{2 \pi}} e^{-(x-3)^{2} / 2}\)
83. \(f(x)=x^{2} e^{-x}\)
84. \(f(x)=x e^{-x}\)
85. \(g(t)=1+(2+t) e^{-t}\)
86. \(f(x)=-2+e^{3 x}(4-2 x)\)
87. Area Find the area of the largest rectangle that can be inscribed under the curve \(y=e^{-x^{2}}\) in the first and second quadrants.
88. Area Perform the following steps to find the maximum area of the rectangle shown in the figure.
(a) Solve for \(c\) in the equation \(f(c)=f(c+x)\).
(b) Use the result in part (a) to write the area \(A\) as a function of \(x\). \([\) Hint: \(A=x f(c)]\)
(c) Use a graphing utility to graph the area function. Use the graph to approximate the dimensions of the rectangle of maximum area. Determine the maximum area.
(d) Use a graphing utility to graph the expression for \(c\) found in part (a). Use the graph to approximate
\(\lim _{x \rightarrow 0^{+}} c \quad\) and \(\quad \lim _{x \rightarrow \infty} c\).
Use this result to describe the changes in dimensions and position of the rectangle for \(0<x<\infty\).

89. Find a point on the graph of the function \(f(x)=e^{2 x}\) such that the tangent line to the graph at that point passes through the origin. Use a graphing utility to graph \(f\) and the tangent line in the same viewing window.
90. Find the point on the graph of \(y=e^{-x}\) where the normal line to the curve passes through the origin. (Use Newton's Method or the zero or root feature of a graphing utility.)
91. Depreciation The value \(V\) of an item \(t\) years after it is purchased is \(V=15,000 e^{-0.6286 t}, 0 \leq t \leq 10\).
(a) Use a graphing utility to graph the function.
(b) Find the rates of change of \(V\) with respect to \(t\) when \(t=1\) and \(t=5\).
(c) Use a graphing utility to graph the tangent lines to the function when \(t=1\) and \(t=5\).
92. Harmonic Motion The displacement from equilibrium of a mass oscillating on the end of a spring suspended from a ceiling is \(y=1.56 e^{-0.22 t} \cos 4.9 t\), where \(y\) is the displacement in feet and \(t\) is the time in seconds. Use a graphing utility to graph the displacement function on the interval [0, 10]. Find a value of \(t\) past which the displacement is less than 3 inches from equilibrium.
93. Modeling Data A meteorologist measures the atmospheric pressure \(P\) (in kilograms per square meter) at altitude \(h\) (in kilometers). The data are shown below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(h\) & 0 & 5 & 10 & 15 & 20 \\
\hline\(P\) & 10,332 & 5583 & 2376 & 1240 & 517 \\
\hline
\end{tabular}
(a) Use a graphing utility to plot the points \((h, \ln P)\). Use the regression capabilities of the graphing utility to find a linear model for the revised data points.
(b) The line in part (a) has the form \(\ln P=a h+b\). Write the equation in exponential form.
(c) Use a graphing utility to plot the original data and graph the exponential model in part (b).
(d) Find the rate of change of the pressure when \(h=5\) and \(h=18\).
94. Modeling Data The table lists the approximate values \(V\) of a mid-sized sedan for the years 2003 through 2009. The variable \(t\) represents the time in years, with \(t=3\) corresponding to 2003.
\begin{tabular}{|l|c|c|c|c|}
\hline\(t\) & 3 & 4 & 5 & 6 \\
\hline\(V\) & \(\$ 23,046\) & \(\$ 20,596\) & \(\$ 18,851\) & \(\$ 17,001\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline\(t\) & 7 & 8 & 9 \\
\hline\(V\) & \(\$ 15,226\) & \(\$ 14,101\) & \(\$ 12,841\) \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to fit linear and quadratic models to the data. Plot the data and graph the models.
(b) What does the slope represent in the linear model in part (a)?
(c) Use the regression capabilities of a graphing utility to fit an exponential model to the data.
(d) Determine the horizontal asymptote of the exponential model found in part (c). Interpret its meaning in the context of the problem.
(e) Find the rate of decrease in the value of the sedan when \(t=4\) and \(t=8\) using the exponential model.

Linear and Quadratic Approximations In Exercises 95 and 96, use a graphing utility to graph the function. Then graph
\[
\begin{aligned}
& P_{1}(x)=f(0)+f^{\prime}(0)(x-0) \quad \text { and } \\
& P_{2}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}
\end{aligned}
\]
in the same viewing window. Compare the values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives at \(\boldsymbol{x}=\mathbf{0}\).
95. \(f(x)=e^{x}\)
96. \(f(x)=e^{x / 2}\)

Stirling's Formula For large values of \(\boldsymbol{n}\),
\(n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots(n-1) \cdot n\)
can be approximated by Stirling's Formula, \(n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\).

In Exercises 97 and 98, find the exact value of \(n!\), and then approximate \(n\) ! using Stirling's Formula.
97. \(n=12\)
98. \(n=15\)

In Exercises 99-116, find the indefinite integral.
99. \(\int e^{5 x}(5) d x\)
100. \(\int e^{-x^{4}}\left(-4 x^{3}\right) d x\)
101. \(\int e^{2 x-1} d x\)
102. \(\int e^{1-3 x} d x\)
103. \(\int x^{2} e^{x^{3}} d x\)
104. \(\int e^{x}\left(e^{x}+1\right)^{2} d x\)
105. \(\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x\)
106. \(\int \frac{e^{1 / x^{2}}}{x^{3}} d x\)
107. \(\int \frac{e^{-x}}{1+e^{-x}} d x\)
108. \(\int \frac{e^{2 x}}{1+e^{2 x}} d x\)
109. \(\int e^{x} \sqrt{1-e^{x}} d x\)
110. \(\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x\)
111. \(\int \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} d x\)
112. \(\int \frac{2 e^{x}-2 e^{-x}}{\left(e^{x}+e^{-x}\right)^{2}} d x\)
113. \(\int \frac{5-e^{x}}{e^{2 x}} d x\)
114. \(\int \frac{e^{2 x}+2 e^{x}+1}{e^{x}} d x\)
115. \(\int e^{-x} \tan \left(e^{-x}\right) d x\)
116. \(\int \ln \left(e^{2 x-1}\right) d x\)

In Exercises 117-126, evaluate the definite integral. Use a graphing utility to verify your result.
117. \(\int_{0}^{1} e^{-2 x} d x\)
118. \(\int_{3}^{4} e^{3-x} d x\)
119. \(\int_{0}^{1} x e^{-x^{2}} d x\)
120. \(\int_{-2}^{0} x^{2} e^{x^{3} / 2} d x\)
121. \(\int_{1}^{3} \frac{e^{3 / x}}{x^{2}} d x\)
122. \(\int_{0}^{\sqrt{2}} x e^{-\left(x^{2} / 2\right)} d x\)
123. \(\int_{0}^{3} \frac{2 e^{2 x}}{1+e^{2 x}} d x\)
124. \(\int_{0}^{1} \frac{e^{x}}{5-e^{x}} d x\)
125. \(\int_{0}^{\pi / 2} e^{\sin \pi x} \cos \pi x d x\)
126. \(\int_{\pi / 3}^{\pi / 2} e^{\sec 2 x} \sec 2 x \tan 2 x d x\)

Differential Equations In Exercises 127 and 128, solve the differential equation.
127. \(\frac{d y}{d x}=x e^{a x^{2}}\)
128. \(\frac{d y}{d x}=\left(e^{x}-e^{-x}\right)^{2}\)

Differential Equations In Exercises 129 and 130, find the particular solution that satisfies the initial conditions.
129. \(f^{\prime \prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)\),
\(f(0)=1, f^{\prime}(0)=0\)
130. \(f^{\prime \prime}(x)=\sin x+e^{2 x}\),
\(f(0)=\frac{1}{4}, f^{\prime}(0)=\frac{1}{2}\)

Slope Fields In Exercises 131 and 132, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website ww.mathgraphs.com.
131. \(\frac{d y}{d x}=2 e^{-x / 2}\),
132. \(\frac{d y}{d x}=x e^{-0.2 x^{2}}, \quad\left(0,-\frac{3}{2}\right)\)



Area In Exercises 133-136, find the area of the region bounded by the graphs of the equations. Use a graphing utility to graph the region and verify your result.
133. \(y=e^{x}, y=0, x=0, x=5\)
134. \(y=e^{-x}, y=0, x=a, x=b\)
135. \(y=x e^{-x^{2} / 4}, y=0, x=0, x=\sqrt{6}\)
136. \(y=e^{-2 x}+2, y=0, x=0, x=2\)

Numerical Integration In Exercises 137 and 138, approximate the integral using the Midpoint Rule, the Trapezoidal Rule, and Simpson's Rule with \(n=12\). Use a graphing utility to verify your results.
137. \(\int_{0}^{4} \sqrt{x} e^{x} d x\)
138. \(\int_{0}^{2} 2 x e^{-x} d x\)
139. Probability A car battery has an average lifetime of 48 months with a standard deviation of 6 months. The battery lives are normally distributed. The probability that a given battery will last between 48 months and 60 months is \(0.0665 \int_{48}^{60} e^{-0.0139(t-48)^{2}} d t\). Use the integration capabilities of a graphing utility to approximate the integral. Interpret the resulting probability.
140. Probability The median waiting time (in minutes) for people waiting for service in a convenience store is given by the solution of the equation \(\int_{0}^{x} 0.3 e^{-0.3 t} d t=\frac{1}{2}\). Solve the equation.
141. Horizontal Motion The position function of a particle moving along the \(x\)-axis is \(x(t)=A e^{k t}+B e^{-k t}\) where \(A, B\), and \(k\) are positive constants.
(a) During what times \(t\) is the particle closest to the origin?
(b) Show that the acceleration of the particle is proportional to the position of the particle. What is the constant of proportionality?
142. Modeling Data A valve on a storage tank is opened for 4 hours to release a chemical in a manufacturing process. The flow rate \(R\) (in liters per hour) at time \(t\) (in hours) is given in the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(R\) & 425 & 240 & 118 & 71 & 36 \\
\hline
\end{tabular}

Table for 142
(a) Use the regression capabilities of a graphing utility to find a linear model for the points \((t, \ln R)\). Write the resulting equation of the form \(\ln R=a t+b\) in exponential form.
(b) Use a graphing utility to plot the data and graph the exponential model.
(c) Use the definite integral to approximate the number of liters of chemical released during the 4 hours.

\section*{WRITING ABOUT CONCEPTS}
143. In your own words, state the properties of the natural exponential function.
144. Is there a function \(f\) such that \(f(x)=f^{\prime}(x)\) ? If so, identify it.
145. Without integrating, state the integration formula you can use to integrate each of the following.
(a) \(\int \frac{e^{x}}{e^{x}+1} d x\)
(b) \(\int x e^{x^{2}} d x\)
146. Consider the function \(f(x)=\frac{2}{1+e^{1 / x}}\).
(a) Use a graphing utility to graph \(f\).
(b) Write a short paragraph explaining why the graph has a horizontal asymptote at \(y=1\) and why the function has a nonremovable discontinuity at \(x=0\).
147. Given \(e^{x} \geq 1\) for \(x \geq 0\), it follows that \(\int_{0}^{x} e^{t} d t \geq \int_{0}^{x} 1 d t\). Perform this integration to derive the inequality \(e^{x} \geq 1+x\) for \(x \geq 0\).

\section*{CAPSTONE}
148. Describe the relationship between the graphs of \(f(x)=\ln x\) and \(g(x)=e^{x}\).
149. Find, to three decimal places, the value of \(x\) such that \(e^{-x}=x\). (Use Newton's Method or the zero or root feature of a graphing utility.)
150. Find the value of \(a\) such that the area bounded by \(y=e^{-x}\), the \(x\)-axis, \(x=-a\), and \(x=a\) is \(\frac{8}{3}\).
151. Verify that the function
\(y=\frac{L}{1+a e^{-x / b}}, \quad a>0, \quad b>0, \quad L>0\)
increases at a maximum rate when \(y=L / 2\).
152. Let \(f(x)=\frac{\ln x}{x}\).
(a) Graph \(f\) on \((0, \infty)\) and show that \(f\) is strictly decreasing on \((e, \infty)\).
(b) Show that if \(e \leq A<B\), then \(A^{B}>B^{A}\).
(c) Use part (b) to show that \(e^{\pi}>\pi^{e}\).

\subsection*{5.5 Bases Other Than e and Applications}


The half-life of carbon-14 is about 5715 years.
Figure 5.25
- Define exponential functions that have bases other than \(e\).
- Differentiate and integrate exponential functions that have bases other than \(e\).
- Use exponential functions to model compound interest and exponential growth.

\section*{Bases Other than \(e\)}

The base of the natural exponential function is \(e\). This "natural" base can be used to assign a meaning to a general base \(a\).

\section*{DEFINITION OF EXPONENTIAL FUNCTION TO BASE \(a\)}

If \(a\) is a positive real number \((a \neq 1)\) and \(x\) is any real number, then the exponential function to the base \(\boldsymbol{a}\) is denoted by \(a^{x}\) and is defined by
\[
a^{x}=e^{(\ln a) x}
\]

If \(a=1\), then \(y=1^{x}=1\) is a constant function.

These functions obey the usual laws of exponents. For instance, here are some familiar properties.
1. \(a^{0}=1\)
2. \(a^{x} a^{y}=a^{x+y}\)
3. \(\frac{a^{x}}{a^{y}}=a^{x-y}\)
4. \(\left(a^{x}\right)^{y}=a^{x y}\)

When modeling the half-life of a radioactive sample, it is convenient to use \(\frac{1}{2}\) as the base of the exponential model. (Half-life is the number of years required for half of the atoms in a sample of radioactive material to decay.)

\section*{EXAMPLE 1 Radioactive Half-Life Model}

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14. How much will be present in 10,000 years?

Solution Let \(t=0\) represent the present time and let \(y\) represent the amount (in grams) of carbon-14 in the sample. Using a base of \(\frac{1}{2}\), you can model \(y\) by the equation
\[
y=\left(\frac{1}{2}\right)^{t / 5715}
\]

Notice that when \(t=5715\), the amount is reduced to half of the original amount.
\[
y=\left(\frac{1}{2}\right)^{5715 / 5715}=\frac{1}{2} \operatorname{gram}
\]

When \(t=11,430\), the amount is reduced to a quarter of the original amount, and so on. To find the amount of carbon-14 after 10,000 years, substitute 10,000 for \(t\).
\[
\begin{aligned}
y & =\left(\frac{1}{2}\right)^{10,000 / 5715} \\
& \approx 0.30 \text { gram }
\end{aligned}
\]

The graph of \(y\) is shown in Figure 5.25.

NOTE In precalculus, you learned that \(\log _{a} x\) is the value to which \(a\) must be raised to produce \(x\). This agrees with the definition given here because
\[
\begin{aligned}
a^{\log _{a} x} & =a^{(1 / \ln a) \ln x} \\
& =\left(e^{\ln a)(1 / \ln a) \ln x}\right. \\
& =e^{(\ln a / \ln a) \ln x} \\
& =e^{\ln x} \\
& =x .
\end{aligned}
\]

Logarithmic functions to bases other than \(e\) can be defined in much the same way as exponential functions to other bases are defined.

\section*{DEFINITION OF LOGARITHMIC FUNCTION TO BASE \(a\)}

If \(a\) is a positive real number \((a \neq 1)\) and \(x\) is any positive real number, then the logarithmic function to the base \(\boldsymbol{a}\) is denoted by \(\log _{a} x\) and is defined as
\[
\log _{a} x=\frac{1}{\ln a} \ln x .
\]

Logarithmic functions to the base \(a\) have properties similar to those of the natural logarithmic function given in Theorem 5.2. (Assume \(x\) and \(y\) are positive numbers and \(n\) is rational.)
1. \(\log _{a} 1=0\)

Log of 1
2. \(\log _{a} x y=\log _{a} x+\log _{a} y \quad\) Log of a product
3. \(\log _{a} x^{n}=n \log _{a} x \quad\) Log of a power
4. \(\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \quad\) Log of a quotient

From the definitions of the exponential and logarithmic functions to the base \(a\), it follows that \(f(x)=a^{x}\) and \(g(x)=\log _{a} x\) are inverse functions of each other.

\section*{PROPERTIES OF INVERSE FUNCTIONS}
1. \(y=a^{x}\) if and only if \(x=\log _{a} y\)
2. \(a^{\log _{a} x}=x\), for \(x>0\)
3. \(\log _{a} a^{x}=x\), for all \(x\)

The logarithmic function to the base 10 is called the common logarithmic function. So, for common logarithms, \(y=10^{x}\) if and only if \(x=\log _{10} y\).

\section*{EXAMPLE 2 Bases Other Than \(e\)}

Solve for \(x\) in each equation.
a. \(3^{x}=\frac{1}{81}\)
b. \(\log _{2} x=-4\)

\section*{Solution}
a. To solve this equation, you can apply the logarithmic function to the base 3 to each side of the equation.
\[
\begin{aligned}
3^{x} & =\frac{1}{81} \\
\log _{3} 3^{x} & =\log _{3} \frac{1}{81} \\
x & =\log _{3} 3^{-4} \\
x & =-4
\end{aligned}
\]
b. To solve this equation, you can apply the exponential function to the base 2 to each side of the equation.
\[
\begin{aligned}
\log _{2} x & =-4 \\
2^{\log _{2} x} & =2^{-4} \\
x & =\frac{1}{2^{4}} \\
x & =\frac{1}{16}
\end{aligned}
\]

\section*{Differentiation and Integration}

To differentiate exponential and logarithmic functions to other bases, you have three options: (1) use the definitions of \(a^{x}\) and \(\log _{a} x\) and differentiate using the rules for the natural exponential and logarithmic functions, (2) use logarithmic differentiation, or (3) use the following differentiation rules for bases other than \(e\).

\section*{THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN \(e\)}

Let \(a\) be a positive real number \((a \neq 1)\) and let \(u\) be a differentiable function of \(x\).
1. \(\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}\)
2. \(\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}\)
3. \(\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}\)
4. \(\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}\)

PROOF By definition, \(a^{x}=e^{(\ln a) x}\). So, you can prove the first rule by letting \(u=(\ln a) x\) and differentiating with base \(e\) to obtain
\[
\frac{d}{d x}\left[a^{x}\right]=\frac{d}{d x}\left[e^{(\ln a) x}\right]=e^{u} \frac{d u}{d x}=e^{(\ln a) x}(\ln a)=(\ln a) a^{x}
\]

To prove the third rule, you can write
\[
\frac{d}{d x}\left[\log _{a} x\right]=\frac{d}{d x}\left[\frac{1}{\ln a} \ln x\right]=\frac{1}{\ln a}\left(\frac{1}{x}\right)=\frac{1}{(\ln a) x} .
\]

The second and fourth rules are simply the Chain Rule versions of the first and third rules.

NOTE These differentiation rules are similar to those for the natural exponential function and the natural logarithmic function. In fact, they differ only by the constant factors \(\ln a\) and \(1 / \ln a\). This points out one reason why, for calculus, \(e\) is the most convenient base.

\section*{EXAMPLE 3 Differentiating Functions to Other Bases}

Find the derivative of each function.
a. \(y=2^{x}\)
b. \(y=2^{3 x}\)
c. \(y=\log _{10} \cos x\)

\section*{Solution}
a. \(y^{\prime}=\frac{d}{d x}\left[2^{x}\right]=(\ln 2) 2^{x}\)
b. \(y^{\prime}=\frac{d}{d x}\left[2^{3 x}\right]=(\ln 2) 2^{3 x}(3)=(3 \ln 2) 2^{3 x}\)

Try writing \(2^{3 x}\) as \(8^{x}\) and differentiating to see that you obtain the same result.
c. \(y^{\prime}=\frac{d}{d x}\left[\log _{10} \cos x\right]=\frac{-\sin x}{(\ln 10) \cos x}=-\frac{1}{\ln 10} \tan x\)

Occasionally, an integrand involves an exponential function to a base other than \(e\). When this occurs, there are two options: (1) convert to base \(e\) using the formula \(a^{x}=e^{(\ln a) x}\) and then integrate, or (2) integrate directly, using the integration formula
\[
\int a^{x} d x=\left(\frac{1}{\ln a}\right) a^{x}+C
\]
(which follows from Theorem 5.13).

\section*{EXAMPLE 4 Integrating an Exponential Function to Another Base}

Find \(\int 2^{x} d x\).

\section*{Solution}
\[
\int 2^{x} d x=\frac{1}{\ln 2} 2^{x}+C
\]

When the Power Rule, \(D_{x}\left[x^{n}\right]=n x^{n-1}\), was introduced in Chapter 2, the exponent \(n\) was required to be a rational number. Now the rule is extended to cover any real value of \(n\). Try to prove this theorem using logarithmic differentiation.

\section*{THEOREM 5.14 THE POWER RULE FOR REAL EXPONENTS}

Let \(n\) be any real number and let \(u\) be a differentiable function of \(x\).
1. \(\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}\)
2. \(\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} \frac{d u}{d x}\)

The next example compares the derivatives of four types of functions. Each function uses a different differentiation formula, depending on whether the base and the exponent are constants or variables.

\section*{EXAMPLE 5 Comparing Variables and Constants}
a. \(\frac{d}{d x}\left[e^{e}\right]=0 \quad\) Constant Rule
b. \(\frac{d}{d x}\left[e^{x}\right]=e^{x} \quad\) Exponential Rule
c. \(\frac{d}{d x}\left[x^{e}\right]=e x^{e-1} \quad\) Power Rule
d. \(y=x^{x} \quad\) Logarithmic differentiation
\(\ln y=\ln x^{x}\)
\(\ln y=x \ln x\)
\[
\begin{aligned}
& \frac{y^{\prime}}{y}=x\left(\frac{1}{x}\right)+(\ln x)(1)=1+\ln x \\
& y^{\prime}=y(1+\ln x)=x^{x}(1+\ln x)
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline\(n\) & \(A\) \\
\hline 1 & \(\$ 1080.00\) \\
\hline 2 & \(\$ 1081.60\) \\
\hline 4 & \(\$ 1082.43\) \\
\hline 12 & \(\$ 1083.00\) \\
\hline 365 & \(\$ 1083.28\) \\
\hline
\end{tabular}

\section*{Applications of Exponential Functions}

Suppose \(P\) dollars is deposited in an account at an annual interest rate \(r\) (in decimal form). If interest accumulates in the account, what is the balance in the account at the end of 1 year? The answer depends on the number of times \(n\) the interest is compounded according to the formula
\[
A=P\left(1+\frac{r}{n}\right)^{n}
\]

For instance, the result for a deposit of \(\$ 1000\) at \(8 \%\) interest compounded \(n\) times a year is shown in the upper table at the left.

As \(n\) increases, the balance \(A\) approaches a limit. To develop this limit, use the following theorem. To test the reasonableness of this theorem, try evaluating \([(x+1) / x]^{x}\) for several values of \(x\), as shown in the lower table at the left. (A proof of this theorem is given in Appendix A.)

\section*{THEOREM 5.15 A LIMIT INVOLVING \(e\)}
\[
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=e
\]

Now, let's take another look at the formula for the balance \(A\) in an account in which the interest is compounded \(n\) times per year. By taking the limit as \(n\) approaches infinity, you obtain
\[
\begin{aligned}
A & =\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n} & & \text { Take limit as } n \rightarrow \infty \\
& =P \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n / r}\right)^{n / r}\right]^{r} & & \text { Rewrite. } \\
& =P\left[\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right]^{r} & & \text { Let } x=n / r . \text { Then } x \rightarrow \infty \text { as } n \rightarrow \infty . \\
& =P e^{r} . & & \text { Apply Theorem 5.15. }
\end{aligned}
\]

This limit produces the balance after 1 year of continuous compounding. So, for a deposit of \(\$ 1000\) at \(8 \%\) interest compounded continuously, the balance at the end of 1 year would be
\[
\begin{aligned}
A & =1000 e^{0.08} \\
& \approx \$ 1083.29
\end{aligned}
\]

These results are summarized below.

\section*{SUMMARY OF COMPOUND INTEREST FORMULAS}

Let \(P=\) amount of deposit, \(t=\) number of years, \(A=\) balance after \(t\) years, \(r=\) annual interest rate (decimal form), and \(n=\) number of compoundings per year.
1. Compounded \(n\) times per year: \(A=P\left(1+\frac{r}{n}\right)^{n t}\)
2. Compounded continuously: \(A=P e^{r t}\)


The balance in a savings account grows exponentially.
Figure 5.26


The limit of the weight of the culture as \(t \rightarrow \infty\) is 1.25 grams.
Figure 5.27

\section*{EXAMPLE 6 Comparing Continuous, Quarterly, and Monthly Compounding}

A deposit of \(\$ 2500\) is made in an account that pays an annual interest rate of \(5 \%\). Find the balance in the account at the end of 5 years if the interest is compounded (a) quarterly, (b) monthly, and (c) continuously.

\section*{Solution}
a. \(A=P\left(1+\frac{r}{n}\right)^{n t}=2500\left(1+\frac{0.05}{4}\right)^{4(5)} \quad\) Compounded quarterly
\[
\begin{aligned}
& =2500(1.0125)^{20} \\
& \approx \$ 3205.09
\end{aligned}
\]
b. \(A=P\left(1+\frac{r}{n}\right)^{n t}=2500\left(1+\frac{0.05}{12}\right)^{12(5)} \quad\) Compounded monthly
\[
\begin{aligned}
& \approx 2500(1.0041667)^{60} \\
& \approx \$ 3208.40
\end{aligned}
\]
c. \(A=P e^{r t}=2500\left[e^{0.05(5)}\right]\)

Compounded continuously
\[
=2500 e^{0.25} \approx \$ 3210.06
\]

Figure 5.26 shows how the balance increases over the five-year period. Notice that the scale used in the figure does not graphically distinguish among the three types of exponential growth in (a), (b), and (c).

\section*{EXAMPLE 7 Bacterial Culture Growth}

A bacterial culture is growing according to the logistic growth function
\[
y=\frac{1.25}{1+0.25 e^{-0.4 t}}, \quad t \geq 0
\]
where \(y\) is the weight of the culture in grams and \(t\) is the time in hours. Find the weight of the culture after (a) 0 hours, (b) 1 hour, and (c) 10 hours. (d) What is the limit as \(t\) approaches infinity?

\section*{Solution}
a. When \(t=0, \quad y=\frac{1.25}{1+0.25 e^{-0.4(0)}}\)
\[
=1 \text { gram. }
\]
b. When \(t=1, \quad y=\frac{1.25}{1+0.25 e^{-0.4(1)}}\)
\[
\approx 1.071 \text { grams. }
\]
c. When \(t=10, \quad y=\frac{1.25}{1+0.25 e^{-0.4(10)}}\)
\[
\approx 1.244 \text { grams }
\]
d. Finally, taking the limit as \(t\) approaches infinity, you obtain
\(\lim _{t \rightarrow \infty} \frac{1.25}{1+0.25 e^{-0.4 t}}=\frac{1.25}{1+0}=1.25\) grams.
The graph of the function is shown in Figure 5.27.

\subsection*{5.5 Exercises}

In Exercises 1-4, evaluate the expression without using a calculator.
1. \(\log _{2} \frac{1}{8}\)
2. \(\log _{27} 9\)
3. \(\log _{7} 1\)
4. \(\log _{a} \frac{1}{a}\)

In Exercises 5-8, write the exponential equation as a logarithmic equation or vice versa.
5. (a) \(2^{3}=8\)
6. (a) \(27^{2 / 3}=9\)
(b) \(3^{-1}=\frac{1}{3}\)
(b) \(16^{3 / 4}=8\)
7. (a) \(\log _{10} 0.01=-2\)
8. (a) \(\log _{3} \frac{1}{9}=-2\)
(b) \(\log _{0.5} 8=-3\)
(b) \(49^{1 / 2}=7\)

In Exercises 9-14, sketch the graph of the function by hand.
9. \(y=3^{x}\)
10. \(y=3^{x-1}\)
11. \(y=\left(\frac{1}{3}\right)^{x}\)
12. \(y=2^{x^{2}}\)
13. \(h(x)=5^{x-2}\)
14. \(y=3^{-|x|}\)

In Exercises 15-18, match the function with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

15. \(f(x)=3^{x}\)
16. \(f(x)=3^{-x}\)
17. \(f(x)=3^{x}-1\)
18. \(f(x)=3^{x-1}\)

In Exercises 19-24, solve for \(\boldsymbol{x}\) or \(\boldsymbol{b}\).
19. (a) \(\log _{10} 1000=x\)
(b) \(\log _{10} 0.1=x\)
20. (a) \(\log _{3} \frac{1}{81}=x\)
(b) \(\log _{6} 36=x\)
21. (a) \(\log _{3} x=-1\)
(b) \(\log _{2} x=-4\)
22. (a) \(\log _{b} 27=3\)
(b) \(\log _{b} 125=3\)
23. (a) \(x^{2}-x=\log _{5} 25\)
(b) \(3 x+5=\log _{2} 64\)
24. (a) \(\log _{3} x+\log _{3}(x-2)=1\)
(b) \(\log _{10}(x+3)-\log _{10} x=1\)

In Exercises 25-34, solve the equation accurate to three decimal places.
25. \(3^{2 x}=75\)
26. \(5^{6 x}=8320\)
27. \(2^{3-z}=625\)
28. \(3\left(5^{x-1}\right)=86\)
29. \(\left(1+\frac{0.09}{12}\right)^{12 t}=3\)
30. \(\left(1+\frac{0.10}{365}\right)^{365 t}=2\)
31. \(\log _{2}(x-1)=5\)
32. \(\log _{10}(t-3)=2.6\)
33. \(\log _{3} x^{2}=4.5\)
34. \(\log _{5} \sqrt{x-4}=3.2\)

In Exercises 35-38, use a graphing utility to graph the function and approximate its zero(s) accurate to three decimal places.
35. \(g(x)=6\left(2^{1-x}\right)-25\)
36. \(f(t)=300\left(1.0075^{12 t}\right)-735.41\)
37. \(h(s)=32 \log _{10}(s-2)+15\)
38. \(g(x)=1-2 \log _{10}[x(x-3)]\)

In Exercises 39 and 40, illustrate that the functions are inverse functions of each other by sketching their graphs on the same set of coordinate axes.
39. \(f(x)=4^{x}\)
\(g(x)=\log _{4} x\)
40. \(f(x)=3^{x}\)
\(g(x)=\log _{3} x\)

In Exercises 41-62, find the derivative of the function. (Hint: In some exercises, you may find it helpful to apply logarithmic properties before differentiating.)
41. \(f(x)=4^{x}\)
42. \(f(x)=3^{2 x}\)
43. \(y=5^{-4 x}\)
44. \(y=7^{2 x-1}\)
45. \(f(x)=x 9^{x}\)
46. \(y=x\left(6^{-2 x}\right)\)
47. \(g(t)=t^{2} 2^{t}\)
48. \(f(t)=\frac{3^{2 t}}{t}\)
49. \(h(\theta)=2^{-\theta} \cos \pi \theta\)
50. \(g(\alpha)=5^{-\alpha / 2} \sin 2 \alpha\)
51. \(y=\log _{4}(5 x+1)\)
52. \(y=\log _{3}\left(x^{2}-3 x\right)\)
53. \(h(t)=\log _{5}(4-t)^{2}\)
54. \(g(t)=\log _{2}\left(t^{2}+7\right)^{3}\)
55. \(y=\log _{5} \sqrt{x^{2}-1}\)
56. \(f(x)=\log _{2} \sqrt[3]{2 x+1}\)
57. \(f(x)=\log _{2} \frac{x^{2}}{x-1}\)
58. \(y=\log _{10} \frac{x^{2}-1}{x}\)
59. \(h(x)=\log _{3} \frac{x \sqrt{x-1}}{2}\)
60. \(g(x)=\log _{5} \frac{4}{x^{2} \sqrt{1-x}}\)
61. \(g(t)=\frac{10 \log _{4} t}{t}\)
62. \(f(t)=t^{3 / 2} \log _{2} \sqrt{t+1}\)

In Exercises 63-66, find an equation of the tangent line to the graph of the function at the given point.
63. \(y=2^{-x}, \quad(-1,2)\)
64. \(y=5^{x-2}\),
65. \(y=\log _{3} x, \quad(27,3)\)
66. \(y=\log _{10} 2 x,(5,1)\)

In Exercises 67-70, use logarithmic differentiation to find \(d y / d x\).
67. \(y=x^{2 / x}\)
68. \(y=x^{x-1}\)
69. \(y=(x-2)^{x+1}\)
70. \(y=(1+x)^{1 / x}\)

In Exercises 71-74, find an equation of the tangent line to the graph of the function at the given point.
71. \(y=x^{\sin x}, \quad\left(\frac{\pi}{2}, \frac{\pi}{2}\right)\)
72. \(y=(\sin x)^{2 x}, \quad\left(\frac{\pi}{2}, 1\right)\)
73. \(y=(\ln x)^{\cos x}, \quad(e, 1)\)
74. \(y=x^{1 / x}, \quad(1,1)\)

In Exercises 75-82, find the integral.
75. \(\int 3^{x} d x\)
76. \(\int 5^{-x} d x\)
77. \(\int\left(x^{2}+2^{-x}\right) d x\)
78. \(\int\left(x^{3}+3^{-x}\right) d x\)
79. \(\int x\left(5^{-x^{2}}\right) d x\)
80. \(\int(3-x) 7^{(3-x)^{2}} d x\)
81. \(\int \frac{3^{2 x}}{1+3^{2 x}} d x\)
82. \(\int 2^{\sin x} \cos x d x\)

In Exercises 83-86, evaluate the integral.
83. \(\int_{-1}^{2} 2^{x} d x\)
84. \(\int_{-2}^{2} 4^{x / 2} d x\)
85. \(\int_{0}^{1}\left(5^{x}-3^{x}\right) d x\)
86. \(\int_{1}^{e}\left(6^{x}-2^{x}\right) d x\)

Area In Exercises 87 and 88, find the area of the region bounded by the graphs of the equations.
87. \(y=3^{x}, y=0, x=0, x=3\)
88. \(y=3^{\cos x} \sin x, y=0, x=0, x=\pi\)

Slope Fields In Exercises 89 and 90, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website ww.mathgraphs.com.
89. \(\frac{d y}{d x}=0.4^{x / 3}, \quad\left(0, \frac{1}{2}\right)\)
90. \(\frac{d y}{d x}=e^{\sin x} \cos x, \quad(\pi, 2)\)



\section*{WRITING ABOUT CONCEPTS}
91. Consider the function \(f(x)=\log _{10} x\).
(a) What is the domain of \(f\) ?
(b) Find \(f^{-1}\).
(c) If \(x\) is a real number between 1000 and 10,000 , determine the interval in which \(f(x)\) will be found.
(d) Determine the interval in which \(x\) will be found if \(f(x)\) is negative.
(e) If \(f(x)\) is increased by one unit, \(x\) must have been increased by what factor?
(f) Find the ratio of \(x_{1}\) to \(x_{2}\) given that \(f\left(x_{1}\right)=3 n\) and \(f\left(x_{2}\right)=n\).
92. Order the functions
\(f(x)=\log _{2} x, g(x)=x^{x}, h(x)=x^{2}\), and \(k(x)=2^{x}\)
from the one with the greatest rate of growth to the one with the least rate of growth for large values of \(x\).
93. Find the derivative of each function, given that \(a\) is constant.
(a) \(y=x^{a}\)
(b) \(y=a^{x}\)
(c) \(y=x^{x}\)
(d) \(y=a^{a}\)

\section*{CAPSTONE}
94. The table of values below was obtained by evaluating a function. Determine which of the statements may be true and which must be false, and explain why.
\begin{tabular}{|l|l|l|l|}
\hline\(x\) & 1 & 2 & 8 \\
\hline\(y\) & 0 & 1 & 3 \\
\hline
\end{tabular}
(a) \(y\) is an exponential function of \(x\).
(b) \(y\) is a logarithmic function of \(x\).
(c) \(x\) is an exponential function of \(y\).
(d) \(y\) is a linear function of \(x\).
95. Inflation If the annual rate of inflation averages 5\% over the next 10 years, the approximate cost \(C\) of goods or services during any year in that decade is
\(C(t)=P(1.05)^{t}\)
where \(t\) is the time in years and \(P\) is the present cost.
(a) The price of an oil change for your car is presently \(\$ 24.95\). Estimate the price 10 years from now.
(b) Find the rates of change of \(C\) with respect to \(t\) when \(t=1\) and \(t=8\).
(c) Verify that the rate of change of \(C\) is proportional to \(C\). What is the constant of proportionality?
96. Depreciation After \(t\) years, the value of a car purchased for \(\$ 25,000\) is
\(V(t)=25,000\left(\frac{3}{4}\right)^{t}\).
(a) Use a graphing utility to graph the function and determine the value of the car 2 years after it was purchased.
(b) Find the rates of change of \(V\) with respect to \(t\) when \(t=1\) and \(t=4\).
(c) Use a graphing utility to graph \(V^{\prime}(t)\) and determine the horizontal asymptote of \(V^{\prime}(t)\). Interpret its meaning in the context of the problem.

Compound Interest In Exercises 97-100, complete the table by determining the balance \(\boldsymbol{A}\) for \(\boldsymbol{P}\) dollars invested at rate \(\boldsymbol{r}\) for \(\boldsymbol{t}\) years and compounded \(\boldsymbol{n}\) times per year.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(n\) & 1 & 2 & 4 & 12 & 365 & Continuous compounding \\
\hline\(A\) & & & & & & \\
\hline
\end{tabular}
97. \(P=\$ 1000\)
\(r=3 \frac{1}{2} \%\)
\(t=10\) years
98. \(P=\$ 2500\)
\(r=6 \%\)
\(t=20\) years
99. \(P=\$ 1000\)
\(r=5 \%\)
\(t=30\) years
100. \(P=\$ 5000\)
\(r=7 \%\)
\(t=25\) years
Compound Interest In Exercises 101-104, complete the table by determining the amount of money \(P\) (present value) that should be invested at rate \(r\) to produce a balance of \(\$ 100,000\) in \(t\) years.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t\) & 1 & 10 & 20 & 30 & 40 & 50 \\
\hline\(P\) & & & & & & \\
\hline
\end{tabular}
101. \(r=5 \%\)

Compounded continuously
102. \(r=6 \%\)

Compounded continuously
103. \(r=5 \%\)

Compounded monthly
104. \(r=7 \%\)

Compounded daily
105. Compound Interest Assume that you can earn \(6 \%\) on an investment, compounded daily. Which of the following options would yield the greatest balance after 8 years?
(a) \(\$ 20,000\) now
(b) \(\$ 30,000\) after 8 years
(c) \(\$ 8000\) now and \(\$ 20,000\) after 4 years
(d) \(\$ 9000\) now, \(\$ 9000\) after 4 years, and \(\$ 9000\) after 8 years
106. Compound Interest Consider a deposit of \(\$ 100\) placed in an account for 20 years at \(r \%\) compounded continuously. Use a graphing utility to graph the exponential functions describing the growth of the investment over the 20 years for the following interest rates. Compare the ending balances for the three rates.
(a) \(r=3 \%\)
(b) \(r=5 \%\)
(c) \(r=6 \%\)
107. Timber Yield The yield \(V\) (in millions of cubic feet per acre) for a stand of timber at age \(t\) is
\(V=6.7 e^{(-48.1) / t}\)
where \(t\) is measured in years.
(a) Find the limiting volume of wood per acre as \(t\) approaches infinity.
(b) Find the rates at which the yield is changing when \(t=20\) years and \(t=60\) years.
108. Learning Theory In a group project in learning theory, a mathematical model for the proportion \(P\) of correct responses after \(n\) trials was found to be
\(P=\frac{0.86}{1+e^{-0.25 n}}\).
(a) Find the limiting proportion of correct responses as \(n\) approaches infinity.
(b) Find the rates at which \(P\) is changing after \(n=3\) trials and \(n=10\) trials.
109. Forest Defoliation To estimate the amount of defoliation caused by the gypsy moth during a year, a forester counts the number of egg masses on \(\frac{1}{40}\) of an acre the preceding fall. The percent of defoliation \(y\) is approximated by
\(y=\frac{300}{3+17 e^{-0.0625 x}}\)
where \(x\) is the number of egg masses in thousands. (Source: USDA Forest Service)
(a) Use a graphing utility to graph the function.
(b) Estimate the percent of defoliation if 2000 egg masses are counted.
(c) Estimate the number of egg masses that existed if you observe that approximately \(\frac{2}{3}\) of a forest is defoliated.
(d) Use calculus to estimate the value of \(x\) for which \(y\) is increasing most rapidly.
110. Population Growth A lake is stocked with 500 fish, and the population increases according to the logistic curve
\(p(t)=\frac{10,000}{1+19 e^{-t / 5}}\)
where \(t\) is measured in months.
(a) Use a graphing utility to graph the function.
(b) What is the limiting size of the fish population?
(c) At what rates is the fish population changing at the end of 1 month and at the end of 10 months?
(d) After how many months is the population increasing most rapidly?
111. Modeling Data The breaking strengths \(B\) (in tons) of steel cables of various diameters \(d\) (in inches) are shown in the table.
\begin{tabular}{|l|l|l|l|c|c|c|}
\hline\(d\) & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 \\
\hline\(B\) & 9.85 & 21.8 & 38.3 & 59.2 & 84.4 & 114.0 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to fit an exponential model to the data.
(b) Use a graphing utility to plot the data and graph the model.
(c) Find the rates of growth of the model when \(d=0.8\) and \(d=1.5\).
112. Comparing Models The numbers \(y\) (in thousands) of organ transplants in the United States in the years 2001 through 2006 are shown in the table, with \(x=1\) corresponding to 2001. (Source: Organ Procurement and Transplantation Network)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(y\) & 24.2 & 24.9 & 25.5 & 27.0 & 28.1 & 28.9 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find the following models for the data.
\(y_{1}=a x+b\)
\(y_{2}=a+b \ln x\)
\(y_{3}=a b^{x}\)
\(y_{4}=a x^{b}\)
(b) Use a graphing utility to plot the data and graph each of the models. Which model do you think best fits the data?
(c) Interpret the slope of the linear model in the context of the problem.
(d) Find the rate of change of each of the models for the year 2004. Which model is increasing at the greatest rate in 2004?

\section*{113. Conjecture}
(a) Use a graphing utility to approximate the integrals of the functions
\(f(t)=4\left(\frac{3}{8}\right)^{2 t / 3}, g(t)=4\left(\frac{\sqrt[3]{9}}{4}\right)^{t}\), and \(h(t)=4 e^{-0.653886 t}\) on the interval \([0,4]\).
(b) Use a graphing utility to graph the three functions.
(c) Use the results of parts (a) and (b) to make a conjecture about the three functions. Could you make the conjecture using only part (a)? Explain. Prove your conjecture analytically.
114. Complete the table to demonstrate that \(e\) can also be defined as \(\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}\).
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) & 1 & \(10^{-1}\) & \(10^{-2}\) & \(10^{-4}\) & \(10^{-6}\) \\
\hline\((1+x)^{1 / x}\) & & & & & \\
\hline
\end{tabular}

In Exercises 115 and 116, find an exponential function that fits the experimental data collected over time \(t\).
115.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(y\) & 1200.00 & 720.00 & 432.00 & 259.20 & 155.52 \\
\hline
\end{tabular}
116.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(y\) & 600.00 & 630.00 & 661.50 & 694.58 & 729.30 \\
\hline
\end{tabular}

In Exercises 117-120, find the exact value of the expression.
117. \(5^{1 / \ln 5}\)
118. \(6^{\ln 10 / \ln 6}\)
119. \(9^{1 / \ln 3}\)
120. \(32^{1 / \ln 2}\)

True or False? In Exercises 121-126, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
121. \(e=\frac{271,801}{99,900}\)
122. If \(f(x)=\ln x\), then \(f\left(e^{n+1}\right)-f\left(e^{n}\right)=1\) for any value of \(n\).
123. The functions \(f(x)=2+e^{x}\) and \(g(x)=\ln (x-2)\) are inverse functions of each other.
124. The exponential function \(y=C e^{x}\) is a solution of the differential equation \(d^{n} y / d x^{n}=y, n=1,2,3, \ldots\)
125. The graphs of \(f(x)=e^{x}\) and \(g(x)=e^{-x}\) meet at right angles.
126. If \(f(x)=g(x) e^{x}\), then the only zeros of \(f\) are the zeros of \(g\).
127. (a) Show that \(\left(2^{3}\right)^{2} \neq 2^{\left(3^{2}\right)}\).
(b) Are \(f(x)=\left(x^{x}\right)^{x}\) and \(g(x)=x^{\left(x^{x}\right)}\) the same function? Why or why not?
(c) Find \(f^{\prime}(x)\) and \(g^{\prime}(x)\).
128. Let \(f(x)=\frac{a^{x}-1}{a^{x}+1}\) for \(a>0, a \neq 1\). Show that \(f\) has an inverse function. Then find \(f^{-1}\).
129. Show that solving the logistic differential equation \(\frac{d y}{d t}=\frac{8}{25} y\left(\frac{5}{4}-y\right), \quad y(0)=1\) results in the logistic growth function in Example 7.
\(\left[\right.\) Hint: \(\left.\frac{1}{y\left(\frac{5}{4}-y\right)}=\frac{4}{5}\left(\frac{1}{y}+\frac{1}{\frac{5}{4}-y}\right)\right]\)
130. Given the exponential function \(f(x)=a^{x}\), show that
(a) \(f(u+v)=f(u) \cdot f(v)\).
(b) \(f(2 x)=[f(x)]^{2}\).
131. (a) Determine \(y^{\prime}\) given \(y^{x}=x^{y}\).
(b) Find the slope of the tangent line to the graph of \(y^{x}=x^{y}\) at each of the following points.
(i) \((c, c)\)
(ii) \((2,4)\)
(iii) \((4,2)\)
(c) At what points on the graph of \(y^{x}=x^{y}\) does the tangent line not exist?
132. Consider the functions \(f(x)=1+x\) and \(g(x)=b^{x}, b>1\).
(a) Given \(b=2\), use a graphing utility to graph \(f\) and \(g\) in the same viewing window. Identify the point(s) of intersection.
(b) Repeat part (a) using \(b=3\).
(c) Find all values of \(b\) such that \(g(x) \geq f(x)\) for all \(x\).

\section*{PUTNAM EXAM CHALLENGE}
133. Which is greater
\((\sqrt{n})^{\sqrt{n+1}}\) or \((\sqrt{n+1})^{\sqrt{n}}\)
where \(n>8\) ?
134. Show that if \(x\) is positive, then
\[
\log _{e}\left(1+\frac{1}{x}\right)>\frac{1}{1+x}
\]

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{Using Graphing Utilities to Estimate Slope}

Let \(f(x)= \begin{cases}|x|^{x}, & x \neq 0 \\ 1, & x=0 .\end{cases}\)
(a) Use a graphing utility to graph \(f\) in the viewing window \(-3 \leq x \leq 3,-2 \leq y \leq 2\). What is the domain of \(f\) ?
(b) Use the zoom and trace features of a graphing utility to estimate
\(\lim _{x \rightarrow 0} f(x)\).
(c) Write a short paragraph explaining why the function \(f\) is continuous for all real numbers.
(d) Visually estimate the slope of \(f\) at the point \((0,1)\).
(e) Explain why the derivative of a function can be approximated by the formula
\(\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}\)
for small values of \(\Delta x\). Use this formula to approximate the slope of \(f\) at the point \((0,1)\).
\(f^{\prime}(0) \approx \frac{f(0+\Delta x)-f(0-\Delta x)}{2 \Delta x}=\frac{f(\Delta x)-f(-\Delta x)}{2 \Delta x}\)
What do you think the slope of the graph of \(f\) is at \((0,1)\) ?
(f) Find a formula for the derivative of \(f\) and determine \(f^{\prime}(0)\). Write a short paragraph explaining how a graphing utility might lead you to approximate the slope of a graph incorrectly.
(g) Use your formula for the derivative of \(f\) to find the relative extrema of \(f\). Verify your answer using a graphing utility.

FOR FURTHER INFORMATION For more information on using graphing utilities to estimate slope, see the article "Computer-Aided Delusions" by Richard L. Hall in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\subsection*{5.6 Inverse Trigonometric Functions: Differentiation}


The sine function is one-to-one on \([-\pi / 2, \pi / 2]\).
Figure 5.28
NOTE The term "iff" is used to represent the phrase "if and only if."

Develop properties of the six inverse trigonometric functions.
- Differentiate an inverse trigonometric function.
- Review the basic differentiation rules for elementary functions.

\section*{Inverse Trigonometric Functions}

This section begins with a rather surprising statement: None of the six basic trigonometric functions has an inverse function. This statement is true because all six trigonometric functions are periodic and therefore are not one-to-one. In this section you will examine these six functions to see whether their domains can be redefined in such a way that they will have inverse functions on the restricted domains.

In Example 4 of Section 5.3, you saw that the sine function is increasing (and therefore is one-to-one) on the interval \([-\pi / 2, \pi / 2]\) (see Figure 5.28). On this interval you can define the inverse of the restricted sine function as
\[
y=\arcsin x \quad \text { if and only if } \quad \sin y=x
\]
where \(-1 \leq x \leq 1\) and \(-\pi / 2 \leq \arcsin x \leq \pi / 2\).
Under suitable restrictions, each of the six trigonometric functions is one-to-one and so has an inverse function, as shown in the following definition.

\section*{DEFINITIONS OF INVERSE TRIGONOMETRIC FUNCTIONS}
\begin{tabular}{lll} 
Function & Domain & Range \\
\(y=\arcsin x\) iff \(\sin y=x\) & \(-1 \leq x \leq 1\) & \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\) \\
\(y=\arccos x\) iff \(\cos y=x\) & \(-1 \leq x \leq 1\) & \(0 \leq y \leq \pi\) \\
\(y=\arctan x\) iff tan \(y=x\) & \(-\infty<x<\infty\) & \(-\frac{\pi}{2}<y<\frac{\pi}{2}\) \\
\(y=\operatorname{arccot} x\) iff cot \(y=x\) & \(-\infty<x<\infty\) & \(0<y<\pi\) \\
\(y=\operatorname{arcsec} x\) iff sec \(y=x\) & \(|x| \geq 1\) & \(0 \leq y \leq \pi, \quad y \neq \frac{\pi}{2}\) \\
\(y=\operatorname{arccsc} x\) iff csc \(y=x\) & \(|x| \geq 1\) & \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \quad y \neq 0\)
\end{tabular}

NOTE The term "arcsin \(x\) " is read as "the arcsine of \(x\) " or sometimes "the angle whose sine is \(x\)." An alternative notation for the inverse sine function is " \(\sin ^{-1} x\)."

\section*{EXPLORATION}

The Inverse Secant Function In the definition above, the inverse secant function is defined by restricting the domain of the secant function to the intervals \(\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]\). Most other texts and reference books agree with this, but some disagree. What other domains might make sense? Explain your reasoning graphically. Most calculators do not have a key for the inverse secant function. blv can you use a calculator to evaluate the inverse secant function?


Domain: \([-1,1]\)
Range: \([-\pi / 2, \pi / 2]\)


Domain: \((-\infty,-1] \cup[1, \infty)\)
Range : \([-\pi / 2,0) \cup(0, \pi / 2]\)
Figure 5.29

NOTE When evaluating inverse trigonometric functions, remember that they denote angles in radian measure.

The graphs of the six inverse trigonometric functions are shown in Figure 5.29.


Domain: \([-1,1]\)
Range: \([0, \pi]\)


Domain: \((-\infty,-1] \cup[1, \infty)\)
Range : \([0, \pi / 2) \cup(\pi / 2, \pi]\)

Domain: \((-\infty, \infty)\)


Range : \((-\pi / 2, \pi / 2)\)


Domain: \((-\infty, \infty)\)
Range : \((0, \pi)\)

\section*{EXAMPLE 1 Evaluating Inverse Trigonometric Functions}

Evaluate each function.
a. \(\arcsin \left(-\frac{1}{2}\right)\)
b. \(\arccos 0\)
c. \(\arctan \sqrt{3}\)
d. \(\arcsin (0.3)\)

\section*{Solution}
a. By definition, \(y=\arcsin \left(-\frac{1}{2}\right)\) implies that \(\sin y=-\frac{1}{2}\). In the interval \([-\pi / 2, \pi / 2]\), the correct value of \(y\) is \(-\pi / 6\).
\[
\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}
\]
b. By definition, \(y=\arccos 0\) implies that \(\cos y=0\). In the interval \([0, \pi]\), you have \(y=\pi / 2\).
\[
\arccos 0=\frac{\pi}{2}
\]
c. By definition, \(y=\arctan \sqrt{3}\) implies that \(\tan y=\sqrt{3}\). In the interval \((-\pi / 2, \pi / 2)\), you have \(y=\pi / 3\).
\[
\arctan \sqrt{3}=\frac{\pi}{3}
\]
d. Using a calculator set in radian mode produces
\[
\arcsin (0.3) \approx 0.305
\]

\section*{EXPLORATION}

Graph \(y=\arccos (\cos x)\) for \(-4 \pi \leq x \leq 4 \pi\). Why isn't the graph the same as the graph of \(y=x\) ?


\section*{\(y=\arcsin x\)}

Figure 5.30

\(y=\operatorname{arcsec} \frac{\sqrt{5}}{2}\)
Figure 5.31

Inverse functions have the properties
\[
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x
\]

When applying these properties to inverse trigonometric functions, remember that the trigonometric functions have inverse functions only in restricted domains. For \(x\)-values outside these domains, these two properties do not hold. For example, \(\arcsin (\sin \pi)\) is equal to 0 , not \(\pi\).

\section*{PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS}

If \(-1 \leq x \leq 1\) and \(-\pi / 2 \leq y \leq \pi / 2\), then \(\sin (\arcsin x)=x \quad\) and \(\quad \arcsin (\sin y)=y\).

If \(-\pi / 2<y<\pi / 2\), then \(\tan (\arctan x)=x\) and \(\arctan (\tan y)=y\).
If \(|x| \geq 1\) and \(0 \leq y<\pi / 2\) or \(\pi / 2<y \leq \pi\), then
\(\sec (\operatorname{arcsec} x)=x \quad\) and \(\quad \operatorname{arcsec}(\sec y)=y\).
Similar properties hold for the other inverse trigonometric functions.

\section*{EXAMPLE 2 Solving an Equation}
\[
\begin{aligned}
\arctan (2 x-3) & =\frac{\pi}{4} & & \text { Original equation } \\
\tan [\arctan (2 x-3)] & =\tan \frac{\pi}{4} & & \text { Take tangent of each side. } \\
2 x-3 & =1 & & \tan (\arctan x)=x \\
x & =2 & & \text { Solve for } x .
\end{aligned}
\]

Some problems in calculus require that you evaluate expressions such as \(\cos (\arcsin x)\), as shown in Example 3.

\section*{EXAMPLE 3 Using Right Triangles}
a. Given \(y=\arcsin x\), where \(0<y<\pi / 2\), find \(\cos y\).
b. Given \(y=\operatorname{arcsec}(\sqrt{5} / 2)\), find \(\tan y\).

\section*{Solution}
a. Because \(y=\arcsin x\), you know that \(\sin y=x\). This relationship between \(x\) and \(y\) can be represented by a right triangle, as shown in Figure 5.30.
\[
\cos y=\cos (\arcsin x)=\frac{\text { adj. }}{\text { hyp. }}=\sqrt{1-x^{2}}
\]
(This result is also valid for \(-\pi / 2<y<0\).)
b. Use the right triangle shown in Figure 5.31.
\[
\tan y=\tan \left[\operatorname{arcsec}\left(\frac{\sqrt{5}}{2}\right)\right]=\frac{\text { opp. }}{\text { adj. }}=\frac{1}{2}
\]

NOTE There is no common agreement on the definition of \(\operatorname{arcsec} x(\) or \(\operatorname{arccsc} x)\) for negative values of \(x\). When we defined the range of the arcsecant, we chose to preserve the reciprocal identity
\[
\operatorname{arcsec} x=\arccos \frac{1}{x}
\]

For example, to evaluate \(\operatorname{arcsec}(-2)\), you can write
\[
\operatorname{arcsec}(-2)=\arccos (-0.5) \approx 2.09
\]

One of the consequences of the definition of the inverse secant function given in this text is that its graph has a positive slope at every \(x\)-value in its domain. (See Figure 5.29.) This accounts for the absolute value sign in the formula for the derivative of \(\operatorname{arcsec} x\).

\section*{Derivatives of Inverse Trigonometric Functions}

In Section 5.1 you saw that the derivative of the transcendental function \(f(x)=\ln x\) is the algebraic function \(f^{\prime}(x)=1 / x\). You will now see that the derivatives of the inverse trigonometric functions also are algebraic (even though the inverse trigonometric functions are themselves transcendental).

The following theorem lists the derivatives of the six inverse trigonometric functions. Proofs for \(\arcsin u\) and \(\operatorname{arcos} u\) are given in Appendix A, and the rest are left as an exercise. (See Exercise 104.) Note that the derivatives of \(\arccos u\), \(\operatorname{arccot} u\), and \(\operatorname{arccsc} u\) are the negatives of the derivatives of \(\arcsin u\), \(\arctan u\), and \(\operatorname{arcsec} u\), respectively.

\section*{THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS}

Let \(u\) be a differentiable function of \(x\).
\[
\begin{aligned}
\frac{d}{d x}[\arcsin u] & =\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\arccos u] & =\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
\frac{d}{d x}[\arctan u] & =\frac{u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{arccot} u] & =\frac{-u^{\prime}}{1+u^{2}} \\
\frac{d}{d x}[\operatorname{arcsec} u] & =\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}} & \frac{d}{d x}[\operatorname{arccsc} u] & =\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
\]

\section*{EXAMPLE 4 Differentiating Inverse Trigonometric Functions}
a. \(\frac{d}{d x}[\arcsin (2 x)]=\frac{2}{\sqrt{1-(2 x)^{2}}}=\frac{2}{\sqrt{1-4 x^{2}}}\)
b. \(\frac{d}{d x}[\arctan (3 x)]=\frac{3}{1+(3 x)^{2}}=\frac{3}{1+9 x^{2}}\)
c. \(\frac{d}{d x}[\arcsin \sqrt{x}]=\frac{(1 / 2) x^{-1 / 2}}{\sqrt{1-x}}=\frac{1}{2 \sqrt{x} \sqrt{1-x}}=\frac{1}{2 \sqrt{x-x^{2}}}\)
d. \(\frac{d}{d x}\left[\operatorname{arcsec} e^{2 x}\right]=\frac{2 e^{2 x}}{e^{2 x} \sqrt{\left(e^{2 x}\right)^{2}-1}}=\frac{2 e^{2 x}}{e^{2 x} \sqrt{e^{4 x}-1}}=\frac{2}{\sqrt{e^{4 x}-1}}\)

The absolute value sign is not necessary because \(e^{2 x}>0\).

\section*{EXAMPLE 5 A Derivative That Can Be Simplified}
\[
\begin{aligned}
y & =\arcsin x+x \sqrt{1-x^{2}} \\
y^{\prime} & =\frac{1}{\sqrt{1-x^{2}}}+x\left(\frac{1}{2}\right)(-2 x)\left(1-x^{2}\right)^{-1 / 2}+\sqrt{1-x^{2}} \\
& =\frac{1}{\sqrt{1-x^{2}}}-\frac{x^{2}}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}} \\
& =\sqrt{1-x^{2}}+\sqrt{1-x^{2}}=2 \sqrt{1-x^{2}}
\end{aligned}
\]

NOTE From Example 5, you can see one of the benefits of inverse trigonometric functionsthey can be used to integrate common algebraic functions. For instance, from the result shown in the example, it follows that
\[
\int \sqrt{1-x^{2}} d x=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)
\]


The graph of \(y=(\arctan x)^{2}\) has a horizontal asymptote at \(y=\pi^{2} / 4\).
Figure 5.32

\section*{EXAMPLE 6 Analyzing an Inverse Trigonometric Graph}

Analyze the graph of \(y=(\arctan x)^{2}\).
Solution From the derivative
\[
\begin{aligned}
y^{\prime} & =2(\arctan x)\left(\frac{1}{1+x^{2}}\right) \\
& =\frac{2 \arctan x}{1+x^{2}}
\end{aligned}
\]
you can see that the only critical number is \(x=0\). By the First Derivative Test, this value corresponds to a relative minimum. From the second derivative
\[
\begin{aligned}
y^{\prime \prime} & =\frac{\left(1+x^{2}\right)\left(\frac{2}{1+x^{2}}\right)-(2 \arctan x)(2 x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2(1-2 x \arctan x)}{\left(1+x^{2}\right)^{2}}
\end{aligned}
\]
it follows that points of inflection occur when \(2 x \arctan x=1\). Using Newton's Method, these points occur when \(x \approx \pm 0.765\). Finally, because
\[
\lim _{x \rightarrow \pm \infty}(\arctan x)^{2}=\frac{\pi^{2}}{4}
\]
it follows that the graph has a horizontal asymptote at \(y=\pi^{2} / 4\). The graph is shown in Figure 5.32.

\section*{CeXAmple 7 Maximizing an Angle}

A photographer is taking a picture of a painting hung in an art gallery. The height of the painting is 4 feet. The camera lens is 1 foot below the lower edge of the painting, as shown in Figure 5.33. Hv far should the camera be from the painting to maximize the angle subtended by the camera lens?

Solution In Figure 5.33, let \(\beta\) be the angle to be maximized.
\[
\begin{aligned}
\beta & =\theta-\alpha \\
& =\operatorname{arccot} \frac{x}{5}-\operatorname{arccot} x
\end{aligned}
\]

Differentiating produces
\[
\begin{aligned}
\frac{d \beta}{d x} & =\frac{-1 / 5}{1+\left(x^{2} / 25\right)}-\frac{-1}{1+x^{2}} \\
& =\frac{-5}{25+x^{2}}+\frac{1}{1+x^{2}} \\
& =\frac{4\left(5-x^{2}\right)}{\left(25+x^{2}\right)\left(1+x^{2}\right)} .
\end{aligned}
\]

Because \(d \beta / d x=0\) when \(x=\sqrt{5}\), you can conclude from the First Derivative Test that this distance yields a maximum value of \(\beta\). So, the distance is \(x \approx 2.236\) feet and the angle is \(\beta \approx 0.7297\) radian \(\approx 41.81^{\circ}\).


\section*{Review of Basic Differentiation Rules}

In the 1600 s, Europe was ushered into the scientific age by such great thinkers as Descartes, Galileo, Hygens, Newton, and \&pler. These men believed that nature is governed by basic laws-laws that can, for the most part, be written in terms of mathematical equations. One of the most influential publications of this periodDialogue on the Great World Systems, by Galileo Galilei-has become a classic description of modern scientific thought.

As mathematics has developed during the past few hundred years, a small number of elementary functions have proven sufficient for modeling most \({ }^{\text {ph}}\) phenomena in physics, chemistry, biology, engineering, economics, and a variety of other fields. An elementary function is a function from the following list or one that can be formed as the sum, product, quotient, or composition of functions in the list.
\begin{tabular}{lll} 
Algebraic Functions & & Transcendental Functions \\
Polynomial functions & & Logarithmic functions \\
Rational functions & & Exponential functions \\
Functions involving radicals & & Trigonometric functions \\
& & Inverse trigonometric functions
\end{tabular}

With the differentiation rules introduced so far in the text, you can differentiate any elementary function. For convenience, these differentiation rules are summarized below.

\section*{BASIC DIFFERENTIATION RULES FOR ELEMENTARY FUNCTIONS}
1. \(\frac{d}{d x}[c u]=c u^{\prime}\)
2. \(\frac{d}{d x}[u \pm v]=u^{\prime} \pm v^{\prime}\)
3. \(\frac{d}{d x}[u v]=u v^{\prime}+v u^{\prime}\)
4. \(\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}\)
5. \(\frac{d}{d x}[c]=0\)
6. \(\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}\)
7. \(\frac{d}{d x}[x]=1\)
8. \(\frac{d}{d x}[|u|]=\frac{u}{|u|}\left(u^{\prime}\right), \quad u \neq 0\)
9. \(\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}\)
10. \(\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}\)
11. \(\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}\)
12. \(\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} u^{\prime}\)
13. \(\frac{d}{d x}[\sin u]=(\cos u) u^{\prime}\)
14. \(\frac{d}{d x}[\cos u]=-(\sin u) u^{\prime}\)
15. \(\frac{d}{d x}[\tan u]=\left(\sec ^{2} u\right) u^{\prime}\)
16. \(\frac{d}{d x}[\cot u]=-\left(\csc ^{2} u\right) u^{\prime}\)
17. \(\frac{d}{d x}[\sec u]=(\sec u \tan u) u^{\prime}\)
18. \(\frac{d}{d x}[\csc u]=-(\csc u \cot u) u^{\prime}\)
19. \(\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}\)
20. \(\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}\)
21. \(\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}\)
22. \(\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}\)
23. \(\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}\)
24. \(\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}\)

\footnotetext{
* Some important functions used in engineering and science (such as Bessel functions and gamma functions) are not elementary functions.
}

\subsection*{5.6 Exercises}

Numerical and Graphical Analysis In Exercises 1 and 2, (a) use a graphing utility to complete the table, (b) plot the points in the table and graph the function by hand, (c) use a graphing utility to graph the function and compare the result with your hand-drawn graph in part (b), and (d) determine any intercepts and symmetry of the graph.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(x\) & -1 & -0.8 & -0.6 & -0.4 & -0.2 & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline\(y\) & & & & & & & & & & & \\
\hline
\end{tabular}
1. \(y=\arcsin x\)
2. \(y=\arccos x\)

In Exercises 3 and 4, determine the missing coordinates of the points on the graph of the function.
3.

4.


In Exercises 5-12, evaluate the expression without using a calculator.
5. \(\arcsin \frac{1}{2}\)
6. \(\arcsin 0\)
7. \(\arccos \frac{1}{2}\)
8. \(\arccos 1\)
9. \(\arctan \frac{\sqrt{3}}{3}\)
10. \(\operatorname{arccot}(-\sqrt{3})\)
11. \(\operatorname{arccsc}(-\sqrt{2})\)
12. \(\operatorname{arcsec}(-\sqrt{2})\)

In Exercises 13-16, use a calculator to approximate the value. Round your answer to two decimal places.
13. \(\arccos (-0.8)\)
14. \(\arcsin (-0.39)\)
15. \(\operatorname{arcsec} 1.269\)
16. \(\arctan (-5)\)

In Exercises 17-20, evaluate each expression without using a calculator. (Hint: See Example 3.)
17. (a) \(\sin \left(\arctan \frac{3}{4}\right)\)
18. (a) \(\tan \left(\arccos \frac{\sqrt{2}}{2}\right)\)
(b) \(\sec \left(\arcsin \frac{4}{5}\right)\)
(b) \(\cos \left(\arcsin \frac{5}{13}\right)\)
19. (a) \(\cot \left[\arcsin \left(-\frac{1}{2}\right)\right]\)
(b) \(\csc \left[\arctan \left(-\frac{5}{12}\right)\right]\)
20. (a) \(\sec \left[\arctan \left(-\frac{3}{5}\right)\right]\)
(b) \(\tan \left[\arcsin \left(-\frac{5}{6}\right)\right]\)

In Exercises 21-26, use the figure to write the expression in algebraic form given \(y=\arccos x\), where \(0<y<\pi / 2\).
21. \(\cos y\)
22. \(\sin y\)
23. \(\tan y\)
24. \(\cot y\)
25. \(\sec y\)

26. \(\csc y\)

In Exercises 27-34, write the expression in algebraic form. [Hint: Sketch a right triangle, as demonstrated in Example 3.]
27. \(\cos (\arcsin 2 x)\)
28. \(\sec (\arctan 4 x)\)
29. \(\sin (\operatorname{arcsec} x)\)
30. \(\cos (\operatorname{arccot} x)\)
31. \(\tan \left(\operatorname{arcsec} \frac{x}{3}\right)\)
32. \(\sec [\arcsin (x-1)]\)
33. \(\csc \left(\arctan \frac{x}{\sqrt{2}}\right)\)
34. \(\cos \left(\arcsin \frac{x-h}{r}\right)\)

In Exercises 35 and 36, (a) use a graphing utility to graph \(f\) and \(g\) in the same viewing window to verify that they are equal, (b) use algebra to verify that \(f\) and \(g\) are equal, and (c) identify any horizontal asymptotes of the graphs.
35. \(f(x)=\sin (\arctan 2 x), \quad g(x)=\frac{2 x}{\sqrt{1+4 x^{2}}}\)
36. \(f(x)=\tan \left(\arccos \frac{x}{2}\right), \quad g(x)=\frac{\sqrt{4-x^{2}}}{x}\)

In Exercises 37-40, solve the equation for \(\boldsymbol{x}\).
37. \(\arcsin (3 x-\pi)=\frac{1}{2}\)
38. \(\arctan (2 x-5)=-1\)
39. \(\arcsin \sqrt{2 x}=\arccos \sqrt{x}\)
40. \(\arccos x=\operatorname{arcsec} x\)

In Exercises 41 and 42, verify each identity.
41. (a) \(\operatorname{arccsc} x=\arcsin \frac{1}{x}, \quad x \geq 1\)
(b) \(\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}, \quad x>0\)
42. (a) \(\arcsin (-x)=-\arcsin x, \quad|x| \leq 1\)
(b) \(\arccos (-x)=\pi-\arccos x, \quad|x| \leq 1\)

In Exercises 43-62, find the derivative of the function.
43. \(f(x)=2 \arcsin (x-1)\)
44. \(f(t)=\arcsin t^{2}\)
45. \(g(x)=3 \arccos \frac{x}{2}\)
46. \(f(x)=\operatorname{arcsec} 2 x\)
47. \(f(x)=\arctan e^{x}\)
48. \(f(x)=\arctan \sqrt{x}\)
49. \(g(x)=\frac{\arcsin 3 x}{x}\)
50. \(h(x)=x^{2} \arctan 5 x\)
51. \(h(t)=\sin (\arccos t)\)
52. \(f(x)=\arcsin x+\arccos x\)
53. \(y=2 x \arccos x-2 \sqrt{1-x^{2}}\)
54. \(y=\ln \left(t^{2}+4\right)-\frac{1}{2} \arctan \frac{t}{2}\)
55. \(y=\frac{1}{2}\left(\frac{1}{2} \ln \frac{x+1}{x-1}+\arctan x\right)\)
56. \(y=\frac{1}{2}\left[x \sqrt{4-x^{2}}+4 \arcsin \left(\frac{x}{2}\right)\right]\)
57. \(y=x \arcsin x+\sqrt{1-x^{2}}\)
58. \(y=x \arctan 2 x-\frac{1}{4} \ln \left(1+4 x^{2}\right)\)
59. \(y=8 \arcsin \frac{x}{4}-\frac{x \sqrt{16-x^{2}}}{2}\)
60. \(y=25 \arcsin \frac{x}{5}-x \sqrt{25-x^{2}}\)
61. \(y=\arctan x+\frac{x}{1+x^{2}} \quad\) 62. \(y=\arctan \frac{x}{2}-\frac{1}{2\left(x^{2}+4\right)}\)

In Exercises 63-68, find an equation of the tangent line to the graph of the function at the given point.
63. \(y=2 \arcsin x, \quad\left(\frac{1}{2}, \frac{\pi}{3}\right)\)
64. \(y=\frac{1}{2} \arccos x, \quad\left(-\frac{\sqrt{2}}{2}, \frac{3 \pi}{8}\right)\)
65. \(y=\arctan \frac{x}{2},\left(2, \frac{\pi}{4}\right) \quad\) 66. \(y=\operatorname{arcsec} 4 x, \quad\left(\frac{\sqrt{2}}{4}, \frac{\pi}{4}\right)\)
67. \(y=4 x \arccos (x-1), \quad(1,2 \pi)\)
68. \(y=3 x \arcsin x, \quad\left(\frac{1}{2}, \frac{\pi}{4}\right)\)

CAS Linear and Quadratic Approximations In Exercises 69-72, use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Sketch the graph of the function and its linear and quadratic approximations.
69. \(f(x)=\arctan x, \quad a=0\)
70. \(f(x)=\arccos x, \quad a=0\)
71. \(f(x)=\arcsin x, \quad a=\frac{1}{2}\)
72. \(f(x)=\arctan x, \quad a=1\)

In Exercises 73-76, find any relative extrema of the function.
73. \(f(x)=\operatorname{arcsec} x-x\)
74. \(f(x)=\arcsin x-2 x\)
75. \(f(x)=\arctan x-\arctan (x-4)\)
76. \(h(x)=\arcsin x-2 \arctan x\)

In Exercises 77-80, analyze and sketch a graph of the function. Identify any relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results.
77. \(f(x)=\arcsin (x-1)\)
78. \(f(x)=\arctan x+\frac{\pi}{2}\)
79. \(f(x)=\operatorname{arcsec} 2 x\)
80. \(f(x)=\arccos \frac{x}{4}\)

Implicit Differentiation In Exercises 81-84, find an equation of the tangent line to the graph of the equation at the given point.
81. \(x^{2}+x \arctan y=y-1, \quad\left(-\frac{\pi}{4}, 1\right)\)
82. \(\arctan (x y)=\arcsin (x+y), \quad(0,0)\)
83. \(\arcsin x+\arcsin y=\frac{\pi}{2}, \quad\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\)
84. \(\arctan (x+y)=y^{2}+\frac{\pi}{4}, \quad(1,0)\)

\section*{WRITING ABOUT CONCEPTS}
85. Explain why the domains of the trigonometric functions are restricted when finding the inverse trigonometric functions.
86. Explain why \(\tan \pi=0\) does not imply that \(\arctan 0=\pi\).
87. Explain how to graph \(y=\operatorname{arccot} x\) on a graphing utility that does not have the arccotangent function.
88. Are the derivatives of the inverse trigonometric functions algebraic or transcendental functions? List the derivatives of the inverse trigonometric functions.
89. (a) Use a graphing utility to evaluate \(\arcsin (\arcsin 0.5)\) and \(\arcsin (\arcsin 1)\).
(b) Let \(f(x)=\arcsin (\arcsin x)\). Find the values of \(x\) in the interval \(-1 \leq x \leq 1\) such that \(f(x)\) is a real number.

\section*{CAPSTONE}
90. The point \(\left(\frac{3 \pi}{2}, 0\right)\) is on the graph of \(y=\cos x\). Does \(\left(0, \frac{3 \pi}{2}\right)\) lie on the graph of \(y=\arccos x\) ? If not, does this contradict the definition of inverse function?

True or False? In Exercises 91-96, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
91. Because \(\cos \left(-\frac{\pi}{3}\right)=\frac{1}{2}\), it follows that \(\arccos \frac{1}{2}=-\frac{\pi}{3}\).
92. \(\arcsin \frac{\pi}{4}=\frac{\sqrt{2}}{2}\)
93. The slope of the graph of the inverse tangent function is positive for all \(x\).
94. The range of \(y=\arcsin x\) is \([0, \pi]\).
95. \(\frac{d}{d x}[\arctan (\tan x)]=1\) for all \(x\) in the domain.
96. \(\arcsin ^{2} x+\arccos ^{2} x=1\)
97. Angular Rate of Change An airplane flies at an altitude of 5 miles toward a point directly over an observer. Consider \(\theta\) and \(x\) as shown in the figure on the next page.


Figure for 97
(a) Write \(\theta\) as a function of \(x\).
(b) The speed of the plane is 400 miles per hour. Find \(d \theta / d t\) when \(x=10\) miles and \(x=3\) miles.
98. Writing Repeat Exercise 97 for an altitude of 3 miles and describe how the altitude affects the rate of change of \(\theta\).
99. Angular Rate of Change In a free-fall experiment, an object is dropped from a height of 256 feet. A camera on the ground 500 feet from the point of impact records the fall of the object (see figure).
(a) Find the position function that yields the height of the object at time \(t\) assuming the object is released at time \(t=0\). At what time will the object reach ground level?
(b) Find the rates of change of the angle of elevation of the camera when \(t=1\) and \(t=2\).


Figure for 99


Figure for 100
100. Angular Rate of Change A television camera at ground level is filming the lift-off of a space shuttle at a point 800 meters from the launch pad. Let \(\theta\) be the angle of elevation of the shuttle and let \(s\) be the distance between the camera and the shuttle (see figure). Write \(\theta\) as a function of \(s\) for the period of time when the shuttle is moving vertically. Differentiate the result to find \(d \theta / d t\) in terms of \(s\) and \(d s / d t\).
101. Maximizing an Angle A billboard 85 feet wide is perpendicular to a straight road and is 40 feet from the road (see figure). Find the point on the road at which the angle \(\theta\) subtended by the billboard is a maximum.


Figure for 101


Figure for 102
102. Angular Speed A patrol car is parked 50 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of 30 revolutions per minute. Write \(\theta\) as a function of \(x\). blv fast is the light beam moving along the wall when the beam makes an angle of \(\theta=45^{\circ}\) with the line perpendicular from the light to the wall?
103. (a) Prove that \(\arctan x+\arctan y=\arctan \frac{x+y}{1-x y}, \quad x y \neq 1\).
(b) Use the formula in part (a) to show that
\(\arctan \frac{1}{2}+\arctan \frac{1}{3}=\frac{\pi}{4}\).
104. drify each differentiation formula.
(a) \(\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}\)
(b) \(\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}\)
(c) \(\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}\)
(d) \(\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}\)
105. Existence of an Inverse Determine the values of \(k\) such that the function \(f(x)=k x+\sin x\) has an inverse function.
106. Think About It Use a graphing utility to graph \(f(x)=\sin x\) and \(g(x)=\arcsin (\sin x)\).
(a) Why isn't the graph of \(g\) the line \(y=x\) ?
(b) Determine the extrema of \(g\).
107. (a) Graph the function \(f(x)=\arccos x+\arcsin x\) on the interval \([-1,1]\).
(b) Describe the graph of \(f\).
(c) Arify the result of part (b) analytically.
108. Prove that \(\arcsin x=\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right),|x|<1\).
109. In the figure find the value of \(c\) in the interval \([0,4]\) on the \(x\) axis thatmaximizes angle \(\theta\).


Figure for 109


Figure for 110
110. In the figure find \(P R\) such that \(0 \leq P R \leq 3\) and \(m \angle \theta\) is a maximum.
111. Some calculus textbooks define the inverse secant function using the range \([0, \pi / 2) \cup[\pi, 3 \pi / 2)\).
(a) Sketch the graph \(y=\operatorname{arcsec} x\) using this range.
(b) Show that \(y^{\prime}=\frac{1}{x \sqrt{x^{2}-1}}\).

\subsection*{5.7 Inverse Trigonometric Functions: Integration}

FOR FURTHER INFORMATION For a detailed proof of rule 2 of Theorem 5.17, see the article "A Direct Proof of the Integral Formula for Arctangent" by Arnold J. Insel in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.
- Integrate functions whose antiderivatives involve inverse trigonometric functions.
- Use the method of completing the square to integrate a function.
- Review the basic integration rules involving elementary functions.

\section*{Integrals Involving Inverse Trigonometric Functions}

The derivatives of the six inverse trigonometric functions fall into three pairs. In each pair, the derivative of one function is the negative of the other. For example,
\[
\frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}}
\]
and
\[
\frac{d}{d x}[\arccos x]=-\frac{1}{\sqrt{1-x^{2}}}
\]

When listing the antiderivative that corresponds to each of the inverse trigonometric functions, you need to use only one member from each pair. It is conventional to use \(\arcsin x\) as the antiderivative of \(1 / \sqrt{1-x^{2}}\), rather than \(-\arccos x\). The next theorem gives one antiderivative formula for each of the three pairs. The proofs of these integration rules are left to you (see Exercises 87-89).

\section*{THEOREM 5.17 INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS}

Let \(u\) be a differentiable function of \(x\), and let \(a>0\).
1. \(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C\)
2. \(\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C\)
3. \(\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C\)

\section*{EXAMPLE 1 Integration with Inverse Trigonometric Functions}
a. \(\int \frac{d x}{\sqrt{4-x^{2}}}=\arcsin \frac{x}{2}+C\)
b. \(\int \frac{d x}{2+9 x^{2}}=\frac{1}{3} \int \frac{3 d x}{(\sqrt{2})^{2}+(3 x)^{2}} \quad u=3 x, a=\sqrt{2}\)
\[
=\frac{1}{3 \sqrt{2}} \arctan \frac{3 x}{\sqrt{2}}+C
\]
c. \(\int \frac{d x}{x \sqrt{4 x^{2}-9}}=\int \frac{2 d x}{2 x \sqrt{(2 x)^{2}-3^{2}}} \quad u=2 x, a=3\)
\[
=\frac{1}{3} \operatorname{arcsec} \frac{|2 x|}{3}+C
\]

The integrals in Example 1 are fairly straightforward applications of integration formulas. Unfortunately, this is not typical. The integration formulas for inverse trigonometric functions can be disguised in many ways.

\section*{TECHNOLOGY PITFALL}

Computer software that can perform symbolic integration is useful for integrating functions such as the one in Example 2. When using such software, however, you must remember that it can fail to find an antiderivative for two reasons. First, some elementary functions simply do not have antiderivatives that are elementary functions. Second, every symbolic integration utility has limitations-you might have entered a function that the software was not programmed to handle. You should also remember that antiderivatives involving trigonometric functions or logarithmic functions can be written in many different forms. For instance, one symbolic integration utility found the integral in Example 2 to be
\(\int \frac{d x}{\sqrt{e^{2 x}-1}}=\arctan \sqrt{e^{2 x}-1}+C\).
Try showing that this antiderivative is equivalent to that obtained in Example 2.

\section*{EXAMPLE 2 Integration by Substitution}

Find \(\int \frac{d x}{\sqrt{e^{2 x}-1}}\).
Solution As it stands, this integral doesn't fit any of the three inverse trigonometric formulas. Using the substitution \(u=e^{x}\), however, produces
\[
u=e^{x} \quad \square d u=e^{x} d x \quad \square d x=\frac{d u}{e^{x}}=\frac{d u}{u}
\]

With this substitution, you can integrate as follows.
\[
\begin{aligned}
\int \frac{d x}{\sqrt{e^{2 x}-1}} & =\int \frac{d x}{\sqrt{\left(e^{x}\right)^{2}-1}} & & \text { Write } e^{2 x} \text { as }\left(e^{x}\right)^{2} . \\
& =\int \frac{d u / u}{\sqrt{u^{2}-1}} & & \text { Substitute. } \\
& =\int \frac{d u}{u \sqrt{u^{2}-1}} & & \text { Rewrite to fit Arcsecant Rule. } \\
& =\operatorname{arcsec} \frac{|u|}{1}+C & & \text { Apply Arcsecant Rule. } \\
& =\operatorname{arcsec} e^{x}+C & & \text { Back-substitute. }
\end{aligned}
\]

\section*{EXAMPLE 3 Rewriting as the Sum of Two Quotients}

Find \(\int \frac{x+2}{\sqrt{4-x^{2}}} d x\).
Solution This integral does not appear to fit any of the basic integration formulas. By splitting the integrand into two parts, however, you can see that the first part can be found with the Power Rule and the second part yields an inverse sine function.
\[
\begin{aligned}
\int \frac{x+2}{\sqrt{4-x^{2}}} d x & =\int \frac{x}{\sqrt{4-x^{2}}} d x+\int \frac{2}{\sqrt{4-x^{2}}} d x \\
& =-\frac{1}{2} \int\left(4-x^{2}\right)^{-1 / 2}(-2 x) d x+2 \int \frac{1}{\sqrt{4-x^{2}}} d x \\
& =-\frac{1}{2}\left[\frac{\left(4-x^{2}\right)^{1 / 2}}{1 / 2}\right]+2 \arcsin \frac{x}{2}+C \\
& =-\sqrt{4-x^{2}}+2 \arcsin \frac{x}{2}+C
\end{aligned}
\]

\section*{Completing the Square}

Completing the square helps when quadratic functions are involved in the integrand. For example, the quadratic \(x^{2}+b x+c\) can be written as the difference of two squares by adding and subtracting \((b / 2)^{2}\).
\[
\begin{aligned}
x^{2}+b x+c & =x^{2}+b x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
& =\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
\end{aligned}
\]


The area of the region bounded by the graph of \(f\), the \(x\)-axis, \(x=\frac{3}{2}\), and \(x=\frac{9}{4}\) is \(\pi / 6\). Figure 5.34

TECHNOLOGY With definite integrals such as the one given in Example 5, remember that you can resort to a numerical solution. For instance, applying Simpson's Rule (with \(n=12\) ) to the integral in the example, you obtain
\[
\int_{3 / 2}^{9 / 4} \frac{1}{\sqrt{3 x-x^{2}}} d x \approx 0.523599
\]

This differs from the exact value of the integral \((\pi / 6 \approx 0.5235988)\) by less than one millionth.

\section*{EXAMPLE 4 Completing the Square}

Find \(\int \frac{d x}{x^{2}-4 x+7}\).
Solution You can write the denominator as the sum of two squares, as follows.
\[
\begin{aligned}
x^{2}-4 x+7 & =\left(x^{2}-4 x+4\right)-4+7 \\
& =(x-2)^{2}+3=u^{2}+a^{2}
\end{aligned}
\]

Now, in this completed square form, let \(u=x-2\) and \(a=\sqrt{3}\).
\[
\int \frac{d x}{x^{2}-4 x+7}=\int \frac{d x}{(x-2)^{2}+3}=\frac{1}{\sqrt{3}} \arctan \frac{x-2}{\sqrt{3}}+C
\]

If the leading coefficient is not 1 , it helps to factor before completing the square. For instance, you can complete the square of \(2 x^{2}-8 x+10\) by factoring first.
\[
\begin{aligned}
2 x^{2}-8 x+10 & =2\left(x^{2}-4 x+5\right) \\
& =2\left(x^{2}-4 x+4-4+5\right) \\
& =2\left[(x-2)^{2}+1\right]
\end{aligned}
\]

To complete the square when the coefficient of \(x^{2}\) is negative, use the same factoring process shown above. For instance, you can complete the square for \(3 x-x^{2}\) as shown.
\[
\begin{aligned}
3 x-x^{2} & =-\left(x^{2}-3 x\right) \\
& =-\left[x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right] \\
& =\left(\frac{3}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}
\end{aligned}
\]

\section*{EXAMPLE 5 Completing the Square (Negative Leading Coefficient)}

Find the area of the region bounded by the graph of
\[
f(x)=\frac{1}{\sqrt{3 x-x^{2}}}
\]
the \(x\)-axis, and the lines \(x=\frac{3}{2}\) and \(x=\frac{9}{4}\).
Solution In Figure 5.34, you can see that the area is given by
\[
\text { Area }=\int_{3 / 2}^{9 / 4} \frac{1}{\sqrt{3 x-x^{2}}} d x
\]

Using the completed square form derived above, you can integrate as shown.
\[
\begin{aligned}
\int_{3 / 2}^{9 / 4} \frac{d x}{\sqrt{3 x-x^{2}}} & =\int_{3 / 2}^{9 / 4} \frac{d x}{\sqrt{(3 / 2)^{2}-[x-(3 / 2)]^{2}}} \\
& \left.=\arcsin \frac{x-(3 / 2)}{3 / 2}\right]_{3 / 2}^{9 / 4} \\
& =\arcsin \frac{1}{2}-\arcsin 0 \\
& =\frac{\pi}{6} \\
& \approx 0.524
\end{aligned}
\]

\section*{Review of Basic Integration Rules}

You have now completed the introduction of the basic integration rules. To be efficient at applying these rules, you should have practiced enough so that each rule is committed to memory.

\section*{BASIC INTEGRATION RULES ( \(a>0\) )}
1. \(\int k f(u) d u=k \int f(u) d u\)
3. \(\int d u=u+C\)
5. \(\int \frac{d u}{u}=\ln |u|+C\)
7. \(\int a^{u} d u=\left(\frac{1}{\ln a}\right) a^{u}+C\)
9. \(\int \cos u d u=\sin u+C\)
11. \(\int \cot u d u=\ln |\sin u|+C\)
13. \(\int \csc u d u=-\ln |\csc u+\cot u|+C\)
15. \(\int \csc ^{2} u d u=-\cot u+C\)
17. \(\int \csc u \cot u d u=-\csc u+C\)
19. \(\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C\)
2. \(\int[f(u) \pm g(u)] d u=\int f(u) d u \pm \int g(u) d u\)
4. \(\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1\)
6. \(\int e^{u} d u=e^{u}+C\)
8. \(\int \sin u d u=-\cos u+C\)
10. \(\int \tan u d u=-\ln |\cos u|+C\)
12. \(\int \sec u d u=\ln |\sec u+\tan u|+C\)
14. \(\int \sec ^{2} u d u=\tan u+C\)
16. \(\int \sec u \tan u d u=\sec u+C\)
18. \(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C\)
20. \(\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C\)

You can learn a lot about the nature of integration by comparing this list with the summary of differentiation rules given in the preceding section. For differentiation, you now have rules that allow you to differentiate any elementary function. For integration, this is far from true.

The integration rules listed above are primarily those that were happened on during the development of differentiation rules. So far, you have not learned any rules or techniques for finding the antiderivative of a general product or quotient, the natural logarithmic function, or the inverse trigonometric functions. More importantly, you cannot apply any of the rules in this list unless you can create the proper \(d u\) corresponding to the \(u\) in the formula. The point is that you need to work more on integration techniques, which you will do in Chapter 8. The next two examples should give you a better feeling for the integration problems that you can and cannot do with the techniques and rules you now know.

\section*{EXAMPLE 6 Comparing Integration Problems}

Find as many of the following integrals as you can using the formulas and techniques you have studied so far in the text.
a. \(\int \frac{d x}{x \sqrt{x^{2}-1}}\)
b. \(\int \frac{x d x}{\sqrt{x^{2}-1}}\)
c. \(\int \frac{d x}{\sqrt{x^{2}-1}}\)

Solution
a. You can find this integral (it fits the Arcsecant Rule).
\[
\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec}|x|+C
\]
b. You can find this integral (it fits the Power Rule).
\[
\begin{aligned}
\int \frac{x d x}{\sqrt{x^{2}-1}} & =\frac{1}{2} \int\left(x^{2}-1\right)^{-1 / 2}(2 x) d x \\
& =\frac{1}{2}\left[\frac{\left(x^{2}-1\right)^{1 / 2}}{1 / 2}\right]+C \\
& =\sqrt{x^{2}-1}+C
\end{aligned}
\]
c. You cannot find this integral using the techniques you have studied so far. (You should scan the list of basic integration rules to verify this conclusion.)

\section*{EXAMPLE 7 Comparing Integration Problems}

Find as many of the following integrals as you can using the formulas and techniques you have studied so far in the text.
a. \(\int \frac{d x}{x \ln x}\)
b. \(\int \frac{\ln x d x}{x}\)
c. \(\int \ln x d x\)

\section*{Solution}
a. You can find this integral (it fits the Log Rule).
\[
\begin{aligned}
\int \frac{d x}{x \ln x} & =\int \frac{1 / x}{\ln x} d x \\
& =\ln |\ln x|+C
\end{aligned}
\]
b. You can find this integral (it fits the Power Rule).
\[
\begin{aligned}
\int \frac{\ln x d x}{x} & =\int\left(\frac{1}{x}\right)(\ln x)^{1} d x \\
& =\frac{(\ln x)^{2}}{2}+C
\end{aligned}
\]
c. You cannot find this integral using the techniques you have studied so far.

NOTE Note in Examples 6 and 7 that the simplest functions are the ones that you cannot yet integrate.

\subsection*{5.7 Exercises}

In Exercises 1-24, find the integral.
1. \(\int \frac{d x}{\sqrt{9-x^{2}}}\)
2. \(\int \frac{d x}{\sqrt{1-4 x^{2}}}\)
3. \(\int \frac{7}{16+x^{2}} d x\)
4. \(\int \frac{12}{1+9 x^{2}} d x\)
5. \(\int \frac{1}{x \sqrt{4 x^{2}-1}} d x\)
6. \(\int \frac{1}{4+(x-3)^{2}} d x\)
7. \(\int \frac{1}{\sqrt{1-(x+1)^{2}}} d x\)
8. \(\int \frac{t}{t^{4}+16} d t\)
9. \(\int \frac{t}{\sqrt{1-t^{4}}} d t\)
10. \(\int \frac{1}{x \sqrt{x^{4}-4}} d x\)
11. \(\int \frac{t}{t^{4}+25} d t\)
12. \(\int \frac{1}{x \sqrt{1-(\ln x)^{2}}} d x\)
13. \(\int \frac{e^{2 x}}{4+e^{4 x}} d x\)
14. \(\int \frac{1}{3+(x-2)^{2}} d x\)
15. \(\int \frac{\sec ^{2} x}{\sqrt{25-\tan ^{2} x}} d x\)
16. \(\int \frac{\sin x}{7+\cos ^{2} x} d x\)
17. \(\int \frac{x^{3}}{x^{2}+1} d x\)
18. \(\int \frac{x^{4}-1}{x^{2}+1} d x\)
19. \(\int \frac{1}{\sqrt{x} \sqrt{1-x}} d x\)
20. \(\int \frac{3}{2 \sqrt{x}(1+x)} d x\)
21. \(\int \frac{x-3}{x^{2}+1} d x\)
22. \(\int \frac{4 x+3}{\sqrt{1-x^{2}}} d x\)
23. \(\int \frac{x+5}{\sqrt{9-(x-3)^{2}}} d x\)
24. \(\int \frac{x-2}{(x+1)^{2}+4} d x\)

In Exercises 25-38, evaluate the integral.
25. \(\int_{0}^{1 / 6} \frac{3}{\sqrt{1-9 x^{2}}} d x\)
26. \(\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}\)
27. \(\int_{0}^{\sqrt{3} / 2} \frac{1}{1+4 x^{2}} d x\)
28. \(\int_{\sqrt{3}}^{3} \frac{6}{9+x^{2}} d x\)
29. \(\int_{-1 / 2}^{0} \frac{x}{\sqrt{1-x^{2}}} d x\)
30. \(\int_{-\sqrt{3}}^{0} \frac{x}{1+x^{2}} d x\)
31. \(\int_{3}^{6} \frac{1}{25+(x-3)^{2}} d x\)
32. \(\int_{1}^{4} \frac{1}{x \sqrt{16 x^{2}-5}} d x\)
33. \(\int_{0}^{\ln 5} \frac{e^{x}}{1+e^{2 x}} d x\)
34. \(\int_{\ln 2}^{\ln 4} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x\)
35. \(\int_{\pi / 2}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x\)
36. \(\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin ^{2} x} d x\)
37. \(\int_{0}^{1 / \sqrt{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x\)
38. \(\int_{0}^{1 / \sqrt{2}} \frac{\arccos x}{\sqrt{1-x^{2}}} d x\)

In Exercises 39-50, find or evaluate the integral. (Complete the square, if necessary.)
39. \(\int_{0}^{2} \frac{d x}{x^{2}-2 x+2}\)
40. \(\int_{-2}^{2} \frac{d x}{x^{2}+4 x+13}\)
41. \(\int \frac{2 x}{x^{2}+6 x+13} d x\)
42. \(\int \frac{2 x-5}{x^{2}+2 x+2} d x\)
43. \(\int \frac{1}{\sqrt{-x^{2}-4 x}} d x\)
44. \(\int \frac{2}{\sqrt{-x^{2}+4 x}} d x\)
45. \(\int \frac{x+2}{\sqrt{-x^{2}-4 x}} d x\)
46. \(\int \frac{x-1}{\sqrt{x^{2}-2 x}} d x\)
47. \(\int_{2}^{3} \frac{2 x-3}{\sqrt{4 x-x^{2}}} d x\)
48. \(\int \frac{1}{(x-1) \sqrt{x^{2}-2 x}} d x\)
49. \(\int \frac{x}{x^{4}+2 x^{2}+2} d x\)
50. \(\int \frac{x}{\sqrt{9+8 x^{2}-x^{4}}} d x\)

In Exercises 51-54, use the specified substitution to find or evaluate the integral.
51. \(\int \sqrt{e^{t}-3} d t\)
52. \(\int \frac{\sqrt{x-2}}{x+1} d x\)
\(u=\sqrt{e^{t}-3}\)
\(u=\sqrt{x-2}\)
53. \(\int_{1}^{3} \frac{d x}{\sqrt{x}(1+x)}\)
54. \(\int_{0}^{1} \frac{d x}{2 \sqrt{3-x} \sqrt{x+1}}\)
\(u=\sqrt{x+1}\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 55-57, determine which of the integrals can be found using the basic integration formulas you have studied so far in the text.
55. (a) \(\int \frac{1}{\sqrt{1-x^{2}}} d x\) (b) \(\int \frac{x}{\sqrt{1-x^{2}}} d x\) (c) \(\int \frac{1}{x \sqrt{1-x^{2}}} d x\)
56. (a) \(\int e^{x^{2}} d x\)
(b) \(\int x e^{x^{2}} d x\)
(c) \(\int \frac{1}{x^{2}} e^{1 / x} d x\)
57. (a) \(\int \sqrt{x-1} d x\)
(b) \(\int x \sqrt{x-1} d x\)
(c) \(\int \frac{x}{\sqrt{x-1}} d x\)
58. Determine which value best approximates the area of the region between the \(x\)-axis and the function
\(f(x)=\frac{1}{\sqrt{1-x^{2}}}\)
over the interval \([-0.5,0.5]\). (Make your selection on the basis of a sketch of the region and not by performing any calculations.)
(a) 4
(b) -3
(c) 1
(d) 2
(e) 3
59. Decide whether you can find the integral
\(\int \frac{2 d x}{\sqrt{x^{2}+4}}\)
using the formulas and techniques you have studied so far. Explain your reasoning.

\section*{CAPSTONE}
60. Determine which of the integrals can be found using the basic integration formulas you have studied so far in the text.
(a) \(\int \frac{1}{1+x^{4}} d x\)
(b) \(\int \frac{x}{1+x^{4}} d x\)
(c) \(\int \frac{x^{3}}{1+x^{4}} d x\)

Differential Equations In Exercises 61 and 62, use the differential equation and the specified initial condition to find \(y\).
61. \(\frac{d y}{d x}=\frac{1}{\sqrt{4-x^{2}}}\)
62. \(\frac{d y}{d x}=\frac{1}{4+x^{2}}\)
\(y(0)=\pi\)
\(y(2)=\pi\)

Slope Fields In Exercises 63-66, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
63. \(\frac{d y}{d x}=\frac{3}{1+x^{2}}\),
64. \(\frac{d y}{d x}=\frac{2}{9+x^{2}}\),


65. \(\frac{d y}{d x}=\frac{1}{x \sqrt{x^{2}-4}}\),
66. \(\frac{d y}{d x}=\frac{2}{\sqrt{25-x^{2}}}\),
\((5, \pi)\)



Slope Fields In Exercises 67-70, use a computer algebra system to graph the slope field for the differential equation and graph the solution satisfying the specified initial condition.
67. \(\frac{d y}{d x}=\frac{10}{x \sqrt{x^{2}-1}}\),
\(y(3)=0\)
68. \(\frac{d y}{d x}=\frac{1}{12+x^{2}}, \quad y(4)=2\)
69. \(\frac{d y}{d x}=\frac{2 y}{\sqrt{16-x^{2}}}\),
\(y(0)=2\)
70. \(\frac{d y}{d x}=\frac{\sqrt{y}}{1+x^{2}}\),
\(y(0)=4\)

Area In Exercises 71-76, find the area of the region.
71. \(y=\frac{2}{\sqrt{4-x^{2}}}\)

73. \(y=\frac{1}{x^{2}-2 x+5}\)

75. \(y=\frac{3 \cos x}{1+\sin ^{2} x}\)

72. \(y=\frac{1}{x \sqrt{x^{2}-1}}\)

74. \(y=\frac{2}{x^{2}+4 x+8}\)

76. \(y=\frac{4 e^{x}}{1+e^{2 x}}\)


In Exercises 77 and 78, (a) verify the integration formula, then (b) use it to find the area of the region.
77. \(\int \frac{\arctan x}{x^{2}} d x=\ln x-\frac{1}{2} \ln \left(1+x^{2}\right)-\frac{\arctan x}{x}+C\)


Figure for 77


Figure for 78
78. \(\int(\arcsin x)^{2} d x\)
\[
=x(\arcsin x)^{2}-2 x+2 \sqrt{1-x^{2}} \arcsin x+C
\]
79. (a) Sketch the region whose area is represented by \(\int_{0}^{1} \arcsin x d x\)
(b) Use the integration capabilities of a graphing utility to approximate the area.
(c) Find the exact area analytically.
80. (a) Show that \(\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi\).
(b) Approximate the number \(\pi\) using Simpson's Rule (with \(n=6\) ) and the integral in part (a).
(c) Approximate the number \(\pi\) by using the integration capabilities of a graphing utility.
81. Investigation Consider the function \(F(x)=\frac{1}{2} \int_{x}^{x+2} \frac{2}{t^{2}+1} d t\).
(a) Write a short paragraph giving a geometric interpretation of the function \(F(x)\) relative to the function \(f(x)=\frac{2}{x^{2}+1}\). Use what you have written to guess the value of \(x\) that will make \(F\) maximum.
(b) Perform the specified integration to find an alternative form of \(F(x)\). Use calculus to locate the value of \(x\) that will make \(F\) maximum and compare the result with your guess in part (a).
82. Consider the integral \(\int \frac{1}{\sqrt{6 x-x^{2}}} d x\).
(a) Find the integral by completing the square of the radicand.
(b) Find the integral by making the substitution \(u=\sqrt{x}\).
(c) The antiderivatives in parts (a) and (b) appear to be significantly different. Use a graphing utility to graph each antiderivative in the same viewing window and determine the relationship between them. Find the domain of each.

True or False? In Exercises 83-86, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
83. \(\int \frac{d x}{3 x \sqrt{9 x^{2}-16}}=\frac{1}{4} \operatorname{arcsec} \frac{3 x}{4}+C\)
84. \(\int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C\)
85. \(\int \frac{d x}{\sqrt{4-x^{2}}}=-\arccos \frac{x}{2}+C\)
86. One way to find \(\int \frac{2 e^{2 x}}{\sqrt{9-e^{2 x}}} d x\) is to use the Arcsine Rule.

Verifying Integration Rules In Exercises 87-89, verify each rule by differentiating. Let \(\boldsymbol{a}>\mathbf{0}\).
87. \(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C\)
88. \(\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C\)
89. \(\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C\)
90. Numerical Integration (a) Write an integral that represents the area of the region in the figure. (b) Then use the Trapezoidal Rule with \(n=8\) to estimate the area of the region. (c) Explain how you can use the results of parts (a) and (b) to estimate \(\pi\).

91. Vertical Motion An object is projected upward from ground level with an initial velocity of 500 feet per second. In this exercise, the goal is to analyze the motion of the object during its upward flight.
(a) If air resistance is neglected, find the velocity of the object as a function of time. Use a graphing utility to graph this function.
(b) Use the result of part (a) to find the position function and determine the maximum height attained by the object.
(c) If the air resistance is proportional to the square of the velocity, you obtain the equation
\(\frac{d v}{d t}=-\left(32+k v^{2}\right)\)
where -32 feet per second per second is the acceleration due to gravity and \(k\) is a constant. Find the velocity as a function of time by solving the equation
\(\int \frac{d v}{32+k v^{2}}=-\int d t\).
(d) Use a graphing utility to graph the velocity function \(v(t)\) in part (c) for \(k=0.001\). Use the graph to approximate the time \(t_{0}\) at which the object reaches its maximum height.
(e) Use the integration capabilities of a graphing utility to approximate the integral
\(\int_{0}^{t_{0}} v(t) d t\)
where \(v(t)\) and \(t_{0}\) are those found in part (d). This is the approximation of the maximum height of the object.
(f) Explain the difference between the results in parts (b) and (e).

FOR FURTHER INFORMATION For more information on this topic, see "What Goes Up Must Come Down; Will Air Resistance Make It Return Sooner, or Later?" by John Lekner in Mathematics Magazine. To view this article, go to the website www.matharticles.com.
92. Graph \(y_{1}=\frac{x}{1+x^{2}}, y_{2}=\arctan x\), and \(y_{3}=x\) on \([0,10]\).

Prove that \(\frac{x}{1+x^{2}}<\arctan x<x\) for \(x>0\).

\subsection*{5.8 Hyperbolic Functions}


FOR FURTHER INFORMATION For
more information on the development of hyperbolic functions, see the article "An Introduction to Hyperbolic Functions in Elementary Calculus" by Jerome Rosenthal in Mathematics Teacher. To view this article, go to the website www.matharticles.com.
- Develop properties of hyperbolic functions.
- Differentiate and integrate hyperbolic functions.
- Develop properties of inverse hyperbolic functions.
- Differentiate and integrate functions involving inverse hyperbolic functions.

\section*{Hyperbolic Functions}

In this section you will look briefly at a special class of exponential functions called hyperbolic functions. The name hyperbolic function arose from comparison of the area of a semicircular region, as shown in Figure 5.35, with the area of a region under a hyperbola, as shown in Figure 5.36. The integral for the semicircular region involves an inverse trigonometric (circular) function:
\[
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{1}{2}\left[x \sqrt{1-x^{2}}+\arcsin x\right]_{-1}^{1}=\frac{\pi}{2} \approx 1.571
\]

The integral for the hyperbolic region involves an inverse hyperbolic function:
\[
\int_{-1}^{1} \sqrt{1+x^{2}} d x=\frac{1}{2}\left[x \sqrt{1+x^{2}}+\sinh ^{-1} x\right]_{-1}^{1} \approx 2.296
\]

This is only one of many ways in which the hyperbolic functions are similar to the trigonometric functions.


Circle: \(x^{2}+y^{2}=1\)
Figure 5.35


Hyperbola: \(-x^{2}+y^{2}=1\)
Figure 5.36

\section*{DEFINITIONS OF THE HYPERBOLIC FUNCTIONS}
\[
\begin{array}{ll}
\sinh x=\frac{e^{x}-e^{-x}}{2} & \operatorname{csch} x=\frac{1}{\sinh x}, \quad x \neq 0 \\
\cosh x=\frac{e^{x}+e^{-x}}{2} & \operatorname{sech} x=\frac{1}{\cosh x} \\
\tanh x=\frac{\sinh x}{\cosh x} & \operatorname{coth} x=\frac{1}{\tanh x}, \quad x \neq 0
\end{array}
\]

NOTE \(\sinh x\) is read as "the hyperbolic sine of \(x\)," \(\cosh x\) as "the hyperbolic cosine of \(x\)," and so on.


Domain: \((-\infty, \infty)\)
Range: \((-\infty, \infty)\)


Domain: \((-\infty, 0) \cup(0, \infty)\)
Range: \((-\infty, 0) \cup(0, \infty)\)
Figure 5.37
- FOR FURTHER INFORMATION To understand geometrically the relationship between the hyperbolic and exponential functions, see the article "A Short Proof Linking the Hyperbolic and Exponential Functions" by Michael J. Seery in The AMATYC Review.

The graphs of the six hyperbolic functions and their domains and ranges are shown in Figure 5.37. Note that the graph of \(\sinh x\) can be obtained by adding the corresponding \(y\)-coordinates of the exponential functions \(f(x)=\frac{1}{2} e^{x}\) and \(g(x)=-\frac{1}{2} e^{-x}\). Likewise, the graph of \(\cosh x\) can be obtained by adding the corresponding \(y\)-coordinates of the exponential functions \(f(x)=\frac{1}{2} e^{x}\) and \(h(x)=\frac{1}{2} e^{-x}\).


Domain: \((-\infty, \infty)\)
Range: \([1, \infty)\)


Domain: \((-\infty, \infty)\)
Range: \((0,1]\)


Domain: \((-\infty, \infty)\)
Range: \((-1,1)\)


Domain: \((-\infty, 0) \cup(0, \infty)\)
Range: \((-\infty,-1) \cup(1, \infty)\)

Many of the trigonometric identities have corresponding hyperbolic identities. For instance,
\[
\begin{aligned}
\cosh ^{2} x-\sinh ^{2} x & =\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
& =\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
\]
and
\[
\begin{aligned}
2 \sinh x \cosh x & =2\left(\frac{e^{x}-e^{-x}}{2}\right)\left(\frac{e^{x}+e^{-x}}{2}\right) \\
& =\frac{e^{2 x}-e^{-2 x}}{2} \\
& =\sinh 2 x .
\end{aligned}
\]

\section*{HYPERBOLIC IDENTITIES}
\[
\begin{array}{ll}
\cosh ^{2} x-\sinh ^{2} x=1 & \sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y \\
\tanh ^{2} x+\operatorname{sech}^{2} x=1 & \sinh (x-y)=\sinh x \cosh y-\cosh x \sinh y \\
\operatorname{coth}^{2} x-\operatorname{csch}^{2} x=1 & \cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y \\
& \cosh (x-y)=\cosh x \cosh y-\sinh x \sinh y \\
\sinh ^{2} x=\frac{-1+\cosh 2 x}{2} & \cosh ^{2} x=\frac{1+\cosh 2 x}{2} \\
\sinh 2 x=2 \sinh x \cosh x & \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x
\end{array}
\]

\section*{Differentiation and Integration of Hyperbolic Functions}

Because the hyperbolic functions are written in terms of \(e^{x}\) and \(e^{-x}\), you can easily derive rules for their derivatives. The following theorem lists these derivatives with the corresponding integration rules.

\section*{THEOREM 5.18 DERIVATIVES AND INTEGRALS OF HYPERBOLIC FUNCTIONS}

Let \(u\) be a differentiable function of \(x\).
\[
\begin{aligned}
\frac{d}{d x}[\sinh u] & =(\cosh u) u^{\prime} & & \int \cosh u d u=\sinh u+C \\
\frac{d}{d x}[\cosh u] & =(\sinh u) u^{\prime} & & \int \sinh u d u=\cosh u+C \\
\frac{d}{d x}[\tanh u] & =\left(\operatorname{sech}^{2} u\right) u^{\prime} & & \operatorname{sech}^{2} u d u=\tanh u+C \\
\frac{d}{d x}[\operatorname{coth} u] & =-\left(\operatorname{csch}^{2} u\right) u^{\prime} & & \int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C \\
\frac{d}{d x}[\operatorname{sech} u] & =-(\operatorname{sech} u \tanh u) u^{\prime} & & \int \operatorname{sech} u \tanh u d u=-\operatorname{sech} u+C \\
\frac{d}{d x}[\operatorname{csch} u] & =-(\operatorname{csch} u \operatorname{coth} u) u^{\prime} & & \int \operatorname{csch} u \operatorname{coth} u d u=-\operatorname{csch} u+C
\end{aligned}
\]

\section*{PROOF}
\[
\begin{aligned}
\frac{d}{d x}[\sinh x] & =\frac{d}{d x}\left[\frac{e^{x}-e^{-x}}{2}\right] \\
& =\frac{e^{x}+e^{-x}}{2}=\cosh x \\
\frac{d}{d x}[\tanh x] & =\frac{d}{d x}\left[\frac{\sinh x}{\cosh x}\right] \\
& =\frac{\cosh x(\cosh x)-\sinh x(\sinh x)}{\cosh ^{2} x} \\
& =\frac{1}{\cosh ^{2} x} \\
& =\operatorname{sech}^{2} x
\end{aligned}
\]

In Exercises 122-124, you are asked to prove some of the other differentiation rules.

\(f^{\prime \prime}(0)<0\), so \((0,-1)\) is a relative maximum. \(f^{\prime \prime}(1)>0\), so \((1,-\sinh 1)\) is a relative minimum.
Figure 5.38

\section*{EXAMPLE 1 Differentiation of Hyperbolic Functions}
a. \(\frac{d}{d x}\left[\sinh \left(x^{2}-3\right)\right]=2 x \cosh \left(x^{2}-3\right)\)
b. \(\frac{d}{d x}[\ln (\cosh x)]=\frac{\sinh x}{\cosh x}=\tanh x\)
c. \(\frac{d}{d x}[x \sinh x-\cosh x]=x \cosh x+\sinh x-\sinh x=x \cosh x\)

\section*{EXAMPLE 2 Finding Relative Extrema}

Find the relative extrema of \(f(x)=(x-1) \cosh x-\sinh x\).
Solution Begin by setting the first derivative of \(f\) equal to 0 .
\[
\begin{array}{r}
f^{\prime}(x)=(x-1) \sinh x+\cosh x-\cosh x=0 \\
(x-1) \sinh x=0
\end{array}
\]

So, the critical numbers are \(x=1\) and \(x=0\). Using the Second Derivative Test, you can verify that the point \((0,-1)\) yields a relative maximum and the point \((1,-\sinh 1)\) yields a relative minimum, as shown in Figure 5.38. Try using a graphing utility to confirm this result. If your graphing utility does not have hyperbolic functions, you can use exponential functions, as follows.
\[
\begin{aligned}
f(x) & =(x-1)\left(\frac{1}{2}\right)\left(e^{x}+e^{-x}\right)-\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& =\frac{1}{2}\left(x e^{x}+x e^{-x}-e^{x}-e^{-x}-e^{x}+e^{-x}\right) \\
& =\frac{1}{2}\left(x e^{x}+x e^{-x}-2 e^{x}\right)
\end{aligned}
\]

When a uniform flexible cable, such as a telephone wire, is suspended from two points, it takes the shape of a catenary, as discussed in Example 3.

\section*{EXAMPLE 3 Hanging Power Cables}

Power cables are suspended between two towers, forming the catenary shown in Figure 5.39. The equation for this catenary is
\[
y=a \cosh \frac{x}{a} .
\]

The distance between the two towers is \(2 b\). Find the slope of the catenary at the point where the cable meets the right-hand tower.

Solution Differentiating produces

\section*{Catenary}

Figure 5.39
\[
y^{\prime}=a\left(\frac{1}{a}\right) \sinh \frac{x}{a}=\sinh \frac{x}{a} .
\]

At the point \((b, a \cosh (b / a))\), the slope (from the left) is given by \(m=\sinh \frac{b}{a}\).
- FOR FURTHER INFORMATION In Example 3, the cable is a catenary between two supports at the same height. To learn about the shape of a cable hanging between supports of different heights, see the article "Reexamining the Catenary" by Paul Cella in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\section*{EXAMPLE 4 Integrating a Hyperbolic Function}

Find \(\int \cosh 2 x \sinh ^{2} 2 x d x\).
Solution
\[
\begin{aligned}
\int \cosh 2 x \sinh ^{2} 2 x d x & =\frac{1}{2} \int(\sinh 2 x)^{2}(2 \cosh 2 x) d x \quad u=\sinh 2 x \\
& =\frac{1}{2}\left[\frac{(\sinh 2 x)^{3}}{3}\right]+C \\
& =\frac{\sinh ^{3} 2 x}{6}+C
\end{aligned}
\]

\section*{Inverse Hyperbolic Functions}

Unlike trigonometric functions, hyperbolic functions are not periodic. In fact, by looking back at Figure 5.37, you can see that four of the six hyperbolic functions are actually one-to-one (the hyperbolic sine, tangent, cosecant, and cotangent). So, you can apply Theorem 5.7 to conclude that these four functions have inverse functions. The other two (the hyperbolic cosine and secant) are one-to-one if their domains are restricted to the positive real numbers, and for this restricted domain they also have inverse functions. Because the hyperbolic functions are defined in terms of exponential functions, it is not surprising to find that the inverse hyperbolic functions can be written in terms of logarithmic functions, as shown in Theorem 5.19.
THEOREM 5.19 INVERSE HYPERBOLIC FUNCTIONS
\begin{tabular}{ll} 
Function & Domain \\
\(\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)\) & \((-\infty, \infty)\) \\
\(\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)\) & \\
\(\tanh ^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x}\) & \((-1,1)\) \\
\(\operatorname{coth}^{-1} x=\frac{1}{2} \ln \frac{x+1}{x-1}\) & \((-\infty,-1) \cup(1, \infty)\) \\
\(\operatorname{sech}^{-1} x=\ln \frac{1+\sqrt{1-x^{2}}}{x}\) & \((0,1]\) \\
\(\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right)\) & \((-\infty, 0) \cup(0, \infty)\)
\end{tabular}

PR00F The proof of this theorem is a straightforward application of the properties of the exponential and logarithmic functions. For example, if
\[
f(x)=\sinh x=\frac{e^{x}-e^{-x}}{2}
\]
and
\[
g(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
\]
you can show that \(f(g(x))=x\) and \(g(f(x))=x\), which implies that \(g\) is the inverse function of \(f\).


Graphs of the hyperbolic tangent function and the inverse hyperbolic tangent function Figure 5.40

TECHNOLOGY You can use a graphing utility to confirm graphically the results of Theorem 5.19. For instance, graph the following functions.
\[
\begin{array}{ll}
y_{1}=\tanh x & \\
\text { Hyperbolic tangent } \\
y_{2}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} & \\
y_{3}=\tanh ^{-1} x & \\
\text { Definition of hyperbolic tangent } \\
y_{4}=\frac{1}{2} \ln \frac{1+x}{1-x} & \\
\text { Inverse hyperbolic tangent } \\
\text { Definition of inverse hyperbolic tangent }
\end{array}
\]

The resulting display is shown in Figure 5.40. As you watch the graphs being traced out, notice that \(y_{1}=y_{2}\) and \(y_{3}=y_{4}\). Also notice that the graph of \(y_{1}\) is the reflection of the graph of \(y_{3}\) in the line \(y=x\).

The graphs of the inverse hyperbolic functions are shown in Figure 5.41.


Domain: \((-\infty, \infty)\)
Range: \((-\infty, \infty)\)


Domain: \([1, \infty)\)
Range: \([0, \infty)\)


Domain: \((-1,1)\)
Range: \((-\infty, \infty)\)


Domain: \((-\infty, 0) \cup(0, \infty)\)
Range: \((-\infty, 0) \cup(0, \infty)\)
Figure 5.41


Domain: \((0,1]\)
Range: \([0, \infty)\)


Domain: \((-\infty,-1) \cup(1, \infty)\)
Range: \((-\infty, 0) \cup(0, \infty)\)

The inverse hyperbolic secant can be used to define a curve called a tractrix or pursuit curve, as discussed in Example 5.


A person must walk 41.27 feet to bring the boat to a position 5 feet from the dock.
Figure 5.42

\section*{EXAMPLE 5 A Tractrix}

A person is holding a rope that is tied to a boat, as shown in Figure 5.42. As the person walks along the dock, the boat travels along a tractrix, given by the equation
\[
y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}
\]
where \(a\) is the length of the rope. If \(a=20\) feet, find the distance the person must walk to bring the boat to a position 5 feet from the dock.
Solution In Figure 5.42, notice that the distance the person has walked is given by
\[
\begin{aligned}
y_{1}=y+\sqrt{20^{2}-x^{2}} & =\left(20 \operatorname{sech}^{-1} \frac{x}{20}-\sqrt{20^{2}-x^{2}}\right)+\sqrt{20^{2}-x^{2}} \\
& =20 \operatorname{sech}^{-1} \frac{x}{20}
\end{aligned}
\]

When \(x=5\), this distance is
\[
\begin{aligned}
y_{1}=20 \operatorname{sech}^{-1} \frac{5}{20} & =20 \ln \frac{1+\sqrt{1-(1 / 4)^{2}}}{1 / 4} \\
& =20 \ln (4+\sqrt{15}) \\
& \approx 41.27 \text { feet. }
\end{aligned}
\]

\section*{Differentiation and Integration of Inverse Hyperbolic Functions}

The derivatives of the inverse hyperbolic functions, which resemble the derivatives of the inverse trigonometric functions, are listed in Theorem 5.20 with the corresponding integration formulas (in logarithmic form). You can verify each of these formulas by applying the logarithmic definitions of the inverse hyperbolic functions. (See Exercises 119-121.)

\section*{THEOREM 5.20 DIFFERENTIATION AND INTEGRATION INVOLVING INVERSE HYPERBOLIC FUNCTIONS}

Let \(u\) be a differentiable function of \(x\).
\[
\begin{array}{rlrl}
\frac{d}{d x}\left[\sinh ^{-1} u\right] & =\frac{u^{\prime}}{\sqrt{u^{2}+1}} & \frac{d}{d x}\left[\cosh ^{-1} u\right] & =\frac{u^{\prime}}{\sqrt{u^{2}-1}} \\
\frac{d}{d x}\left[\tanh ^{-1} u\right] & =\frac{u^{\prime}}{1-u^{2}} & \frac{d}{d x}\left[\operatorname{coth}^{-1} u\right] & =\frac{u^{\prime}}{1-u^{2}} \\
\frac{d}{d x}\left[\operatorname{sech}^{-1} u\right] & =\frac{-u^{\prime}}{u \sqrt{1-u^{2}}} & \frac{d}{d x}\left[\operatorname{csch}^{-1} u\right] & =\frac{-u^{\prime}}{|u| \sqrt{1+u^{2}}} \\
\int \frac{d u}{\sqrt{u^{2} \pm a^{2}}} & =\ln \left(u+\sqrt{u^{2} \pm a^{2}}\right)+C \\
\int \frac{d u}{a^{2}-u^{2}} & =\frac{1}{2 a} \ln \left|\frac{a+u}{a-u}\right|+C \\
\int \frac{d u}{u \sqrt{a^{2} \pm u^{2}}} & =-\frac{1}{a} \ln \frac{a+\sqrt{a^{2} \pm u^{2}}}{|u|}+C
\end{array}
\]

\section*{EXAMPLE 6 More About a Tractrix}

For the tractrix given in Example 5, show that the boat is always pointing toward the person.
Solution For a point \((x, y)\) on a tractrix, the slope of the graph gives the direction of the boat, as shown in Figure 5.42.
\[
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left[20 \operatorname{sech}^{-1} \frac{x}{20}-\sqrt{20^{2}-x^{2}}\right] \\
& =-20\left(\frac{1}{20}\right)\left[\frac{1}{(x / 20) \sqrt{1-(x / 20)^{2}}}\right]-\left(\frac{1}{2}\right)\left(\frac{-2 x}{\sqrt{20^{2}-x^{2}}}\right) \\
& =\frac{-20^{2}}{x \sqrt{20^{2}-x^{2}}}+\frac{x}{\sqrt{20^{2}-x^{2}}} \\
& =-\frac{\sqrt{20^{2}-x^{2}}}{x}
\end{aligned}
\]

However, from Figure 5.42, you can see that the slope of the line segment connecting the point \(\left(0, y_{1}\right)\) with the point \((x, y)\) is also
\[
m=-\frac{\sqrt{20^{2}-x^{2}}}{x}
\]

So, the boat is always pointing toward the person. (It is because of this property that a tractrix is called a pursuit curve.)

\section*{EXAMPLE 7 Integration Using Inverse Hyperbolic Functions}

Find \(\int \frac{d x}{x \sqrt{4-9 x^{2}}}\).
Solution Let \(a=2\) and \(u=3 x\).
\[
\begin{aligned}
\int \frac{d x}{x \sqrt{4-9 x^{2}}} & =\int \frac{3 d x}{(3 x) \sqrt{4-9 x^{2}}} & & \int \frac{d u}{u \sqrt{a^{2}-u^{2}}} \\
& =-\frac{1}{2} \ln \frac{2+\sqrt{4-9 x^{2}}}{|3 x|}+C & & -\frac{1}{a} \ln \frac{a+\sqrt{a^{2}-u^{2}}}{|u|}+C
\end{aligned}
\]

\section*{EXAMPLE 8 Integration Using Inverse Hyperbolic Functions}

Find \(\int \frac{d x}{5-4 x^{2}}\).
Solution Let \(a=\sqrt{5}\) and \(u=2 x\).
\[
\begin{aligned}
\int \frac{d x}{5-4 x^{2}} & =\frac{1}{2} \int \frac{2 d x}{(\sqrt{5})^{2}-(2 x)^{2}} & \int \frac{d u}{a^{2}-u^{2}} \\
& =\frac{1}{2}\left(\frac{1}{2 \sqrt{5}} \ln \left|\frac{\sqrt{5}+2 x}{\sqrt{5}-2 x}\right|\right)+C & \frac{1}{2 a} \ln \left|\frac{a+u}{a-u}\right|+C \\
& =\frac{1}{4 \sqrt{5}} \ln \left|\frac{\sqrt{5}+2 x}{\sqrt{5}-2 x}\right|+C &
\end{aligned}
\]

\subsection*{5.8 Exercises}

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, evaluate the function. If the value is not a rational number, give the answer to three-decimal-place accuracy.
1. (a) \(\sinh 3\)
2. (a) \(\cosh 0\)
(b) \(\tanh (-2)\)
(b) \(\operatorname{sech} 1\)
3. (a) \(\operatorname{csch}(\ln 2)\)
4. (a) \(\sinh ^{-1} 0\)
(b) \(\operatorname{coth}(\ln 5)\)
(b) \(\tanh ^{-1} 0\)
5. (a) \(\cosh ^{-1} 2\)
(b) sech \(^{-1} \frac{2}{3}\)
(a) \(\operatorname{csch}^{-1} 2\)
(b) \(\operatorname{coth}^{-1} 3\)

In Exercises 7-16, verify the identity.
7. \(e^{x}=\sinh x+\cosh x\)
8. \(e^{2 x}=\sinh 2 x+\cosh 2 x\)
9. \(\tanh ^{2} x+\operatorname{sech}^{2} x=1\)
10. \(\operatorname{coth}^{2} x-\operatorname{csch}^{2} x=1\)
11. \(\cosh ^{2} x=\frac{1+\cosh 2 x}{2}\)
12. \(\sinh ^{2} x=\frac{-1+\cosh 2 x}{2}\)
13. \(\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y\)
14. \(\sinh 2 x=2 \sinh x \cosh x\)
15. \(\sinh 3 x=3 \sinh x+4 \sinh ^{3} x\)
16. \(\cosh x+\cosh y=2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2}\)

In Exercises 17 and 18, use the value of the given hyperbolic function to find the values of the other hyperbolic functions at \(\boldsymbol{x}\).
17. \(\sinh x=\frac{3}{2}\)
18. \(\tanh x=\frac{1}{2}\)

In Exercises 19-30, find the derivative of the function.
19. \(f(x)=\sinh 3 x\)
20. \(f(x)=\cosh (x-2)\)
21. \(y=\operatorname{sech}\left(5 x^{2}\right)\)
22. \(y=\tanh \left(3 x^{2}-1\right)\)
23. \(f(x)=\ln (\sinh x)\)
24. \(g(x)=\ln (\cosh x)\)
25. \(y=\ln \left(\tanh \frac{x}{2}\right)\)
26. \(y=x \cosh x-\sinh x\)
27. \(h(x)=\frac{1}{4} \sinh 2 x-\frac{x}{2}\)
28. \(h(t)=t-\operatorname{coth} t\)
29. \(f(t)=\arctan (\sinh t)\)
30. \(g(x)=\operatorname{sech}^{2} 3 x\)

In Exercises 31-34, find an equation of the tangent line to the graph of the function at the given point.
31. \(y=\sinh \left(1-x^{2}\right), \quad(1,0)\)
32. \(y=x^{\cosh x}, \quad(1,1)\)
33. \(y=(\cosh x-\sinh x)^{2}\),
\((0,1)\)
34. \(y=e^{\sinh x}\),

In Exercises 35-38, find any relative extrema of the function. Use a graphing utility to confirm your result.
35. \(f(x)=\sin x \sinh x-\cos x \cosh x, \quad-4 \leq x \leq 4\)
36. \(f(x)=x \sinh (x-1)-\cosh (x-1)\)
37. \(g(x)=x \operatorname{sech} x\)
38. \(h(x)=2 \tanh x-x\)

In Exercises 39 and 40, show that the function satisfies the differential equation.
Function
39. \(y=a \sinh x\)
\(\underline{\text { Differential Equation }}\)
\(y^{\prime \prime \prime}-y^{\prime}=0\)
\(y^{\prime \prime}-y=0\)
40. \(y=a \cosh x\)

CAS Linear and Quadratic Approximations In Exercises 41 and 42, use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\)
and the quadratic approximation
\(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\)
of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations.
41. \(f(x)=\tanh x, \quad a=0\)
42. \(f(x)=\cosh x, \quad a=0\)

Catenary In Exercises 43 and 44, a model for a power cable suspended between two towers is given. (a) Graph the model, (b) find the heights of the cable at the towers and at the midpoint between the towers, and (c) find the slope of the model at the point where the cable meets the right-hand tower.
43. \(y=10+15 \cosh \frac{x}{15}, \quad-15 \leq x \leq 15\)
44. \(y=18+25 \cosh \frac{x}{25}, \quad-25 \leq x \leq 25\)

In Exercises 45-58, find the integral.
45. \(\int \cosh 2 x d x\)
46. \(\int \operatorname{sech}^{2}(-x) d x\)
47. \(\int \sinh (1-2 x) d x\)
48. \(\int \frac{\cosh \sqrt{x}}{\sqrt{x}} d x\)
49. \(\int \cosh ^{2}(x-1) \sinh (x-1) d x\)
50. \(\int \frac{\sinh x}{1+\sinh ^{2} x} d x\)
51. \(\int \frac{\cosh x}{\sinh x} d x\)
52. \(\int \operatorname{sech}^{2}(2 x-1) d x\)
53. \(\int x \operatorname{csch}^{2} \frac{x^{2}}{2} d x\)
54. \(\int \operatorname{sech}^{3} x \tanh x d x\)
55. \(\int \frac{\operatorname{csch}(1 / x) \operatorname{coth}(1 / x)}{x^{2}} d x\)
56. \(\int \frac{\cosh x}{\sqrt{9-\sinh ^{2} x}} d x\)
57. \(\int \frac{x}{x^{4}+1} d x\)
58. \(\int \frac{2}{x \sqrt{1+4 x^{2}}} d x\)

In Exercises 59-64, evaluate the integral.
59. \(\int_{0}^{\ln 2} \tanh x d x\)
60. \(\int_{0}^{1} \cosh ^{2} x d x\)
61. \(\int_{0}^{4} \frac{1}{25-x^{2}} d x\)
62. \(\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x\)
63. \(\int_{0}^{\sqrt{2} / 4} \frac{2}{\sqrt{1-4 x^{2}}} d x\)
64. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)

In Exercises 65-74, find the derivative of the function.
65. \(y=\cosh ^{-1}(3 x)\)
66. \(y=\tanh ^{-1} \frac{x}{2}\)
67. \(y=\tanh ^{-1} \sqrt{x}\)
68. \(f(x)=\operatorname{coth}^{-1}\left(x^{2}\right)\)
69. \(y=\sinh ^{-1}(\tan x)\)
70. \(y=\tanh ^{-1}(\sin 2 x)\)
71. \(y=\left(\operatorname{csch}^{-1} x\right)^{2}\)
72. \(y=\operatorname{sech}^{-1}(\cos 2 x), \quad 0<x<\pi / 4\)
73. \(y=2 x \sinh ^{-1}(2 x)-\sqrt{1+4 x^{2}}\)
74. \(y=x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}\)

\section*{WRITING ABOUT CONCEPTS}
75. Discuss several ways in which the hyperbolic functions are similar to the trigonometric functions.
76. Sketch the graph of each hyperbolic function. Then identify the domain and range of each function.
77. Which hyperbolic derivative formulas differ from their trigonometric counterparts by a minus sign?

\section*{CAPSTONE}
78. Which hyperbolic functions take on only positive values? Which hyperbolic functions are increasing on their domains?

Limits In Exercises 79-86, find the limit.
79. \(\lim _{x \rightarrow \infty} \sinh x\)
80. \(\lim _{x \rightarrow-\infty} \sinh x\)
81. \(\lim _{x \rightarrow \infty} \tanh x\)
82. \(\lim _{x \rightarrow-\infty} \tanh x\)
83. \(\lim _{x \rightarrow \infty} \operatorname{sech} x\)
84. \(\lim _{x \rightarrow-\infty} \operatorname{csch} x\)
85. \(\lim _{x \rightarrow 0} \frac{\sinh x}{x}\)
86. \(\lim _{x \rightarrow 0^{-}} \operatorname{coth} x\)

In Exercises 87-96, find the indefinite integral using the formulas from Theorem 5.20.
87. \(\int \frac{1}{3-9 x^{2}} d x\)
88. \(\int \frac{1}{2 x \sqrt{1-4 x^{2}}} d x\)
89. \(\int \frac{1}{\sqrt{1+e^{2 x}}} d x\)
90. \(\int \frac{x}{9-x^{4}} d x\)
91. \(\int \frac{1}{\sqrt{x} \sqrt{1+x}} d x\)
92. \(\int \frac{\sqrt{x}}{\sqrt{1+x^{3}}} d x\)
93. \(\int \frac{-1}{4 x-x^{2}} d x\)
94. \(\int \frac{d x}{(x+2) \sqrt{x^{2}+4 x+8}}\)
95. \(\int \frac{1}{1-4 x-2 x^{2}} d x\)
96. \(\int \frac{d x}{(x+1) \sqrt{2 x^{2}+4 x+8}}\)

In Exercises 97-100, evaluate the integral using the formulas from Theorem 5.20.
97. \(\int_{3}^{7} \frac{1}{\sqrt{x^{2}-4}} d x\)
98. \(\int_{1}^{3} \frac{1}{x \sqrt{4+x^{2}}} d x\)
99. \(\int_{-1}^{1} \frac{1}{16-9 x^{2}} d x\)
100. \(\int_{0}^{1} \frac{1}{\sqrt{25 x^{2}+1}} d x\)

In Exercises 101-104, solve the differential equation.
101. \(\frac{d y}{d x}=\frac{1}{\sqrt{80+8 x-16 x^{2}}}\)
102. \(\frac{d y}{d x}=\frac{1}{(x-1) \sqrt{-4 x^{2}+8 x-1}}\)
103. \(\frac{d y}{d x}=\frac{x^{3}-21 x}{5+4 x-x^{2}}\)
104. \(\frac{d y}{d x}=\frac{1-2 x}{4 x-x^{2}}\)

Area In Exercises 105-108, find the area of the region.
105. \(y=\operatorname{sech} \frac{x}{2}\)
106. \(y=\tanh 2 x\)

107. \(y=\frac{5 x}{\sqrt{x^{4}+1}}\)
108. \(y=\frac{6}{\sqrt{x^{2}-4}}\)



In Exercises 109 and 110, evaluate the integral in terms of (a) natural logarithms and (b) inverse hyperbolic functions.
109. \(\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{x^{2}+1}}\)
110. \(\int_{-1 / 2}^{1 / 2} \frac{d x}{1-x^{2}}\)
111. Chemical Reactions Chemicals \(A\) and \(B\) combine in a 3-to-1 ratio to form a compound. The amount of compound \(x\) being produced at any time \(t\) is proportional to the unchanged amounts of A and B remaining in the solution. So, if 3 kilograms of \(A\) is mixed with 2 kilograms of B, you have
\(\frac{d x}{d t}=k\left(3-\frac{3 x}{4}\right)\left(2-\frac{x}{4}\right)=\frac{3 k}{16}\left(x^{2}-12 x+32\right)\).
One kilogram of the compound is formed after 10 minutes. Find the amount formed after 20 minutes by solving the equation
\(\int \frac{3 k}{16} d t=\int \frac{d x}{x^{2}-12 x+32}\).
112. Vertical Motion An object is dropped from a height of 400 feet.
(a) Find the velocity of the object as a function of time (neglect air resistance on the object).
(b) Use the result in part (a) to find the position function.
(c) If the air resistance is proportional to the square of the velocity, then \(d v / d t=-32+k v^{2}\), where -32 feet per second per second is the acceleration due to gravity and \(k\) is a constant. Show that the velocity \(v\) as a function of time is \(v(t)=-\sqrt{32 / k} \tanh (\sqrt{32 k} t)\) by performing \(\int d v /\left(32-k v^{2}\right)=-\int d t\) and simplifying the result.
(d) Use the result of part (c) to find \(\lim _{t \rightarrow \infty} v(t)\) and give its interpretation.
(e) Integrate the velocity function in part (c) and find the position \(s\) of the object as a function of \(t\). Use a graphing utility to graph the position function when \(k=0.01\) and the position function in part (b) in the same viewing window. Estimate the additional time required for the object to reach ground level when air resistance is not neglected.
(f) Give a written description of what you believe would happen if \(k\) were increased. Then test your assertion with a particular value of \(k\).

Tractrix In Exercises 113 and 114, use the equation of the tractrix \(y=a \operatorname{sech}^{-1}(x / a)-\sqrt{a^{2}-x^{2}}, \quad a>0\).
113. Find \(d y / d x\).
114. Let \(L\) be the tangent line to the tractrix at the point \(P\). If \(L\) intersects the \(y\)-axis at the point \(Q\), show that the distance between \(P\) and \(Q\) is \(a\).
115. Prove that \(\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right), \quad-1<x<1\).
116. Prove that \(\sinh ^{-1} t=\ln \left(t+\sqrt{t^{2}+1}\right)\).
117. Show that \(\arctan (\sinh x)=\arcsin (\tanh x)\).
118. Let \(x>0\) and \(b>0\). Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).

In Exercises 119-124, verify the differentiation formula.
119. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
120. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
121. \(\frac{d}{d x}\left[\sinh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}+1}}\)
122. \(\frac{d}{d x}[\cosh x]=\sinh x\)
123. \(\frac{d}{d x}[\operatorname{coth} x]=-\operatorname{csch}^{2} x\)
124. \(\frac{d}{d x}[\operatorname{sech} x]=-\operatorname{sech} x \tanh x\)

\section*{PUTNAM EXAM CHALLENGE}
125. From the vertex \((0, c)\) of the catenary \(y=c \cosh (x / c)\) a line \(L\) is drawn perpendicular to the tangent to the catenary at a point \(P\). Prove that the length of \(L\) intercepted by the axes is equal to the ordinate \(y\) of the point \(P\).
126. Prove or disprove that there is at least one straight line normal to the graph of \(y=\cosh x\) at a point \((a, \cosh a)\) and also normal to the graph of \(y=\sinh x\) at a point \((c, \sinh c)\).
[At a point on a graph, the normal line is the perpendicular to the tangent at that point. Also, \(\cosh x=\left(e^{x}+e^{-x}\right) / 2\) and \(\sinh x=\left(e^{x}-e^{-x}\right) / 2\).]

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{St. Louis Arch}


The Gateway Arch in St. Louis, Missouri was constructed using the hyperbolic cosine function. The equation used for construction was \(y=693.8597-68.7672 \cosh 0.0100333 x\),
\(-299.2239 \leq x \leq 299.2239\)
where \(x\) and \(y\) are measured in feet. Cross sections of the arch are equilateral triangles, and \((x, y)\) traces the path of the centers of mass of the cross-sectional triangles. For each value of \(x\), the area of the cross-sectional triangle is \(A=125.1406\) cosh \(0.0100333 x\). (Source: Owner's Manual for the Gateway Arch, Saint Louis, MO, by William Thayer)
(a) How high above the ground is the center of the highest triangle? (At ground level, \(y=0\).)
(b) What is the height of the arch? (Hint: For an equilateral triangle, \(A=\sqrt{3} c^{2}\), where \(c\) is one-half the base of the triangle, and the center of mass of the triangle is located at two-thirds the height of the triangle.)
(c) How wide is the arch at ground level?

\section*{5 REVIEW EXERCISES}

In Exercises 1 and 2, sketch the graph of the function by hand. Identify any asymptotes of the graph.
1. \(f(x)=\ln x-3\)
2. \(f(x)=\ln (x+3)\)

In Exercises 3 and 4, use the properties of logarithms to expand the logarithmic function.
3. \(\ln \sqrt[5]{\frac{4 x^{2}-1}{4 x^{2}+1}}\)
4. \(\ln \left[\left(x^{2}+1\right)(x-1)\right]\)

In Exercises 5 and 6, write the expression as the logarithm of a single quantity.
5. \(\ln 3+\frac{1}{3} \ln \left(4-x^{2}\right)-\ln x\)
6. \(3\left[\ln x-2 \ln \left(x^{2}+1\right)\right]+2 \ln 5\)

In Exercises 7 and 8, solve the equation for \(\boldsymbol{x}\).
7. \(\ln \sqrt{x+1}=2\)
8. \(\ln x+\ln (x-3)=0\)

In Exercises 9-14, find the derivative of the function.
9. \(g(x)=\ln \sqrt{2 x}\)
10. \(h(x)=\ln \frac{x(x-1)}{x-2}\)
11. \(f(x)=x \sqrt{\ln x}\)
12. \(f(x)=\ln \left[x\left(x^{2}-2\right)^{2 / 3}\right]\)
13. \(y=\frac{1}{b^{2}}[a+b x-a \ln (a+b x)]\)
14. \(y=-\frac{1}{a x}+\frac{b}{a^{2}} \ln \frac{a+b x}{x}\)

In Exercises 15 and 16, find an equation of the tangent line to the graph of the function at the given point.
15. \(y=\ln (2+x)+\frac{2}{2+x}\)
16. \(y=\ln \frac{1+x}{x}\)


In Exercises 17-24, find or evaluate the integral.
17. \(\int \frac{1}{7 x-2} d x\)
18. \(\int \frac{x}{x^{2}-1} d x\)
19. \(\int \frac{\sin x}{1+\cos x} d x\)
20. \(\int \frac{\ln \sqrt{x}}{x} d x\)
21. \(\int_{1}^{4} \frac{2 x+1}{2 x} d x\)
22. \(\int_{1}^{e} \frac{\ln x}{x} d x\)
23. \(\int_{0}^{\pi / 3} \sec \theta d \theta\)
24. \(\int_{0}^{\pi / 4} \tan \left(\frac{\pi}{4}-x\right) d x\)

In Exercises 25-30, (a) find the inverse function of \(f\), (b) use a graphing utility to graph \(f\) and \(f^{-1}\) in the same viewing window, (c) verify that \(f^{-1}(f(x))=x\) and \(f\left(f^{-1}(x)\right)=x\), and (d) state the domains and ranges of \(f\) and \(f^{-1}\).
25. \(f(x)=\frac{1}{2} x-3\)
26. \(f(x)=5 x-7\)
27. \(f(x)=\sqrt{x+1}\)
28. \(f(x)=x^{3}+2\)
29. \(f(x)=\sqrt[3]{x+1}\)
30. \(f(x)=x^{2}-5, \quad x \geq 0\)

In Exercises 31-34, verify that \(f\) has an inverse. Then use the function \(f\) and the given real number \(a\) to find \(\left(f^{-1}\right)^{\prime}(a)\). (Hint: Use Theorem 5.9.)
31. \(f(x)=x^{3}+2, \quad a=-1\)
32. \(f(x)=x \sqrt{x-3}, \quad a=4\)
33. \(f(x)=\tan x,-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}, \quad a=\frac{\sqrt{3}}{3}\)
34. \(f(x)=\cos x, \quad 0 \leq x \leq \pi, \quad a=0\)

In Exercises 35 and 36, (a) find the inverse function of \(f\), (b) use a graphing utility to graph \(f\) and \(f^{-1}\) in the same viewing window, (c) verify that \(f^{-1}(f(x))=x\) and \(f\left(f^{-1}(x)\right)=x\), and (d) state the domains and ranges of \(f\) and \(f^{-1}\).
35. \(f(x)=\ln \sqrt{x}\)
36. \(f(x)=e^{1-x}\)

In Exercises 37 and 38, graph the function without the aid of a graphing utility.
37. \(y=e^{-x / 2}\)
38. \(y=e^{-x^{2}}\)

In Exercises 39-44, find the derivative of the function.
39. \(g(t)=t^{2} e^{t}\)
40. \(g(x)=\ln \frac{e^{x}}{1+e^{x}}\)
41. \(y=\sqrt{e^{2 x}+e^{-2 x}}\)
42. \(h(z)=e^{-z^{2} / 2}\)
43. \(g(x)=\frac{x^{2}}{e^{x}}\)
44. \(y=3 e^{-3 / t}\)

In Exercises 45 and 46, find an equation of the tangent line to the graph of the function at the given point.
45. \(f(x)=\ln \left(e^{-x^{2}}\right)\),
\((2,-4)\)
46. \(f(\theta)=\frac{1}{2} e^{\sin 2 \theta}, \quad\left(0, \frac{1}{2}\right)\)

In Exercises 47 and 48, use implicit differentiation to find \(d y / d x\).
47. \(y \ln x+y^{2}=0\)
48. \(\cos x^{2}=x e^{y}\)

In Exercises 49-56, find or evaluate the integral.
49. \(\int_{0}^{1} x e^{-3 x^{2}} d x\)
50. \(\int_{1 / 2}^{2} \frac{e^{1 / x}}{x^{2}} d x\)
51. \(\int \frac{e^{4 x}-e^{2 x}+1}{e^{x}} d x\)
52. \(\int \frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}} d x\)
53. \(\int x e^{1-x^{2}} d x\)
54. \(\int x^{2} e^{x^{3}+1} d x\)
55. \(\int_{1}^{3} \frac{e^{x}}{e^{x}-1} d x\)
56. \(\int_{0}^{2} \frac{e^{2 x}}{e^{2 x}+1} d x\)
57. Show that \(y=e^{x}(a \cos 3 x+b \sin 3 x)\) satisfies the differential equation \(y^{\prime \prime}-2 y^{\prime}+10 y=0\).
58. Depreciation The value \(V\) of an item \(t\) years after it is purchased is \(V=9000 e^{-0.6 t}, \quad 0 \leq t \leq 5\).
(a) Use a graphing utility to graph the function.
(b) Find the rates of change of \(V\) with respect to \(t\) when \(t=1\) and \(t=4\).
(c) Use a graphing utility to graph the tangent lines to the function when \(t=1\) and \(t=4\).

In Exercises 59 and 60, find the area of the region bounded by the graphs of the equations.
59. \(y=x e^{-x^{2}}, y=0, x=0, x=4\)
60. \(y=2 e^{-x}, y=0, x=0, x=2\)

In Exercises 61-64, sketch the graph of the function by hand.
61. \(y=3^{x / 2}\)
62. \(y=6\left(2^{-x^{2}}\right)\)
63. \(y=\log _{2}(x-1)\)
64. \(y=\log _{4} x^{2}\)

In Exercises 65-70, find the derivative of the function.
65. \(f(x)=3^{x-1}\)
66. \(f(x)=(4 e)^{x}\)
67. \(y=x^{2 x+1}\)
68. \(y=x\left(4^{-x}\right)\)
69. \(g(x)=\log _{3} \sqrt{1-x}\)
70. \(h(x)=\log _{5} \frac{x}{x-1}\)

In Exercises 71 and 72, find the indefinite integral.
71. \(\int(x+1) 5^{(x+1)^{2}} d x\)
72. \(\int \frac{2^{-1 / t}}{t^{2}} d t\)
73. Climb Rate The time \(t\) (in minutes) for a small plane to climb to an altitude of \(h\) feet is
\(t=50 \log _{10} \frac{18,000}{18,000-h}\)
where 18,000 feet is the plane's absolute ceiling.
(a) Determine the domain of the function appropriate for the context of the problem.
(b) Use a graphing utility to graph the time function and identify any asymptotes.
(c) Find the time when the altitude is increasing at the greatest rate.

\section*{74. Compound Interest}
(a) How large a deposit, at \(5 \%\) interest compounded continuously, must be made to obtain a balance of \(\$ 10,000\) in 15 years?
(b) A deposit earns interest at a rate of \(r\) percent compounded continuously and doubles in value in 10 years. Find \(r\).

In Exercises 75 and 76, sketch the graph of the function.
75. \(f(x)=2 \arctan (x+3)\)
76. \(h(x)=-3 \arcsin 2 x\)

In Exercises 77 and 78, evaluate the expression without using a calculator. (Hint: Make a sketch of a right triangle.)
77. (a) \(\sin \left(\arcsin \frac{1}{2}\right)\)
78. (a) \(\tan (\operatorname{arccot} 2)\)
(b) \(\cos \left(\arcsin \frac{1}{2}\right)\)
(b) \(\cos (\operatorname{arcsec} \sqrt{5})\)

In Exercises 79-84, find the derivative of the function.
79. \(y=\tan (\arcsin x)\)
80. \(y=\arctan \left(x^{2}-1\right)\)
81. \(y=x \operatorname{arcsec} x\)
82. \(y=\frac{1}{2} \arctan e^{2 x}\)
83. \(y=x(\arcsin x)^{2}-2 x+2 \sqrt{1-x^{2}} \arcsin x\)
84. \(y=\sqrt{x^{2}-4}-2 \operatorname{arcsec} \frac{x}{2}, \quad 2<x<4\)

In Exercises 85-90, find the indefinite integral.
85. \(\int \frac{1}{e^{2 x}+e^{-2 x}} d x\)
86. \(\int \frac{1}{3+25 x^{2}} d x\)
87. \(\int \frac{x}{\sqrt{1-x^{4}}} d x\)
88. \(\int \frac{1}{16+x^{2}} d x\)
89. \(\int \frac{\arctan (x / 2)}{4+x^{2}} d x\)
90. \(\int \frac{\arcsin 2 x}{\sqrt{1-4 x^{2}}} d x\)

In Exercises 91 and 92, find the area of the region.
91. \(y=\frac{4-x}{\sqrt{4-x^{2}}}\)
92. \(y=\frac{x}{16+x^{2}}\)


93. Harmonic Motion A weight of mass \(m\) is attached to a spring and oscillates with simple harmonic motion. By Hooke's Law, you can determine that
\(\int \frac{d y}{\sqrt{A^{2}-y^{2}}}=\int \sqrt{\frac{k}{m}} d t\)
where \(A\) is the maximum displacement, \(t\) is the time, and \(k\) is a constant. Find \(y\) as a function of \(t\), given that \(y=0\) when \(t=0\).

In Exercises 94 and 95, find the derivative of the function.
94. \(y=2 x-\cosh \sqrt{x}\)
95. \(y=x \tanh ^{-1} 2 x\)

In Exercises 96 and 97, find the indefinite integral.
96. \(\int \frac{x}{\sqrt{x^{4}-1}} d x\) 97. \(\int x^{2} \operatorname{sech}^{2} x^{3} d x\)

\section*{P.S. PROBLEM SOLVING}
1. Find the value of \(a\) that maximizes the angle \(\theta\) shown in the figure. What is the approximate measure of this angle?

2. Recall that the graph of a function \(y=f(x)\) is symmetric with respect to the origin if, whenever \((x, y)\) is a point on the graph, \((-x,-y)\) is also a point on the graph. The graph of the function \(y=f(x)\) is symmetric with respect to the point \((\boldsymbol{a}, \boldsymbol{b})\) if, whenever \((a-x, b-y)\) is a point on the graph, \((a+x, b+y)\) is also a point on the graph, as shown in the figure.

(a) Sketch the graph of \(y=\sin x\) on the interval \([0,2 \pi]\). Write a short paragraph explaining how the symmetry of the graph with respect to the point \((0, \pi)\) allows you to conclude that
\(\int_{0}^{2 \pi} \sin x d x=0\).
(b) Sketch the graph of \(y=\sin x+2\) on the interval \([0,2 \pi]\). Use the symmetry of the graph with respect to the point \((\pi, 2)\) to evaluate the integral
\(\int_{0}^{2 \pi}(\sin x+2) d x\).
(c) Sketch the graph of \(y=\arccos x\) on the interval \([-1,1]\). Use the symmetry of the graph to evaluate the integral
\(\int_{-1}^{1} \arccos x d x\).
(d) Evaluate the integral \(\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{\sqrt{2}}} d x\).
3. (a) Use a graphing utility to graph \(f(x)=\frac{\ln (x+1)}{x}\) on the interval \([-1,1]\).
(b) Use the graph to estimate \(\lim _{x \rightarrow 0} f(x)\).
(c) Use the definition of derivative to prove your answer to part (b).
4. Let \(f(x)=\sin (\ln x)\).
(a) Determine the domain of the function \(f\).
(b) Find two values of \(x\) satisfying \(f(x)=1\).
(c) Find two values of \(x\) satisfying \(f(x)=-1\).
(d) What is the range of the function \(f\) ?
(e) Calculate \(f^{\prime}(x)\) and use calculus to find the maximum value of \(f\) on the interval \([1,10]\).
(f) Use a graphing utility to graph \(f\) in the viewing window \([0,5] \times[-2,2]\) and estimate \(\lim _{x \rightarrow 0^{+}} f(x)\), if it exists.
(g) Determine \(\lim _{x \rightarrow 0^{+}} f(x)\) analytically, if it exists.
5. Graph the exponential function \(y=a^{x}\) for \(a=0.5,1.2\), and 2.0. Which of these curves intersects the line \(y=x\) ? Determine all positive numbers \(a\) for which the curve \(y=a^{x}\) intersects the line \(y=x\).
6. (a) Let \(P(\cos t, \sin t)\) be a point on the unit circle \(x^{2}+y^{2}=1\) in the first quadrant (see figure). Show that \(t\) is equal to twice the area of the shaded circular sector \(A O P\).

(b) Let \(P(\cosh t, \sinh t)\) be a point on the unit hyperbola \(x^{2}-y^{2}=1\) in the first quadrant (see figure). Show that \(t\) is equal to twice the area of the shaded region \(A O P\). Begin by showing that the area of the shaded region \(A O P\) is given by the formula
\(A(t)=\frac{1}{2} \cosh t \sinh t-\int_{1}^{\cosh t} \sqrt{x^{2}-1} d x\).

7. Apply the Mean Value Theorem to the function \(f(x)=\ln x\) on the closed interval \([1, e]\). Find the value of \(c\) in the open interval \((1, e)\) such that
\[
f^{\prime}(c)=\frac{f(e)-f(1)}{e-1} .
\]
8. Show that \(f(x)=\frac{\ln x^{n}}{x}\) is a decreasing function for \(x>e\) and \(n>0\).
9. Consider the three regions \(A, B\), and \(C\) determined by the graph of \(f(x)=\arcsin x\), as shown in the figure.

(a) Calculate the areas of regions \(A\) and \(B\).
(b) Use your answers in part (a) to evaluate the integral \(\int_{1 / 2}^{\sqrt{2} / 2} \arcsin x d x\).
(c) Use your answers in part (a) to evaluate the integral \(\int_{1}^{3} \ln x d x\)
(d) Use your answers in part (a) to evaluate the integral \(\int_{1}^{\sqrt{3}} \arctan x d x\).
10. Let \(L\) be the tangent line to the graph of the function \(y=\ln x\) at the point \((a, b)\). Show that the distance between \(b\) and \(c\) is always equal to 1 .


Figure for 10


Figure for 11
11. Let \(L\) be the tangent line to the graph of the function \(y=e^{x}\) at the point \((a, b)\). Show that the distance between \(a\) and \(c\) is always equal to 1 .
12. The Gudermannian function of \(x\) is \(\operatorname{gd}(x)=\arctan (\sinh x)\).
(a) Graph gd using a graphing utility.
(b) Show that gd is an odd function.
(c) Show that gd is monotonic and therefore has an inverse.
(d) Find the inflection point of gd.
(e) Verify that \(\operatorname{gd}(x)=\arcsin (\tanh x)\).
(f) Verify that \(\operatorname{gd}(x)=\int_{0}^{x} \frac{d x}{\cosh t}\).
13. Use integration by substitution to find the area under the curve \(y=\frac{1}{\sqrt{x}+x}\) between \(x=1\) and \(x=4\).
14. Use integration by substitution to find the area under the curve \(y=\frac{1}{\sin ^{2} x+4 \cos ^{2} x}\) between \(x=0\) and \(x=\pi / 4\).
15. (a) Use a graphing utility to compare the graph of the function \(y=e^{x}\) with the graph of each given function.
(i) \(y_{1}=1+\frac{x}{1!}\)
(ii) \(y_{2}=1+\frac{x}{1!}+\frac{x^{2}}{2!}\)
(iii) \(y_{3}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\)
(b) Identify the pattern of successive polynomials in part (a) and extend the pattern one more term and compare the graph of the resulting polynomial function with the graph of \(y=e^{x}\).
(c) What do you think this pattern implies?
16. A \(\$ 120,000\) home mortgage for 35 years at \(9 \frac{1}{2} \%\) has a monthly payment of \(\$ 985.93\). Part of the monthly payment goes for the interest charge on the unpaid balance and the remainder of the payment is used to reduce the principal. The amount that goes for interest is
\(u=M-\left(M-\frac{P r}{12}\right)\left(1+\frac{r}{12}\right)^{12 t}\)
and the amount that goes toward reduction of the principal is
\(v=\left(M-\frac{P r}{12}\right)\left(1+\frac{r}{12}\right)^{12 t}\).
In these formulas, \(P\) is the amount of the mortgage, \(r\) is the interest rate, \(M\) is the monthly payment, and \(t\) is the time in years.
(a) Use a graphing utility to graph each function in the same viewing window. (The viewing window should show all 35 years of mortgage payments.)
(b) In the early years of the mortgage, the larger part of the monthly payment goes for what purpose? Approximate the time when the monthly payment is evenly divided between interest and principal reduction.
(c) Use the graphs in part (a) to make a conjecture about the relationship between the slopes of the tangent lines to the two curves for a specified value of \(t\). Give an analytical argument to verify your conjecture. Find \(u^{\prime}(15)\) and \(v^{\prime}(15)\).
(d) Repeat parts (a) and (b) for a repayment period of 20 years ( \(M=\$ 1118.56\) ). What can you conclude?

\section*{Differential Equations}

In this chapter, you will study one of the most important applications of calculusdifferential equations. You will learn several methods for solving different types of differential equations, such as homogeneous, first-order linear, and Bernoulli. Then you will apply these methods to solve differential equations in applied problems.

In this chapter, you should learn the following.
- How to sketch a slope field of a differential equation, and find a particular solution. (6.1)
- How to use an exponential function to model growth and decay. (6.2)
- How to use separation of variables to solve a differential equation. (6.3)
- How to solve a first-order linear differential equation and a Bernoulli differential equation. (6.4)


Dr. Dennis Kunkel/Getty Images
Depending on the type of bacteria, the time it takes for a culture's weight to double can vary greatly from several minutes to several days. How could you use a differential equation to model the growth rate of a bacteria culture's weight? (See Section 6.3, Exercise 84.)


A function \(y=f(x)\) is a solution of a differential equation if the equation is satisfied when \(y\) and its derivatives are replaced by \(f(x)\) and its derivatives. One way to solve a differential equation is to use slope fields, which show the general shape of all solutions of a differential equation. (See Section 6.1.)

\subsection*{6.1 Slope Fields and Euler's Method}
- Use initial conditions to find particular solutions of differential equations.
- Use slope fields to approximate solutions of differential equations.

■ Use Euler's Method to approximate solutions of differential equations.

\section*{General and Particular Solutions}

In this text, you will learn that physical phenomena can be described by differential equations. Recall that a differential equation in \(x\) and \(y\) is an equation that involves \(x, y\), and derivatives of \(y\). In Section 6.2, you will see that problems involving radioactive decay, population growth, and Newton's Law of Cooling can be formulated in terms of differential equations.

A function \(y=f(x)\) is called a solution of a differential equation if the equation is satisfied when \(y\) and its derivatives are replaced by \(f(x)\) and its derivatives. For example, differentiation and substitution would show that \(y=e^{-2 x}\) is a solution of the differential equation \(y^{\prime}+2 y=0\). It can be shown that every solution of this differential equation is of the form
\[
y=C e^{-2 x} \quad \text { General solution of } y^{\prime}+2 y=0
\]
where \(C\) is any real number. This solution is called the general solution. Some differential equations have singular solutions that cannot be written as special cases of the general solution. However, such solutions are not considered in this text. The order of a differential equation is determined by the highest-order derivative in the equation. For instance, \(y^{\prime}=4 y\) is a first-order differential equation. First-order linear differential equations are discussed in Section 6.4.

In Section 4.1, Example 8, you saw that the second-order differential equation \(s^{\prime \prime}(t)=-32\) has the general solution
\[
s(t)=-16 t^{2}+C_{1} t+C_{2} \quad \text { General solution of } s^{\prime \prime}(t)=-32
\]
which contains two arbitrary constants. It can be shown that a differential equation of order \(n\) has a general solution with \(n\) arbitrary constants.

\section*{EXAMPLE 1 Verifying Solutions}

Determine whether the function is a solution of the differential equation \(y^{\prime \prime}-y=0\).
a. \(y=\sin x\)
b. \(y=4 e^{-x}\)
c. \(y=C e^{x}\)

\section*{Solution}
a. Because \(y=\sin x, y^{\prime}=\cos x\), and \(y^{\prime \prime}=-\sin x\), it follows that
\[
y^{\prime \prime}-y=-\sin x-\sin x=-2 \sin x \neq 0
\]

So, \(y=\sin x\) is not a solution.
b. Because \(y=4 e^{-x}, y^{\prime}=-4 e^{-x}\), and \(y^{\prime \prime}=4 e^{-x}\), it follows that
\[
y^{\prime \prime}-y=4 e^{-x}-4 e^{-x}=0
\]

So, \(y=4 e^{-x}\) is a solution.
c. Because \(y=C e^{x}, y^{\prime}=C e^{x}\), and \(y^{\prime \prime}=C e^{x}\), it follows that
\[
y^{\prime \prime}-y=C e^{x}-C e^{x}=0
\]

So, \(y=C e^{x}\) is a solution for any value of \(C\).


Solution curves for \(x y^{\prime}+y=0\)
Figure 6.1

Geometrically, the general solution of a first-order differential equation represents a family of curves known as solution curves, one for each value assigned to the arbitrary constant. For instance, you can verify that every function of the form
\[
y=\frac{C}{x}
\]
\[
\text { General solution of } x y^{\prime}+y=0
\]
is a solution of the differential equation \(x y^{\prime}+y=0\). Figure 6.1 shows four of the solution curves corresponding to different values of \(C\).

As discussed in Section 4.1, particular solutions of a differential equation are obtained from initial conditions that give the values of the dependent variable or one of its derivatives for particular values of the independent variable. The term "initial condition" stems from the fact that, often in problems involving time, the value of the dependent variable or one of its derivatives is known at the initial time \(t=0\). For instance, the second-order differential equation \(s^{\prime \prime}(t)=-32\) having the general solution
\[
s(t)=-16 t^{2}+C_{1} t+C_{2} \quad \text { General solution of } s^{\prime \prime}(t)=-32
\]
might have the following initial conditions.
\[
s(0)=80, \quad s^{\prime}(0)=64 \quad \text { Initial conditions }
\]

In this case, the initial conditions yield the particular solution
\[
s(t)=-16 t^{2}+64 t+80 . \quad \text { Particular solution }
\]

\section*{EXAMPLE 2 Finding a Particular Solution}

For the differential equation \(x y^{\prime}-3 y=0\), verify that \(y=C x^{3}\) is a solution, and find the particular solution determined by the initial condition \(y=2\) when \(x=-3\).

Solution You know that \(y=C x^{3}\) is a solution because \(y^{\prime}=3 C x^{2}\) and
\[
\begin{aligned}
x y^{\prime}-3 y & =x\left(3 C x^{2}\right)-3\left(C x^{3}\right) \\
& =0 .
\end{aligned}
\]

Furthermore, the initial condition \(y=2\) when \(x=-3\) yields
\[
\begin{aligned}
y & =C x^{3} & & \text { General solution } \\
2 & =C(-3)^{3} & & \text { Substitute initial condition. } \\
-\frac{2}{27} & =C & & \text { Solve for } C .
\end{aligned}
\]
and you can conclude that the particular solution is
\[
y=-\frac{2 x^{3}}{27} . \quad \text { Particular solution }
\]

Try checking this solution by substituting for \(y\) and \(y^{\prime}\) in the original differential equation.

NOTE To determine a particular solution, the number of initial conditions must match the number of constants in the general solution.

The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.


Figure 6.2

\section*{Slope Fields}

Solving a differential equation analytically can be difficult or even impossible. However, there is a graphical approach you can use to learn a lot about the solution of a differential equation. Consider a differential equation of the form
\[
y^{\prime}=F(x, y) \quad \text { Differential equation }
\]
where \(F(x, y)\) is some expression in \(x\) and \(y\). At each point \((x, y)\) in the \(x y\)-plane where \(F\) is defined, the differential equation determines the slope \(y^{\prime}=F(x, y)\) of the solution at that point. If you draw short line segments with slope \(F(x, y)\) at selected points \((x, y)\) in the domain of \(F\), then these line segments form a slope field, or a direction field, for the differential equation \(y^{\prime}=F(x, y)\). Each line segment has the same slope as the solution curve through that point. A slope field shows the general shape of all the solutions and can be helpful in getting a visual perspective of the directions of the solutions of a differential equation.

\section*{EXAMPLE 3 Sketching a Slope Field}

Sketch a slope field for the differential equation \(y^{\prime}=x-y\) for the points \((-1,1)\), \((0,1)\), and \((1,1)\).

Solution The slope of the solution curve at any point \((x, y)\) is \(F(x, y)=x-y\). So, the slope at \((-1,1)\) is \(y^{\prime}=-1-1=-2\), the slope at \((0,1)\) is \(y^{\prime}=0-1=-1\), and the slope at \((1,1)\) is \(y^{\prime}=1-1=0\). Draw short line segments at the three points with their respective slopes, as shown in Figure 6.2.

\section*{EXAMPLE 4 Identifying Slope Fields for Differential Equations}

Match each slope field with its differential equation.
a.

b.



Figure 6.3
i. \(y^{\prime}=x+y\)
ii. \(y^{\prime}=x\)
iii. \(y^{\prime}=y\)

\section*{Solution}
a. In Figure 6.3(a), you can see that the slope at any point along the \(y\)-axis is 0 . The only equation that satisfies this condition is \(y^{\prime}=x\). So, the graph matches equation (ii).
b. In Figure \(6.3(\mathrm{~b})\), you can see that the slope at the point \((1,-1)\) is 0 . The only equation that satisfies this condition is \(y^{\prime}=x+y\). So, the graph matches equation (i).
c. In Figure \(6.3(\mathrm{c})\), you can see that the slope at any point along the \(x\)-axis is 0 . The only equation that satisfies this condition is \(y^{\prime}=y\). So, the graph matches equation (iii).

A solution curve of a differential equation \(y^{\prime}=F(x, y)\) is simply a curve in the \(x y\)-plane whose tangent line at each point \((x, y)\) has slope equal to \(F(x, y)\). This is illustrated in Example 5.

\section*{EXAMPLE 5 Sketching a Solution Using a Slope Field}

Sketch a slope field for the differential equation
\[
y^{\prime}=2 x+y
\]

Use the slope field to sketch the solution that passes through the point \((1,1)\).
Solution Make a table showing the slopes at several points. The table shown is a small sample. The slopes at many other points should be calculated to get a representative slope field.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -2 & -2 & -1 & -1 & 0 & 0 & 1 & 1 & 2 & 2 \\
\hline\(y\) & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
\hline\(y^{\prime}=2 x+y\) & -5 & -3 & -3 & -1 & -1 & 1 & 1 & 3 & 3 & 5 \\
\hline
\end{tabular}

Next draw line segments at the points with their respective slopes, as shown in Figure 6.4.


Slope field for \(y^{\prime}=2 x+y\)
Figure 6.4


Particular solution for \(y^{\prime}=2 x+y\) passing through \((1,1)\)
Figure 6.5

After the slope field is drawn, start at the initial point \((1,1)\) and move to the right in the direction of the line segment. Continue to draw the solution curve so that it moves parallel to the nearby line segments. Do the same to the left of \((1,1)\). The resulting solution is shown in Figure 6.5.

In Example 5, note that the slope field shows that \(y^{\prime}\) increases to infinity as \(x\) increases.

NOTE Drawing a slope field by hand is tedious. In practice, slope fields are usually drawn using a graphing utility.


Figure 6.6


Figure 6.7

\section*{Euler's Method}

Euler's Method is a numerical approach to approximating the particular solution of the differential equation
\[
y^{\prime}=F(x, y)
\]
that passes through the point \(\left(x_{0}, y_{0}\right)\). From the given information, you know that the graph of the solution passes through the point \(\left(x_{0}, y_{0}\right)\) and has a slope of \(F\left(x_{0}, y_{0}\right)\) at this point. This gives you a "starting point" for approximating the solution.

From this starting point, you can proceed in the direction indicated by the slope. Using a small step \(h\), move along the tangent line until you arrive at the point \(\left(x_{1}, y_{1}\right)\), where
\[
x_{1}=x_{0}+h \quad \text { and } \quad y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right)
\]
as shown in Figure 6.6. If you think of \(\left(x_{1}, y_{1}\right)\) as a new starting point, you can repeat the process to obtain a second point \(\left(x_{2}, y_{2}\right)\). The values of \(x_{i}\) and \(y_{i}\) are as follows.
\[
\begin{array}{cl}
x_{1}=x_{0}+h & y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right) \\
x_{2}=x_{1}+h & y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right) \\
\vdots & \vdots \\
x_{n}=x_{n-1}+h & y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
\end{array}
\]

NOTE You can obtain better approximations of the exact solution by choosing smaller and smaller step sizes.

\section*{EXAMPLE 6 Approximating a Solution Using Euler's Method}

Use Euler's Method to approximate the particular solution of the differential equation
\[
y^{\prime}=x-y
\]
passing through the point \((0,1)\). Use a step of \(h=0.1\).
Solution Using \(h=0.1, x_{0}=0, y_{0}=1\), and \(F(x, y)=x-y\), you have \(x_{0}=0\), \(x_{1}=0.1, x_{2}=0.2, x_{3}=0.3, \ldots\), and
\[
\begin{aligned}
& y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right)=1+(0.1)(0-1)=0.9 \\
& y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right)=0.9+(0.1)(0.1-0.9)=0.82 \\
& y_{3}=y_{2}+h F\left(x_{2}, y_{2}\right)=0.82+(0.1)(0.2-0.82)=0.758
\end{aligned}
\]

The first ten approximations are shown in the table. You can plot these values to see a graph of the approximate solution, as shown in Figure 6.7.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(n\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(x_{n}\) & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline\(y_{n}\) & 1 & 0.900 & 0.820 & 0.758 & 0.712 & 0.681 & 0.663 & 0.657 & 0.661 & 0.675 & 0.697 \\
\hline
\end{tabular}

NOTE For the differential equation in Example 6, you can verify the exact solution to be \(y=x-1+2 e^{-x}\). Figure 6.7 compares this exact solution with the approximate solution obtained in Example 6.

\subsection*{6.1 Exercises}

In Exercises 1-8, verify the solution of the differential equation.

\section*{Solution}
1. \(y=C e^{4 x}\)
2. \(y=e^{-2 x}\)
3. \(x^{2}+y^{2}=C y\)
4. \(y^{2}-2 \ln y=x^{2}\)
5. \(y=C_{1} \sin x-C_{2} \cos x\)
6. \(y=C_{1} e^{-x} \cos x+C_{2} e^{-x} \sin x\)
7. \(y=-\cos x \ln |\sec x+\tan x|\)
8. \(y=\frac{2}{5}\left(e^{-4 x}+e^{x}\right)\)

\section*{Differential Equation}
\[
y^{\prime}=4 y
\]
\[
3 y^{\prime}+5 y=-e^{-2 x}
\]
\[
y^{\prime}=2 x y /\left(x^{2}-y^{2}\right)
\]
\[
\frac{d y}{d x}=\frac{x y}{y^{2}-1}
\]
\[
y^{\prime \prime}+y=0
\]
\(y^{\prime \prime}+2 y^{\prime}+2 y=0\)
\(y^{\prime \prime}+y=\tan x\)
\(y^{\prime \prime}+4 y^{\prime}=2 e^{x}\)

In Exercises 9-12, verify the particular solution of the differential equation.

\section*{Solution}
9. \(y=\sin x \cos x-\cos ^{2} x\)

Differential Equation and Initial Condition
\[
2 y+y^{\prime}=2 \sin (2 x)-1
\]
\[
y\left(\frac{\pi}{4}\right)=0
\]
10. \(y=\frac{1}{2} x^{2}-2 \cos x-3\)
11. \(y=4 e^{-6 x^{2}}\)
12. \(y=e^{-\cos x}\)
\(y^{\prime}=x+2 \sin x\)
\(y(0)=-5\)
\(y^{\prime}=-12 x y\)
\(y(0)=4\)
\(y^{\prime}=y \sin x\)
\(y\left(\frac{\pi}{2}\right)=1\)

In Exercises 13-20, determine whether the function is a solution of the differential equation \(y^{(4)}-16 y=0\).
13. \(y=3 \cos x\)
14. \(y=2 \sin x\)
15. \(y=3 \cos 2 x\)
16. \(y=3 \sin 2 x\)
17. \(y=e^{-2 x}\)
18. \(y=5 \ln x\)
19. \(y=C_{1} e^{2 x}+C_{2} e^{-2 x}+C_{3} \sin 2 x+C_{4} \cos 2 x\)
20. \(y=3 e^{2 x}-4 \sin 2 x\)

In Exercises 21-28, determine whether the function is a solution of the differential equation \(x y^{\prime}-2 y=x^{3} e^{x}\).
21. \(y=x^{2}\)
22. \(y=x^{3}\)
23. \(y=x^{2} e^{x}\)
24. \(y=x^{2}\left(2+e^{x}\right)\)
25. \(y=\sin x\)
26. \(y=\cos x\)
27. \(y=\ln x\)
28. \(y=x^{2} e^{x}-5 x^{2}\)

In Exercises 29-32, some of the curves corresponding to different values of \(C\) in the general solution of the differential equation are given. Find the particular solution that passes through the point shown on the graph.

Solution
29. \(y=C e^{-x / 2}\)
30. \(y\left(x^{2}+y\right)=C\)
31. \(y^{2}=C x^{3}\)
32. \(2 x^{2}-y^{2}=C\)

Differential Equation
\[
2 y^{\prime}+y=0
\]
\[
2 x y+\left(x^{2}+2 y\right) y^{\prime}=0
\]
\[
2 x y^{\prime}-3 y=0
\]
\[
y y^{\prime}-2 x=0
\]


Figure for 29


Figure for 31


Figure for 30


Figure for 32

In Exercises 33 and 34, the general solution of the differential equation is given. Use a graphing utility to graph the particular solutions for the given values of \(C\).
33. \(4 y y^{\prime}-x=0\)
34. \(y y^{\prime}+x=0\)
\(4 y^{2}-x^{2}=C\)
\(x^{2}+y^{2}=C\)
\(C=0, C= \pm 1, C= \pm 4\)
\(C=0, C=1, C=4\)

In Exercises 35-40, verify that the general solution satisfies the differential equation. Then find the particular solution that satisfies the initial condition.
35. \(y=C e^{-2 x}\)
\[
\begin{aligned}
& y^{\prime}+2 y=0 \\
& y=3 \text { when } x=0
\end{aligned}
\]
37. \(y=C_{1} \sin 3 x+C_{2} \cos 3 x\)
\(y^{\prime \prime}+9 y=0\)
\(y=2\) when \(x=\pi / 6\)
\(y^{\prime}=1\) when \(x=\pi / 6\)
36. \(3 x^{2}+2 y^{2}=C\)
\(3 x+2 y y^{\prime}=0\)
\(y=3\) when \(x=1\)
38. \(y=C_{1}+C_{2} \ln x\)
\(x y^{\prime \prime}+y^{\prime}=0\)
\(y=0\) when \(x=2\)
\(y^{\prime}=\frac{1}{2}\) when \(x=2\)
\[
\text { 39. } \begin{aligned}
& y=C_{1} x+C_{2} x^{3} \\
& x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0 \\
& y=0 \text { when } x=2 \\
& y^{\prime}=4 \text { when } x=2
\end{aligned}
\]
40. \(y=e^{2 x / 3}\left(C_{1}+C_{2} x\right)\)
\(9 y^{\prime \prime}-12 y^{\prime}+4 y=0\)
\(y=4\) when \(x=0\)
\(y=0\) when \(x=3\)

In Exercises 41-52, use integration to find a general solution of the differential equation.
41. \(\frac{d y}{d x}=6 x^{2}\)
42. \(\frac{d y}{d x}=2 x^{3}-3 x\)
43. \(\frac{d y}{d x}=\frac{x}{1+x^{2}}\)
44. \(\frac{d y}{d x}=\frac{e^{x}}{4+e^{x}}\)
45. \(\frac{d y}{d x}=\frac{x-2}{x}\)
46. \(\frac{d y}{d x}=x \cos x^{2}\)
47. \(\frac{d y}{d x}=\sin 2 x\)
48. \(\frac{d y}{d x}=\tan ^{2} x\)
49. \(\frac{d y}{d x}=x \sqrt{x-6}\)
50. \(\frac{d y}{d x}=2 x \sqrt{3-x}\)
51. \(\frac{d y}{d x}=x e^{x^{2}}\)
52. \(\frac{d y}{d x}=5 e^{-x / 2}\)

Slope Fields In Exercises 53-56, a differential equation and its slope field are given. Complete the table by determining the slopes (if possible) in the slope field at the given points.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & -4 & -2 & 0 & 2 & 4 & 8 \\
\hline\(y\) & 2 & 0 & 4 & 4 & 6 & 8 \\
\hline\(d y / d x\) & & & & & & \\
\hline
\end{tabular}
53. \(\frac{d y}{d x}=\frac{2 x}{y}\)

55. \(\frac{d y}{d x}=x \cos \frac{\pi y}{8}\)

54. \(\frac{d y}{d x}=y-x\)

56. \(\frac{d y}{d x}=\tan \left(\frac{\pi y}{6}\right)\)


In Exercises 57-60, match the differential equation with its slope field. [The slope fields are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

57. \(\frac{d y}{d x}=\sin (2 x)\)
58. \(\frac{d y}{d x}=\frac{1}{2} \cos x\)
59. \(\frac{d y}{d x}=e^{-2 x}\)
60. \(\frac{d y}{d x}=\frac{1}{x}\)

Slope Fields In Exercises 61-64, (a) sketch the slope field for the differential equation, (b) use the slope field to sketch the solution that passes through the given point, and (c) discuss the graph of the solution as \(x \rightarrow \infty\) and \(x \rightarrow-\infty\). Use a graphing utility to verify your results.
61. \(y^{\prime}=3-x\),
62. \(y^{\prime}=\frac{1}{3} x^{2}-\frac{1}{2} x, \quad(1,1)\)
63. \(y^{\prime}=y-4 x, \quad(2,2)\)
64. \(y^{\prime}=y+x y, \quad(0,-4)\)
65. Slope Field Use the slope field for the differential equation \(y^{\prime}=1 / x\), where \(x>0\), to sketch the graph of the solution that satisfies each given initial condition. Then make a conjecture about the behavior of a particular solution of \(y^{\prime}=1 / x\) as \(x \rightarrow \infty\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) \((1,0)\)
(b) \((2,-1)\)
66. Slope Field Use the slope field for the differential equation \(y^{\prime}=1 / y\), where \(y>0\), to sketch the graph of the solution that satisfies each initial condition. Then make a conjecture about the behavior of a particular solution of \(y^{\prime}=1 / y\) as \(x \rightarrow \infty\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) \((0,1)\)
(b) \((1,1)\)

CAS Slope Fields In Exercises 67-72, use a computer algebra system to (a) graph the slope field for the differential equation and (b) graph the solution satisfying the specified initial condition.
67. \(\frac{d y}{d x}=0.25 y, \quad y(0)=4\)
68. \(\frac{d y}{d x}=4-y, \quad y(0)=6\)
69. \(\frac{d y}{d x}=0.02 y(10-y), \quad y(0)=2\)
70. \(\frac{d y}{d x}=0.2 x(2-y), \quad y(0)=9\)
71. \(\frac{d y}{d x}=0.4 y(3-x), \quad y(0)=1\)
72. \(\frac{d y}{d x}=\frac{1}{2} e^{-x / 8} \sin \frac{\pi y}{4}, \quad y(0)=2\)

Euler's Method In Exercises 73-78, use Euler's Method to make a table of values for the approximate solution of the differential equation with the specified initial value. Use \(n\) steps of size \(h\).
73. \(y^{\prime}=x+y, \quad y(0)=2, \quad n=10, \quad h=0.1\)
74. \(y^{\prime}=x+y, \quad y(0)=2, \quad n=20, \quad h=0.05\)
75. \(y^{\prime}=3 x-2 y, \quad y(0)=3, \quad n=10, \quad h=0.05\)
76. \(y^{\prime}=0.5 x(3-y), \quad y(0)=1, \quad n=5, \quad h=0.4\)
77. \(y^{\prime}=e^{x y}, \quad y(0)=1, \quad n=10, \quad h=0.1\)
78. \(y^{\prime}=\cos x+\sin y, \quad y(0)=5, \quad n=10, \quad h=0.1\)

In Exercises 79-81, complete the table using the exact solution of the differential equation and two approximations obtained using Euler's Method to approximate the particular solution of the differential equation. Use \(h=0.2\) and \(h=0.1\) and compute each approximation to four decimal places.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline \begin{tabular}{l}
\(y(x)\) \\
(exact)
\end{tabular} & & & & & & \\
\hline \begin{tabular}{l}
\(y(x)\) \\
\((h=0.2)\)
\end{tabular} & & & & & & \\
\hline \begin{tabular}{l}
\(y(x)\) \\
\((h=0.1)\)
\end{tabular} & & & & & \\
\hline
\end{tabular}

Table for 79-81

\section*{Differential}

Equation
79. \(\frac{d y}{d x}=y\)
80. \(\frac{d y}{d x}=\frac{2 x}{y}\)
81. \(\frac{d y}{d x}=y+\cos (x)\)
Initial
Condition

Exact
Solution
\(y=3 e^{x}\)
\(y=\sqrt{2 x^{2}+4}\)
\(y=\frac{1}{2}\left(\sin x-\cos x+e^{x}\right)\)
82. Compare the values of the approximations in Exercises 79-81 with the values given by the exact solution. How does the error change as \(h\) increases?
83. Temperature At time \(t=0\) minutes, the temperature of an object is \(140^{\circ} \mathrm{F}\). The temperature of the object is changing at the rate given by the differential equation
\(\frac{d y}{d t}=-\frac{1}{2}(y-72)\).
(a) Use a graphing utility and Euler's Method to approximate the particular solutions of this differential equation at \(t=1,2\), and 3. Use a step size of \(h=0.1\). (A graphing utility program for Euler's Method is available at the website college.hmco.com.)
(b) Compare your results with the exact solution
\[
y=72+68 e^{-t / 2}
\]
(c) Repeat parts (a) and (b) using a step size of \(h=0.05\). Compare the results.

\section*{CAPSTONE}
84. The graph shows a solution of one of the following differential equations. Determine the correct equation. Explain your reasoning.
(a) \(y^{\prime}=x y\)
(b) \(y^{\prime}=\frac{4 x}{y}\)
(c) \(y^{\prime}=-4 x y\)
(d) \(y^{\prime}=4-x y\)


\section*{WRITING ABOUT CONCEPTS}
85. In your own words, describe the difference between a general solution of a differential equation and a particular solution.
86. Explain how to interpret a slope field.
87. Describe how to use Euler's Method to approximate a particular solution of a differential equation.
88. It is known that \(y=C e^{k x}\) is a solution of the differential equation \(y^{\prime}=0.07 y\). Is it possible to determine \(C\) or \(k\) from the information given? If so, find its value.

True or False? In Exercises 89-92, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
89. If \(y=f(x)\) is a solution of a first-order differential equation, then \(y=f(x)+C\) is also a solution.
90. The general solution of a differential equation is \(y=-4.9 x^{2}+C_{1} x+C_{2}\). To find a particular solution, you must be given two initial conditions.
91. Slope fields represent the general solutions of differential equations.
92. A slope field shows that the slope at the point \((1,1)\) is 6 . This slope field represents the family of solutions for the differential equation \(y^{\prime}=4 x+2 y\).
93. Errors and Euler's Method The exact solution of the differential equation
\(\frac{d y}{d x}=-2 y\)
where \(y(0)=4\), is \(y=4 e^{-2 x}\).
(a) Use a graphing utility to complete the table, where \(y\) is the exact value of the solution, \(y_{1}\) is the approximate solution using Euler's Method with \(h=0.1, y_{2}\) is the approximate solution using Euler's Method with \(h=0.2, e_{1}\) is the absolute error \(\left|y-y_{1}\right|, e_{2}\) is the absolute error \(\left|y-y_{2}\right|\), and \(r\) is the ratio \(e_{1} / e_{2}\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline\(y\) & & & & & & \\
\hline\(y_{1}\) & & & & & & \\
\hline\(y_{2}\) & & & & & & \\
\hline\(e_{1}\) & & & & & & \\
\hline\(e_{2}\) & & & & & & \\
\hline\(r\) & & & & & & \\
\hline
\end{tabular}
(b) What can you conclude about the ratio \(r\) as \(h\) changes?
(c) Predict the absolute error when \(h=0.05\).
94. Errors and Euler's Method Repeat Exercise 93 for which the exact solution of the differential equation
\(\frac{d y}{d x}=x-y\)
where \(y(0)=1\), is \(y=x-1+2 e^{-x}\).
95. Electric Circuits The diagram shows a simple electric circuit consisting of a power source, a resistor, and an inductor.


A model of the current \(I\), in amperes (A), at time \(t\) is given by the first-order differential equation
\(L \frac{d I}{d t}+R I=E(t)\)
where \(E(t)\) is the voltage ( V ) produced by the power source, \(R\) is the resistance, in ohms ( \(\Omega\) ), and \(L\) is the inductance, in henrys (H). Suppose the electric circuit consists of a \(24-\mathrm{V}\) power source, a \(12-\Omega\) resistor, and a \(4-\mathrm{H}\) inductor.
(a) Sketch a slope field for the differential equation.
(b) What is the limiting value of the current? Explain.
96. Think About It It is known that \(y=e^{k t}\) is a solution of the differential equation \(y^{\prime \prime}-16 y=0\). Find the values of \(k\).
97. Think About It It is known that \(y=A \sin \omega t\) is a solution of the differential equation \(y^{\prime \prime}+16 y=0\). Find the values of \(\omega\).

\section*{PUTNAM EXAM CHALLENGE}
98. Let \(f\) be a twice-differentiable real-valued function satisfying
\(f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x)\)
where \(g(x) \geq 0\) for all real \(x\). Prove that \(|f(x)|\) is bounded.
99. Prove that if the family of integral curves of the differential equation
\(\frac{d y}{d x}+p(x) y=q(x), \quad p(x) \cdot q(x) \neq 0\)
is cut by the line \(x=k\), the tangents at the points of intersection are concurrent.

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{6.2 Differential Equations: Growth and Decay}
- Use separation of variables to solve a simple differential equation.
- Use exponential functions to model growth and decay in applied problems.

\section*{Differential Equations}

In the preceding section, you learned to analyze visually the solutions of differential equations using slope fields and to approximate solutions numerically using Euler's Method. Analytically, you have learned to solve only two types of differential equations-those of the forms \(y^{\prime}=f(x)\) and \(y^{\prime \prime}=f(x)\). In this section, you will learn how to solve a more general type of differential equation. The strategy is to rewrite the equation so that each variable occurs on only one side of the equation. This strategy is called separation of variables. (You will study this strategy in detail in Section 6.3.)

\section*{EXAMPLE 1 Solving a Differential Equation}
\[
\begin{aligned}
y^{\prime} & =\frac{2 x}{y} & & \text { Original equation } \\
y y^{\prime} & =2 x & & \text { Multiply both sides by } y . \\
\int y y^{\prime} d x & =\int 2 x d x & & \text { Integrate with respect to } x . \\
\int y d y & =\int 2 x d x & & d y=y^{\prime} d x \\
\frac{1}{2} y^{2} & =x^{2}+C_{1} & & \text { Apply Power Rule. } \\
y^{2}-2 x^{2} & =C & & \text { Rewrite, letting } C=2 C_{1} .
\end{aligned}
\]

So, the general solution is given by \(y^{2}-2 x^{2}=C\).

Notice that when you integrate both sides of the equation in Example 1, you don't need to add a constant of integration to both sides. If you did, you would obtain the same result.
\[
\begin{aligned}
\int y d y & =\int 2 x d x \\
\frac{1}{2} y^{2}+C_{2} & =x^{2}+C_{3} \\
\frac{1}{2} y^{2} & =x^{2}+\left(C_{3}-C_{2}\right) \\
\frac{1}{2} y^{2} & =x^{2}+C_{1}
\end{aligned}
\]

Some people prefer to use Leibniz notation and differentials when applying separation of variables. The solution of Example 1 is shown below using this notation.
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x}{y} \\
y d y & =2 x d x \\
\int y d y & =\int 2 x d x \\
\frac{1}{2} y^{2} & =x^{2}+C_{1} \\
y^{2}-2 x^{2} & =C
\end{aligned}
\]


If the rate of change of \(y\) is proportional to \(y\), then \(y\) follows an exponential model.
Figure 6.8

STUDY TIP Using logarithmic properties, note that the value of \(k\) in Example 2 can also be written as \(\ln (\sqrt{2})\). So, the model becomes \(y=2 e^{(\ln \sqrt{2}) t}\), which can then be rewritten as \(y=2(\sqrt{2})^{t}\).

\section*{Growth and Decay Models}

In many applications, the rate of change of a variable \(y\) is proportional to the value of \(y\). If \(y\) is a function of time \(t\), the proportion can be written as follows.


The general solution of this differential equation is given in the following theorem.

\section*{THEOREM 6.1 EXPONENTIAL GROWTH AND DECAY MODEL}

If \(y\) is a differentiable function of \(t\) such that \(y>0\) and \(y^{\prime}=k y\) for some constant \(k\), then
\[
y=C e^{k t} .
\]
\(C\) is the initial value of \(y\), and \(k\) is the proportionality constant. Exponential growth occurs when \(k>0\), and exponential decay occurs when \(k<0\).

\section*{PROOF}
\[
\begin{aligned}
y^{\prime} & =k y & & \text { Write original equation. } \\
\frac{y^{\prime}}{y} & =k & & \text { Separate variables. } \\
\int \frac{y^{\prime}}{y} d t & =\int k d t & & \text { Integrate with respect to } t . \\
\int \frac{1}{y} d y & =\int k d t & & d y=y^{\prime} d t
\end{aligned}
\]
\[
\ln y=k t+C_{1} \quad \text { Find antiderivative of each side. }
\]
\[
y=e^{k t} e^{C_{1}} \quad \text { Solve for } y
\]
\[
y=C e^{k t} \quad \text { Let } C=e^{C_{1}}
\]

So, all solutions of \(y^{\prime}=k y\) are of the form \(y=C e^{k t}\). Remember that you can differentiate the function \(y=C e^{k t}\) with respect to \(t\) to verify that \(y^{\prime}=k y\).

\section*{EXAMPLE 2 Using an Exponential Growth Model}

The rate of change of \(y\) is proportional to \(y\). When \(t=0, y=2\), and when \(t=2\), \(y=4\). What is the value of \(y\) when \(t=3\) ?

Solution Because \(y^{\prime}=k y\), you know that \(y\) and \(t\) are related by the equation \(y=C e^{k t}\). You can find the values of the constants \(C\) and \(k\) by applying the initial conditions.
\[
\begin{array}{ll}
2=C e^{0} \quad \square & \text { When } t=0, y=2 . \\
4=2 e^{2 k} \quad \square & k=\frac{1}{2} \ln 2 \approx 0.3466
\end{array} \quad \text { When } t=2, y=4 .
\]

So, the model is \(y \approx 2 e^{0.3466 t}\). When \(t=3\), the value of \(y\) is \(2 e^{0.3466(3)} \approx 5.657\) (see Figure 6.8).


NOTE The exponential decay model in Example 3 could also be written as \(y=10\left(\frac{1}{2}\right)^{t / 24,100}\). This model is much easier to derive, but for some applications it is not as convenient to use.

TECHNOLOGY Most graphing utilities have curve-fitting capabilities that can be used to find models that represent data. Use the exponential regression feature of a graphing utility and the information in Example 2 to find a model for the data. How does your model compare with the given model?

Radioactive decay is measured in terms of half-life-the number of years required for half of the atoms in a sample of radioactive material to decay. The rate of decay is proportional to the amount present. The half-lives of some common radioactive isotopes are shown below.
\begin{tabular}{ll} 
Uranium \(\left({ }^{238} \mathrm{U}\right)\) & \(4,470,000,000\) years \\
Plutonium \(\left({ }^{239} \mathrm{Pu}\right)\) & 24,100 years \\
Carbon \(\left({ }^{14} \mathrm{C}\right)\) & 5715 years \\
Radium \(\left({ }^{226} \mathrm{Ra}\right)\) & 1599 years \\
Einsteinium \(\left({ }^{254} \mathrm{Es}\right)\) & 276 days \\
Nobelium \(\left({ }^{257} \mathrm{No}\right)\) & 25 seconds
\end{tabular}

\section*{EXAMPLE 3 Radioactive Decay}

Suppose that 10 grams of the plutonium isotope \({ }^{239} \mathrm{Pu}\) was released in the Chernobyl nuclear accident. How long will it take for the 10 grams to decay to 1 gram?

Solution Let \(y\) represent the mass (in grams) of the plutonium. Because the rate of decay is proportional to \(y\), you know that
\[
y=C e^{k t}
\]
where \(t\) is the time in years. To find the values of the constants \(C\) and \(k\), apply the initial conditions. Using the fact that \(y=10\) when \(t=0\), you can write
\[
10=C e^{k(0)}=C e^{0}
\]
which implies that \(C=10\). Next, using the fact that the half-life of \({ }^{239} \mathrm{Pu}\) is 24,100 years, you have \(y=10 / 2=5\) when \(t=24,100\), so you can write
\[
\begin{aligned}
5 & =10 e^{k(24,100)} \\
\frac{1}{2} & =e^{24,100 k} \\
\frac{1}{24,100} \ln \frac{1}{2} & =k \\
-0.000028761 & \approx k
\end{aligned}
\]

So, the model is
\[
y=10 e^{-0.000028761 t} . \quad \text { Half-life model }
\]

To find the time it would take for 10 grams to decay to 1 gram, you can solve for \(t\) in the equation
\[
1=10 e^{-0.000028761 t} .
\]

The solution is approximately 80,059 years.

From Example 3, notice that in an exponential growth or decay problem, it is easy to solve for \(C\) when you are given the value of \(y\) at \(t=0\). The next example demonstrates a procedure for solving for \(C\) and \(k\) when you do not know the value of \(y\) at \(t=0\).


Figure 6.9


Figure 6.10

\section*{EXAMPLE 4 Population Growth}

Suppose an experimental population of fruit flies increases according to the law of exponential growth. There were 100 flies after the second day of the experiment and 300 flies after the fourth day. Approximately how many flies were in the original population?
Solution Let \(y=C e^{k t}\) be the number of flies at time \(t\), where \(t\) is measured in days. Note that \(y\) is continuous whereas the number of flies is discrete. Because \(y=100\) when \(t=2\) and \(y=300\) when \(t=4\), you can write
\[
100=C e^{2 k} \quad \text { and } \quad 300=C e^{4 k}
\]

From the first equation, you know that \(C=100 e^{-2 k}\). Substituting this value into the second equation produces the following.
\[
\begin{aligned}
300 & =100 e^{-2 k} e^{4 k} \\
300 & =100 e^{2 k} \\
\ln 3 & =2 k \\
\frac{1}{2} \ln 3 & =k \\
0.5493 & \approx k
\end{aligned}
\]

So, the exponential growth model is
\[
y=C e^{0.5493 t}
\]

To solve for \(C\), reapply the condition \(y=100\) when \(t=2\) and obtain
\[
\begin{aligned}
100 & =C e^{0.5493(2)} \\
C & =100 e^{-1.0986} \approx 33 .
\end{aligned}
\]

So, the original population (when \(t=0\) ) consisted of approximately \(y=C=33\) flies, as shown in Figure 6.9.

\section*{EXAMPLE 5 Declining Sales}

Four months after it stops advertising, a manufacturing company notices that its sales have dropped from 100,000 units per month to 80,000 units per month. If the sales follow an exponential pattern of decline, what will they be after another 2 months?

Solution Use the exponential decay model \(y=C e^{k t}\), where \(t\) is measured in months. From the initial condition \((t=0)\), you know that \(C=100,000\). Moreover, because \(y=80,000\) when \(t=4\), you have
\[
\begin{aligned}
80,000 & =100,000 e^{4 k} \\
0.8 & =e^{4 k} \\
\ln (0.8) & =4 k \\
-0.0558 & \approx k .
\end{aligned}
\]

So, after 2 more months \((t=6)\), you can expect the monthly sales rate to be
\[
\begin{aligned}
y & \approx 100,000 e^{-0.0558(6)} \\
& \approx 71,500 \text { units } .
\end{aligned}
\]

See Figure 6.10.

In Examples 2 through 5, you did not actually have to solve the differential equation
\[
y^{\prime}=k y .
\]
(This was done once in the proof of Theorem 6.1.) The next example demonstrates a problem whose solution involves the separation of variables technique. The example concerns Awtons Lw of Cooling, which states that the rate of change in the temperature of an object is proportional to the difference between the object's temperature and the temperature of the surrounding medium.

\section*{EXAMPLE 6 Newton's Law of Cooling}

Let \(y\) represent the temperature (in \({ }^{\circ} \mathrm{F}\) ) of an object in a room whose temperature is kept at a constant \(60^{\circ}\). If the object cools from \(100^{\circ}\) to \(90^{\circ}\) in 10 minutes, how much longer will it take for its temperature to decrease to \(80^{\circ}\) ?

Solution From Newton's Law of Cooling, you know that the rate of change in \(y\) is proportional to the difference between \(y\) and 60 . This can be written as
\[
y^{\prime}=k(y-60), \quad 80 \leq y \leq 100
\]

To solve this differential equation, use separation of variables, as follows.
\[
\begin{aligned}
\frac{d y}{d t} & =k(y-60) & & \text { Differential equation } \\
\left(\frac{1}{y-60}\right) d y & =k d t & & \text { Separate variables. } \\
\int \frac{1}{y-60} d y & =\int k d t & & \text { Integrate each side. } \\
\ln \mid y-60 & =k t+C_{1} & & \text { Find antiderivative of each side. }
\end{aligned}
\]

Because \(y>60,|y-60|=y-60\), and you can omit the absolute value signs. Using exponential notation, you have
\[
y-60=e^{k t+C_{1}} \quad \square \quad y=60+C e^{k t} . \quad C=e^{C_{1}}
\]

Using \(y=100\) when \(t=0\), you obtain \(100=60+C e^{k(0)}=60+C\), which implies that \(C=40\). Because \(y=90\) when \(t=10\),
\[
\begin{aligned}
90 & =60+40 e^{k(10)} \\
30 & =40 e^{10 k} \\
k & =\frac{1}{10} \ln \frac{3}{4} \approx-0.02877 .
\end{aligned}
\]

So, the model is
\[
y=60+40 e^{-0.02877 t} \quad \text { Cooling model }
\]
and finally, when \(y=80\), you obtain
\[
\begin{aligned}
80 & =60+40 e^{-0.02877 t} \\
20 & =40 e^{-0.02877 t} \\
\frac{1}{2} & =e^{-0.02877 t} \\
\ln \frac{1}{2} & =-0.02877 t \\
t & \approx 24.09 \text { minutes. }
\end{aligned}
\]

So, it will require about 14.09 more minutes for the object to cool to a temperature of \(80^{\circ}\) (see Figure 6.11).

\subsection*{6.2 Exercises}

In Exercises 1-10, solve the differential equation.
1. \(\frac{d y}{d x}=x+3\)
2. \(\frac{d y}{d x}=6-x\)
3. \(\frac{d y}{d x}=y+3\)
4. \(\frac{d y}{d x}=6-y\)
5. \(y^{\prime}=\frac{5 x}{y}\)
6. \(y^{\prime}=\frac{\sqrt{x}}{7 y}\)
7. \(y^{\prime}=\sqrt{x} y\)
8. \(y^{\prime}=x(1+y)\)
9. \(\left(1+x^{2}\right) y^{\prime}-2 x y=0\)
10. \(x y+y^{\prime}=100 x\)

In Exercises 11-14, write and solve the differential equation that models the verbal statement.
11. The rate of change of \(Q\) with respect to \(t\) is inversely proportional to the square of \(t\).
12. The rate of change of \(P\) with respect to \(t\) is proportional to \(25-t\).
13. The rate of change of \(N\) with respect to \(s\) is proportional to \(500-s\).
14. The rate of change of \(y\) with respect to \(x\) varies jointly as \(x\) and \(L-y\).

Slope Fields In Exercises 15 and 16, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) ie integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketch in part (a). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
15. \(\frac{d y}{d x}=x(6-y), \quad(0,0)\)
16. \(\frac{d y}{d x}=x y, \quad\left(0, \frac{1}{2}\right)\)



In Exercises 17-20, find the function \(y=f(t)\) passing through the point \((0,10)\) with the given first derivative. l a graphing utility to graph the solution.
17. \(\frac{d y}{d t}=\frac{1}{2} t\)
18. \(\frac{d y}{d t}=-\frac{3}{4} \sqrt{t}\)
19. \(\frac{d y}{d t}=-\frac{1}{2} y\)
20. \(\frac{d y}{d t}=\frac{3}{4} y\)

In Exercises 21-24, write and solve the differential equation that models the verbal statement. Evaluate the solution at the specified value of the independent variable.
21. The rate of change of \(y\) is proportional to \(y\). When \(x=0, y=6\), and when \(x=4, y=15\). What is the value of \(y\) when \(x=8\) ?
22. The rate of change of \(N\) is proportional to \(N\). When \(t=0\), \(N=250\), and when \(t=1, N=400\). What is the value of \(N\) when \(t=4\) ?
23. The rate of change of \(V\) is proportional to \(V\). When \(t=0\), \(V=20,000\), and when \(t=4, V=12,500\). What is the value of \(V\) when \(t=6\) ?
24. The rate of change of \(P\) is proportional to \(P\). When \(t=0\), \(P=5000\), and when \(t=1, P=4750\). What is the value of \(P\) when \(t=5\) ?

In Exercises 25-28, find the exponential function \(y=C e^{k t}\) that passes through the two given points.
25.

26.

27.

28.


\section*{WRITING ABOUT CONCEPTS}
29. Describe what the values of \(C\) and \(k\) represent in the exponential growth and decay model, \(y=C e^{k t}\).
30. Give the differential equation that models exponential growth and decay.

In Exercises 31 and 32, determine the quadrants in which the solution of the differential equation is an increasing function. Explain. (Dnot solve the differential equation.)
31. \(\frac{d y}{d x}=\frac{1}{2} x y\)
32. \(\frac{d y}{d x}=\frac{1}{2} x^{2} y\)

Radioactive Decay In Exercises 33-40, complete the table for the radioactive isotope.
\begin{tabular}{|c|c|c|c|c|}
\hline Isotope & \begin{tabular}{l}
Half-Life \\
(in years)
\end{tabular} & \begin{tabular}{l}
Initial \\
Quantity
\end{tabular} & \begin{tabular}{l}
Amount \\
After \\
1000 Years
\end{tabular} & \begin{tabular}{l}
Amount \\
After \\
10,000 Years
\end{tabular} \\
\hline 33. \({ }^{226} \mathrm{Ra}\) & 1599 & 20 g & & \\
\hline 34. \({ }^{226} \mathrm{Ra}\) & 1599 & & 1.5 g & \\
\hline 35. \({ }^{226} \mathrm{Ra}\) & 1599 & & & 0.1 g \\
\hline 36. \({ }^{14} \mathrm{C}\) & 5715 & & & 3 g \\
\hline 37. \({ }^{14} \mathrm{C}\) & 5715 & 5 g & & \\
\hline 38. \({ }^{14} \mathrm{C}\) & 5715 & & 1.6 g & \\
\hline 39. \({ }^{239} \mathrm{Pu}\) & 24,100 & & 2.1 g & \\
\hline 40. \({ }^{239} \mathrm{Pu}\) & 24,100 & & & 0.4 g \\
\hline
\end{tabular}
41. Radioactive Decay Radioactive radium has a half-life of approximately 1599 years. What percent of a given amount remains after 100 years?
42. Carbon Dating Carbon-14 dating assumes that the carbon dioxide on Earth today has the same radioactive content as it did centuries ago. If this is true, the amount of \({ }^{14} \mathrm{C}\) absorbed by a tree that grew several centuries ago should be the same as the amount of \({ }^{14} \mathrm{C}\) absorbed by a tree growing today. A piece of ancient charcoal contains only \(15 \%\) as much of the radioactive carbon as a piece of modern charcoal. How long ago was the tree burned to make the ancient charcoal? (The half-life of \({ }^{14} \mathrm{C}\) is 5715 years.)

Compound Interest In Exercises 43-48, complete the table for a savings account in which interest is compounded continuously.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Initial \\
Investment
\end{tabular} & \begin{tabular}{l}
Annual \\
Rate
\end{tabular} & Time to Double & Amount After 10 Years \\
\hline 43. \(\$ 4000\) & 6\% & & \\
\hline 44. \(\$ 18,000\) & \(5 \frac{1}{2} \%\) & & \\
\hline 45. \(\$ 750\) & & \(7 \frac{3}{4} \mathrm{yr}\) & \\
\hline 46. \(\$ 12,500\) & & 5 yr & \\
\hline 47. \$500 & & & \$1292.85 \\
\hline 48. \$2000 & & & \$5436.56 \\
\hline
\end{tabular}

Compound Interest In Exercises 49-52, find the principal \(P\) that must be invested at rate \(r\), compounded monthly, so that \(\$, 000,000\) will be available for retirement in years.
49. \(r=7 \frac{1}{2} \%, \quad t=20\)
50. \(r=6 \%, \quad t=40\)
51. \(r=8 \%, \quad t=35\)
52. \(r=9 \%, \quad t=25\)

Compound Interest In Exercises 53-56, find the time necessary for \(\$ 000\) to double if it is invested at a rate of compounded (a) annually, (b) monthly, (c) daily, and (d) continuously.
53. \(r=7 \%\)
54. \(r=6 \%\)
55. \(r=8.5 \%\)
56. \(r=5.5 \%\)

Population In Exercises 57-61, the population (in millions) of a country in 2007 and the expected continuous annual rate of change \(k\) of the population are given. (Source: U.S. Census Bureau, International Data Base)
(a) Find the exponential growth model \(P=C e^{k t}\) for the population by letting \(t=\mathbf{0}\) correspond to 2000 .
(b) le model to predict the population of the country in 2015.
(c) Icuss the relationship between the sign of kand the change in population for the country.
\begin{tabular}{|c|c|c|}
\hline Country & 2007 Population & k \\
\hline 57. Latvia & 2.3 & -0.006 \\
\hline 58. Egypt & 80.3 & 0.017 \\
\hline 59. Paraguay & 6.7 & 0.024 \\
\hline 60. Hungary & 10.0 & -0.003 \\
\hline 61. Uganda & 30.3 & 0.036 \\
\hline
\end{tabular}

\section*{CAPSTONE}
62. (a) Suppose an insect population increases by a constant number each month. Explain why the number of insects can be represented by a linear function.
(b) Suppose an insect population increases by a constant percentage each month. Explain why the number of insects can be represented by an exponential function.
63. Modeling Data One hundred bacteria are started in a culture and the number \(N\) of bacteria is counted each hour for 5 hours. The results are shown in the table, where \(t\) is the time in hours.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(t\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(N\) & 100 & 126 & 151 & 198 & 243 & 297 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find an exponential model for the data.
(b) Use the model to estimate the time required for the population to quadruple in size.
64. Bacteria Growth The number of bacteria in a culture is increasing according to the law of exponential growth. There are 125 bacteria in the culture after 2 hours and 350 bacteria after 4 hours.
(a) Find the initial population.
(b) Write an exponential growth model for the bacteria population. Let \(t\) represent time in hours.
(c) Use the model to determine the number of bacteria after 8 hours.
(d) After how many hours will the bacteria count be 25,000 ?
65. Learning Curve The management at a certain factory has found that a worker can produce at most 30 units in a day. The learning curve for the number of units \(N\) produced per day after a new employee has worked \(t\) days is \(N=30\left(1-e^{k t}\right)\). After 20 days on the job, a particular worker produces 19 units.
(a) Find the learning curve for this worker.
(b) How many days should pass before this worker is producing 25 units per day?
66. Learning Curve If the management in Exercise 65 requires a new employee to produce at least 20 units per day after 30 days on the job, find (a) the learning curve that describes this minimum requirement and (b) the number of days before a minimal achiever is producing 25 units per day.
67. Modeling Data The table shows the populations \(P\) (in millions) of the United States from 1960 to 2000. (Source: U.S. Census Bureau)
\begin{tabular}{|l|c|c|c|c|c|}
\hline ©ar & 1960 & 1970 & 1980 & 1990 & 2000 \\
\hline Dpulation, \(P\) & 181 & 205 & 228 & 250 & 282 \\
\hline
\end{tabular}
(a) Use the 1960 and 1970 data to find an exponential model \(P_{1}\) for the data. Let \(t=0\) represent 1960.
(b) Use a graphing utility to find an exponential model \(P_{2}\) for all the data. Let \(t=0\) represent 1960 .
(c) Use a graphing utility to plot the data and graph models \(P_{1}\) and \(P_{2}\) in the same viewing window. Compare the actual data with the predictions. Which model better fits the data?
(d) Estimate when the population will be 320 million.
68. Modeling Data The table shows the net receipts and the amounts required to service the national debt (interest on Treasury debt securities) of the United States from 2001 through 2010. The years 2007 through 2010 are estimated, and the monetary amounts are given in billions of dollars. (Source: U.S. Office of Management and Budget)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Car & 2001 & 2002 & 2003 & 2004 & 2005 \\
\hline Rceipts & 1991.4 & 1853.4 & 1782.5 & 1880.3 & 2153.9 \\
\hline Interest & 359.5 & 332.5 & 318.1 & 321.7 & 352.3 \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|}
\hline đár & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline Rceipts & 2407.3 & 2540.1 & 2662.5 & 2798.3 & 2954.7 \\
\hline Interest & 405.9 & 433.0 & 469.9 & 498.0 & 523.2 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find an exponential model \(R\) for the receipts and a quartic model \(I\) for the amount required to service the debt. Let \(t\) represent the time in years, with \(t=1\) corresponding to 2001 .
(b) Use a graphing utility to plot the points corresponding to the receipts, and graph the exponential model. Based on the model, what is the continuous rate of growth of the receipts?
(c) Use a graphing utility to plot the points corresponding to the amounts required to service the debt, and graph the quartic model.
(d) Find a function \(P(t)\) that approximates the percent of the receipts that is required to service the national debt. Use a graphing utility to graph this function.
69. Sound Intensity The level of sound \(\beta\) (in decibels) with an intensity of \(I\) is \(\beta(I)=10 \log _{10}\left(I / I_{0}\right)\), where \(I_{0}\) is an intensity of \(10^{-16}\) watt per square centimeter, corresponding roughly to the faintest sound that can be heard. Determine \(\beta(I)\) for the following.
(a) \(I=10^{-14}\) watt per square centimeter (whisper)
(b) \(I=10^{-9}\) watt per square centimeter (busy street corner)
(c) \(I=10^{-6.5}\) watt per square centimeter (air hammer)
(d) \(I=10^{-4}\) watt per square centimeter (threshold of pain)
70. Noise Level With the installation of noise suppression materials, the noise level in an auditorium was reduced from 93 to 80 decibels. Use the function in Exercise 69 to find the percent decrease in the intensity level of the noise as a result of the installation of these materials.
71. Forestry The value of a tract of timber is \(V(t)=100,000 e^{0.8 \sqrt{t}}\), where \(t\) is the time in years, with \(t=0\) corresponding to 2008 . If money earns interest continuously at \(10 \%\), the present value of the timber at any time \(t\) is \(A(t)=V(t) e^{-0.10 t}\). Find the year in which the timber should be harvested to maximize the present value function.
72. Earthquake Intensity On the Richter scale, the magnitude \(R\) of an earthquake of intensity \(I\) is
\(R=\frac{\ln I-\ln I_{0}}{\ln 10}\)
where \(I_{0}\) is the minimum intensity used for comparison. Assume that \(I_{0}=1\).
(a) Find the intensity of the 1906 San Francisco earthquake ( \(R=8.3\) ).
(b) Find the factor by which the intensity is increased if the Richter scale measurement is doubled.
(c) Find \(d R / d I\).
73. Newton's Law of Cooling When an object is removed from a furnace and placed in an environment with a constant temperature of \(80^{\circ} \mathrm{F}\), its core temperature is \(1500^{\circ} \mathrm{F}\). One hour after it is removed, the core temperature is \(1120^{\circ} \mathrm{F}\). Find the core temperature 5 hours after the object is removed from the furnace.
74. Newton's Law of Cooling A container of hot liquid is placed in a freezer that is kept at a constant temperature of \(20^{\circ} \mathrm{F}\). The initial temperature of the liquid is \(160^{\circ} \mathrm{F}\). After 5 minutes, the liquid's temperature is \(60^{\circ} \mathrm{F}\). How much longer will it take for its temperature to decrease to \(30^{\circ} \mathrm{F}\) ?

True or False? In Exercises 75-78, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
75. In exponential growth, the rate of growth is constant.
76. In linear growth, the rate of growth is constant.
77. If prices are rising at a rate of \(0.5 \%\) per month, then they are rising at a rate of \(6 \%\) per year.
78. The differential equation modeling exponential growth is \(d y / d x=k y\), where \(k\) is a constant.

\subsection*{6.3 Separation of Variables and the Logistic Equation}
- Recognize and solve differential equations that can be solved by separation of variables.
- Recognize and solve homogeneous differential equations.
- Use differential equations to model and solve applied problems.
- Solve and analyze logistic differential equations.

\section*{Separation of Variables}

Consider a differential equation that can be written in the form
\[
M(x)+N(y) \frac{d y}{d x}=0
\]
where \(M\) is a continuous function of \(x\) alone and \(N\) is a continuous function of \(y\) alone. As you saw in the preceding section, for this type of equation, all \(x\) terms can be collected with \(d x\) and all \(y\) terms with \(d y\), and a solution can be obtained by integration. Such equations are said to be separable, and the solution procedure is called separation of variables. Below are some examples of differential equations that are separable.

Original Differential Equation
\[
\begin{aligned}
& x^{2}+3 y \frac{d y}{d x}=0 \\
& (\sin x) y^{\prime}=\cos x \\
& \frac{x y^{\prime}}{e^{y}+1}=2
\end{aligned}
\]

Rewritten with Variables Separated
\[
\begin{aligned}
& 3 y d y=-x^{2} d x \\
& d y=\cot x d x \\
& \frac{1}{e^{y}+1} d y=\frac{2}{x} d x
\end{aligned}
\]

NOTE Be sure to check your solutions throughout this chapter. In Example 1, you can check the solution \(y=C \sqrt{x^{2}+4}\) by differentiating and substituting into the original equation.
\[
\begin{aligned}
\left(x^{2}+4\right) \frac{d y}{d x} & =x y \\
\left(x^{2}+4\right) \frac{C x}{\sqrt{x^{2}+4}} & \stackrel{?}{=} x\left(C \sqrt{x^{2}+4}\right) \\
C x \sqrt{x^{2}+4} & =C x \sqrt{x^{2}+4}
\end{aligned}
\]

So, the solution checks.

\section*{EXAMPLE 1 Separation of Variables}

Find the general solution of \(\left(x^{2}+4\right) \frac{d y}{d x}=x y\).
Solution To begin, note that \(y=0\) is a solution. To find other solutions, assume that \(y \neq 0\) and separate variables as shown.
\[
\begin{aligned}
\left(x^{2}+4\right) d y & =x y d x & & \text { Differential form } \\
\frac{d y}{y} & =\frac{x}{x^{2}+4} d x & & \text { Separate variables }
\end{aligned}
\]

Now, integrate to obtain
\[
\begin{aligned}
\int \frac{d y}{y} & =\int \frac{x}{x^{2}+4} d x \\
\ln |y| & =\frac{1}{2} \ln \left(x^{2}+4\right)+C_{1} \\
\ln |y| & =\ln \sqrt{x^{2}+4}+C_{1} \\
|y| & =e^{C_{1}} \sqrt{x^{2}+4} \\
y & = \pm e^{C_{1}} \sqrt{x^{2}+4} .
\end{aligned}
\]

Because \(y=0\) is also a solution, you can write the general solution as
\[
y=C \sqrt{x^{2}+4}
\]
\[
\text { General solution }\left(C= \pm e^{C_{1}}\right)
\]

\section*{FGREIRNMATID}

For an example (from engineering) of a differential equation that is separable, see the article "Designing a Rose Cutter" by J. S. Hartzler in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.


Figure 6.12

In some cases it is not feasible to write the general solution in the explicit form \(y=f(x)\). The next example illustrates such a solution. Implicit differentiation can be used to verify this solution.

\section*{EXAMPLE 2 Finding a Particular Solution}

Given the initial condition \(y(0)=1\), find the particular solution of the equation
\[
x y d x+e^{-x^{2}}\left(y^{2}-1\right) d y=0
\]

Solution Note that \(y=0\) is a solution of the differential equation-but this solution does not satisfy the initial condition. So, you can assume that \(y \neq 0\). To separate variables, you must rid the first term of \(y\) and the second term of \(e^{-x^{2}}\). So, you should multiply by \(e^{x^{2}} / y\) and obtain the following.
\[
\begin{aligned}
x y d x+e^{-x^{2}}\left(y^{2}-1\right) d y & =0 \\
e^{-x^{2}}\left(y^{2}-1\right) d y & =-x y d x \\
\int\left(y-\frac{1}{y}\right) d y & =\int-x e^{x^{2}} d x \\
\frac{y^{2}}{2}-\ln |y| & =-\frac{1}{2} e^{x^{2}}+C
\end{aligned}
\]

From the initial condition \(y(0)=1\), you have \(\frac{1}{2}-0=-\frac{1}{2}+C\), which implies that \(C=1\). So, the particular solution has the implicit form
\[
\begin{aligned}
\frac{y^{2}}{2}-\ln |y| & =-\frac{1}{2} e^{x^{2}}+1 \\
y^{2}-\ln y^{2}+e^{x^{2}} & =2 .
\end{aligned}
\]

You can check this by differentiating and rewriting to get the original equation.

\section*{EXAMPLE 3 Finding a Particular Solution Curve}

Find the equation of the curve that passes through the point \((1,3)\) and has a slope of \(y / x^{2}\) at any point \((x, y)\).
Solution Because the slope of the curve is given by \(y / x^{2}\), you have
\[
\frac{d y}{d x}=\frac{y}{x^{2}}
\]
with the initial condition \(y(1)=3\). Separating variables and integrating produces
\[
\begin{aligned}
\int \frac{d y}{y} & =\int \frac{d x}{x^{2}}, \quad y \neq 0 \\
\ln |y| & =-\frac{1}{x}+C_{1} \\
y & =e^{-(1 / x)+C_{1}}=C e^{-1 / x} .
\end{aligned}
\]

Because \(y=3\) when \(x=1\), it follows that \(3=C e^{-1}\) and \(C=3 e\). So, the equation of the specified curve is
\[
y=(3 e) e^{-1 / x}=3 e^{(x-1) / x}, \quad x>0
\]

Because the solution is not defined at \(x=0\) and the initial condition is given at \(x=1\), \(x\) is restricted to positive values. See Figure 6.12.

NOTE The notation \(f(x, y)\) is used to denote a function of two variables in much the same way as \(f(x)\) denotes a function of one variable. You will study functions of two variables in detail in Chapter 13.

\section*{Homogeneous Differential Equations}

Some differential equations that are not separable in \(x\) and \(y\) can be made separable by a change of variables. This is true for differential equations of the form \(y^{\prime}=f(x, y)\), where \(f\) is a homogeneous function. The function given by \(f(x, y)\) is homogeneous of degree \(n\) if
\[
f(t x, t y)=t^{n} f(x, y) \quad \text { Homogeneous function of degree } n
\]
where \(n\) is an integer.

\section*{EXAMPLE 4 Verifying Homogeneous Functions}
a. \(f(x, y)=x^{2} y-4 x^{3}+3 x y^{2}\) is a homogeneous function of degree 3 because
\[
\begin{aligned}
f(t x, t y) & =(t x)^{2}(t y)-4(t x)^{3}+3(t x)(t y)^{2} \\
& =t^{3}\left(x^{2} y\right)-t^{3}\left(4 x^{3}\right)+t^{3}\left(3 x y^{2}\right) \\
& =t^{3}\left(x^{2} y-4 x^{3}+3 x y^{2}\right) \\
& =t^{3} f(x, y) .
\end{aligned}
\]
b. \(f(x, y)=x e^{x / y}+y \sin (y / x)\) is a homogeneous function of degree 1 because
\[
\begin{aligned}
f(t x, t y) & =t x e^{t x / t y}+t y \sin \frac{t y}{t x} \\
& =t\left(x e^{x / y}+y \sin \frac{y}{x}\right) \\
& =t f(x, y) .
\end{aligned}
\]
c. \(f(x, y)=x+y^{2}\) is not a homogeneous function because
\[
f(t x, t y)=t x+t^{2} y^{2}=t\left(x+t y^{2}\right) \neq t^{n}\left(x+y^{2}\right)
\]
d. \(f(x, y)=x / y\) is a homogeneous function of degree 0 because
\[
f(t x, t y)=\frac{t x}{t y}=t^{0} \frac{x}{y} .
\]

\section*{DEFINITION OF HOMOGENEOUS DIFFERENTIAL EQUATION}

A homogeneous differential equation is an equation of the form
\[
M(x, y) d x+N(x, y) d y=0
\]
where \(M\) and \(N\) are homogeneous functions of the same degree.

\section*{EXAMPLE 5 Testing for Homogeneous Differential Equations}
a. \(\left(x^{2}+x y\right) d x+y^{2} d y=0\) is homogeneous of degree 2 .
b. \(x^{3} d x=y^{3} d y\) is homogeneous of degree 3 .
c. \(\left(x^{2}+1\right) d x+y^{2} d y=0\) is not a homogeneous differential equation.

STUDY TIP The substitution \(y=v x\) will yield a differential equation that is separable with respect to the variables \(x\) and \(v\). You must write your final solution, however, in terms of \(x\) and \(y\).


General solution of \(\left(x^{2}-y^{2}\right) d x+3 x y d y=0\)
Figure 6.13

To solve a homogeneous differential equation by the method of separation of variables, use the following change of variables theorem.

\section*{THEOREM 6.2 CHANGE OF VARIABLES FOR HOMOGENEOUS EQUATIONS}

If \(M(x, y) d x+N(x, y) d y=0\) is homogeneous, then it can be transformed into a differential equation whose variables are separable by the substitution
\[
y=v x
\]
where \(v\) is a differentiable function of \(x\).

\section*{EXAMPLE 6 Solving a Homogeneous Differential Equation}

Find the general solution of
\[
\left(x^{2}-y^{2}\right) d x+3 x y d y=0
\]

Solution Because \(\left(x^{2}-y^{2}\right)\) and \(3 x y\) are both homogeneous of degree 2, let \(y=v x\) to obtain \(d y=x d v+v d x\). Then, by substitution, you have
\[
\begin{aligned}
\left(x^{2}-v^{2} x^{2}\right) d x+3 x(v x) \overbrace{x d v+v d x}) & =0 \\
\left(x^{2}+2 v^{2} x^{2}\right) d x+3 x^{3} v d v & =0 \\
x^{2}\left(1+2 v^{2}\right) d x+x^{2}(3 v x) d v & =0 .
\end{aligned}
\]

Dividing by \(x^{2}\) and separating variables produces
\[
\begin{aligned}
\left(1+2 v^{2}\right) d x & =-3 v x d v \\
\int \frac{d x}{x} & =\int \frac{-3 v}{1+2 v^{2}} d v \\
\ln |x| & =-\frac{3}{4} \ln \left(1+2 v^{2}\right)+C_{1} \\
4 \ln |x| & =-3 \ln \left(1+2 v^{2}\right)+\ln |C| \\
\ln x^{4} & =\ln \left|C\left(1+2 v^{2}\right)^{-3}\right| \\
x^{4} & =C\left(1+2 v^{2}\right)^{-3} .
\end{aligned}
\]

Substituting for \(v\) produces the following general solution.
\[
\begin{aligned}
x^{4} & =C\left[1+2\left(\frac{y}{x}\right)^{2}\right]^{-3} \\
\left(1+\frac{2 y^{2}}{x^{2}}\right)^{3} x^{4} & =C
\end{aligned}
\]
\[
\left(x^{2}+2 y^{2}\right)^{3}=C x^{2} \quad \text { General solution }
\]

You can check this by differentiating and rewriting to get the original equation.

TECHNOLOGY If you have access to a graphing utility, try using it to graph several solutions of the equation in Example 6. For instance, Figure 6.13 shows the graphs of
\[
\left(x^{2}+2 y^{2}\right)^{3}=C x^{2}
\]
for \(C=1,2,3\), and 4 .

\section*{Applications}

\section*{EXAMPLE 7 Wildlife Population}


The rate of change of the number of coyotes \(N(t)\) in a population is directly proportional to \(650-N(t)\), where \(t\) is the time in years. When \(t=0\), the population is 300 , and when \(t=2\), the population has increased to 500 . Find the population when \(t=3\).

Solution Because the rate of change of the population is proportional to \(650-N(t)\), you can write the following differential equation.
\[
\frac{d N}{d t}=k(650-N)
\]

You can solve this equation using separation of variables.
\[
\begin{aligned}
d N & =k(650-N) d t & & \text { Differential form } \\
\frac{d N}{650-N} & =k d t & & \text { Separate variables. } \\
-\ln |650-N| & =k t+C_{1} & & \text { Integrate. } \\
\ln |650-N| & =-k t-C_{1} & & \\
650-N & =e^{-k t-C_{1}} & & \text { Assume } N<650 . \\
N & =650-C e^{-k t} & & \text { General solution }
\end{aligned}
\]

Using \(N=300\) when \(t=0\), you can conclude that \(C=350\), which produces
\[
N=650-350 e^{-k t} .
\]

Then, using \(N=500\) when \(t=2\), it follows that
\[
500=650-350 e^{-2 k} \quad \square e^{-2 k}=\frac{3}{7} \quad \square k \approx 0.4236 .
\]

So, the model for the coyote population is
\[
N=650-350 e^{-0.4236 t} . \quad \text { Model for population }
\]

When \(t=3\), you can approximate the population to be
\[
N=650-350 e^{-0.4236(3)} \approx 552 \text { coyotes. }
\]

The model for the population is shown in Figure 6.14. Note that \(N=650\) is the horizontal asymptote of the graph and is the carrying capacity of the model. You will learn more about carrying capacity later in this section.


Figure 6.14


Each line \(y=K x\) is an orthogonal trajectory of the family of circles.

\section*{Figure 6.15}


Orthogonal trajectories
Figure 6.16

A common problem in electrostatics, thermodynamics, and hydrodynamics involves finding a family of curves, each of which is orthogonal to all members of a given family of curves. For example, Figure 6.15 shows a family of circles
\[
x^{2}+y^{2}=C \quad \text { Family of circles }
\]
each of which intersects the lines in the family
\[
y=K x \quad \text { Family of lines }
\]
at right angles. Two such families of curves are said to be mutually orthogonal, and each curve in one of the families is called an orthogonal trajectory of the other family. In electrostatics, lines of force are orthogonal to the equipotential curves. In thermodynamics, the flow of heat across a plane surface is orthogonal to the isothermal curves. In hydrodynamics, the flow (stream) lines are orthogonal trajectories of the velocity potential curves.

\section*{EXAMPLE 8 Finding Orthogonal Trajectories}

Describe the orthogonal trajectories for the family of curves given by
\[
y=\frac{C}{x}
\]
for \(C \neq 0\). Sketch several members of each family.
Solution First, solve the given equation for \(C\) and write \(x y=C\). Then, by differentiating implicitly with respect to \(x\), you obtain the differential equation
\[
\begin{aligned}
x y^{\prime}+y & =0 & & \text { Differential equation } \\
x \frac{d y}{d x} & =-y & & \\
\frac{d y}{d x} & =-\frac{y}{x} . & & \text { Slope of given family }
\end{aligned}
\]

Because \(y^{\prime}\) represents the slope of the given family of curves at \((x, y)\), it follows that the orthogonal family has the negative reciprocal slope \(x / y\). So,
\[
\frac{d y}{d x}=\frac{x}{y} . \quad \text { Slope of orthogonal family }
\]

Now you can find the orthogonal family by separating variables and integrating.
\[
\begin{aligned}
\int y d y & =\int x d x \\
\frac{y^{2}}{2} & =\frac{x^{2}}{2}+C_{1} \\
y^{2}-x^{2} & =K
\end{aligned}
\]

The centers are at the origin, and the transverse axes are vertical for \(K>0\) and horizontal for \(K<0\). If \(K=0\), the orthogonal trajectories are the lines \(y= \pm x\). If \(K \neq 0\), the orthogonal trajectories are hyperbolas. Several trajectories are shown in Figure 6.16.


Note that as \(t \rightarrow \infty, y \rightarrow L\).
Figure 6.17

\section*{EXPLORATION}

Use a graphing utility to investigate the effects of the values of \(L, b\), and \(k\) on the graph of
\[
y=\frac{L}{1+b e^{-k t}} .
\]

Include some examples to support your results.

\section*{Logistic Differential Equation}

In Section 6.2, the exponential growth model was derived from the fact that the rate of change of a variable \(y\) is proportional to the value of \(y\). You observed that the differential equation \(d y / d t=k y\) has the general solution \(y=C e^{k t}\). Exponential growth is unlimited, but when describing a population, there often exists some upper limit \(L\) past which growth cannot occur. This upper limit \(L\) is called the carrying capacity, which is the maximum population \(y(t)\) that can be sustained or supported as time \(t\) increases. A model that is often used to describe this type of growth is the logistic differential equation
\[
\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right)
\]

Logistic differential equation
where \(k\) and \(L\) are positive constants. A population that satisfies this equation does not grow without bound, but approaches the carrying capacity \(L\) as \(t\) increases.

From the equation, you can see that if \(y\) is between 0 and the carrying capacity \(L\), then \(d y / d t>0\), and the population increases. If \(y\) is greater than \(L\), then \(d y / d t<0\), and the population decreases. The graph of the function \(y\) is called the logistic curve, as shown in Figure 6.17.

\section*{EXAMPLE 9 Deriving the General Solution}

Solve the logistic differential equation \(\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right)\).
Solution Begin by separating variables.
\[
\begin{aligned}
\frac{d y}{d t} & =k y\left(1-\frac{y}{L}\right) & & \text { Write differential equation. } \\
\int \frac{1}{y(1-y / L)} d y & =k d t & & \text { Separate variables. } \\
\int \frac{1}{y(1-y / L)} d y & =\int k d t & & \text { Integrate each side. } \\
\int\left(\frac{1}{y}+\frac{1}{L-y}\right) d y & =\int k d t & & \text { Rewrite left side using partial fractions. } \\
\ln |y|-\ln |L-y| & =k t+C & & \text { Find antiderivative of each side. } \\
\ln \left|\frac{L-y}{y}\right| & =-k t-C & & \text { Multiply each side by }-1 \text { and simplify. } \\
\left|\frac{L-y}{y}\right| & =e^{-k t-C}=e^{-C} e^{-k t} & & \text { Exponentiate each side. } \\
\frac{L-y}{y} & =b e^{-k t} & & \text { Let } \pm e^{-C}=b .
\end{aligned}
\]

Solving this equation for \(y\) produces \(y=\frac{L}{1+b e^{-k t}}\).

From Example 9, you can conclude that all solutions of the logistic differential equation are of the general form
\[
y=\frac{L}{1+b e^{-k t}} .
\]

\section*{E X P L ORATION}

Explain what happens if \(p(0)=L\).


Slope field for
\(\frac{d p}{d t}=0.194 p\left(1-\frac{p}{4000}\right)\)
and the solution passing through \((0,40)\)
Figure 6.18

\section*{EXAMPLE 10 Solving a Logistic Differential Equation}

A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the environment can support no more than 4000 elk. The growth rate of the elk population \(p\) is
\[
\frac{d p}{d t}=k p\left(1-\frac{p}{4000}\right), \quad 40 \leq p \leq 4000
\]
where \(t\) is the number of years.
a. Write a model for the elk population in terms of \(t\).
b. Graph the slope field for the differential equation and the solution that passes through the point \((0,40)\).
c. Use the model to estimate the elk population after 15 years.
d. Find the limit of the model as \(t \rightarrow \infty\).

\section*{Solution}
a. You know that \(L=4000\). So, the solution of the equation is of the form
\[
p=\frac{4000}{1+b e^{-k t}} .
\]

Because \(p(0)=40\), you can solve for \(b\) as follows.
\[
\begin{aligned}
40 & =\frac{4000}{1+b e^{-k(0)}} \\
40 & =\frac{4000}{1+b} \quad \square b=99
\end{aligned}
\]

Then, because \(p=104\) when \(t=5\), you can solve for \(k\).
\[
104=\frac{4000}{1+99 e^{-k(5)}} \quad \square \quad k \approx 0.194
\]

So, a model for the elk population is given by \(p=\frac{4000}{1+99 e^{-0.194 t}}\).
b. Using a graphing utility, you can graph the slope field for
\[
\frac{d p}{d t}=0.194 p\left(1-\frac{p}{4000}\right)
\]
and the solution that passes through \((0,40)\), as shown in Figure 6.18.
c. To estimate the elk population after 15 years, substitute 15 for \(t\) in the model.
\[
\begin{array}{rlrl}
p & =\frac{4000}{1+99 e^{-0.194(15)}} & & \text { Substitute } 15 \text { for } t . \\
& =\frac{4000}{1+99 e^{-2.91}} \approx 626 & \text { Simplify. }
\end{array}
\]
d. As \(t\) increases without bound, the denominator of \(\frac{4000}{1+99 e^{-0.194 t}}\) gets closer and closer to 1 .

So, \(\lim _{t \rightarrow \infty} \frac{4000}{1+99 e^{-0.194 t}}=4000\).

\subsection*{6.3 Exercises}

In Exercises 1-14, find the general solution of the differential equation.
1. \(\frac{d y}{d x}=\frac{x}{y}\)
2. \(\frac{d y}{d x}=\frac{3 x^{2}}{y^{2}}\)
3. \(x^{2}+5 y \frac{d y}{d x}=0\)
4. \(\frac{d y}{d x}=\frac{x^{2}-3}{6 y^{2}}\)
5. \(\frac{d r}{d s}=0.75 r\)
6. \(\frac{d r}{d s}=0.75 s\)
7. \((2+x) y^{\prime}=3 y\)
8. \(x y^{\prime}=y\)
9. \(y y^{\prime}=4 \sin x\)
10. \(y y^{\prime}=-8 \cos (\pi x)\)
11. \(\sqrt{1-4 x^{2}} y^{\prime}=x\)
12. \(\sqrt{x^{2}-16} y^{\prime}=11 x\)
13. \(y \ln x-x y^{\prime}=0\)
14. \(12 y y^{\prime}-7 e^{x}=0\)

In Exercises 15-24, find the particular solution that satisfies the initial condition.

\section*{Differential Equation}
15. \(y y^{\prime}-2 e^{x}=0\)
16. \(\sqrt{x}+\sqrt{y} y^{\prime}=0\)
17. \(y(x+1)+y^{\prime}=0\)
18. \(2 x y^{\prime}-\ln x^{2}=0\)
19. \(y\left(1+x^{2}\right) y^{\prime}-x\left(1+y^{2}\right)=0\)
20. \(y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0\)
21. \(\frac{d u}{d v}=u v \sin v^{2}\)
22. \(\frac{d r}{d s}=e^{r-2 s}\)
23. \(d P-k P d t=0\)
24. \(d T+k(T-70) d t=0\)

\section*{Initial Condition}
\[
\begin{aligned}
& y(0)=3 \\
& y(1)=9 \\
& y(-2)=1 \\
& y(1)=2 \\
& y(0)=\sqrt{3} \\
& y(0)=1 \\
& u(0)=1 \\
& r(0)=0 \\
& P(0)=P_{0} \\
& T(0)=140
\end{aligned}
\]

In Exercises 25-28, find an equation of the graph that passes through the point and has the given slope.
25. \((0,2), \quad y^{\prime}=\frac{x}{4 y}\)
26. \((1,1), \quad y^{\prime}=-\frac{9 x}{16 y}\)
27. \((9,1), \quad y^{\prime}=\frac{y}{2 x}\)
28. \((8,2), \quad y^{\prime}=\frac{2 y}{3 x}\)

In Exercises 29 and 30, find all functions \(f\) having the indicated property.
29. The tangent to the graph of \(f\) at the point \((x, y)\) intersects the \(x\)-axis at \((x+2,0)\).
30. All tangents to the graph of \(f\) pass through the origin.

In Exercises 31-38, determine whether the function is homogeneous, and if it is, determine its degree.
31. \(f(x, y)=x^{3}-4 x y^{2}+y^{3}\)
32. \(f(x, y)=x^{3}+3 x^{2} y^{2}-2 y^{2}\)
33. \(f(x, y)=\frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}}\)
34. \(f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}\)
35. \(f(x, y)=2 \ln x y\)
36. \(f(x, y)=\tan (x+y)\)
37. \(f(x, y)=2 \ln \frac{x}{y}\)
38. \(f(x, y)=\tan \frac{y}{x}\)

In Exercises 39-44, solve the homogeneous differential equation.
39. \(y^{\prime}=\frac{x+y}{2 x}\)
40. \(y^{\prime}=\frac{x^{3}+y^{3}}{x y^{2}}\)
41. \(y^{\prime}=\frac{x-y}{x+y}\)
42. \(y^{\prime}=\frac{x^{2}+y^{2}}{2 x y}\)
43. \(y^{\prime}=\frac{x y}{x^{2}-y^{2}}\)
44. \(y^{\prime}=\frac{2 x+3 y}{x}\)

In Exercises 45-48, find the particular solution that satisfies the initial condition.

\section*{Differential Equation}
45. \(x d y-\left(2 x e^{-y / x}+y\right) d x=0\)
46. \(-y^{2} d x+x(x+y) d y=0\)
47. \(\left(x \sec \frac{y}{x}+y\right) d x-x d y=0\)
48. \(\left(2 x^{2}+y^{2}\right) d x+x y d y=0\)

Slope Fields In Exercises 49-52, sketch a few solutions of the differential equation on the slope field and then find the general solution analytically. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
49. \(\frac{d y}{d x}=x\)

51. \(\frac{d y}{d x}=4-y\)

50. \(\frac{d y}{d x}=-\frac{x}{y}\)

52. \(\frac{d y}{d x}=0.25 x(4-y)\)

\(y(1)=0\)
\(y(1)=1\)
\(y(1)=0\)
\(y(1)=0\)

Euler's Method In Exercises 53-56, (a) use Eulers̊ Method with a step sie of \(h=0.1\) to approximate the particular solution of the initial value problem at the given \(x\)-value, (b) find the exact solution of the differential equation analytically, and (c) compare the solutions at the given \(x\)-value.
\begin{tabular}{llll} 
& \begin{tabular}{lll} 
Differential Equation \\
53. \(\frac{d y}{d x}=-6 x y\) & & Initial Condition
\end{tabular} & \(\frac{x \text {-value }}{}\) \\
54. \(\frac{d y}{d x}+6 x y^{2}=0\) & \((0,5)\) & \(x=1\) \\
55. \(\frac{d y}{d x}=\frac{2 x+12}{3 y^{2}-4}\) & \((0,3)\) & \(x=1\) \\
56. \(\frac{d y}{d x}=2 x\left(1+y^{2}\right)\) & \((1,2)\) & \(x=2\) \\
& \((1,0)\) & \(x=1.5\)
\end{tabular}
63. Weight Gain A calf that weighs 60 pounds at birth gains weight at the rate \(d w / d t=k(1200-w)\), where \(w\) is weight in pounds and \(t\) is time in years. Solve the differential equation.
(a) Use a computer algebra system to solve the differential equation for \(k=0.8,0.9\), and 1 . Graph the three solutions.
(b) If the animal is sold when its weight reaches 800 pounds, If the animal is sold when its weight reaches 800 pou
find the time of sale for each of the models in part (a).
(c) What is the maximum weight of the animal for each of the models?
64. Weight Gain A calf that weighs \(w_{0}\) pounds at birth gains weight at the rate \(d w / d t=1200-w\), where \(w\) is weight in pounds and \(t\) is time in years. Solve the differential equation.

In Exercises 65-70, find the orthogonal trajectories of the family. Le a graphing utility to graph several members of each family.
65. \(x^{2}+y^{2}=C\)
66. \(x^{2}-2 y^{2}=C\)
67. \(x^{2}=C y\)
68. \(y^{2}=2 C x\)
69. \(y^{2}=C x^{3}\)
70. \(y=C e^{x}\)

In Exercises 71-74, match the logistic equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

71. \(y=\frac{12}{1+e^{-x}}\)
72. \(y=\frac{12}{1+3 e^{-x}}\)
73. \(y=\frac{12}{1+\frac{1}{2} e^{-x}}\)
74. \(y=\frac{12}{1+e^{-2 x}}\)
59. The rate of change of \(y\) with respect to \(x\) is proportional to the difference between \(y\) and 4 .
60. The rate of change of \(y\) with respect to \(x\) is proportional to the difference between \(x\) and 4 .
61. The rate of change of \(y\) with respect to \(x\) is proportional to the product of \(y\) and the difference between \(y\) and 4 .
62. The rate of change of \(y\) with respect to \(x\) is proportional to \(y^{2}\). half-life of radioactive radium is 1599 years. What percent of a present amount will remain after 50 years?
58. Chemical Reaction In a chemical reaction, a certain compound changes into another compound at a rate proportional to the unchanged amount. If initially there is 40 grams of the original compound, and there is 35 grams after 1 hour, when will 75 percent of the compound be changed?

Slope Fields In Exercises 59-62, (a) write a differential equation for the statement, (b) match the differential equation with a possible slope field, and (c) verify your result by using a graphing utility to graph a slope field for the differential equation. The slope fields are labeled (a), (b), (c), and (d).]To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
(a)

(b)


(d)


In Exercises 75 and 76, the logistic equation models the growth of a population. se the equation to (a) find the value of \(k\), (b) find the carrying capacity, (c) find the initial population, (d) determine when the population will reach \(50 \%\) its carrying capacity, and (e) write a logistic differential equation that has the solution \(P(t)\).
75. \(P(t)=\frac{2100}{1+29 e^{-0.75 t}}\)
76. \(P(t)=\frac{5000}{1+39 e^{-0.2 t}}\)

CAS In Exercises 77 and 78, the logistic differential equation models the growth rate of a population. te the equation to (a) find the value of \(k\), (b) find the carrying capacity, (c) graph a slope field using a computer algebra system, and (d) determine the value of \(P\) at which the population growth rate is the greatest.
77. \(\frac{d P}{d t}=3 P\left(1-\frac{P}{100}\right)\)
78. \(\frac{d P}{d t}=0.1 P-0.0004 P^{2}\)

In Exercises 79-82, find the logistic equation that satisfies the initial condition.

\section*{Logistic Differential Equation}

Initial Condition
79. \(\frac{d y}{d t}=y\left(1-\frac{y}{36}\right)\)
80. \(\frac{d y}{d t}=2.8 y\left(1-\frac{y}{10}\right)\)
81. \(\frac{d y}{d t}=\frac{4 y}{5}-\frac{y^{2}}{150}\)
82. \(\frac{d y}{d t}=\frac{3 y}{20}-\frac{y^{2}}{1600}\)
83. Endangered Species A conservation organization releases 25 Florida panthers into a game preserve. After 2 years, there are 39 panthers in the preserve. The Florida preserve has a carrying capacity of 200 panthers.
(a) Write a logistic equation that models the population of panthers in the preserve.
(b) Find the population after 5 years.
(c) When will the population reach 100 ?
(d) Write a logistic differential equation that models the growth rate of the panther population. Then repeat part (b) using Euler's Method with a step size of \(h=1\). Compare the approximation with the exact answers.
(e) At what time is the panther population growing most rapidly? Explain.
84. Bacteria Growth At time \(t=0\), a bacterial culture weighs 1 gram. Two hours later, the culture weighs 4 grams. The maximum weight of the culture is 20 grams.
(a) Write a logistic equation that models the weight of the bacterial culture.
(b) Find the culture's weight after 5 hours.
(c) When will the culture's weight reach 18 grams?
(d) Write a logistic differential equation that models the growth rate of the culture's weight. Then repeat part (b) using Euler's Method with a step size of \(h=1\). Compare the approximation with the exact answers.
(e) At what time is the culture's weight increasing most rapidly? Explain.

\section*{WRITING ABOUT CONCEPTS}
85. In your own words, describe how to recognize and solve differential equations that can be solved by separation of variables.
86. State the test for determining if a differential equation is homogeneous. Give an example.
87. In your own words, describe the relationship between two families of curves that are mutually orthogonal.

\section*{CAPSTONE}
88. Suppose the growth of a population is modeled by a logistic equation. As the population increases, its rate of growth decreases. What do you think causes this to occur in real-life situations such as animal or human populations?
89. Show that if \(y=\frac{1}{1+b e^{-k t}}\), then \(\frac{d y}{d t}=k y(1-y)\).
90. Sailing Ignoring resistance, a sailboat starting from rest accelerates \((d v / d t)\) at a rate proportional to the difference between the velocities of the wind and the boat.
(a) The wind is blowing at 20 knots, and after 1 half-hour the boat is moving at 10 knots. Write the velocity \(v\) as a function of time \(t\).
(b) Use the result of part (a) to write the distance traveled by the boat as a function of time.

True or False? In Exercises 91-94, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
91. The function \(y=0\) is always a solution of a differential equation that can be solved by separation of variables.
92. The differential equation \(y^{\prime}=x y-2 y+x-2\) can be written in separated variables form.
93. The function \(f(x, y)=x^{2}-4 x y+6 y^{2}+1\) is homogeneous.
94. The families \(x^{2}+y^{2}=2 C y\) and \(x^{2}+y^{2}=2 K x\) are mutually orthogonal.

\section*{PUTNAM EXAM CHALLENGE}
95. A not uncommon calculus mistake is to believe that the product rule for derivatives says that \((f g)^{\prime}=f^{\prime} g^{\prime}\). If \(f(x)=e^{x^{2}}\), determine, with proof, whether there exists an open interval \((a, b)\) and a nonzero function \(g\) defined on \((a, b)\) such that this wrong product rule is true for \(x\) in \((a, b)\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{6.4 First-Order Linear Differential Equations}
- Solve a first-order linear differential equation.
- Use linear differential equations to solve applied problems.
- Solve a Bernoulli differential equation.

\section*{First-Order Linear Differential Equations}

In this section, you will see how to solve a very important class of first-order differential equations-first-order linear differential equations.

\section*{DEFINITION OF FIRST-ORDER LINEAR DIFFERENTIAL EQUATION}

A first-order linear differential equation is an equation of the form
\[
\frac{d y}{d x}+P(x) y=Q(x)
\]
where \(P\) and \(Q\) are continuous functions of \(x\). This first-order linear differential equation is said to be in standard form.

To solve a linear differential equation, write it in standard form to identify the

NOTE It is instructive to see why the integrating factor helps solve a linear differential equation of the form \(y^{\prime}+P(x) y=Q(x)\). When both sides of the equation are multiplied by the integrating factor \(u(x)=e^{\int P(x) d x}\), the left-hand side becomes the derivative of a product.
\(y^{\prime} e^{\int P(x) d x}+P(x) y e^{\int P(x) d x}=Q(x) e^{\int P(x) d x}\)
\[
\left[y e^{\int P(x) d x}\right]^{\prime}=Q(x) e^{\int P(x) d x}
\]

Integrating both sides of this second equation and dividing by \(u(x)\) produces the general solution.
functions \(P(x)\) and \(Q(x)\). Then integrate \(P(x)\) and form the expression
\[
u(x)=e^{\int P(x) d x} \quad \text { Integrating factor }
\]
which is called an integrating factor. The general solution of the equation is
\[
y=\frac{1}{u(x)} \int Q(x) u(x) d x . \quad \text { General solution }
\]

\section*{EXAMPLE 1 Solving a Linear Differential Equation}

Find the general solution of
\[
y^{\prime}+y=e^{x}
\]

Solution For this equation, \(P(x)=1\) and \(Q(x)=e^{x}\). So, the integrating factor is
\[
\begin{array}{rlr}
u(x) & =e^{\int P(x) d x} & \text { Integrating factor } \\
& =e^{\int d x} & \\
& =e^{x} &
\end{array}
\]

This implies that the general solution is
\[
\begin{aligned}
y & =\frac{1}{u(x)} \int Q(x) u(x) d x \\
& =\frac{1}{e^{x}} \int e^{x}\left(e^{x}\right) d x \\
& =e^{-x}\left(\frac{1}{2} e^{2 x}+C\right) \\
& =\frac{1}{2} e^{x}+C e^{-x} .
\end{aligned} \quad \text { General solution } \quad \text {. } \quad \text {. }
\]

\section*{ANNA JOHNSON PELL WHEELER}
(1883-1966)
Anna Johnson Pell Wheeler was awarded a master's degree from the University of lowa for her thesis The Extension of Galois Theory to Linear Differential Equations in 1904. Influenced by David Hilbert, she worked on integral equations while studying infinite linear spaces.


Figure 6.19

\section*{THEOREM 6.3 SOLUTION OF A FIRST-ORDER LINEAR DIFFERENTIAL EQUATION}

An integrating factor for the first-order linear differential equation
\[
y^{\prime}+P(x) y=Q(x)
\]
is \(u(x)=e^{\int P(x) d x}\). The solution of the differential equation is
\[
y e^{\int P(x) d x}=\int Q(x) e^{\int P(x) d x} d x+C
\]

STUDY TIP Rather than memorizing the formula in Theorem 6.3, just remember that multiplication by the integrating factor \(e^{\int P(x) d x}\) converts the left side of the differential equation into the derivative of the product \(y e^{\int P(x) d x}\).

\section*{EXAMPLE 2 Solving a First-Order Linear Differential Equation}

Find the general solution of
\[
x y^{\prime}-2 y=x^{2} .
\]

Solution The standard form of the given equation is
\[
\begin{aligned}
& y^{\prime}+P(x) y=Q(x) \\
& y^{\prime}-\left(\frac{2}{x}\right) y=x
\end{aligned}
\]
Standard form

So, \(P(x)=-2 / x\), and you have
\(\int P(x) d x=-\int \frac{2}{x} d x\)
\[
=-\ln x^{2}
\]
\[
e^{\int P(x) d x}=e^{-\ln x^{2}}
\]
\[
=\frac{1}{e^{\ln x^{2}}}
\]
\[
=\frac{1}{x^{2}} . \quad \text { Integrating factor }
\]

So, multiplying each side of the standard form by \(1 / x^{2}\) yields
\[
\begin{aligned}
\frac{y^{\prime}}{x^{2}}-\frac{2 y}{x^{3}} & =\frac{1}{x} \\
\frac{d}{d x}\left[\frac{y}{x^{2}}\right] & =\frac{1}{x} \\
\frac{y}{x^{2}} & =\int \frac{1}{x} d x \\
\frac{y}{x^{2}} & =\ln |x|+C \\
y & =x^{2}(\ln |x|+C) . \quad \text { General solution }
\end{aligned}
\]

Several solution curves (for \(C=-2,-1,0,1,2,3\), and 4) are shown in Figure 6.19.


Figure 6.20


Figure 6.21

\section*{EXAMPLE 3 Solving a First-Order Linear Differential Equation}

Find the general solution of \(y^{\prime}-y \tan t=1, \quad-\pi / 2<t<\pi / 2\).
Solution The equation is already in the standard form \(y^{\prime}+P(t) y=Q(t)\). So, \(P(t)=-\tan t\), and
\[
\int P(t) d t=-\int \tan t d t=\ln |\cos t|
\]

Because \(-\pi / 2<t<\pi / 2\), you can drop the absolute value signs and conclude that the integrating factor is
\[
e^{\int P(t) d t}=e^{\ln (\cos t)}=\cos t . \quad \text { Integrating factor }
\]

So, multiplying \(y^{\prime}-y \tan t=1\) by \(\cos t\) produces
\[
\begin{aligned}
& \frac{d}{d t}[y \cos t]=\cos t \\
& y \cos t=\int \cos t d t \\
& y \cos t=\sin t+C \\
& y=\tan t+C \sec t . \quad \text { General solution }
\end{aligned}
\]

Several solution curves are shown in Figure 6.20.

\section*{Applications}

One type of problem that can be described in terms of a differential equation involves chemical mixtures, as illustrated in the next example.

\section*{EXAMPLE 4 A Mixture Problem}

A tank contains 50 gallons of a solution composed of \(90 \%\) water and \(10 \%\) alcohol. A second solution containing \(50 \%\) water and \(50 \%\) alcohol is added to the tank at the rate of 4 gallons per minute. As the second solution is being added, the tank is being drained at a rate of 5 gallons per minute, as shown in Figure 6.21. Assuming the solution in the tank is stirred constantly, how much alcohol is in the tank after 10 minutes?

Solution Let \(y\) be the number of gallons of alcohol in the tank at any time \(t\). You know that \(y=5\) when \(t=0\). Because the number of gallons of solution in the tank at any time is \(50-t\), and the tank loses 5 gallons of solution per minute, it must lose \([5 /(50-t)] y\) gallons of alcohol per minute. Furthermore, because the tank is gaining 2 gallons of alcohol per minute, the rate of change of alcohol in the tank is given by
\[
\frac{d y}{d t}=2-\left(\frac{5}{50-t}\right) y \quad \square \frac{d y}{d t}+\left(\frac{5}{50-t}\right) y=2 .
\]

To solve this linear equation, let \(P(t)=5 /(50-t)\) and obtain
\[
\int P(t) d t=\int \frac{5}{50-t} d t=-5 \ln |50-t|
\]

Because \(t<50\), you can drop the absolute value signs and conclude that
\[
e^{\int P(t) d t}=e^{-5 \ln (50-t)}=\frac{1}{(50-t)^{5}}
\]

So, the general solution is
\[
\begin{aligned}
\frac{y}{(50-t)^{5}} & =\int \frac{2}{(50-t)^{5}} d t=\frac{1}{2(50-t)^{4}}+C \\
y & =\frac{50-t}{2}+C(50-t)^{5}
\end{aligned}
\]

Because \(y=5\) when \(t=0\), you have
\[
5=\frac{50}{2}+C(50)^{5} \quad \square \quad-\frac{20}{50^{5}}=C
\]
which means that the particular solution is
\[
y=\frac{50-t}{2}-20\left(\frac{50-t}{50}\right)^{5}
\]

Finally, when \(t=10\), the amount of alcohol in the tank is
\[
y=\frac{50-10}{2}-20\left(\frac{50-10}{50}\right)^{5} \approx 13.45 \mathrm{gal}
\]
which represents a solution containing \(33.6 \%\) alcohol.

In most falling-body problems discussed so far in the text, air resistance has been neglected. The next example includes this factor. In the example, the air resistance on the falling object is assumed to be proportional to its velocity \(v\). If \(g\) is the gravitational constant, the downward force \(F\) on a falling object of mass \(m\) is given by the difference \(m g-k v\). But by Newton's Second Law of Motion, you know that
\[
F=m a=m(d v / d t) \quad a=\text { acceleration }
\]
which yields the following differential equation.
\[
m \frac{d v}{d t}=m g-k v \quad \square \frac{d v}{d t}+\frac{k v}{m}=g
\]

\section*{EXAMPLE 5 A Falling Object with Air Resistance}

An object of mass \(m\) is dropped from a hovering helicopter. Find its velocity as a function of time \(t\). Assume that the air resistance is proportional to the object's velocity.
Solution The velocity \(v\) satisfies the equation
\[
\frac{d v}{d t}+\frac{k v}{m}=g . \quad g=\text { gravitational constant }, k=\text { constant of proportionality }
\]

Letting \(b=k / m\), you can separate variables to obtain
\[
\begin{aligned}
d v & =(g-b v) d t \\
\int \frac{d v}{g-b v} & =\int d t \\
-\frac{1}{b} \ln |g-b v| & =t+C_{1} \\
\ln |g-b v| & =-b t-b C_{1} \quad \\
g-b v & =C e^{-b t} . \quad C=e^{-b C_{1}}
\end{aligned}
\]

Because the object was dropped, \(v=0\) when \(t=0\); so \(g=C\), and it follows that
\[
-b v=-g+g e^{-b t} \quad \square \quad v=\frac{g-g e^{-b t}}{b}=\frac{m g}{k}\left(1-e^{-k t / m}\right)
\]


Figure 6.22

A simple electric circuit consists of electric current \(I\) (in amperes), a resistance \(R\) (in ohms), an inductance \(L\) (in henrys), and a constant electromotive force \(E\) (in volts), as shown in Figure 6.22. According to Kirchhoff's Second Law, if the switch \(S\) is closed when \(t=0\), the applied electromotive force (voltage) is equal to the sum of the voltage drops in the rest of the circuit. This in turn means that the current \(I\) satisfies the differential equation
\[
L \frac{d I}{d t}+R I=E
\]

\section*{EXAMPLE 6 An Electric Circuit Problem}

Find the current \(I\) as a function of time \(t\) (in seconds), given that \(I\) satisfies the differential equation
\[
L(d I / d t)+R I=\sin 2 t
\]
where \(R\) and \(L\) are nonzero constants.
Solution In standard form, the given linear equation is
\[
\frac{d I}{d t}+\frac{R}{L} I=\frac{1}{L} \sin 2 t .
\]

Let \(P(t)=R / L\), so that \(e^{\int P(t) d t}=e^{(R / L) t}\), and, by Theorem 6.3,
\[
\begin{aligned}
I e^{(R / L) t} & =\frac{1}{L} \int e^{(R / L) t} \sin 2 t d t \\
& =\frac{1}{4 L^{2}+R^{2}} e^{(R / L) t}(R \sin 2 t-2 L \cos 2 t)+C
\end{aligned}
\]

So the general solution is
\[
\begin{aligned}
& I=e^{-(R / L) t}\left[\frac{1}{4 L^{2}+R^{2}} e^{(R / L) t}(R \sin 2 t-2 L \cos 2 t)+C\right] \\
& I=\frac{1}{4 L^{2}+R^{2}}(R \sin 2 t-2 L \cos 2 t)+C e^{-(R / L) t} .
\end{aligned}
\]

TECHNOLOGY The integral in Example 6 was found using symbolic algebra software. If you have access to Maple, Mathematica, or the TI-89, try using it to integrate
\[
\frac{1}{L} \int e^{(R / L) t} \sin 2 t d t
\]

In Chapter 8 you will learn how to integrate functions of this type using integration by parts.

\section*{Bernoulli Equation}

A well-known nonlinear equation that reduces to a linear one with an appropriate substitution is the Brnoulli equation, named after James Bernoulli (1654-1705).
\[
y^{\prime}+P(x) y=Q(x) y^{n} \quad \text { Bernoulli equation }
\]

This equation is linear if \(n=0\), and has separable variables if \(n=1\). So, in the following development, assume that \(n \neq 0\) and \(n \neq 1\). Begin by multiplying by \(y^{-n}\) and \((1-n)\) to obtain
\[
\begin{aligned}
y^{-n} y^{\prime}+P(x) y^{1-n} & =Q(x) \\
(1-n) y^{-n} y^{\prime}+(1-n) P(x) y^{1-n} & =(1-n) Q(x) \\
\frac{d}{d x}\left[y^{1-n}\right]+(1-n) P(x) y^{1-n} & =(1-n) Q(x)
\end{aligned}
\]
which is a linear equation in the variable \(y^{1-n}\). Letting \(z=y^{1-n}\) produces the linear equation
\[
\frac{d z}{d x}+(1-n) P(x) z=(1-n) Q(x)
\]

Finally, by Theorem 6.3, the general solution of the Bernoulli equation is
\[
y^{1-n} e^{\int(1-n) P(x) d x}=\int(1-n) Q(x) e^{\int(1-n) P(x) d x} d x+C
\]

\section*{EXAMPLE 7 Solving a Bernoulli Equation}

Find the general solution of \(y^{\prime}+x y=x e^{-x^{2}} y^{-3}\).
Solution For this Bernoulli equation, let \(n=-3\), and use the substitution
\[
\begin{aligned}
z & =y^{4} & & \text { Let } z=y^{1-n}=y^{1-(-3)} . \\
z^{\prime} & =4 y^{3} y^{\prime} . & & \text { Differentiate. }
\end{aligned}
\]
\(z^{\prime}=y^{3} y^{\prime}\).
Multiplying the original equation by \(4 y^{3}\) produces
\[
\begin{aligned}
y^{\prime}+x y & =x e^{-x^{2}} y^{-3} & & \text { Write original equation. } \\
4 y^{3} y^{\prime}+4 x y^{4} & =4 x e^{-x^{2}} & & \text { Multiply each side by } 4 y^{3} . \\
z^{\prime}+4 x z & =4 x e^{-x^{2} .} & & \text { Linear equation: } z^{\prime}+P(x) z=Q(x)
\end{aligned}
\]

This equation is linear in \(z\). Using \(P(x)=4 x\) produces
\[
\begin{aligned}
\int P(x) d x & =\int 4 x d x \\
& =2 x^{2}
\end{aligned}
\]
which implies that \(e^{2 x^{2}}\) is an integrating factor. Multiplying the linear equation by this factor produces
\[
\begin{aligned}
z^{\prime}+4 x z & =4 x e^{-x^{2}} & & \text { Linear equation } \\
z^{\prime} e^{2 x^{2}}+4 x z e^{2 x^{2}} & =4 x e^{x^{2}} & & \text { Multiply by integrating factor. } \\
\frac{d}{d x}\left[z e^{2 x^{2}}\right] & =4 x e^{x^{2}} & & \text { Write left side as derivative. } \\
z e^{2 x^{2}} & =\int 4 x e^{x^{2}} d x & & \text { Integrate each side. } \\
z e^{2 x^{2}} & =2 e^{x^{2}}+C & & \\
z & =2 e^{-x^{2}}+C e^{-2 x^{2}} . & & \text { Divide each side by } e^{2 x^{2}} .
\end{aligned}
\]

Finally, substituting \(z=y^{4}\), the general solution is
\[
y^{4}=2 e^{-x^{2}}+C e^{-2 x^{2}}
\]

So far you have studied several types of first-order differential equations. Of these, the separable variables case is usually the simplest, and solution by an integrating factor is ordinarily used only as a last resort.

\section*{SUMMARY OF FIRST-ORDER DIFFERENTIAL EQUATIONS}

\section*{Method}
1. Separable variables:
2. Homogeneous:
3. Linear:
4. Bernoulli equation:

Form of Equation
\(M(x) d x+N(y) d y=0\)
\(M(x, y) d x+N(x, y) d y=0\), where \(M\) and \(N\) are \(n\) th-degree homogeneous functions
\[
y^{\prime}+P(x) y=Q(x)
\]
\(y^{\prime}+P(x) y=Q(x) y^{n}\)

\subsection*{6.4 Exercises}

In Exercises 1-4, determine whether the differential equation is linear. Explain your reasoning.
1. \(x^{3} y^{\prime}+x y=e^{x}+1\)
2. \(2 x y-y^{\prime} \ln x=y\)
3. \(y^{\prime}-y \sin x=x y^{2}\)
4. \(\frac{2-y^{\prime}}{y}=5 x\)

In Exercises 5-14, solve the first-order linear differential equation.
5. \(\frac{d y}{d x}+\left(\frac{1}{x}\right) y=6 x+2\)
6. \(\frac{d y}{d x}+\left(\frac{2}{x}\right) y=3 x-5\)
7. \(y^{\prime}-y=16\)
8. \(y^{\prime}+2 x y=10 x\)
9. \((y+1) \cos x d x-d y=0\)
10. \((y-1) \sin x d x-d y=0\)
11. \((x-1) y^{\prime}+y=x^{2}-1\)
12. \(y^{\prime}+3 y=e^{3 x}\)
13. \(y^{\prime}-3 x^{2} y=e^{x^{3}}\)
14. \(y^{\prime}+y \tan x=\sec x\)

Slope Fields In Exercises 15 and 16, (a) sketch an approximate solution of the differential equation satisfying the given initial condition by hand on the slope field, (b) find the particular solution that satisfies the given initial condition, and (c) use a graphing utility to graph the particular solution. Compare the graph with the hand-drawn graph in part (a). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
15. \(\frac{d y}{d x}=e^{x}-y\),
\((0,1)\)

16. \(y^{\prime}+\left(\frac{1}{x}\right) y=\sin x^{2}\),
\((\sqrt{\pi}, 0)\)


In Exercises 17-24, find the particular solution of the differential equation that satisfies the boundary condition.

\section*{Differential Equation}
17. \(y^{\prime} \cos ^{2} x+y-1=0\)
18. \(x^{3} y^{\prime}+2 y=e^{1 / x^{2}}\)
19. \(y^{\prime}+y \tan x=\sec x+\cos x\)
20. \(y^{\prime}+y \sec x=\sec x\)
21. \(y^{\prime}+\left(\frac{1}{x}\right) y=0\)
22. \(y^{\prime}+(2 x-1) y=0\)
23. \(x d y=(x+y+2) d x\)
24. \(2 x y^{\prime}-y=x^{3}-x\)

Boundary Condition
\(y(0)=5\)
\(y(1)=e\)
\(y(0)=1\)
\(y(0)=4\)
\(y(2)=2\)
\(y(1)=2\)
\(y(1)=10\)
\(y(4)=2\)
25. Population Growth When predicting population growth, demographers must consider birth and death rates as well as the net change caused by the difference between the rates of immigration and emigration. Let \(P\) be the population at time \(t\) and let \(N\) be the net increase per unit time resulting from the difference between immigration and emigration. So, the rate of growth of the population is given by
\(\frac{d P}{d t}=k P+N, \quad N\) is constant.
Solve this differential equation to find \(P\) as a function of time if at time \(t=0\) the size of the population is \(P_{0}\).
26. Investment Growth A large corporation starts at time \(t=0\) to invest part of its receipts continuously at a rate of \(P\) dollars per year in a fund for future corporate expansion. Assume that the fund earns \(r\) percent interest per year compounded continuously. So, the rate of growth of the amount \(A\) in the fund is given by
\(\frac{d A}{d t}=r A+P\)
where \(A=0\) when \(t=0\). Solve this differential equation for \(A\) as a function of \(t\).

Investment Growth In Exercises 27 and 28, use the result of Exercise 26.
27. Find \(A\) for the following.
(a) \(P=\$ 275,000, r=8 \%\), and \(t=10\) years
(b) \(P=\$ 550,000, r=5.9 \%\), and \(t=25\) years
28. Find \(t\) if the corporation needs \(\$ 1,000,000\) and it can invest \(\$ 125,000\) per year in a fund earning \(8 \%\) interest compounded continuously.
29. Intravenous Feeding Glucose is added intravenously to the bloodstream at the rate of \(q\) units per minute, and the body removes glucose from the bloodstream at a rate proportional to the amount present. Assume that \(Q(t)\) is the amount of glucose in the bloodstream at time \(t\).
(a) Determine the differential equation describing the rate of change of glucose in the bloodstream with respect to time.
(b) Solve the differential equation from part (a), letting \(Q=Q_{0}\) when \(t=0\).
(c) Find the limit of \(Q(t)\) as \(t \rightarrow \infty\).
30. Learning Curve The management at a certain factory has found that the maximum number of units a worker can produce in a day is 75 . The rate of increase in the number of units \(N\) produced with respect to time \(t\) in days by a new employee is proportional to \(75-N\).
(a) Determine the differential equation describing the rate of change of performance with respect to time.
(b) Solve the differential equation from part (a).
(c) Find the particular solution for a new employee who produced 20 units on the first day at the factory and 35 units on the twentieth day.

Mixture In Exercises 31-35, consider a tank that at time \(t=0\) contains \(v_{0}\) gallons of a solution of which, by weight, \(q_{0}\) pounds is soluble concentrate. Another solution containing \(q_{1}\) pounds of the concentrate per gallon is running into the tank at the rate of \(r_{1}\) gallons per minute. The solution in the tank is kept well stirred and is withdrawn at the rate of \(r_{2}\) gallons per minute.
31. If \(Q\) is the amount of concentrate in the solution at any time \(t\), show that
\(\frac{d Q}{d t}+\frac{r_{2} Q}{v_{0}+\left(r_{1}-r_{2}\right) t}=q_{1} r_{1}\).
32. If \(Q\) is the amount of concentrate in the solution at any time \(t\), write the differential equation for the rate of change of \(Q\) with respect to \(t\) if \(r_{1}=r_{2}=r\).
33. A 200-gallon tank is full of a solution containing 25 pounds of concentrate. Starting at time \(t=0\), distilled water is admitted to the tank at a rate of 10 gallons per minute, and the well-stirred solution is withdrawn at the same rate.
(a) Find the amount of concentrate \(Q\) in the solution as a function of \(t\).
(b) Find the time at which the amount of concentrate in the tank reaches 15 pounds.
(c) Find the quantity of the concentrate in the solution as \(t \rightarrow \infty\).
34. Repeat Exercise 33, assuming that the solution entering the tank contains 0.04 pound of concentrate per gallon.
35. A 200-gallon tank is half full of distilled water. At time \(t=0\), a solution containing 0.5 pound of concentrate per gallon enters the tank at the rate of 5 gallons per minute, and the well-stirred mixture is withdrawn at the rate of 3 gallons per minute.
(a) At what time will the tank be full?
(b) At the time the tank is full, how many pounds of concentrate will it contain?
(c) Repeat parts (a) and (b), assuming that the solution entering the tank contains 1 pound of concentrate per gallon.

\section*{CAPSTONE}
36. Suppose the expression \(u(x)\) is an integrating factor for \(y^{\prime}+P(x) y=Q(x)\). Which of the following is equal to \(u^{\prime}(x)\) ? Verify your answer.
(a) \(P(x) u(x)\)
(b) \(P^{\prime}(x) u(x)\)
(c) \(Q(x) u(x)\)
(d) \(Q^{\prime}(x) u(x)\)

Falling Object In Exercises 37 and 38, consider an eight-pound object dropped from a height of 5000 feet, where the air resistance is proportional to the velocity.
37. Write the velocity of the object as a function of time if the velocity after 5 seconds is approximately -101 feet per second. What is the limiting value of the velocity function?
38. Use the result of Exercise 37 to write the position of the object as a function of time. Approximate the velocity of the object when it reaches ground level.

Electric Circuits In Exercises 39 and 40, use the differential equation for electric circuits given by
\(L \frac{d I}{d t}+R I=E\).
In this equation, \(I\) is the current, \(R\) is the resistance, \(L\) is the inductance, and \(E\) is the electromotive force (voltage).
39. Solve the differential equation for the current given a constant voltage \(E_{0}\).
40. Use the result of Exercise 39 to find the equation for the current if \(I(0)=0, E_{0}=120\) volts, \(R=600\) ohms, and \(L=4\) henrys. When does the current reach \(90 \%\) of its limiting value?

\section*{WRITING ABOUT CONCEPTS}
41. Give the standard form of a first-order linear differential equation. What is its integrating factor?
42. Give the standard form of the Bernoulli equation. Describe how one reduces it to a linear equation.

In Exercises 43-46, match the differential equation with its solution.

\section*{Differential Equation}
43. \(y^{\prime}-2 x=0\)
44. \(y^{\prime}-2 y=0\)
45. \(y^{\prime}-2 x y=0\)
46. \(y^{\prime}-2 x y=x\)

\section*{Solution}
(a) \(y=C e^{x^{2}}\)
(b) \(y=-\frac{1}{2}+C e^{x^{2}}\)
(c) \(y=x^{2}+C\)
(d) \(y=C e^{2 x}\)

In Exercises 47-54, solve the Brnoulli differential equation.
47. \(y^{\prime}+3 x^{2} y=x^{2} y^{3}\)
48. \(y^{\prime}+x y=x y^{-1}\)
49. \(y^{\prime}+\left(\frac{1}{x}\right) y=x y^{2}\)
50. \(y^{\prime}+\left(\frac{1}{x}\right) y=x \sqrt{y}\)
51. \(x y^{\prime}+y=x y^{3}\)
52. \(y^{\prime}-y=y^{3}\)
53. \(y^{\prime}-y=e^{x} \sqrt[3]{y}\)
54. \(y y^{\prime}-2 y^{2}=e^{x}\)

Slope Fields In Exercises 55-58, (a) use a graphing utility to graph the slope field for the differential equation, (b) find the particular solutions of the differential equation passing through the given points, and (c) use a graphing utility to graph the particular solutions on the slope field.
\begin{tabular}{ll}
\(\frac{\text { Differential Equation }}{}\) & \\
55. \(\frac{d y}{d x}-\frac{1}{x} y=x^{2}\) & \((-2,4),(2,8)\) \\
56. \(\frac{d y}{d x}+4 x^{3} y=x^{3}\) & \(\left(0, \frac{7}{2}\right),\left(0,-\frac{1}{2}\right)\)
\end{tabular}

Differential Equation
57. \(\frac{d y}{d x}+(\cot x) y=2\)
58. \(\frac{d y}{d x}+2 x y=x y^{2}\)

Points
\((1,1),(3,-1)\)
\((0,3),(0,1)\)

In Exercises 59-70, solve the first-order differential equation by any appropriate method.
59. \(\frac{d y}{d x}=\frac{e^{2 x+y}}{e^{x-y}}\)
60. \(\frac{d y}{d x}=\frac{x-3}{y(y+4)}\)
61. \(y \cos x-\cos x+\frac{d y}{d x}=0\)
62. \(y^{\prime}=2 x \sqrt{1-y^{2}}\)
63. \(\left(3 y^{2}+4 x y\right) d x+\left(2 x y+x^{2}\right) d y=0\)
64. \((x+y) d x-x d y=0\)
65. \(\left(2 y-e^{x}\right) d x+x d y=0\)
66. \(\left(y^{2}+x y\right) d x-x^{2} d y=0\)
67. \(\left(x^{2} y^{4}-1\right) d x+x^{3} y^{3} d y=0\)
68. \(y d x+(3 x+4 y) d y=0\)
69. \(3\left(y-4 x^{2}\right) d x+x d y=0\)
70. \(x d x+\left(y+e^{y}\right)\left(x^{2}+1\right) d y=0\)

True or False? In Exercises 71 and 72, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
71. \(y^{\prime}+x \sqrt{y}=x^{2}\) is a first-order linear differential equation.
72. \(y^{\prime}+x y=e^{x} y\) is a first-order linear differential equation.

\section*{SECTION PROJECT}

\section*{Weight Loss}

A person's weight depends on both the number of calories consumed and the energy used. Moreover, the amount of energy used depends on a person's weight -the average amount of energy used by a person is 17.5 calories per pound per day. So, the more weight a person loses, the less energy a person uses (assuming that the person maintains a constant level of activity). An equation that can be used to model weight loss is
\(\left(\frac{d w}{d t}\right)=\frac{C}{3500}-\frac{17.5}{3500} w\)
where \(w\) is the person's weight (in pounds), \(t\) is the time in days, and \(C\) is the constant daily calorie consumption.
(a) Find the general solution of the differential equation.
(b) Consider a person who weighs 180 pounds and begins a diet of 2500 calories per day. How long will it take the person to lose 10 pounds? How long will it take the person to lose 35 pounds?
(c) Use a graphing utility to graph the solution. What is the "limiting" weight of the person?
(d) Repeat parts (b) and (c) for a person who weighs 200 pounds when the diet is started.

FRFRHRINMATID
For more information on modeling weight loss, see the article "A Linear Diet Model" by Arthur C. Segal in The College Mathematics Journal.

\section*{6 REVIEW EXERCISES}
1. Determine whether the function \(y=x^{3}\) is a solution of the differential equation \(2 x y^{\prime}+4 y=10 x^{3}\).
2. Determine whether the function \(y=2 \sin 2 x\) is a solution of the differential equation \(y^{\prime \prime \prime}-8 y=0\).

In Exercises 3-10, use integration to find a general solution of the differential equation.
3. \(\frac{d y}{d x}=4 x^{2}+7\)
4. \(\frac{d y}{d x}=3 x^{3}-8 x\)
5. \(\frac{d y}{d x}=\cos 2 x\)
6. \(\frac{d y}{d x}=2 \sin x\)
7. \(\frac{d y}{d x}=x \sqrt{x-5}\)
8. \(\frac{d y}{d x}=2 x \sqrt{x-7}\)
9. \(\frac{d y}{d x}=e^{2-x}\)
10. \(\frac{d y}{d x}=3 e^{-x / 3}\)

Slope Fields In Exercises 11 and 12, a differential equation and its slope field are given. Etermine the slopes (if possible) in the slope field at the points given in the table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & -4 & -2 & 0 & 2 & 4 & 8 \\
\hline\(y\) & 2 & 0 & 4 & 4 & 6 & 8 \\
\hline\(d y / d x\) & & & & & & \\
\hline
\end{tabular}
11. \(\frac{d y}{d x}=2 x-y\)
12. \(\frac{d y}{d x}=x \sin \left(\frac{\pi y}{4}\right)\)



Slope Fields In Exercises 13-18, (a) sketch the slope field for the differential equation, and (b) use the slope field to sketch the solution that passes through the given point. 㚭 a graphing utility to verify your results.
\begin{tabular}{lll}
\multicolumn{1}{l}{\(\frac{\text { Differential Equation }}{}\)} & & Point \\
13. \(y^{\prime}=3-x\) & & \((2,1)\) \\
14. \(y^{\prime}=2 x^{2}-x\) & & \((0,2)\) \\
15. \(y^{\prime}=\frac{1}{4} x^{2}-\frac{1}{3} x\) & & \((0,3)\) \\
16. \(y^{\prime}=y+4 x\) & & \((-1,1)\) \\
17. \(y^{\prime}=\frac{x y}{x^{2}+4}\) & \((0,1)\) \\
18. \(y^{\prime}=\frac{y}{x^{2}+1}\) & & \((0,-2)\)
\end{tabular}

In Exercises 19-24, solve the differential equation.
19. \(\frac{d y}{d x}=8-x\)
20. \(\frac{d y}{d x}=y+8\)
21. \(\frac{d y}{d x}=(3+y)^{2}\)
22. \(\frac{d y}{d x}=10 \sqrt{y}\)
23. \((2+x) y^{\prime}-x y=0\)
24. \(x y^{\prime}-(x+1) y=0\)

In Exercises 25-28, find the exponential function \(y=C e^{k t}\) that passes through the two points.
25.

26.

27. \((0,5),\left(5, \frac{1}{6}\right)\)
28. \((1,9),(6,2)\)
29. Air Pressure Under ideal conditions, air pressure decreases continuously with the height above sea level at a rate proportional to the pressure at that height. The barometer reads 30 inches at sea level and 15 inches at 18,000 feet. Find the barometric pressure at 35,000 feet.
30. Radioactive Decay Radioactive radium has a half-life of approximately 1599 years. The initial quantity is 15 grams. How much remains after 750 years?
31. Sales The sales \(S\) (in thousands of units) of a new product after it has been on the market for \(t\) years is given by
\(S=C e^{k / t}\).
(a) Find \(S\) as a function of \(t\) if 5000 units have been sold after 1 year and the saturation point for the market is 30,000 units (that is, \(\lim _{t \rightarrow \infty} S=30\) ).
(b) How many units will have been sold after 5 years?
(c) Use a graphing utility to graph this sales function.
32. Sales The sales \(S\) (in thousands of units) of a new product after it has been on the market for \(t\) years is given by \(S=25\left(1-e^{k t}\right)\).
(a) Find \(S\) as a function of \(t\) if 4000 units have been sold after 1 year.
(b) How many units will saturate this market?
(c) How many units will have been sold after 5 years?
(d) Use a graphing utility to graph this sales function.
33. Population Growth A population grows continuously at the rate of \(1.85 \%\). How long will it take the population to double?
34. Fuel Economy An automobile gets 28 miles per gallon of gasoline for speeds up to 50 miles per hour. Over 50 miles per hour, the number of miles per gallon drops at the rate of 12 percent for each 10 miles per hour.
(a) \(s\) is the speed and \(y\) is the number of miles per gallon. Find \(y\) as a function of \(s\) by solving the differential equation
\[
\frac{d y}{d s}=-0.012 y, \quad s>50 .
\]
(b) Use the function in part (a) to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Speed & 50 & 55 & 60 & 65 & 70 \\
\hline Miles per @lon & & & & & \\
\hline
\end{tabular}

In Exercises 35-40, solve the differential equation.
35. \(\frac{d y}{d x}=\frac{x^{5}+7}{x}\)
36. \(\frac{d y}{d x}=\frac{e^{-2 x}}{1+e^{-2 x}}\)
37. \(y^{\prime}-16 x y=0\)
38. \(y^{\prime}-e^{y} \sin x=0\)
39. \(\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}\)
40. \(\frac{d y}{d x}=\frac{3(x+y)}{x}\)
41. Verify that the general solution \(y=C_{1} x+C_{2} x^{3}\) satisfies the differential equation \(x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0\). Then find the particular solution that satisfies the initial condition \(y=0\) and \(y^{\prime}=4\) when \(x=2\).
42. Vertical Motion A falling object encounters air resistance that is proportional to its velocity. The acceleration due to gravity is -9.8 meters per second per second. The net change in velocity is \(d v / d t=k v-9.8\).
(a) Find the velocity of the object as a function of time if the initial velocity is \(v_{0}\).
(b) Use the result of part (a) to find the limit of the velocity as \(t\) approaches infinity.
(c) Integrate the velocity function found in part (a) to find the position function \(s\).

Slope Fields In Exercises 43 and 44, sketch a few solutions of the differential equation on the slope field and then find the general solution analytically. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
43. \(\frac{d y}{d x}=-\frac{4 x}{y}\)
44. \(\frac{d y}{d x}=3-2 y\)



In Exercises 45 and 46, the logistic equation models the growth of a population. the equation to (a) find the value of \(k\), (b) find the carrying capacity, (c) find the initial population, (d) determine when the population will reach \(\mathbf{5 0 \%}\) ff its carrying capacity, and (e) write a logistic differential equation that has the solution \(P(t)\).
45. \(P(t)=\frac{5250}{1+34 e^{-0.55 t}}\)
46. \(P(t)=\frac{4800}{1+14 e^{-0.15 t}}\)

In Exercises 47 and 48, find the logistic equation that satisfies the initial condition.

\section*{\(\underline{\text { Logistic Differential Equation Initial Condition }}\)}
47. \(\frac{d y}{d t}=y\left(1-\frac{y}{80}\right)\)
48. \(\frac{d y}{d t}=1.76 y\left(1-\frac{y}{8}\right)\)
49. Environment A conservation department releases 1200 brook trout into a lake. It is estimated that the carrying capacity of the lake for the species is 20,400 . After the first year, there are 2000 brook trout in the lake.
(a) Write a logistic equation that models the number of brook trout in the lake.
(b) Find the number of brook trout in the lake after 8 years.
(c) When will the number of brook trout reach 10,000 ?
50. Environment Write a logistic differential equation that models the growth rate of the brook trout population in Exercise 49. Then repeat part (b) using Euler's Method with a step size of \(h=1\). Compare the approximation with the exact answers.

In Exercises 51-60, solve the first-order linear differential equation.
51. \(y^{\prime}-y=10\)
52. \(e^{x} y^{\prime}+4 e^{x} y=1\)
53. \(4 y^{\prime}=e^{x / 4}+y\)
54. \(\frac{d y}{d x}-\frac{5 y}{x^{2}}=\frac{1}{x^{2}}\)
55. \((x-2) y^{\prime}+y=1\)
56. \((x+3) y^{\prime}+2 y=2(x+3)^{2}\)
57. \((3 y+\sin 2 x) d x-d y=0\)
58. \(d y=\left(y \tan x+2 e^{x}\right) d x\)
59. \(y^{\prime}+5 y=e^{5 x}\)
60. \(x y^{\prime}-a y=b x^{4}\)

In Exercises 61-64, solve the Brnoulli differential equation.
61. \(y^{\prime}+y=x y^{2} \quad\left[\right.\) Hint: \(\left.\int x e^{-x} d x=(-x-1) e^{-x}\right]\)
62. \(y^{\prime}+2 x y=x y^{2}\)
63. \(y^{\prime}+\left(\frac{1}{x}\right) y=\frac{y^{3}}{x^{2}}\)
64. \(x y^{\prime}+y=x y^{2}\)

In Exercises 65-68, write an example of the given differential equation. Then solve your equation.
65. Homogeneous
66. Logistic
67. First-order linear
68. Bernoulli

\section*{P.S. PROBLEM SOLVING}
1. The differential equation
\(\frac{d y}{d t}=k y^{1+\varepsilon}\)
where \(k\) and \(\varepsilon\) are positive constants, is called the doomsday equation.
(a) Solve the doomsday equation
\(\frac{d y}{d t}=y^{1.01}\)
given that \(y(0)=1\). Find the time \(T\) at which
\(\lim _{t \rightarrow T^{-}} y(t)=\infty\).
(b) Solve the doomsday equation
\[
\frac{d y}{d t}=k y^{1+\varepsilon}
\]
given that \(y(0)=y_{0}\). Explain why this equation is called the doomsday equation.
2. A thermometer is taken from a room at \(72^{\circ} \mathrm{F}\) to the outdoors, where the temperature is \(20^{\circ} \mathrm{F}\). The reading drops to \(48^{\circ} \mathrm{F}\) after 1 minute. Determine the reading on the thermometer after 5 minutes.
3. Let \(S\) represent sales of a new product (in thousands of units), let \(L\) represent the maximum level of sales (in thousands of units), and let \(t\) represent time (in months). The rate of change of \(S\) with respect to \(t\) varies jointly as the product of \(S\) and \(L-S\).
(a) Write the differential equation for the sales model if \(L=100, S=10\) when \(t=0\), and \(S=20\) when \(t=1\). Verify that
\[
S=\frac{L}{1+C e^{-k t}}
\]
(b) At what time is the growth in sales increasing most rapidly?
(c) Use a graphing utility to graph the sales function.
(d) Sketch the solution from part (a) on the slope field shown in the figure below. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(e) If the estimated maximum level of sales is correct, use the slope field to describe the shape of the solution curves for sales if, at some period of time, sales exceed \(L\).
4. Another model that can be used to represent population growth is the Ompertzequation, which is the solution of the differential equation
\(\frac{d y}{d t}=k \ln \left(\frac{L}{y}\right) y\)
where \(k\) is a constant and \(L\) is the carrying capacity.
(a) Solve the differential equation.
(b) Use a graphing utility to graph the slope field for the differential equation when \(k=0.05\) and \(L=1000\).
(c) Describe the behavior of the graph as \(t \rightarrow \infty\).
(d) Graph the equation you found in part (a) for \(L=5000\), \(y_{0}=500\), and \(k=0.02\). Determine the concavity of the graph and how it compares with the general solution of the logistic differential equation.
5. Show that the logistic equation \(y=L /\left(1+b e^{-k t}\right)\) can be written as
\(y=\frac{1}{2} L\left[1+\tanh \left(\frac{1}{2} k\left(t-\frac{\ln b}{k}\right)\right)\right]\).
What can you conclude about the graph of the logistic equation?
6. Although it is true for some functions \(f\) and \(g\), a common mistake in calculus is to believe that the Product Rule for derivatives is \((f g)^{\prime}=f^{\prime} g^{\prime}\).
(a) Given \(g(x)=x\), find \(f\) such that \((f g)^{\prime}=f^{\prime} g^{\prime}\).
(b) Given an arbitrary function \(g\), find a function \(f\) such that \((f g)^{\prime}=f^{\prime} g^{\prime}\).
(c) Describe what happens if \(g(x)=e^{x}\).
7. Torricellis \(\mathbf{L w}\) states that water will flow from an opening at the bottom of a tank with the same speed that it would attain falling from the surface of the water to the opening. One of the forms of Torricelli's Law is
\(A(h) \frac{d h}{d t}=-k \sqrt{2 g h}\)
where \(h\) is the height of the water in the tank, \(k\) is the area of the opening at the bottom of the tank, \(A(h)\) is the horizontal crosssectional area at height \(h\), and \(g\) is the acceleration due to gravity ( \(g \approx 32\) feet per second per second). A hemispherical water tank has a radius of 6 feet. When the tank is full, a circular valve with a radius of 1 inch is opened at the bottom, as shown in the figure. How long will it take for the tank to drain completely?

8. The cylindrical water tank shown in the figure has a height of 18 feet. When the tank is full, a circular valve is opened at the bottom of the tank. After 30 minutes, the depth of the water is 12 feet.

(a) How long will it take for the tank to drain completely?
(b) What is the depth of the water in the tank after 1 hour?
9. Suppose the tank in Exercise 8 has a height of 20 feet and a radius of 8 feet, and the valve is circular with a radius of 2 inches. The tank is full when the valve is opened. How long will it take for the tank to drain completely?
10. In hilly areas, radio reception may be poor. Consider a situation in which an FM transmitter is located at the point \((-1,1)\) behind a hill modeled by the graph of
\(y=x-x^{2}\)
and a radio receiver is on the opposite side of the hill. (Assume that the \(x\)-axis represents ground level at the base of the hill.)
(a) What is the closest position \((x, 0)\) the radio can be to the hill so that reception is unobstructed?
(b) Write the closest position \((x, 0)\) of the radio with \(x\) represented as a function of \(h\) if the transmitter is located at \((-1, h)\).
(c) Use a graphing utility to graph the function for \(x\) in part (b). Determine the vertical asymptote of the function and interpret its meaning.
11. Biomass is a measure of the amount of living matter in an ecosystem. Suppose the biomass \(s(t)\) in a given ecosystem increases at a rate of about 3.5 tons per year, and decreases by about \(1.9 \%\) per year. This situation can be modeled by the differential equation
\(\frac{d s}{d t}=3.5-0.019 \mathrm{~s}\).
(a) Solve the differential equation.
(b) Use a graphing utility to graph the slope field for the differential equation. What do you notice?
(c) Explain what happens as \(t \rightarrow \infty\).

In Exercises 12-14, a medical researcher wants to determine the concentration \(C\) (in moles per liter) of a tracer drug injected into a moving fluid. Solve this problem by considering a singlecompartment dilution model (see figure). Assume that the fluid is continuously mixed and that the volume of the fluid in the compartment is constant.


Figure for 12-14
12. If the tracer is injected instantaneously at time \(t=0\), then the concentration of the fluid in the compartment begins diluting according to the differential equation
\(\frac{d C}{d t}=\left(-\frac{R}{V}\right) C, \quad C=C_{0}\) when \(t=0\).
(a) Solve this differential equation to find the concentration \(C\) as a function of time \(t\).
(b) Find the limit of \(C\) as \(t \rightarrow \infty\).
13. Use the solution of the differential equation in Exercise 12 to find the concentration \(C\) as a function of time \(t\), and use a graphing utility to graph the function.
(a) \(V=2\) liters, \(R=0.5\) liter per minute, and \(C_{0}=0.6\) mole per liter
(b) \(V=2\) liters, \(R=1.5\) liters per minute, and \(C_{0}=0.6\) mole per liter
14. In Exercises 12 and 13, it was assumed that there was a single initial injection of the tracer drug into the compartment. Now consider the case in which the tracer is continuously injected (beginning at \(t=0\) ) at the rate of \(Q\) moles per minute. Considering \(Q\) to be negligible compared with \(R\), use the differential equation
\(\frac{d C}{d t}=\frac{Q}{V}-\left(\frac{R}{V}\right) C, \quad C=0\) when \(t=0\).
(a) Solve this differential equation to find the concentration \(C\) as a function of time \(t\).
(b) Find the limit of \(C\) as \(t \rightarrow \infty\).

\section*{7 Applications of Integration}

Integration has a wide variety of applications. For each of the applications presented in this chapter, you will begin with a known formula, such as the area of a rectangular region, the volume of a circular disk, or the work done by a constant force. Then you will learn how the limit of a sum gives rise to new formulas that involve integration.

In this chapter, you should learn the following.
- How to use a definite integral to find the area of a region bounded by two curves. (7.1)
- How to find the volume of a solid of revolution by the disk and shell methods. (7.2 and 7.3)
- How to find the length of a curve and the surface area of a surface of revolution. (7.4)
- How to find the work done by a constant force and by a variable force. (7.5)
- How to find centers of mass and centroids. (7.6)
- How to find fluid pressure and fluid force. (7.7)


Eddie Hironaka/Getty Images
An electric cable is hung between two towers that are 200 feet apart. The cable takes the shape of a catenary. What is the length of the cable between the two towers? (See Section 7.4, Example 5.)


The disk method is one method that is used to find the volume of a solid. This method requires finding the sum of the volumes of representative disks to approximate the volume of the solid. As you increase the number of disks, the approximation tends to become more accurate. In Section 7.2, you will use limits to write the exact volume of the solid as a definite integral.

\subsection*{7.1 Area of a Region Between Two Curves}


Figure 7.1


Figure 7.3
- Find the area of a region between two curves using integration.
- Find the area of a region between intersecting curves using integration.
- Describe integration as an accumulation process.

\section*{Area of a Region Between Two Curves}

With a few modifications, you can extend the application of definite integrals from the area of a region under a curve to the area of a region between two curves. Consider two functions \(f\) and \(g\) that are continuous on the interval \([a, b]\). If, as in Figure 7.1, the graphs of both \(f\) and \(g\) lie above the \(x\)-axis, and the graph of \(g\) lies below the graph of \(f\), you can geometrically interpret the area of the region between the graphs as the area of the region under the graph of \(g\) subtracted from the area of the region under the graph of \(f\), as shown in Figure 7.2.


Figure 7.2

To verify the reasonableness of the result shown in Figure 7.2, you can partition the interval \([a, b]\) into \(n\) subintervals, each of width \(\Delta x\). Then, as shown in Figure 7.3, sketch a representative rectangle of width \(\Delta x\) and height \(f\left(x_{i}\right)-g\left(x_{i}\right)\), where \(x_{i}\) is in the \(i\) th subinterval. The area of this representative rectangle is
\[
\Delta A_{i}=(\text { height })(\text { width })=\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x
\]

By adding the areas of the \(n\) rectangles and taking the limit as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\), you obtain
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x
\]

Because \(f\) and \(g\) are continuous on \([a, b], f-g\) is also continuous on \([a, b]\) and the limit exists. So, the area of the given region is
\[
\begin{aligned}
\text { Area } & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x \\
& =\int_{a}^{b}[f(x)-g(x)] d x
\end{aligned}
\]

\section*{AREA OF A REGION BETWEEN TWO CURVES}

If \(f\) and \(g\) are continuous on \([a, b]\) and \(g(x) \leq f(x)\) for all \(x\) in \([a, b]\), then the area of the region bounded by the graphs of \(f\) and \(g\) and the vertical lines \(x=a\) and \(x=b\) is
\[
A=\int_{a}^{b}[f(x)-g(x)] d x .
\]

In Figure 7.1, the graphs of \(f\) and \(g\) are shown above the \(x\)-axis. This, however, is not necessary. The same integrand \([f(x)-g(x)]\) can be used as long as \(f\) and \(g\) are continuous and \(g(x) \leq f(x)\) for all \(x\) in the interval \([a, b]\). This is summarized graphically in Figure 7.4. Notice in Figure 7.4 that the height of a representative rectangle is \(f(x)-g(x)\) regardless of the relative position of the \(x\)-axis.



Figure 7.4

Representative rectangles are used throughout this chapter in various applications of integration. A vertical rectangle (of width \(\Delta x\) ) implies integration with respect to \(x\), whereas a horizontal rectangle (of width \(\Delta y\) ) implies integration with respect to \(y\).

\section*{EXAMPLE 1 Finding the Area of a Region Between Two Curves}

Find the area of the region bounded by the graphs of \(y=x^{2}+2, y=-x, x=0\), and \(x=1\).
Solution Let \(g(x)=-x\) and \(f(x)=x^{2}+2\). Then \(g(x) \leq f(x)\) for all \(x\) in \([0,1]\), as shown in Figure 7.5. So, the area of the representative rectangle is
\[
\begin{aligned}
\Delta A & =[f(x)-g(x)] \Delta x \\
& =\left[\left(x^{2}+2\right)-(-x)\right] \Delta x
\end{aligned}
\]
and the area of the region is
\[
\begin{aligned}
A=\int_{a}^{b}[f(x)-g(x)] d x & =\int_{0}^{1}\left[\left(x^{2}+2\right)-(-x)\right] d x \\
& =\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x\right]_{0}^{1} \\
& =\frac{1}{3}+\frac{1}{2}+2 \\
& =\frac{17}{6} .
\end{aligned}
\]


Region bounded by the graph of \(f\) and the graph of \(g\)
Figure 7.6


One of the regions bounded by the graphs of the sine and cosine functions
Figure 7.7

\section*{Area of a Region Between Intersecting Curves}

In Example 1, the graphs of \(f(x)=x^{2}+2\) and \(g(x)=-x\) do not intersect, and the values of \(a\) and \(b\) are given explicitly. A more common problem involves the area of a region bounded by two intersecting graphs, where the values of \(a\) and \(b\) must be calculated.

\section*{EXAMPLE 2 A Region Lying Between Two Intersecting Graphs}

Find the area of the region bounded by the graphs of \(f(x)=2-x^{2}\) and \(g(x)=x\).
Solution In Figure 7.6, notice that the graphs of \(f\) and \(g\) have two points of intersection. To find the \(x\)-coordinates of these points, set \(f(x)\) and \(g(x)\) equal to each other and solve for \(x\).
\[
\begin{aligned}
2-x^{2} & =x & & \text { Set } f(x) \text { equal to } g(x) . \\
-x^{2}-x+2 & =0 & & \text { Write in general form. } \\
-(x+2)(x-1) & =0 & & \text { Factor. } \\
x & =-2 \text { or } 1 & & \text { Solve for } x .
\end{aligned}
\]

So, \(a=-2\) and \(b=1\). Because \(g(x) \leq f(x)\) for all \(x\) in the interval \([-2,1]\), the representative rectangle has an area of
\[
\begin{aligned}
\Delta A & =[f(x)-g(x)] \Delta x \\
& =\left[\left(2-x^{2}\right)-x\right] \Delta x
\end{aligned}
\]
and the area of the region is
\[
\begin{aligned}
A=\int_{-2}^{1}\left[\left(2-x^{2}\right)-x\right] d x & =\left[-\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x\right]_{-2}^{1} \\
& =\frac{9}{2}
\end{aligned}
\]

\section*{EXAMPLE 3 A Region Lying Between Two Intersecting Graphs}

The sine and cosine curves intersect infinitely many times, bounding regions of equal areas, as shown in Figure 7.7. Find the area of one of these regions.

\section*{Solution}
\[
\begin{aligned}
\sin x & =\cos x & & \text { Set } f(x) \text { equal to } g(x) . \\
\frac{\sin x}{\cos x} & =1 & & \text { Divide each side by } \cos x . \\
\tan x & =1 & & \text { Trigonometric identity } \\
x & =\frac{\pi}{4} \text { or } \frac{5 \pi}{4}, \quad 0 \leq x \leq 2 \pi & & \text { Solve for } x .
\end{aligned}
\]

So, \(a=\pi / 4\) and \(b=5 \pi / 4\). Because \(\sin x \geq \cos x\) for all \(x\) in the interval \([\pi / 4,5 \pi / 4]\), the area of the region is
\[
\begin{aligned}
A=\int_{\pi / 4}^{5 \pi / 4}[\sin x-\cos x] d x & =[-\cos x-\sin x]_{\pi / 4}^{5 \pi / 4} \\
& =2 \sqrt{2}
\end{aligned}
\]

\(f(x)=3 x^{3}-x^{2}-10 x\)
On \([-2,0], g(x) \leq f(x)\), and on \([0,2]\),
\(f(x) \leq g(x)\)
Figure 7.8

If two curves intersect at more than two points, then to find the area of the region between the curves, you must find all points of intersection and check to see which curve is above the other in each interval determined by these points.

\section*{Cexample 4 Curves That Intersect at More Than Two Points}

Find the area of the region between the graphs of \(f(x)=3 x^{3}-x^{2}-10 x\) and \(g(x)=-x^{2}+2 x\).
Solution Begin by setting \(f(x)\) and \(g(x)\) equal to each other and solving for \(x\). This yields the \(x\)-values at all points of intersection of the two graphs.
\[
\begin{aligned}
3 x^{3}-x^{2}-10 x & =-x^{2}+2 x \\
3 x^{3}-12 x & =0 \\
3 x(x-2)(x+2) & =0 \\
x & =-2,0,2
\end{aligned}
\]
\[
\text { Set } f(x) \text { equal to } g(x)
\]
Write in general form.
Factor.
\[
\text { Solve for } x
\]

So, the two graphs intersect when \(x=-2,0\), and 2. In Figure 7.8, notice that \(g(x) \leq f(x)\) on the interval \([-2,0]\). However, the two graphs switch at the origin, and \(f(x) \leq g(x)\) on the interval [0,2]. So, you need two integrals-one for the interval \([-2,0]\) and one for the interval \([0,2]\).
\[
\begin{aligned}
A & =\int_{-2}^{0}[f(x)-g(x)] d x+\int_{0}^{2}[g(x)-f(x)] d x \\
& =\int_{-2}^{0}\left(3 x^{3}-12 x\right) d x+\int_{0}^{2}\left(-3 x^{3}+12 x\right) d x \\
& =\left[\frac{3 x^{4}}{4}-6 x^{2}\right]_{-2}^{0}+\left[\frac{-3 x^{4}}{4}+6 x^{2}\right]_{0}^{2} \\
& =-(12-24)+(-12+24)=24
\end{aligned}
\]

NOTE In Example 4, notice that you obtain an incorrect result if you integrate from -2 to 2 . Such integration produces
\[
\int_{-2}^{2}[f(x)-g(x)] d x=\int_{-2}^{2}\left(3 x^{3}-12 x\right) d x=0 .
\]

If the graph of a function of \(y\) is a boundary of a region, it is often convenient to use representative rectangles that are horizontal and find the area by integrating with respect to \(y\). In general, to determine the area between two curves, you can use
\[
\begin{aligned}
& A=\int_{x_{1}}^{x_{2}} \underbrace{[(\text { top curve })-(\text { bottom curve })}_{\text {in variable } x}] d x
\end{aligned} \quad \text { Vertical rectangles }
\]
where \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) are either adjacent points of intersection of the two curves involved or points on the specified boundary lines.

The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.

\section*{EXAMPLE 5 Horizontal Representative Rectangles}

Find the area of the region bounded by the graphs of \(x=3-y^{2}\) and \(x=y+1\).
Solution Consider
\[
g(y)=3-y^{2} \quad \text { and } \quad f(y)=y+1
\]

These two curves intersect when \(y=-2\) and \(y=1\), as shown in Figure 7.9. Because \(f(y) \leq g(y)\) on this interval, you have
\[
\Delta A=[g(y)-f(y)] \Delta y=\left[\left(3-y^{2}\right)-(y+1)\right] \Delta y
\]

So, the area is
\[
\begin{aligned}
A & =\int_{-2}^{1}\left[\left(3-y^{2}\right)-(y+1)\right] d y \\
& =\int_{-2}^{1}\left(-y^{2}-y+2\right) d y \\
& =\left[\frac{-y^{3}}{3}-\frac{y^{2}}{2}+2 y\right]_{-2}^{1} \\
& =\left(-\frac{1}{3}-\frac{1}{2}+2\right)-\left(\frac{8}{3}-2-4\right) \\
& =\frac{9}{2}
\end{aligned}
\]


Horizontal rectangles (integration with respect to \(y\) )
Figure 7.9


Vertical rectangles (integration with respect to \(x\) )
Figure 7.10

In Example 5, notice that by integrating with respect to \(y\) you need only one integral. If you had integrated with respect to \(x\), you would have needed two integrals because the upper boundary would have changed at \(x=2\), as shown in Figure 7.10.
\[
\begin{aligned}
A & =\int_{-1}^{2}[(x-1)+\sqrt{3-x}] d x+\int_{2}^{3}(\sqrt{3-x}+\sqrt{3-x}) d x \\
& =\int_{-1}^{2}\left[x-1+(3-x)^{1 / 2}\right] d x+2 \int_{2}^{3}(3-x)^{1 / 2} d x \\
& =\left[\frac{x^{2}}{2}-x-\frac{(3-x)^{3 / 2}}{3 / 2}\right]_{-1}^{2}-2\left[\frac{(3-x)^{3 / 2}}{3 / 2}\right]_{2}^{3} \\
& =\left(2-2-\frac{2}{3}\right)-\left(\frac{1}{2}+1-\frac{16}{3}\right)-2(0)+2\left(\frac{2}{3}\right) \\
& =\frac{9}{2}
\end{aligned}
\]

\section*{Integration as an Accumulation Process}

In this section, the integration formula for the area between two curves was developed by using a rectangle as the representative element. For each new application in the remaining sections of this chapter, an appropriate representative element will be constructed using precalculus formulas you already know. Each integration formula will then be obtained by summing or accumulating these representative elements.
Known precalculus
formula \(\quad \square\)\begin{tabular}{c} 
Representative \\
element
\end{tabular}\(\quad \square \quad\)\begin{tabular}{c} 
New integration \\
formula
\end{tabular}

For example, the area formula in this section was developed as follows.
\[
A=(\text { height })(\text { width }) \quad \square \quad \Delta A=[f(x)-g(x)] \Delta x \quad \square \quad A=\int_{a}^{b}[f(x)-g(x)] d x
\]

\section*{EXAMPLE 6 Describing Integration as an Accumulation Process}

Find the area of the region bounded by the graph of \(y=4-x^{2}\) and the \(x\)-axis. Describe the integration as an accumulation process.

Solution The area of the region is given by
\[
A=\int_{-2}^{2}\left(4-x^{2}\right) d x
\]

You can think of the integration as an accumulation of the areas of the rectangles formed as the representative rectangle slides from \(x=-2\) to \(x=2\), as shown in Figure 7.11.

\(A=\int_{-2}^{-2}\left(4-x^{2}\right) d x=0\)


\(A=\int_{-2}^{-1}\left(4-x^{2}\right) d x=\frac{5}{3}\)
\(A=\int_{-2}^{0}\left(4-x^{2}\right) d x=\frac{16}{3}\)

\(A=\int_{-2}^{1}\left(4-x^{2}\right) d x=9\)
\(A=\int_{-2}^{2}\left(4-x^{2}\right) d x=\frac{32}{3}\)
Figure 7.11

\subsection*{7.1 Exercises}

In Exercises 1-6, set up the definite integral that gives the area of the region.
1. \(y_{1}=x^{2}-6 x\)
\(y_{2}=0\)
2. \(y_{1}=x^{2}+2 x+1\)
\(y_{2}=2 x+5\)


3. \(y_{1}=x^{2}-4 x+3\)
\(y_{2}=-x^{2}+2 x+3\)
4. \(y_{1}=x^{2}\)
\(y_{2}=x^{3}\)


5. \(y_{1}=3\left(x^{3}-x\right)\)
\(y_{2}=0\)
6. \(y_{1}=(x-1)^{3}\)
\(y_{2}=x-1\)



In Exercises 7-14, the integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral.
7. \(\int_{0}^{4}\left[(x+1)-\frac{x}{2}\right] d x\)
8. \(\int_{-1}^{1}\left[\left(2-x^{2}\right)-x^{2}\right] d x\)
9. \(\int_{0}^{6}\left[4\left(2^{-x / 3}\right)-\frac{x}{6}\right] d x\)
10. \(\int_{2}^{3}\left[\left(\frac{x^{3}}{3}-x\right)-\frac{x}{3}\right] d x\)
11. \(\int_{-\pi / 3}^{\pi / 3}(2-\sec x) d x\)
13. \(\int_{-2}^{1}\left[(2-y)-y^{2}\right] d y\)
12. \(\int_{-\pi / 4}^{\pi / 4}\left(\sec ^{2} x-\cos x\right) d x\)
14. \(\int_{0}^{4}(2 \sqrt{y}-y) d y\)

Think About It In Exercises 15 and 16, determine which value best approximates the area of the region bounded by the graphs of \(f\) and \(g\). (Make your selection on the basis of a sketch of the region and not by performing any calculations.)
15. \(f(x)=x+1, \quad g(x)=(x-1)^{2}\)
(a) -2
(b) 2
(c) 10
(d) 4
(e) 8
16. \(f(x)=2-\frac{1}{2} x, \quad g(x)=2-\sqrt{x}\)
(a) 1
(b) 6
(c) -3
(d) 3
(e) 4

In Exercises 17 and 18, find the area of the region by integrating (a) with respect to \(x\) and (b) with respect to \(y\). (c) Compare your results. Which method is simpler? In general, will this method always be simpler than the other one? Why or why not?
17. \(x=4-y^{2}\)
\(x=y-2\)
18. \(y=x^{2}\)
\(y=6-x\)



In Exercises 19-36, sketch the region bounded by the graphs of the algebraic functions and find the area of the region.
19. \(y=x^{2}-1, y=-x+2, x=0, x=1\)
20. \(y=-x^{3}+3, y=x, x=-1, x=1\)
21. \(y=\frac{1}{2} x^{3}+2, y=x+1, x=0, x=2\)
22. \(y=-\frac{3}{8} x(x-8), y=10-\frac{1}{2} x, x=2, x=8\)
23. \(f(x)=x^{2}-4 x, \quad g(x)=0\)
24. \(f(x)=-x^{2}+4 x+1, g(x)=x+1\)
25. \(f(x)=x^{2}+2 x, g(x)=x+2\)
26. \(f(x)=-x^{2}+\frac{9}{2} x+1, g(x)=\frac{1}{2} x+1\)
27. \(y=x, \quad y=2-x, \quad y=0\)
28. \(y=1 / x^{2}, y=0, x=1, x=5\)
29. \(f(x)=\sqrt{x}+3, g(x)=\frac{1}{2} x+3\)
30. \(f(x)=\sqrt[3]{x-1}, g(x)=x-1\)
31. \(f(y)=y^{2}, \quad g(y)=y+2\)
32. \(f(y)=y(2-y), g(y)=-y\)
33. \(f(y)=y^{2}+1, \quad g(y)=0, \quad y=-1, \quad y=2\)
34. \(f(y)=\frac{y}{\sqrt{16-y^{2}}}, \quad g(y)=0, \quad y=3\)
35. \(f(x)=\frac{10}{x}, x=0, y=2, y=10\)
36. \(g(x)=\frac{4}{2-x}, y=4, \quad x=0\)

In Exercises 37-46, (a) use a graphing utility to graph the region bounded by the graphs of the equations, (b) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results.
37. \(f(x)=x\left(x^{2}-3 x+3\right), g(x)=x^{2}\)
38. \(f(x)=x^{3}-2 x+1, \quad g(x)=-2 x, \quad x=1\)
39. \(y=x^{2}-4 x+3, \quad y=3+4 x-x^{2}\)
40. \(y=x^{4}-2 x^{2}, \quad y=2 x^{2}\)
41. \(f(x)=x^{4}-4 x^{2}, g(x)=x^{2}-4\)
42. \(f(x)=x^{4}-4 x^{2}, g(x)=x^{3}-4 x\)
43. \(f(x)=1 /\left(1+x^{2}\right), \quad g(x)=\frac{1}{2} x^{2}\)
44. \(f(x)=6 x /\left(x^{2}+1\right), \quad y=0, \quad 0 \leq x \leq 3\)
45. \(y=\sqrt{1+x^{3}}, \quad y=\frac{1}{2} x+2, \quad x=0\)
46. \(y=x \sqrt{\frac{4-x}{4+x}}, \quad y=0, x=4\)

In Exercises 47-52, sketch the region bounded by the graphs of the functions, and find the area of the region.
47. \(f(x)=\cos x, \mathrm{~g}(x)=2-\cos x, 0 \leq x \leq 2 \pi\)
48. \(f(x)=\sin x, \quad g(x)=\cos 2 x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{6}\)
49. \(f(x)=2 \sin x, \quad g(x)=\tan x, \quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}\)
50. \(f(x)=\sec \frac{\pi x}{4} \tan \frac{\pi x}{4}, g(x)=(\sqrt{2}-4) x+4, \quad x=0\)
51. \(f(x)=x e^{-x^{2}}, \quad y=0, \quad 0 \leq x \leq 1\)
52. \(f(x)=3^{x}, g(x)=2 x+1\)

In Exercises 53-56, (a) use a graphing utility to graph the region bounded by the graphs of the equations, (b) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results.
53. \(f(x)=2 \sin x+\sin 2 x, \quad y=0,0 \leq x \leq \pi\)
54. \(f(x)=2 \sin x+\cos 2 x, \quad y=0, \quad 0<x \leq \pi\)
55. \(f(x)=\frac{1}{x^{2}} e^{1 / x}, \quad y=0, \quad 1 \leq x \leq 3\)
56. \(g(x)=\frac{4 \ln x}{x}, y=0, \quad x=5\)

In Exercises 57-60, (a) use a graphing utility to graph the region bounded by the graphs of the equations, (b) explain why the area of the region is difficult to find by hand, and (c) use the integration capabilities of the graphing utility to approximate the area to four decimal places.
57. \(y=\sqrt{\frac{x^{3}}{4-x}}, y=0, x=3\)
58. \(y=\sqrt{x} e^{x}, \quad y=0, x=0, x=1\)
59. \(y=x^{2}, \quad y=4 \cos x\)
60. \(y=x^{2}, \quad y=\sqrt{3+x}\)

In Exercises 61-64, find the accumulation function \(F\). Then evaluate \(F\) at each value of the independent variable and graphically show the area given by each value of \(F\).
61. \(F(x)=\int_{0}^{x}\left(\frac{1}{2} t+1\right) d t\)
(a) \(F(0)\)
(b) \(F(2)\)
(c) \(F(6)\)
62. \(F(x)=\int_{0}^{x}\left(\frac{1}{2} t^{2}+2\right) d t\)
(a) \(F(0)\)
(b) \(F(4)\)
(c) \(F(6)\)
63. \(F(\alpha)=\int_{-1}^{\alpha} \cos \frac{\pi \theta}{2} d \theta\)
(a) \(F(-1)\)
(b) \(F(0)\)
(c) \(F\left(\frac{1}{2}\right)\)
64. \(F(y)=\int_{-1}^{y} 4 e^{x / 2} d x\)
(a) \(F(-1)\)
(b) \(F(0)\)
(c) \(F(4)\)

In Exercises 65-68, use integration to find the area of the figure having the given vertices.
65. \((2,-3),(4,6),(6,1)\)
66. \((0,0),(a, 0),(b, c)\)
67. \((0,2),(4,2),(0,-2),(-4,-2)\)
68. \((0,0),(1,2),(3,-2),(1,-3)\)
69. Numerical Integration Estimate the surface area of the golf green using (a) the Trapezoidal Rule and (b) Simpson's Rule.

70. Numerical Integration Estimate the surface area of the oil spill using (a) the Trapezoidal Rule and (b) Simpson's Rule.


In Exercises 71 and 72, evaluate the integral and interpret it as the area of a region. Then use a graphing utility to graph the region.
71. \(\int_{0}^{\pi / 4}|\sin 2 x-\cos 4 x| d x\)
72. \(\int_{0}^{2}|\sqrt{x+3}-2 x| d x\)

In Exercises 73-76, set up and evaluate the definite integral that gives the area of the region bounded by the graph of the function and the tangent line to the graph at the given point.
73. \(f(x)=x^{3}, \quad(1,1)\)
74. \(y=x^{3}-2 x, \quad(-1,1)\)
75. \(f(x)=\frac{1}{x^{2}+1}, \quad\left(1, \frac{1}{2}\right)\)
76. \(y=\frac{2}{1+4 x^{2}}, \quad\left(\frac{1}{2}, 1\right)\)

\section*{WRITING ABOUT CONCEPTS}
77. The graphs of \(y=x^{4}-2 x^{2}+1\) and \(y=1-x^{2}\) intersect at three points. However, the area between the curves can be found by a single integral. Explain why this is so, and write an integral for this area.
78. The area of the region bounded by the graphs of \(y=x^{3}\) and \(y=x\) cannot be found by the single integral \(\int_{-1}^{1}\left(x^{3}-x\right) d x\). Explain why this is so. Use symmetry to write a single integral that does represent the area.
79. A college graduate has two job offers. The starting salary for each is \(\$ 32,000\), and after 8 years of service each will pay \(\$ 54,000\). The salary increase for each offer is shown in the figure. From a strictly monetary viewpoint, which is the better offer? Explain.


Figure for 79


Figure for 80
80. A state legislature is debating two proposals for eliminating the annual budget deficits after 10 years. The rate of decrease of the deficits for each proposal is shown in the figure. From the viewpoint of minimizing the cumulative state deficit, which is the better proposal? Explain.
81. Two cars are tested on a straight track with velocities \(v_{1}\) and \(v_{2}\) (in meters per second). Consider the following.
\(\int_{0}^{5}\left[v_{1}(t)-v_{2}(t)\right] d t=10 \quad \int_{0}^{10}\left[v_{1}(t)-v_{2}(t)\right] d t=30\) \(\int_{20}^{30}\left[v_{1}(t)-v_{2}(t)\right] d t=-5\)
(a) Write a verbal interpretation of each integral.
(b) Is it possible to determine the distance between the two cars when \(t=5\) seconds? Why or why not?
(c) Assume both cars start at the same time and place. Which car is ahead when \(t=10\) seconds? How far ahead is the car?
(d) Suppose Car 1 has velocity \(v_{1}\) and is ahead of Car 2 by 13 meters when \(t=20\) seconds. How far ahead or behind is Car 1 when \(t=30\) seconds?

\section*{CAPSTONE}
82. Let \(f\) and \(g\) be continuous functions on \([a, b]\) and let \(g(x) \leq f(x)\) for all \(x\) in \([a, b]\). Write in words the area given by \(\int_{a}^{b}[f(x)-g(x)] d x\). Does the area interpretation of this integral change when \(f(x) \geq 0\) and \(g(x) \leq 0\) ?

In Exercises 83 and 84, find \(b\) such that the line \(y=b\) divides the region bounded by the graphs of the two equations into two regions of equal area.
83. \(y=9-x^{2}, \quad y=0\)
84. \(y=9-|x|, \quad y=0\)

In Exercises 85 and 86, find \(a\) such that the line \(x=a\) divides the region bounded by the graphs of the equations into two regions of equal area.
85. \(y=x, \quad y=4, \quad x=0\)
86. \(y^{2}=4-x, \quad x=0\)

In Exercises 87 and 88, evaluate the limit and sketch the graph of the region whose area is represented by the limit.
87. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n}\left(x_{i}-x_{i}^{2}\right) \Delta x\), where \(x_{i}=i / n\) and \(\Delta x=1 / n\)
88. \(\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n}\left(4-x_{i}^{2}\right) \Delta x\), where \(x_{i}=-2+(4 i / n)\) and \(\Delta x=4 / n\)

In Exercises 89 and 90, (a) find the two points of inflection of the graph of \(f\), (b) determine the equation of the line that intersects both points, and (c) calculate the areas of the three regions bounded by the graphs of \(f\) and the line. What do you observe?
89. \(f(x)=x^{4}+4 x^{3}+x+7\)
90. \(f(x)=2 x^{4}-12 x^{2}+3 x-1\)

Revenue In Exercises 91 and 92, two models \(R_{1}\) and \(R_{2}\) are given for revenue (in billions of dollars per year) for a large corporation. The model \(R_{1}\) gives projected annual revenues from 2008 through 2013, with \(t=8\) corresponding to 2008 , and \(R_{2}\) gives projected revenues if there is a decrease in the rate of growth of corporate sales over the period. Approximate the total reduction in revenue if corporate sales are actually closer to the \(\operatorname{model} \boldsymbol{R}_{2}\).
91. \(R_{1}=7.21+0.58 t\)
\(R_{2}=7.21+0.45 t\)
92. \(R_{1}=7.21+0.26 t+0.02 t^{2}\)
\(R_{2}=7.21+0.1 t+0.01 t^{2}\)
93. Lorenz Curve Economists use Lorenz curves to illustrate the distribution of income in a country. A Lorenz curve, \(y=f(x)\), represents the actual income distribution in the country. In this model, \(x\) represents percents of families in the country and \(y\) represents percents of total income. The model \(y=x\) represents a country in which each family has the same income. The area between these two models, where \(0 \leq x \leq 100\), indicates a country's "income inequality." The table lists percents of income \(y\) for selected percents of families \(x\) in a country.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 10 & 20 & 30 & 40 & 50 \\
\hline\(y\) & 3.35 & 6.07 & 9.17 & 13.39 & 19.45 \\
\hline\(x\) & 60 & 70 & 80 & 90 \\
\hline\(y\) & 28.03 & 39.77 & 55.28 & 75.12 \\
\hline
\end{tabular}
(a) Use a graphing utility to find a quadratic model for the Lorenz curve.
(b) Plot the data and graph the model.
(c) Graph the model \(y=x\). How does this model compare with the model in part (a)?
(d) Use the integration capabilities of a graphing utility to approximate the "income inequality."
94. Profit The chief financial officer of a company reports that profits for the past fiscal year were \(\$ 15.9\) million. The officer predicts that profits for the next 5 years will grow at a continuous annual rate somewhere between \(3 \frac{1}{2} \%\) and \(5 \%\). Estimate the cumulative difference in total profit over the 5 years based on the predicted range of growth rates.
95. Area The shaded region in the figure consists of all points whose distances from the center of the square are less than their distances from the edges of the square. Find the area of the region.


Figure for 95


Figure for 96
96. Mechanical Design The surface of a machine part is the region between the graphs of \(y_{1}=|x|\) and \(y_{2}=0.08 x^{2}+k\) (see figure).
(a) Find \(k\) where the parabola is tangent to the graph of \(y_{1}\).
(b) Find the area of the surface of the machine part.
97. Building Design Concrete sections for a new building have the dimensions (in meters) and shape shown in the figure.

(a) Find the area of the face of the section superimposed on the rectangular coordinate system.
(b) Find the volume of concrete in one of the sections by multiplying the area in part (a) by 2 meters.
(c) One cubic meter of concrete weighs 5000 pounds. Find the weight of the section.
98. Building Design To decrease the weight and to aid in the hardening process, the concrete sections in Exercise 97 often are not completely solid. Rework Exercise 97 to allow for cylindrical openings such as those shown in the figure.


Figure for 98
True or False? In Exercises 99-102, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
99. If the area of the region bounded by the graphs of \(f\) and \(g\) is 1 , then the area of the region bounded by the graphs of \(h(x)=f(x)+C\) and \(k(x)=g(x)+C\) is also 1.
100. If \(\int_{a}^{b}[f(x)-g(x)] d x=A\), then \(\int_{a}^{b}[g(x)-f(x)] d x=-A\).
101. If the graphs of \(f\) and \(g\) intersect midway between \(x=a\) and \(x=b\), then \(\int_{a}^{b}[f(x)-g(x)] d x=0\).
102. The line \(y=(1-\sqrt[3]{0.5}) x\) divides the region under the curve \(f(x)=x(1-x)\) on \([0,1]\) into two regions of equal area.
103. Area Find the area between the graph of \(y=\sin x\) and the line segment joining the points \((0,0)\) and \(\left(\frac{7 \pi}{6},-\frac{1}{2}\right)\), as shown in the figure.


Figure for 103


Figure for 104
104. Area Let \(a>0\) and \(b>0\). Show that the area of the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) is \(\pi a b\) (see figure).

\section*{PUTNAM EXAM CHALLENGE}
105. The horizontal line \(y=c\) intersects the curve \(y=2 x-3 x^{3}\) in the first quadrant as shown in the figure. Find \(c\) so that the areas of the two shaded regions are equal.


This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{7.2 Volume: The Disk Method}
- Find the volume of a solid of revolution using the disk method.
- Find the volume of a solid of revolution using the washer method.
- Find the volume of a solid with known cross sections.

\section*{The Disk Method}

You have already learned that area is only one of the many applications of the definite integral. Another important application is its use in finding the volume of a threedimensional solid. In this section you will study a particular type of three-dimensional solid—one whose cross sections are similar. Solids of revolution are used commonly in engineering and manufacturing. Some examples are axles, funnels, pills, bottles, and pistons, as shown in Figure 7.12.


Solids of revolution
Figure 7.12

If a region in the plane is revolved about a line, the resulting solid is a solid of revolution, and the line is called the axis of revolution. The simplest such solid is a right circular cylinder or disk, which is formed by revolving a rectangle about an axis adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a disk is
\[
\begin{aligned}
\text { Volume of disk } & =(\text { area of disk })(\text { width of disk }) \\
& =\pi R^{2} w
\end{aligned}
\]
where \(R\) is the radius of the disk and \(w\) is the width.
To see how to use the volume of a disk to find the volume of a general solid of revolution, consider a solid of revolution formed by revolving the plane region in Figure 7.14 about the indicated axis. To determine the volume of this solid, consider a representative rectangle in the plane region. When this rectangle is revolved about the axis of revolution, it generates a representative disk whose volume is
\[
\Delta V=\pi R^{2} \Delta x
\]

Approximating the volume of the solid by \(n\) such disks of width \(\Delta x\) and radius \(R\left(x_{i}\right)\) produces
\[
\begin{aligned}
\text { Volume of solid } & \approx \sum_{i=1}^{n} \pi\left[R\left(x_{i}\right)\right]^{2} \Delta x \\
& =\pi \sum_{i=1}^{n}\left[R\left(x_{i}\right)\right]^{2} \Delta x
\end{aligned}
\]



Figure 7.16



Figure 7.17

The simplest application of the disk method involves a plane region bounded by the graph of \(f\) and the \(x\)-axis. If the axis of revolution is the \(x\)-axis, the radius \(R(x)\) is simply \(f(x)\).

\section*{EXAMPLE 1 Using the Disk Method}

Find the volume of the solid formed by revolving the region bounded by the graph of
\[
f(x)=\sqrt{\sin x}
\]
and the \(x\)-axis \((0 \leq x \leq \pi)\) about the \(x\)-axis.
Solution From the representative rectangle in the upper graph in Figure 7.16, you can see that the radius of this solid is
\[
\begin{aligned}
R(x) & =f(x) \\
& =\sqrt{\sin x} .
\end{aligned}
\]

So, the volume of the solid of revolution is
\[
\begin{array}{rlr}
V=\pi \int_{a}^{b}[R(x)]^{2} d x & =\pi \int_{0}^{\pi}(\sqrt{\sin x})^{2} d x & \\
& =\pi \int_{0}^{\pi} \sin x d x & \\
& \text { Apply disk method. } \\
& =\pi[-\cos x]_{0}^{\pi} & \\
& =\pi(1+1) & \text { Integrate. } \\
& =2 \pi &
\end{array}
\]

\section*{EXAMPLE 2 Revolving About a Line That Is Not a Coordinate Axis}

Find the volume of the solid formed by revolving the region bounded by
\[
f(x)=2-x^{2}
\]
and \(g(x)=1\) about the line \(y=1\), as shown in Figure 7.17.
Solution By equating \(f(x)\) and \(g(x)\), you can determine that the two graphs intersect when \(x= \pm 1\). To find the radius, subtract \(g(x)\) from \(f(x)\).
\[
\begin{aligned}
R(x) & =f(x)-g(x) \\
& =\left(2-x^{2}\right)-1 \\
& =1-x^{2}
\end{aligned}
\]

Finally, integrate between -1 and 1 to find the volume.
\[
\begin{array}{rlrl}
V=\pi \int_{a}^{b}[R(x)]^{2} d x & =\pi \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x & & \text { Apply disk method. } \\
& =\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x & & \text { Simplify. } \\
& =\pi\left[x-\frac{2 x^{3}}{3}+\frac{x^{5}}{5}\right]_{-1}^{1} & & \text { Integrate. } \\
& =\frac{16 \pi}{15} &
\end{array}
\]


Figure 7.18



Solid of revolution
Figure 7.20

\section*{The Washer Method}

The disk method can be extended to cover solids of revolution with holes by replacing the representative disk with a representative washer. The washer is formed by revolving a rectangle about an axis, as shown in Figure 7.18. If \(r\) and \(R\) are the inner and outer radii of the washer and \(w\) is the width of the washer, the volume is given by

Volume of washer \(=\pi\left(R^{2}-r^{2}\right) w\).
To see how this concept can be used to find the volume of a solid of revolution, consider a region bounded by an outer radius \(R(x)\) and an inner radius \(r(x)\), as shown in Figure 7.19. If the region is revolved about its axis of revolution, the volume of the resulting solid is given by
\[
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x
\]

Washer method

Note that the integral involving the inner radius represents the volume of the hole and is subtracted from the integral involving the outer radius.


Figure 7.19

\section*{EXAMPLE 3 Using the Washer Method}

Find the volume of the solid formed by revolving the region bounded by the graphs of \(y=\sqrt{x}\) and \(y=x^{2}\) about the \(x\)-axis, as shown in Figure 7.20.

Solution In Figure 7.20, you can see that the outer and inner radii are as follows.
\[
\begin{aligned}
R(x) & =\sqrt{x} \\
r(x) & =x^{2}
\end{aligned}
\]

Outer radius
Inner radius
Integrating between 0 and 1 produces
\[
\begin{array}{rlrl}
V & =\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x & & \\
& =\pi \int_{0}^{1}\left[(\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right] d x & & \\
& =\pi \int_{0}^{1}\left(x-x^{4}\right) d x & & \text { Simply washer method. } \\
& =\pi\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1} & & \\
& =\frac{3 \pi}{10} & \text { Integrate. }
\end{array}
\]

In each example so far, the axis of revolution has been horizontal and you have integrated with respect to \(x\). In the next example, the axis of revolution is vertical and you integrate with respect to \(y\). In this example, you need two separate integrals to compute the volume.

\section*{EXAMPLE 4 Integrating with Respect to \(y\), Two-Integral Case}

Find the volume of the solid formed by revolving the region bounded by the graphs of \(y=x^{2}+1, y=0, x=0\), and \(x=1\) about the \(y\)-axis, as shown in Figure 7.21.


Figure 7.21

Solution For the region shown in Figure 7.21, the outer radius is simply \(R=1\). There is, however, no convenient formula that represents the inner radius. When \(0 \leq y \leq 1, r=0\), but when \(1 \leq y \leq 2, r\) is determined by the equation \(y=x^{2}+1\), which implies that \(r=\sqrt{y-1}\).
\[
r(y)= \begin{cases}0, & 0 \leq y \leq 1 \\ \sqrt{y-1}, & 1 \leq y \leq 2\end{cases}
\]

Using this definition of the inner radius, you can use two integrals to find the volume.
\[
\begin{array}{rlrl}
V & =\pi \int_{0}^{1}\left(1^{2}-0^{2}\right) d y+\pi \int_{1}^{2}\left[1^{2}-(\sqrt{y-1})^{2}\right] d y & & \text { Apply washer method. } \\
& =\pi \int_{0}^{1} 1 d y+\pi \int_{1}^{2}(2-y) d y & & \text { Simplify. } \\
& =\pi[y]_{0}^{1}+\pi\left[2 y-\frac{y^{2}}{2}\right]_{1}^{2} & & \text { Integrate. } \\
& =\pi+\pi\left(4-2-2+\frac{1}{2}\right)=\frac{3 \pi}{2} &
\end{array}
\]

Note that the first integral \(\pi \int_{0}^{1} 1 d y\) represents the volume of a right circular cylinder of radius 1 and height 1 . This portion of the volume could have been determined without using calculus.

TECHNOLOGY Some graphing utilities have the capability of generating (or have built-in software capable of generating) a solid of revolution. If you have access to such a utility, use it to graph some of the solids of revolution described in this section. For instance, the solid in Example 4 might appear like that shown in Figure 7.22.

(b)

Figure 7.23

\section*{CEXAMPLE 5 Manufacturing}

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the resulting metal ring?

Solution You can imagine the ring to be generated by a segment of the circle whose equation is \(x^{2}+y^{2}=25\), as shown in Figure 7.23(b). Because the radius of the hole is 3 inches, you can let \(y=3\) and solve the equation \(x^{2}+y^{2}=25\) to determine that the limits of integration are \(x= \pm 4\). So, the inner and outer radii are \(r(x)=3\) and \(R(x)=\sqrt{25-x^{2}}\) and the volume is given by
\[
\begin{aligned}
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x & =\pi \int_{-4}^{4}\left[\left(\sqrt{25-x^{2}}\right)^{2}-(3)^{2}\right] d x \\
& =\pi \int_{-4}^{4}\left(16-x^{2}\right) d x \\
& =\pi\left[16 x-\frac{x^{3}}{3}\right]_{-4}^{4} \\
& =\frac{256 \pi}{3} \text { cubic inches. }
\end{aligned}
\]

\section*{Solids with Known Cross Sections}

With the disk method, you can find the volume of a solid having a circular cross section whose area is \(A=\pi R^{2}\). This method can be generalized to solids of any shape, as long as you know a formula for the area of an arbitrary cross section. Some common cross sections are squares, rectangles, triangles, semicircles, and trapezoids.

\section*{VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS}
1. For cross sections of area \(A(x)\) taken perpendicular to the \(x\)-axis,
\[
\text { Volume }=\int_{a}^{b} A(x) d x . \quad \text { See Figure 7.24(a). }
\]
2. For cross sections of area \(A(y)\) taken perpendicular to the \(y\)-axis,
\[
\text { Volume }=\int_{c}^{d} A(y) d y . \quad \text { See Figure 7.24(b). }
\]

(a) Cross sections perpendicular to \(x\)-axis

Figure 7.24

(b) Cross sections perpendicular to \(y\)-axis


Cross sections are equilateral triangles.


Triangular base in \(x y\)-plane
Figure 7.25


Figure 7.26

\section*{EXAMPLE 6 Triangular Cross Sections}

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region bounded by the lines
\[
f(x)=1-\frac{x}{2}, \quad g(x)=-1+\frac{x}{2}, \quad \text { and } \quad x=0
\]

The cross sections perpendicular to the \(x\)-axis are equilateral triangles.
Solution The base and area of each triangular cross section are as follows.
\[
\begin{array}{ll}
\text { Base }=\left(1-\frac{x}{2}\right)-\left(-1+\frac{x}{2}\right)=2-x & \text { Length of base } \\
\text { Area }=\frac{\sqrt{3}}{4}(\text { base })^{2} & \text { Area of equilateral triangle } \\
A(x)=\frac{\sqrt{3}}{4}(2-x)^{2} & \text { Area of cross section }
\end{array}
\]

Because \(x\) ranges from 0 to 2, the volume of the solid is
\[
\begin{aligned}
V=\int_{a}^{b} A(x) d x & =\int_{0}^{2} \frac{\sqrt{3}}{4}(2-x)^{2} d x \\
& =-\frac{\sqrt{3}}{4}\left[\frac{(2-x)^{3}}{3}\right]_{0}^{2}=\frac{2 \sqrt{3}}{3}
\end{aligned}
\]

\section*{EXAMPLE 7 An Application to Geometry}

Prove that the volume of a pyramid with a square base is \(V=\frac{1}{3} h B\), where \(h\) is the height of the pyramid and \(B\) is the area of the base.
Solution As shown in Figure 7.26, you can intersect the pyramid with a plane parallel to the base at height \(y\) to form a square cross section whose sides are of length \(b^{\prime}\). Using similar triangles, you can show that
\[
\frac{b^{\prime}}{b}=\frac{h-y}{h} \quad \text { or } \quad b^{\prime}=\frac{b}{h}(h-y)
\]
where \(b\) is the length of the sides of the base of the pyramid. So,
\[
A(y)=\left(b^{\prime}\right)^{2}=\frac{b^{2}}{h^{2}}(h-y)^{2}
\]

Integrating between 0 and \(h\) produces
\[
\begin{aligned}
V=\int_{0}^{h} A(y) d y & =\int_{0}^{h} \frac{b^{2}}{h^{2}}(h-y)^{2} d y \\
& =\frac{b^{2}}{h^{2}} \int_{0}^{h}(h-y)^{2} d y \\
& =-\left(\frac{b^{2}}{h^{2}}\right)\left[\frac{(h-y)^{3}}{3}\right]_{0}^{h} \\
& =\frac{b^{2}}{h^{2}}\left(\frac{h^{3}}{3}\right) \\
& =\frac{1}{3} h B . \quad B=b^{2}
\end{aligned}
\]

\subsection*{7.2 Exercises}

In Exercises 1-6, set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the \(x\)-axis.
1. \(y=-x+1\)
2. \(y=4-x^{2}\)


3. \(y=\sqrt{x}\)

4. \(y=\sqrt{9-x^{2}}\)

5. \(y=x^{2}, y=x^{5}\)
6. \(y=2, \quad y=4-\frac{x^{2}}{4}\)


In Exercises 7-10, set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the \(y\)-axis.
7. \(y=x^{2}\)

8. \(y=\sqrt{16-x^{2}}\)

9. \(y=x^{2 / 3}\)

10. \(x=-y^{2}+4 y\)


In Exercises 11-14, find the volumes of the solids generated by revolving the regions bounded by the graphs of the equations about the given lines.
11. \(y=\sqrt{x}, y=0, x=3\)
(a) the \(x\)-axis
(b) the \(y\)-axis
(c) the line \(x=3\)
(d) the line \(x=6\)
12. \(y=2 x^{2}, y=0, x=2\)
(a) the \(y\)-axis
(b) the \(x\)-axis
(c) the line \(y=8\)
(d) the line \(x=2\)
13. \(y=x^{2}, y=4 x-x^{2}\)
(a) the \(x\)-axis
(b) the line \(y=6\)
14. \(y=6-2 x-x^{2}, y=x+6\)
(a) the \(x\)-axis
(b) the line \(y=3\)

In Exercises 15-18, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line \(y=4\).
15. \(y=x, \quad y=3, \quad x=0\)
16. \(y=\frac{1}{2} x^{3}, \quad y=4, \quad x=0\)
17. \(y=\frac{3}{1+x}, \quad y=0, \quad x=0, \quad x=3\)
18. \(y=\sec x, \quad y=0, \quad 0 \leq x \leq \frac{\pi}{3}\)

In Exercises 19-22, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line \(x=5\).
19. \(y=x, \quad y=0, \quad y=4, \quad x=5\)
20. \(y=5-x, \quad y=0, \quad y=4, \quad x=0\)
21. \(x=y^{2}, \quad x=4\)
22. \(x y=5, \quad y=2, \quad y=5, \quad x=5\)

In Exercises 23-30, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\)-axis.
23. \(y=\frac{1}{\sqrt{x+1}}, \quad y=0, \quad x=0, \quad x=4\)
24. \(y=x \sqrt{9-x^{2}}, \quad y=0\)
25. \(y=\frac{1}{x}, \quad y=0, \quad x=1, \quad x=3\)
26. \(y=\frac{2}{x+1}, \quad y=0, \quad x=0, \quad x=6\)
27. \(y=e^{-x}, \quad y=0, \quad x=0, \quad x=1\)
28. \(y=e^{x / 2}, \quad y=0, \quad x=0, \quad x=4\)
29. \(y=x^{2}+1, \quad y=-x^{2}+2 x+5, \quad x=0, \quad x=3\)
30. \(y=\sqrt{x}, \quad y=-\frac{1}{2} x+4, \quad x=0, \quad x=8\)

In Exercises 31 and 32, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(y\)-axis.
31. \(y=3(2-x), \quad y=0, \quad x=0\)
32. \(y=9-x^{2}, \quad y=0, \quad x=2, \quad x=3\)

In Exercises 33-36, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\)-axis. Verify your results using the integration capabilities of a graphing utility.
33. \(y=\sin x, \quad y=0, \quad x=0, \quad x=\pi\)
34. \(y=\cos 2 x, y=0, x=0, x=\frac{\pi}{4}\)
35. \(y=e^{x-1}, \quad y=0, \quad x=1, \quad x=2\)
36. \(y=e^{x / 2}+e^{-x / 2}, \quad y=0, \quad x=-1, \quad x=2\)

In Exercises 37-40, use the integration capabilities of a graphing utility to approximate the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\)-axis.
37. \(y=e^{-x^{2}}, \quad y=0, \quad x=0, \quad x=2\)
38. \(y=\ln x, \quad y=0, \quad x=1, \quad x=3\)
39. \(y=2 \arctan (0.2 x), \quad y=0, \quad x=0, \quad x=5\)
40. \(y=\sqrt{2 x}, \quad y=x^{2}\)

In Exercises 41-48, find the volume generated by rotating the given region about the specified line.

41. \(R_{1}\) about \(x=0\)
42. \(R_{1}\) about \(x=1\)
43. \(R_{2}\) about \(y=0\)
44. \(R_{2}\) about \(y=1\)
45. \(R_{3}\) about \(x=0\)
46. \(R_{3}\) about \(x=1\)
47. \(R_{2}\) about \(x=0\)
48. \(R_{2}\) about \(x=1\)

Think About It In Exercises 49 and 50, determine which value best approximates the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\)-axis. (Make your selection on the basis of a sketch of the solid and not by performing any calculations.)
49. \(y=e^{-x^{2} / 2}, \quad y=0, x=0, x=2\)
(a) 3
(b) -5
(c) 10
(d) 7
(e) 20
50. \(y=\arctan x, y=0, x=0, x=1\)
(a) 10
(b) \(\frac{3}{4}\)
(c) 5
(d) -6
(e) 15

\section*{WRITING ABOUT CONCEPTS}

In Exercises 51 and 52, the integral represents the volume of a solid. Describe the solid.
51. \(\pi \int_{0}^{\pi / 2} \sin ^{2} x d x\)
52. \(\pi \int_{2}^{4} y^{4} d y\)
53. A region bounded by the parabola \(y=4 x-x^{2}\) and the \(x\)-axis is revolved about the \(x\)-axis. A second region bounded by the parabola \(y=4-x^{2}\) and the \(x\)-axis is revolved about the \(x\)-axis. Without integrating, how do the volumes of the two solids compare? Explain.
54. The region in the figure is revolved about the indicated axes and line. Order the volumes of the resulting solids from least to greatest. Explain your reasoning.
(a) \(x\)-axis
(b) \(y\)-axis
(c) \(x=3\)

55. Discuss the validity of the following statements.
(a) For a solid formed by rotating the region under a graph about the \(x\)-axis, the cross sections perpendicular to the \(x\)-axis are circular disks.
(b) For a solid formed by rotating the region between two graphs about the \(x\)-axis, the cross sections perpendicular to the \(x\)-axis are circular disks.

\section*{CAPSTONE}
56. Identify the integral that represents the volume of the solid obtained by rotating the area between \(y=f(x)\) and \(y=g(x), \quad a \leq x \leq b, \quad\) about the \(x\)-axis. [Assume \(f(x) \geq g(x) \geq 0\).]
(a) \(\pi \int_{a}^{b}[f(x)-g(x)]^{2} d x\)
(b) \(\pi \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x\)
57. If the portion of the line \(y=\frac{1}{2} x\) lying in the first quadrant is revolved about the \(x\)-axis, a cone is generated. Find the volume of the cone extending from \(x=0\) to \(x=6\).
58. Use the disk method to verify that the volume of a right circular cone is \(\frac{1}{3} \pi r^{2} h\), where \(r\) is the radius of the base and \(h\) is the height.
59. Use the disk method to verify that the volume of a sphere is \(\frac{4}{3} \pi r^{3}\).
60. A sphere of radius \(r\) is cut by a plane \(h(h<r)\) units above the equator. Find the volume of the solid (spherical segment) above the plane.
61. A cone of height \(H\) with a base of radius \(r\) is cut by a plane parallel to and \(h\) units above the base. Find the volume of the solid (frustum of a cone) below the plane.
62. The region bounded by \(y=\sqrt{x}, y=0\), and \(x=4\) is revolved about the \(x\)-axis.
(a) Find the value of \(x\) in the interval \([0,4]\) that divides the solid into two parts of equal volume.
(b) Find the values of \(x\) in the interval \([0,4]\) that divide the solid into three parts of equal volume.
63. Volume of a Fuel Tank A tank on the wing of a jet aircraft is formed by revolving the region bounded by the graph of \(y=\frac{1}{8} x^{2} \sqrt{2-x}\) and the \(x\)-axis \((0 \leq x \leq 2)\) about the \(x\)-axis, where \(x\) and \(y\) are measured in meters. Use a graphing utility to graph the function and find the volume of the tank.
64. Volume of alab Glass A glass container can be modeled by revolving the graph of
\(y= \begin{cases}\sqrt{0.1 x^{3}-2.2 x^{2}+10.9 x+22.2}, & 0 \leq x \leq 11.5 \\ 2.95, & 11.5<x \leq 15\end{cases}\)
about the \(x\)-axis, where \(x\) and \(y\) are measured in centimeters. Use a graphing utility to graph the function and find the volume of the container.
65. Find the volumes of the solids (see figures) generated if the upper half of the ellipse \(9 x^{2}+25 y^{2}=225\) is revolved about (a) the \(x\)-axis to form a prolate spheroid (shaped like a football), and (b) the \(y\)-axis to form an oblate spheroid (shaped like half of a candy).


Figure for 65(a)


Figure for 65(b)
66. Water Depth in a Tank A tank on a water tower is a sphere of radius 50 feet. Determine the depths of the water when the tank is filled to one-fourth and three-fourths of its total capacity. (Note: Use the zero or root feature of a graphing utility after evaluating the definite integral.)
67. Minimum Volume The arc of \(y=4-\left(x^{2} / 4\right)\) on the interval \([0,4]\) is revolved about the line \(y=b\) (see figure).
(a) Find the volume of the resulting solid as a function of \(b\).
(b) Use a graphing utility to graph the function in part (a), and use the graph to approximate the value of \(b\) that minimizes the volume of the solid.
(c) Use calculus to find the value of \(b\) that minimizes the volume of the solid, and compare the result with the answer to part (b).


Figure for 67


Figure for 68
68. Modeling Data A draftsman is asked to determine the amount of material required to produce a machine part (see figure). The diameters \(d\) of the part at equally spaced points \(x\) are listed in the table. The measurements are listed in centimeters.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(d\) & 4.2 & 3.8 & 4.2 & 4.7 & 5.2 & 5.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 6 & 7 & 8 & 9 & 10 \\
\hline\(d\) & 5.8 & 5.4 & 4.9 & 4.4 & 4.6 \\
\hline
\end{tabular}
(a) Use these data with Simpson's Rule to approximate the volume of the part.
(b) Use the regression capabilities of a graphing utility to find a fourth-degree polynomial through the points representing the radius of the solid. Plot the data and graph the model.
(c) Use a graphing utility to approximate the definite integral yielding the volume of the part. Compare the result with the answer to part (a).
69. Think About It Match each integral with the solid whose volume it represents, and give the dimensions of each solid.
(a) Right circular cylinder
(b) Ellipsoid
(c) Sphere
(d) Right circular cone
(e) Torus
(i) \(\pi \int_{0}^{h}\left(\frac{r x}{h}\right)^{2} d x\)
(ii) \(\pi \int_{0}^{h} r^{2} d x\)
(iii) \(\pi \int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x\)
(iv) \(\pi \int_{-b}^{b}\left(a \sqrt{1-\frac{x^{2}}{b^{2}}}\right)^{2} d x\)
(v) \(\pi \int_{-r}^{r}\left[\left(R+\sqrt{r^{2}-x^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-x^{2}}\right)^{2}\right] d x\)
70. Cavalieri's Theorem Prove that if two solids have equal altitudes and all plane sections parallel to their bases and at equal distances from their bases have equal areas, then the solids have the same volume (see figure).


Area of \(R_{1}=\) area of \(R_{2}\)
71. Find the volumes of the solids whose bases are bounded by the graphs of \(y=x+1\) and \(y=x^{2}-1\), with the indicated cross sections taken perpendicular to the \(x\)-axis.
(a) Squares
(b) Rectangles of height 1

72. Find the volumes of the solids whose bases are bounded by the circle \(x^{2}+y^{2}=4\), with the indicated cross sections taken perpendicular to the \(x\)-axis.
(a) Squares

(c) Semicircles

(b) Equilateral triangles

(d) Isosceles right triangles

73. Find the volume of the solid of intersection (the solid common to both) of the two right circular cylinders of radius \(r\) whose axes meet at right angles (see figure).


Two intersecting cylinders


Solid of intersection

FOR FURTHER INFORMATION For more information on this problem, see the article "Estimating the Volumes of Solid Figures with Curved Surfaces" by Donald Cohen in Mathematics Teacher. To view this article, go to the website www.matharticles.com.
74. The base of a solid is bounded by \(y=x^{3}, y=0\), and \(x=1\). Find the volume of the solid for each of the following cross sections (taken perpendicular to the \(y\)-axis): (a) squares, (b) semicircles, (c) equilateral triangles, and (d) semiellipses whose heights are twice the lengths of their bases.
75. A manufacturer drills a hole through the center of a metal sphere of radius \(R\). The hole has a radius \(r\). Find the volume of the resulting ring.
76. For the metal sphere in Exercise 75 , let \(R=6\). What value of \(r\) will produce a ring whose volume is exactly half the volume of the sphere?
77. The region bounded by the graphs of \(y=8 x /\left(9+x^{2}\right), y=0\), \(x=0\), and \(x=5\) is revolved about the \(x\)-axis. Use a graphing utility and Simpson's Rule (with \(n=10\) ) to approximate the volume of the solid.
78. The solid shown in the figure has cross sections bounded by the graph of \(|x|^{a}+|y|^{a}=1\), where \(1 \leq a \leq 2\).
(a) Describe the cross section when \(a=1\) and \(a=2\).
(b) Describe a procedure for approximating the volume of the solid.

79. Two planes cut a right circular cylinder to form a wedge. One plane is perpendicular to the axis of the cylinder and the second makes an angle of \(\theta\) degrees with the first (see figure).
(a) Find the volume of the wedge if \(\theta=45^{\circ}\).
(b) Find the volume of the wedge for an arbitrary angle \(\theta\). Assuming that the cylinder has sufficient length, how does the volume of the wedge change as \(\theta\) increases from \(0^{\circ}\) to \(90^{\circ}\) ?


Figure for 79


Figure for 80
80. (a) Show that the volume of the torus shown in the figure is given by the integral \(8 \pi R \int_{0}^{r} \sqrt{r^{2}-y^{2}} d y\), where \(R>r>0\).
(b) Find the volume of the torus.

\subsection*{7.3 Volume: The Shell Method}


Figure 7.27


Figure 7.28

\section*{- Find the volume of a solid of revolution using the shell method.}
- Compare the uses of the disk method and the shell method.

\section*{The Shell Method}

In this section, you will study an alternative method for finding the volume of a solid of revolution. This method is called the shell method because it uses cylindrical shells. A comparison of the advantages of the disk and shell methods is given later in this section.

To begin, consider a representative rectangle as shown in Figure 7.27, where \(w\) is the width of the rectangle, \(h\) is the height of the rectangle, and \(p\) is the distance between the axis of revolution and the center of the rectangle. When this rectangle is revolved about its axis of revolution, it forms a cylindrical shell (or tube) of thickness \(w\). To find the volume of this shell, consider two cylinders. The radius of the larger cylinder corresponds to the outer radius of the shell, and the radius of the smaller cylinder corresponds to the inner radius of the shell. Because \(p\) is the average radius of the shell, you know the outer radius is \(p+(w / 2)\) and the inner radius is \(p-(w / 2)\).
\[
\begin{array}{ll}
p+\frac{w}{2} & \text { Outer radius } \\
p-\frac{w}{2} & \text { Inner radius }
\end{array}
\]

So, the volume of the shell is
Volume of shell \(=(\) volume of cylinder \()-(\) volume of hole \()\)
\[
\begin{aligned}
& =\pi\left(p+\frac{w}{2}\right)^{2} h-\pi\left(p-\frac{w}{2}\right)^{2} h \\
& =2 \pi p h w \\
& =2 \pi(\text { average radius)(height)(thickness). }
\end{aligned}
\]

You can use this formula to find the volume of a solid of revolution. Assume that the plane region in Figure 7.28 is revolved about a line to form the indicated solid. If you consider a horizontal rectangle of width \(\Delta y\), then, as the plane region is revolved about a line parallel to the \(x\)-axis, the rectangle generates a representative shell whose volume is
\[
\Delta V=2 \pi[p(y) h(y)] \Delta y
\]

You can approximate the volume of the solid by \(n\) such shells of thickness \(\Delta y\), height \(h\left(y_{i}\right)\), and average radius \(p\left(y_{i}\right)\).
\[
\text { Volume of solid } \approx \sum_{i=1}^{n} 2 \pi\left[p\left(y_{i}\right) h\left(y_{i}\right)\right] \Delta y=2 \pi \sum_{i=1}^{n}\left[p\left(y_{i}\right) h\left(y_{i}\right)\right] \Delta y
\]

This approximation appears to become better and better as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\). So, the volume of the solid is
\[
\begin{aligned}
\text { Volume of solid } & =\lim _{\|\Delta\| \rightarrow 0} 2 \pi \sum_{i=1}^{n}\left[p\left(y_{i}\right) h\left(y_{i}\right)\right] \Delta y \\
& =2 \pi \int_{c}^{d}[p(y) h(y)] d y
\end{aligned}
\]


Figure 7.30

\section*{THE SHELL METHOD}

To find the volume of a solid of revolution with the shell method, use one of the following, as shown in Figure 7.29.
\[
\begin{array}{ll}
\text { Horizontal Axis of Revolution } & \text { Vertical Axis of Revolution } \\
\text { Volume }=V=2 \pi \int_{c}^{d} p(y) h(y) d y & \text { Volume }=V=2 \pi \int_{a}^{b} p(x) h(x) d x
\end{array}
\]


Horizontal axis of revolution
Figure 7.29

\section*{EXAMPLE 1 Using the Shell Method to Find Volume}

Find the volume of the solid of revolution formed by revolving the region bounded by
\[
y=x-x^{3}
\]
and the \(x\)-axis \((0 \leq x \leq 1)\) about the \(y\)-axis.
Solution Because the axis of revolution is vertical, use a vertical representative rectangle, as shown in Figure 7.30. The width \(\Delta x\) indicates that \(x\) is the variable of integration. The distance from the center of the rectangle to the axis of revolution is \(p(x)=x\), and the height of the rectangle is
\[
h(x)=x-x^{3}
\]

Because \(x\) ranges from 0 to 1 , the volume of the solid is
\[
\begin{array}{rlr}
V=2 \pi \int_{a}^{b} p(x) h(x) d x & =2 \pi \int_{0}^{1} x\left(x-x^{3}\right) d x & \\
& =2 \pi \int_{0}^{1}\left(-x^{4}+x^{2}\right) d x & \\
& \text { Apply shell method. } \\
& =2 \pi\left[-\frac{x^{5}}{5}+\frac{x^{3}}{3}\right]_{0}^{1} & \\
& =2 \pi\left(-\frac{1}{5}+\frac{1}{3}\right) & \text { Integrate. } \\
& =\frac{4 \pi}{15}
\end{array}
\]


Figure 7.31

\section*{EXAMPLE 2 Using the Shell Method to Find Volume}

Find the volume of the solid of revolution formed by revolving the region bounded by the graph of
\[
x=e^{-y^{2}}
\]
and the \(y\)-axis \((0 \leq y \leq 1)\) about the \(x\)-axis.
Solution Because the axis of revolution is horizontal, use a horizontal representative rectangle, as shown in Figure 7.31. The width \(\Delta y\) indicates that \(y\) is the variable of integration. The distance from the center of the rectangle to the axis of revolution is \(p(y)=y\), and the height of the rectangle is \(h(y)=e^{-y^{2}}\). Because \(y\) ranges from 0 to 1 , the volume of the solid is
\[
\begin{array}{rlrl}
V=2 \pi \int_{c}^{d} p(y) h(y) d y & =2 \pi \int_{0}^{1} y e^{-y^{2}} d y & & \text { Apply shell method. } \\
& =-\pi\left[e^{-y^{2}}\right]_{0}^{1} & & \text { Integrate. } \\
& =\pi\left(1-\frac{1}{e}\right) & \\
& \approx 1.986
\end{array}
\]

NOTE To see the advantage of using the shell method in Example 2, solve the equation \(x=e^{-y^{2}}\) for \(y\).
\[
y= \begin{cases}1, & 0 \leq x \leq 1 / e \\ \sqrt{-\ln x}, & 1 / e<x \leq 1\end{cases}
\]

Then use this equation to find the volume using the disk method.

\section*{Comparison of Disk and Shell Methods}

The disk and shell methods can be distinguished as follows. For the disk method, the representative rectangle is always perpendicular to the axis of revolution, whereas for the shell method, the representative rectangle is always parallel to the axis of revolution, as shown in Figure 7.32.


Vertical axis of revolution
Disk method: Representative rectangle is perpendicular to the axis of revolution.
Figure 7.32


Vertical axis of revolution


Horizontal axis of revolution

Shell method: Representative rectangle is parallel to the axis of revolution.

(a) Disk method

(b) Shell method

Figure 7.33

Often, one method is more convenient to use than the other. The following example illustrates a case in which the shell method is preferable.

\section*{Cexample 3 Shell Method Preferable}

Find the volume of the solid formed by revolving the region bounded by the graphs of
\[
y=x^{2}+1, \quad y=0, \quad x=0, \quad \text { and } \quad x=1
\]
about the \(y\)-axis.
Solution In Example 4 in the preceding section, you saw that the washer method requires two integrals to determine the volume of this solid. See Figure 7.33(a).
\[
\begin{array}{rlrl}
V & =\pi \int_{0}^{1}\left(1^{2}-0^{2}\right) d y+\pi \int_{1}^{2}\left[1^{2}-(\sqrt{y-1})^{2}\right] d y & & \text { Apply washer method. } \\
& =\pi \int_{0}^{1} 1 d y+\pi \int_{1}^{2}(2-y) d y & & \text { Simplify. } \\
& =\pi[y]_{0}^{1}+\pi\left[2 y-\frac{y^{2}}{2}\right]_{1}^{2} & & \text { Integrate. } \\
& =\pi+\pi\left(4-2-2+\frac{1}{2}\right) & \\
& =\frac{3 \pi}{2} & &
\end{array}
\]

In Figure 7.33(b), you can see that the shell method requires only one integral to find the volume.
\[
\begin{array}{rlr}
V & =2 \pi \int_{a}^{b} p(x) h(x) d x & \text { Apply shell method. } \\
& =2 \pi \int_{0}^{1} x\left(x^{2}+1\right) d x & \\
& =2 \pi\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{1} & \text { Integrate. } \\
& =2 \pi\left(\frac{3}{4}\right) & \\
& =\frac{3 \pi}{2} &
\end{array}
\]

Suppose the region in Example 3 were revolved about the vertical line \(x=1\). Would the resulting solid of revolution have a greater volume or a smaller volume than the solid in Example 3? Without integrating, you should be able to reason that the resulting solid would have a smaller volume because "more" of the revolved region would be closer to the axis of revolution. To confirm this, try solving the following integral, which gives the volume of the solid.
\[
V=2 \pi \int_{0}^{1}(1-x)\left(x^{2}+1\right) d x \quad p(x)=1-x
\]

FOR FURTHER INFORMATION To learn more about the disk and shell methods, see the article "The Disk and Shell Method" by Charles A. Cable in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.


Figure 7.34

(a) Disk method

(b) Shell method

Figure 7.35


Figure 7.36

\section*{EXAMPLE 4 Volume of a Pontoon}

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed by rotating the graph of
\[
y=1-\frac{x^{2}}{16}, \quad-4 \leq x \leq 4
\]
about the \(x\)-axis, where \(x\) and \(y\) are measured in feet. Find the volume of the pontoon.
Solution Refer to Figure 7.35(a) and use the disk method as follows.
\[
\begin{array}{rlrl}
V & =\pi \int_{-4}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x & & \text { Apply disk method. } \\
& =\pi \int_{-4}^{4}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{256}\right) d x & & \text { Simplify. } \\
& =\pi\left[x-\frac{x^{3}}{24}+\frac{x^{5}}{1280}\right]_{-4}^{4} & \text { Integrate. } \\
& =\frac{64 \pi}{15} \approx 13.4 \text { cubic feet } &
\end{array}
\]

Try using Figure 7.35(b) to set up the integral for the volume using the shell method. Does the integral seem more complicated?

To use the shell method in Example 4, you would have to solve for \(x\) in terms of \(y\) in the equation
\[
y=1-\left(x^{2} / 16\right)
\]

Sometimes, solving for \(x\) is very difficult (or even impossible). In such cases you must use a vertical rectangle (of width \(\Delta x\) ), thus making \(x\) the variable of integration. The position (horizontal or vertical) of the axis of revolution then determines the method to be used. This is shown in Example 5.

\section*{EXAMPLE 5 Shell Method Necessary}

Find the volume of the solid formed by revolving the region bounded by the graphs of \(y=x^{3}+x+1, y=1\), and \(x=1\) about the line \(x=2\), as shown in Figure 7.36.

Solution In the equation \(y=x^{3}+x+1\), you cannot easily solve for \(x\) in terms of \(y\). (See Section 3.8 on Newton's Method.) Therefore, the variable of integration must be \(x\), and you should choose a vertical representative rectangle. Because the rectangle is parallel to the axis of revolution, use the shell method and obtain
\[
\begin{array}{rlrl}
V=2 \pi \int_{a}^{b} p(x) h(x) d x & =2 \pi \int_{0}^{1}(2-x)\left(x^{3}+x+1-1\right) d x & & \text { Apply shell method. } \\
& =2 \pi \int_{0}^{1}\left(-x^{4}+2 x^{3}-x^{2}+2 x\right) d x & & \text { Simplify. } \\
& =2 \pi\left[-\frac{x^{5}}{5}+\frac{x^{4}}{2}-\frac{x^{3}}{3}+x^{2}\right]_{0}^{1} & \text { Integrate. } \\
& =2 \pi\left(-\frac{1}{5}+\frac{1}{2}-\frac{1}{3}+1\right) & \\
& =\frac{29 \pi}{15} .
\end{array}
\]

\subsection*{7.3 Exercises}

In Exercises 1-14, use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the \(y\)-axis.
1. \(y=x\)

2. \(y=1-x\)

3. \(y=\sqrt{x}\)


5. \(y=x^{2}, \quad y=0, \quad x=3\)
6. \(y=\frac{1}{4} x^{2}, y=0, \quad x=6\)
7. \(y=x^{2}, \quad y=4 x-x^{2}\)
8. \(y=4-x^{2}, \quad y=0\)
9. \(y=4 x-x^{2}, \quad x=0, \quad y=4\)
10. \(y=3 x, \quad y=6, \quad x=0\)
11. \(y=\sqrt{x-2}, \quad y=0, \quad x=4\)
12. \(y=-x^{2}+1, \quad y=0\)
13. \(y=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad y=0, \quad x=0, \quad x=1\)
14. \(y=\left\{\begin{array}{ll}\frac{\sin x}{x}, & x>0 \\ 1, & x=0\end{array}, \quad y=0, \quad x=0, \quad x=\pi\right.\)

In Exercises 15-22, use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the \(x\)-axis.
15. \(y=x\)

16. \(y=1-x\)

17. \(y=\frac{1}{x}\)

18. \(x+y^{2}=16\)

19. \(y=x^{3}, \quad x=0, \quad y=8\)
20. \(y=x^{2}, \quad x=0, \quad y=9\)
21. \(x+y=4, \quad y=x, \quad y=0\)
22. \(y=\sqrt{x+2}, \quad y=x, \quad y=0\)

In Exercises 23-26, use the shell method to find the volume of the solid generated by revolving the plane region about the given line.
23. \(y=4 x-x^{2}, \quad y=0\), about the line \(x=5\)
24. \(y=\sqrt{x}, \quad y=0, \quad x=4\), about the line \(x=6\)
25. \(y=x^{2}, \quad y=4 x-x^{2}\), about the line \(x=4\)
26. \(y=x^{2}, \quad y=4 x-x^{2}\), about the line \(x=2\)

In Exercises 27 and 28, decide whether it is more convenient to use the disk method or the shell method to find the volume of the solid of revolution. Explain your reasoning. (Do not find the volume.)
27. \((y-2)^{2}=4-x\)

28. \(y=4-e^{x}\)


In Exercises 29-32, use the disk or the shell method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about each given line.
29. \(y=x^{3}, \quad y=0, \quad x=2\)
(a) the \(x\)-axis
(b) the \(y\)-axis
(c) the line \(x=4\)
30. \(y=\frac{10}{x^{2}}, \quad y=0, \quad x=1, \quad x=5\)
(a) the \(x\)-axis
(b) the \(y\)-axis
(c) the line \(y=10\)
31. \(x^{1 / 2}+y^{1 / 2}=a^{1 / 2}, \quad x=0, \quad y=0\)
(a) the \(x\)-axis
(b) the \(y\)-axis
(c) the line \(x=a\)
32. \(x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, \quad a>0\) (hypocycloid)
(a) the \(x\)-axis
(b) the \(y\)-axis

In Exercises 33-36, (a) use a graphing utility to graph the plane region bounded by the graphs of the equations, and (b) use the integration capabilities of the graphing utility to approximate the volume of the solid generated by revolving the region about the \(y\)-axis.
33. \(x^{4 / 3}+y^{4 / 3}=1, x=0, y=0\), first quadrant
34. \(y=\sqrt{1-x^{3}}, y=0, x=0\)
35. \(y=\sqrt[3]{(x-2)^{2}(x-6)^{2}}, y=0, x=2, x=6\)
36. \(y=\frac{2}{1+e^{1 / x}}, y=0, x=1, x=3\)

Think About It In Exercises 37 and 38, determine which value best approximates the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(y\)-axis. (Make your selection on the basis of a sketch of the solid and not by performing any calculations.)
37. \(y=2 e^{-x}, y=0, x=0, x=2\)
(a) \(\frac{3}{2}\)
(b) -2
(c) 4
(d) 7.5
(e) 15
38. \(y=\tan x, y=0, x=0, x=\frac{\pi}{4}\)
(a) 3.5
(b) \(-\frac{9}{4}\)
(c) 8
(d) 10
(e) 1

\section*{WRITING ABOUT CONCEPTS}
39. The region in the figure is revolved about the indicated axes and line. Order the volumes of the resulting solids from least to greatest. Explain your reasoning.


Figure for 39
(c) \(x=4\)


Figure for 40
40. (a) Describe the figure generated by revolving segment \(A B\) about the \(y\)-axis (see figure).
(b) Describe the figure generated by revolving segment \(B C\) about the \(y\)-axis.
(c) Assume the curve in the figure can be described as \(y=f(x)\) or \(x=g(y)\). A solid is generated by revolving the region bounded by the curve, \(y=0\), and \(x=0\) about the \(y\)-axis. Set up integrals to find the volume of this solid using the disk method and the shell method. (Do not integrate.)

\section*{WRITING ABOUT CONCEPTS (continued)}

In Exercises 41 and 42, give a geometric argument that explains why the integrals have equal values.
41. \(\pi \int_{1}^{5}(x-1) d x=2 \pi \int_{0}^{2} y\left[5-\left(y^{2}+1\right)\right] d y\)
42. \(\pi \int_{0}^{2}\left[16-(2 y)^{2}\right] d y=2 \pi \int_{0}^{4} x\left(\frac{x}{2}\right) d x\)
43. Consider a solid that is generated by revolving a plane region about the \(y\)-axis. Describe the position of a representative rectangle when using (a) the shell method and (b) the disk method to find the volume of the solid.

\section*{CAPSTONE}
44. Consider the plane region bounded by the graphs of \(y=k\), \(y=0, x=0\), and \(x=b\), where \(k>0\) and \(b>0\). What are the heights and radii of the cylinders generated when this region is revolved about (a) the \(x\)-axis and (b) the \(y\)-axis?
45. Machine Part A solid is generated by revolving the region bounded by \(y=\frac{1}{2} x^{2}\) and \(y=2\) about the \(y\)-axis. A hole, centered along the axis of revolution, is drilled through this solid so that one-fourth of the volume is removed. Find the diameter of the hole.
46. Machine Part A solid is generated by revolving the region bounded by \(y=\sqrt{9-x^{2}}\) and \(y=0\) about the \(y\)-axis. A hole, centered along the axis of revolution, is drilled through this solid so that one-third of the volume is removed. Find the diameter of the hole.
47. Volume of a Torus A torus is formed by revolving the region bounded by the circle \(x^{2}+y^{2}=1\) about the line \(x=2\) (see figure). Find the volume of this "doughnut-shaped" solid. (Hint: The integral \(\int_{-1}^{1} \sqrt{1-x^{2}} d x\) represents the area of a semicircle.)

48. Volume of a Torus Repeat Exercise 47 for a torus formed by revolving the region bounded by the circle \(x^{2}+y^{2}=r^{2}\) about the line \(x=R\), where \(r<R\).

In Exercises 49-52, the integral represents the volume of a solid of revolution. Identify (a) the plane region that is revolved and (b) the axis of revolution.
49. \(2 \pi \int_{0}^{2} x^{3} d x\)
50. \(2 \pi \int_{0}^{1} y-y^{3 / 2} d y\)
51. \(2 \pi \int_{0}^{6}(y+2) \sqrt{6-y} d y\)
52. \(2 \pi \int_{0}^{1}(4-x) e^{x} d x\)
53. (a) Use differentiation to verify that
\(\int x \sin x d x=\sin x-x \cos x+C\).
(b) Use the result of part (a) to find the volume of the solid generated by revolving each plane region about the \(y\)-axis.
(i)

(ii)

54. (a) Use differentiation to verify that \(\int x \cos x d x=\cos x+x \sin x+C\).
(b) Use the result of part (a) to find the volume of the solid generated by revolving each plane region about the \(y\)-axis. (Hint: Begin by approximating the points of intersection.)
(i)

(ii)

55. Volume of a Segment of a Sphere Let a sphere of radius \(r\) be cut by a plane, thereby forming a segment of height \(h\). Show that the volume of this segment is \(\frac{1}{3} \pi h^{2}(3 r-h)\).
56. Volume of an Ellipsoid Consider the plane region bounded by the graph of
\(\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1\)
where \(a>0\) and \(b>0\). Show that the volume of the ellipsoid formed when this region is revolved about the \(y\)-axis is \(\frac{4}{3} \pi a^{2} b\). What is the volume when the region is revolved about the \(x\)-axis?
57. Exploration Consider the region bounded by the graphs of \(y=a x^{n}, y=a b^{n}\), and \(x=0\) (see figure).

(a) Find the ratio \(R_{1}(n)\) of the area of the region to the area of the circumscribed rectangle.
(b) Find \(\lim _{n \rightarrow \infty} R_{1}(n)\) and compare the result with the area of the circumscribed rectangle.
(c) Find the volume of the solid of revolution formed by revolving the region about the \(y\)-axis. Find the ratio \(R_{2}(n)\) of this volume to the volume of the circumscribed right circular cylinder.
(d) Find \(\lim _{n \rightarrow \infty} R_{2}(n)\) and compare the result with the volume of the circumscribed cylinder.
(e) Use the results of parts (b) and (d) to make a conjecture about the shape of the graph of \(y=a x^{n}(0 \leq x \leq b)\) as \(n \rightarrow \infty\).
58. Think About It Match each integral with the solid whose volume it represents, and give the dimensions of each solid.
(a) Right circular cone
(b) Torus
(c) Sphere
(d) Right circular cylinder
(e) Ellipsoid
(i) \(2 \pi \int_{0}^{r} h x d x\)
(ii) \(2 \pi \int_{0}^{r} h x\left(1-\frac{x}{r}\right) d x\)
(iii) \(2 \pi \int_{0}^{r} 2 x \sqrt{r^{2}-x^{2}} d x\)
(iv) \(2 \pi \int_{0}^{b} 2 a x \sqrt{1-\frac{x^{2}}{b^{2}}} d x\)
(v) \(2 \pi \int_{-r}^{r}(R-x)\left(2 \sqrt{r^{2}-x^{2}}\right) d x\)
59. Volume of a Storage Shed A storage shed has a circular base of diameter 80 feet. Starting at the center, the interior height is measured every 10 feet and recorded in the table (see figure).
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 10 & 20 & 30 & 40 \\
\hline Height & 50 & 45 & 40 & 20 & 0 \\
\hline
\end{tabular}
(a) Use Simpson's Rule to approximate the volume of the shed.
(b) Note that the roof line consists of two line segments. Find the equations of the line segments and use integration to find the volume of the shed.


Figure for 59


Figure for 60
60. Modeling Data A pond is approximately circular, with a diameter of 400 feet. Starting at the center, the depth of the water is measured every 25 feet and recorded in the table (see figure).
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & 0 & 25 & 50 & 75 & 100 & 125 & 150 & 175 & 200 \\
\hline Depth & 20 & 19 & 19 & 17 & 15 & 14 & 10 & 6 & 0 \\
\hline
\end{tabular}
(a) Use Simpson's Rule to approximate the volume of water in the pond.
(b) Use the regression capabilities of a graphing utility to find a quadratic model for the depths recorded in the table. Use the graphing utility to plot the depths and graph the model.
(c) Use the integration capabilities of a graphing utility and the model in part (b) to approximate the volume of water in the pond.
(d) Use the result of part (c) to approximate the number of gallons of water in the pond if 1 cubic foot of water is approximately 7.48 gallons.
61. Let \(V_{1}\) and \(V_{2}\) be the volumes of the solids that result when the plane region bounded by \(y=1 / x, y=0, x=\frac{1}{4}\), and \(x=c\left(\right.\) where \(\left.c>\frac{1}{4}\right)\) is revolved about the \(x\)-axis and the \(y\)-axis, respectively. Find the value of \(c\) for which \(V_{1}=V_{2}\).
62. The region bounded by \(y=r^{2}-x^{2}, y=0\), and \(x=0\) is revolved about the \(y\)-axis to form a paraboloid. A hole, centered along the axis of revolution, is drilled through this solid. The hole has a radius \(k, 0<k<r\). Find the volume of the resulting ring (a) by integrating with respect to \(x\) and (b) by integrating with respect to \(y\).
63. Consider the graph of \(y^{2}=x(4-x)^{2}\) (see figure). Find the volumes of the solids that are generated when the loop of this graph is revolved about (a) the \(x\)-axis, (b) the \(y\)-axis, and (c) the line \(x=4\).


Figure for 63


Figure for 64
64. Consider the graph of \(y^{2}=x^{2}(x+5)\) (see figure). Find the volumes of the solids that are generated when the loop of this graph is revolved about (a) the \(x\)-axis, (b) the \(y\)-axis, and (c) the line \(x=-5\).

\section*{SECTION PROJECT}

\section*{Saturn}

The Oblateness of Saturn Saturn is the most oblate of the nine planets in our solar system. Its equatorial radius is 60,268 kilometers and its polar radius is 54,364 kilometers. The colorenhanced photograph of Saturn was taken by Voyager 1. In the photograph, the oblateness of Saturn is clearly visible.
(a) Find the ratio of the volumes of the sphere and the oblate ellipsoid shown below.
(b) If a planet were spherical and had the same volume as Saturn, what would its radius be?


Computer model of "oblate Saturn," whose equatorial radius is greater than its polar radius. The equation of the cross section passing through the pole is
\(\frac{x^{2}}{60,268^{2}}+\frac{y^{2}}{54,364^{2}}=1\).

\subsection*{7.4 Arc Length and Surfaces of Revolution}


The Dutch mathematician Christian Huygens, who invented the pendulum clock, and James Gregory (1638-1675), a Scottish mathematician, both made early contributions to the problem of finding the length of a rectifiable curve.



Figure 7.37
- Find the arc length of a smooth curve.
- Find the area of a surface of revolution.

\section*{Arc Length}

In this section, definite integrals are used to find the arc lengths of curves and the areas of surfaces of revolution. In either case, an arc (a segment of a curve) is approximated by straight line segments whose lengths are given by the familiar Distance Formula
\[
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\]

A rectifiable curve is one that has a finite arc length. You will see that a sufficient condition for the graph of a function \(f\) to be rectifiable between \((a, f(a))\) and \((b, f(b))\) is that \(f^{\prime}\) be continuous on \([a, b]\). Such a function is continuously differentiable on \([a, b]\), and its graph on the interval \([a, b]\) is a smooth curve.

Consider a function \(y=f(x)\) that is continuously differentiable on the interval \([a, b]\). You can approximate the graph of \(f\) by \(n\) line segments whose endpoints are determined by the partition
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
\]
as shown in Figure 7.37. By letting \(\Delta x_{i}=x_{i}-x_{i-1}\) and \(\Delta y_{i}=y_{i}-y_{i-1}\), you can approximate the length of the graph by
\[
\begin{aligned}
s & \approx \sum_{i=1}^{n} \sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}\left(\Delta x_{i}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}}\left(\Delta x_{i}\right)
\end{aligned}
\]

This approximation appears to become better and better as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\). So, the length of the graph is
\[
s=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}}\left(\Delta x_{i}\right)
\]

Because \(f^{\prime}(x)\) exists for each \(x\) in \(\left(x_{i-1}, x_{i}\right)\), the Mean Value Theorem guarantees the existence of \(c_{i}\) in \(\left(x_{i-1}, x_{i}\right)\) such that
\[
\begin{aligned}
f\left(x_{i}\right)-f\left(x_{i-1}\right) & =f^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right) \\
\frac{\Delta y_{i}}{\Delta x_{i}} & =f^{\prime}\left(c_{i}\right) .
\end{aligned}
\]

Because \(f^{\prime}\) is continuous on \([a, b]\), it follows that \(\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\) is also continuous (and therefore integrable) on \([a, b]\), which implies that
\[
\begin{aligned}
s & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}}\left(\Delta x_{i}\right) \\
& =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
\]
where \(s\) is called the arc length of \(f\) between \(a\) and \(b\).

FOR FURTHER INFORMATION To
see how arc length can be used to define trigonometric functions, see the article "Trigonometry Requires Calculus, Not Vice Versa" by Yves Nievergelt in UMAP Modules.


The formula for the arc length of the graph of \(f\) from \(\left(x_{1}, y_{1}\right)\) to \(\left(x_{2}, y_{2}\right)\) is the same as the standard Distance Formula.
Figure 7.38

\section*{DEFINITION OF ARC LENGTH}

Let the function given by \(y=f(x)\) represent a smooth curve on the interval \([a, b]\). The arc length of \(f\) between \(a\) and \(b\) is
\[
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\]

Similarly, for a smooth curve given by \(x=g(y)\), the arc length of \(g\) between \(c\) and \(d\) is
\[
s=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
\]

Because the definition of arc length can be applied to a linear function, you can check to see that this new definition agrees with the standard Distance Formula for the length of a line segment. This is shown in Example 1.

\section*{EXAMPLE 1 The Length of a Line Segment}

Find the arc length from \(\left(x_{1}, y_{1}\right)\) to \(\left(x_{2}, y_{2}\right)\) on the graph of \(f(x)=m x+b\), as shown in Figure 7.38.

\section*{Solution Because}
\[
m=f^{\prime}(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\]
it follows that
\[
\begin{array}{rlr}
s & =\int_{x_{1}}^{x_{2}} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & \text { Formula for arc length } \\
& =\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}} d x \\
& \left.=\sqrt{\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}}(x)\right]_{x_{1}}^{x_{2}} & \text { Integrate and simplify. } \\
& =\sqrt{\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}}\left(x_{2}-x_{1}\right) \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} &
\end{array}
\]
which is the formula for the distance between two points in the plane.

TECHNOLOGY Definite integrals representing arc length often are very difficult to evaluate. In this section, a few examples are presented. In the next chapter, with more advanced integration techniques, you will be able to tackle more difficult arc length problems. In the meantime, remember that you can always use a numerical integration program to approximate an arc length. For instance, use the numerical integration feature of a graphing utility to approximate the arc lengths in Examples 2 and 3.


The arc length of the graph of \(y\) on \(\left[\frac{1}{2}, 2\right]\) Figure 7.39


The arc length of the graph of \(y\) on \([0,8]\) Figure 7.40

\section*{EXAMPLE 2 Finding Arc Length}

Find the arc length of the graph of
\[
y=\frac{x^{3}}{6}+\frac{1}{2 x}
\]
on the interval \(\left[\frac{1}{2}, 2\right]\), as shown in Figure 7.39.
Solution Using
\[
\frac{d y}{d x}=\frac{3 x^{2}}{6}-\frac{1}{2 x^{2}}=\frac{1}{2}\left(x^{2}-\frac{1}{x^{2}}\right)
\]
yields an arc length of
\[
\begin{array}{rlrl}
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & =\int_{1 / 2}^{2} \sqrt{1+\left[\frac{1}{2}\left(x^{2}-\frac{1}{x^{2}}\right)\right]^{2}} d x & & \text { Formula for arc length } \\
& =\int_{1 / 2}^{2} \sqrt{\frac{1}{4}\left(x^{4}+2+\frac{1}{x^{4}}\right)} d x & & \\
& =\int_{1 / 2}^{2} \frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right) d x & & \text { Simplify. } \\
& =\frac{1}{2}\left[\frac{x^{3}}{3}-\frac{1}{x}\right]_{1 / 2}^{2} & & \text { Integrate. } \\
& =\frac{1}{2}\left(\frac{13}{6}+\frac{47}{24}\right) & & \\
& =\frac{33}{16}
\end{array}
\]

\section*{EXAMPLE 3 Finding Arc Length}

Find the arc length of the graph of \((y-1)^{3}=x^{2}\) on the interval \([0,8]\), as shown in Figure 7.40.

Solution Begin by solving for \(x\) in terms of \(y\) : \(x= \pm(y-1)^{3 / 2}\). Choosing the positive value of \(x\) produces
\[
\frac{d x}{d y}=\frac{3}{2}(y-1)^{1 / 2}
\]

The \(x\)-interval \([0,8]\) corresponds to the \(y\)-interval \([1,5]\), and the arc length is
\[
\begin{array}{rlrl}
s=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y & =\int_{1}^{5} \sqrt{1+\left[\frac{3}{2}(y-1)^{1 / 2}\right]^{2}} d y & & \text { Formula for arc length } \\
& =\int_{1}^{5} \sqrt{\frac{9}{4} y-\frac{5}{4}} d y & & \\
& =\frac{1}{2} \int_{1}^{5} \sqrt{9 y-5} d y & & \text { Simplify. } \\
& =\frac{1}{18}\left[\frac{(9 y-5)^{3 / 2}}{3 / 2}\right]_{1}^{5} & \text { Integrate. } \\
& =\frac{1}{27}\left(40^{3 / 2}-4^{3 / 2}\right) & \\
& \approx 9.073 . &
\end{array}
\]

\section*{Jexample 4 Finding Arc Length}


The arc length of the graph of \(y\) on \(\left[0, \frac{\pi}{4}\right]\)
Figure 7.41


Figure 7.42

Find the arc length of the graph of \(y=\ln (\cos x)\) from \(x=0\) to \(x=\pi / 4\), as shown in Figure 7.41.

\section*{Solution Using}
\[
\frac{d y}{d x}=-\frac{\sin x}{\cos x}=-\tan x
\]
yields an arc length of
\[
\begin{array}{rlrl}
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & =\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x & & \\
& =\int_{0}^{\pi / 4} \sqrt{\sec ^{2} x} d x & & \text { Formula for arc length } \\
& =\int_{0}^{\pi / 4} \sec x d x & & \text { Trigonometric identity } \\
& =[\ln |\sec x+\tan x|]_{0}^{\pi / 4} & & \text { Sntegrate. } \\
& =\ln (\sqrt{2}+1)-\ln 1 &
\end{array}
\]

\section*{EXAMPLE 5 Length of a Cable}

An electric cable is hung between two towers that are 200 feet apart, as shown in Figure 7.42. The cable takes the shape of a catenary whose equation is
\[
y=75\left(e^{x / 150}+e^{-x / 150}\right)=150 \cosh \frac{x}{150}
\]

Find the arc length of the cable between the two towers.
Solution Because \(y^{\prime}=\frac{1}{2}\left(e^{x / 150}-e^{-x / 150}\right)\), you can write
\[
\left(y^{\prime}\right)^{2}=\frac{1}{4}\left(e^{x / 75}-2+e^{-x / 75}\right)
\]
and
\[
1+\left(y^{\prime}\right)^{2}=\frac{1}{4}\left(e^{x / 75}+2+e^{-x / 75}\right)=\left[\frac{1}{2}\left(e^{x / 150}+e^{-x / 150}\right)\right]^{2} .
\]

Therefore, the arc length of the cable is
\[
\begin{array}{rlrl}
s=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x & =\frac{1}{2} \int_{-100}^{100}\left(e^{x / 150}+e^{-x / 150}\right) d x & & \text { Formula for arc length } \\
& =75\left[e^{x / 150}-e^{-x / 150}\right]_{-100}^{100} & & \text { Integrate. } \\
& =150\left(e^{2 / 3}-e^{-2 / 3}\right) & \\
& \approx 215 \text { feet. }
\end{array}
\]


Figure 7.43

\section*{Area of a Surface of Revolution}

In Sections 7.2 and 7.3, integration was used to calculate the volume of a solid of revolution. You will now look at a procedure for finding the area of a surface of revolution.

\section*{DEFINITION OF SURFACE OF REVOLUTION}

If the graph of a continuous function is revolved about a line, the resulting surface is a surface of revolution.

The area of a surface of revolution is derived from the formula for the lateral surface area of the frustum of a right circular cone. Consider the line segment in Figure 7.43, where \(L\) is the length of the line segment, \(r_{1}\) is the radius at the left end of the line segment, and \(r_{2}\) is the radius at the right end of the line segment. When the line segment is revolved about its axis of revolution, it forms a frustum of a right circular cone, with
\[
S=2 \pi r L \quad \text { Lateral surface area of frustum }
\]
where
\[
r=\frac{1}{2}\left(r_{1}+r_{2}\right) . \quad \text { Average radius of frustum }
\]
(In Exercise 62, you are asked to verify the formula for \(S\).)
Suppose the graph of a function \(f\), having a continuous derivative on the interval \([a, b]\), is revolved about the \(x\)-axis to form a surface of revolution, as shown in Figure 7.44. Let \(\Delta\) be a partition of \([a, b]\), with subintervals of width \(\Delta x_{i}\). Then the line segment of length
\[
\Delta L_{i}=\sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}}
\]
generates a frustum of a cone. Let \(r_{i}\) be the average radius of this frustum. By the Intermediate Value Theorem, a point \(d_{i}\) exists (in the \(i\) th subinterval) such that \(r_{i}=f\left(d_{i}\right)\). The lateral surface area \(\Delta S_{i}\) of the frustum is
\[
\begin{aligned}
\Delta S_{i} & =2 \pi r_{i} \Delta L_{i} \\
& =2 \pi f\left(d_{i}\right) \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}} \\
& =2 \pi f\left(d_{i}\right) \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i}
\end{aligned}
\]



Figure 7.44



Figure 7.45

By the Mean Value Theorem, a point \(c_{i}\) exists in \(\left(x_{i-1}, x_{i}\right)\) such that
\[
\begin{aligned}
f^{\prime}\left(c_{i}\right) & =\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}} \\
& =\frac{\Delta y_{i}}{\Delta x_{i}} .
\end{aligned}
\]

So, \(\Delta S_{i}=2 \pi f\left(d_{i}\right) \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}} \Delta x_{i}\), and the total surface area can be approximated by
\[
S \approx 2 \pi \sum_{i=1}^{n} f\left(d_{i}\right) \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}} \Delta x_{i}
\]

It can be shown that the limit of the right side as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\) is
\[
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\]

In a similar manner, if the graph of \(f\) is revolved about the \(y\)-axis, then \(S\) is
\[
S=2 \pi \int_{a}^{b} x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\]

In these two formulas for \(S\), you can regard the products \(2 \pi f(x)\) and \(2 \pi x\) as the circumferences of the circles traced by a point \((x, y)\) on the graph of \(f\) as it is revolved about the \(x\)-axis and the \(y\)-axis (Figure 7.45). In one case the radius is \(r=f(x)\), and in the other case the radius is \(r=x\). Moreover, by appropriately adjusting \(r\), you can generalize the formula for surface area to cover any horizontal or vertical axis of revolution, as indicated in the following definition.

\section*{DEFINITION OF THE AREA OF A SURFACE OF REVOLUTION}

Let \(y=f(x)\) have a continuous derivative on the interval \([a, b]\). The area \(S\) of the surface of revolution formed by revolving the graph of \(f\) about a horizontal or vertical axis is
\[
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad y \text { is a function of } x .
\]
where \(r(x)\) is the distance between the graph of \(f\) and the axis of revolution. If \(x=g(y)\) on the interval \([c, d]\), then the surface area is
\[
S=2 \pi \int_{c}^{d} r(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y \quad x \text { is a function of } y .
\]
where \(r(y)\) is the distance between the graph of \(g\) and the axis of revolution.

The formulas in this definition are sometimes written as
\[
S=2 \pi \int_{a}^{b} r(x) d s \quad y \text { is a function of } x
\]
and
\[
S=2 \pi \int_{c}^{d} r(y) d s \quad x \text { is a function of } y .
\]
where \(d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x\) and \(d s=\sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y\), respectively.


Figure 7.46

Figure 7.47

\section*{EXAMPLE 6 The Area of a Surface of Revolution}

Find the area of the surface formed by revolving the graph of
\[
f(x)=x^{3}
\]
on the interval \([0,1]\) about the \(x\)-axis, as shown in Figure 7.46.
Solution The distance between the \(x\)-axis and the graph of \(f\) is \(r(x)=f(x)\), and because \(f^{\prime}(x)=3 x^{2}\), the surface area is
\[
\begin{array}{rlr}
S & =2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & \\
& =2 \pi \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x & \\
& =\frac{2 \pi}{36} \int_{0}^{1}\left(36 x^{3}\right)\left(1+9 x^{4}\right)^{1 / 2} d x & \\
& =\frac{\pi}{18}\left[\frac{\left(1+9 x^{4}\right)^{3 / 2}}{3 / 2}\right]_{0}^{1} & \text { Simplify. } \\
& =\frac{\pi}{27}\left(10^{3 / 2}-1\right) & \\
& \approx 3.563
\end{array}
\]

\section*{EXAMPLE 7 The Area of a Surface of Revolution}

Find the area of the surface formed by revolving the graph of
\[
f(x)=x^{2}
\]
on the interval \([0, \sqrt{2}]\) about the \(y\)-axis, as shown in Figure 7.47.
Solution In this case, the distance between the graph of \(f\) and the \(y\)-axis is \(r(x)=x\).
Using \(f^{\prime}(x)=2 x\), you can determine that the surface area is
\[
\begin{array}{rlr}
S & =2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & \text { Formula for surface area } \\
& =2 \pi \int_{0}^{\sqrt{2}} x \sqrt{1+(2 x)^{2}} d x & \\
& =\frac{2 \pi}{8} \int_{0}^{\sqrt{2}}\left(1+4 x^{2}\right)^{1 / 2}(8 x) d x & \text { Simplify. } \\
& =\frac{\pi}{4}\left[\frac{\left(1+4 x^{2}\right)^{3 / 2}}{3 / 2}\right]_{0}^{\sqrt{2}} & \text { Integrate. } \\
& =\frac{\pi}{6}\left[(1+8)^{3 / 2}-1\right] & \\
& =\frac{13 \pi}{3} & \approx 13.614
\end{array}
\]

\subsection*{7.4 Exercises}

In Exercises 1 and 2, find the distance between the points using (a) the Distance Formula and (b) integration.
1. \((0,0),(8,15)\)
2. \((1,2),(7,10)\)

In Exercises 3-16, find the arc length of the graph of the function over the indicated interval.

4. \(y=\frac{x^{3}}{6}+\frac{1}{2 x}\)

5. \(y=\frac{2}{3} x^{3 / 2}+1\)
6. \(y=2 x^{3 / 2}+3\)


7. \(y=\frac{3}{2} x^{2 / 3}, \quad[1,8]\)
8. \(y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}, \quad[1,3]\)
9. \(y=\frac{x^{5}}{10}+\frac{1}{6 x^{3}}, \quad[2,5]\)
10. \(y=\frac{3}{2} x^{2 / 3}+4, \quad[1,27]\)
11. \(y=\ln (\sin x),\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]\)
12. \(y=\ln (\cos x),\left[0, \frac{\pi}{3}\right]\)
13. \(y=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad[0,2]\)
14. \(y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right), \quad[\ln 2, \ln 3]\)
15. \(x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}, \quad 0 \leq y \leq 4\)
16. \(x=\frac{1}{3} \sqrt{y}(y-3), \quad 1 \leq y \leq 4\)

In Exercises 17-26, (a) sketch the graph of the function, highlighting the part indicated by the given interval, (b) find a definite integral that represents the arc length of the curve over the indicated interval and observe that the integral cannot be evaluated with the techniques studied so far, and (c) use the integration capabilities of a graphing utility to approximate the arc length.
17. \(y=4-x^{2}, \quad 0 \leq x \leq 2\)
18. \(y=x^{2}+x-2, \quad-2 \leq x \leq 1\)
19. \(y=\frac{1}{x}, \quad 1 \leq x \leq 3\)
20. \(y=\frac{1}{x+1}, \quad 0 \leq x \leq 1\)
21. \(y=\sin x, \quad 0 \leq x \leq \pi\)
22. \(y=\cos x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)
23. \(x=e^{-y}, \quad 0 \leq y \leq 2\)
24. \(y=\ln x, \quad 1 \leq x \leq 5\)
25. \(y=2 \arctan x, \quad 0 \leq x \leq 1\)
26. \(x=\sqrt{36-y^{2}}, \quad 0 \leq y \leq 3\)

Approximation In Exercises 27 and 28, determine which value best approximates the length of the arc represented by the integral. (Make your selection on the basis of a sketch of the are and not by performing any calculations.)
27. \(\int_{0}^{2} \sqrt{1+\left[\frac{d}{d x}\left(\frac{5}{x^{2}+1}\right)\right]^{2}} d x\)
(a) 25
(b) 5
(c) 2
(d) -4
(e) 3
28. \(\int_{0}^{\pi / 4} \sqrt{1+\left[\frac{d}{d x}(\tan x)\right]^{2}} d x\)
(a) 3
(b) -2
(c) 4
(d) \(\frac{4 \pi}{3}\)
(e) 1

Approximation In Exercises 29 and 30, approximate the arc length of the graph of the function over the interval \([0,4]\) in four ways. (a) Use the Distance Formula to find the distance between the endpoints of the arc. (b) Use the Distance Formula to find the lengths of the four line segments connecting the points on the arc when \(x=0, x=1, x=2, x=3\), and \(x=4\). Find the sum of the four lengths. (c) Use Simpson's Rule with \(n=10\) to approximate the integral yielding the indicated arc length. (d) Use the integration capabilities of a graphing utility to approximate the integral yielding the indicated arc length.
29. \(f(x)=x^{3}\)
30. \(f(x)=\left(x^{2}-4\right)^{2}\)
31. Length of a Catenary Electrical wires suspended between two towers form a catenary (see figure) modeled by the equation
\(y=20 \cosh \frac{x}{20}, \quad-20 \leq x \leq 20\)
where \(x\) and \(y\) are measured in meters. The towers are 40 meters apart. Find the length of the suspended cable.

32. Roof Area A barn is 100 feet long and 40 feet wide (see figure). A cross section of the roof is the inverted catenary \(y=31-10\left(e^{x / 20}+e^{-x / 20}\right)\). Find the number of square feet of roofing on the barn.

33. Length of Gateway Arch The Gateway Arch in St. Louis, Missouri is modeled by
\[
\begin{aligned}
y= & 693.8597-68.7672 \cosh 0.0100333 x, \\
& -299.2239 \leq x \leq 299.2239 .
\end{aligned}
\]
(See Section 5.8, Section Project: St. Louis Arch.) Find the length of this curve (see figure).


Figure for 33


Figure for 34
34. Astroid Find the total length of the graph of the astroid \(x^{2 / 3}+y^{2 / 3}=4\).
35. Find the arc length from \((0,3)\) clockwise to \((2, \sqrt{5})\) along the circle \(x^{2}+y^{2}=9\).
36. Find the arc length from \((-3,4)\) clockwise to \((4,3)\) along the circle \(x^{2}+y^{2}=25\). Show that the result is one-fourth the circumference of the circle.

In Exercises 37-42, set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the \(x\)-axis.
37. \(y=\frac{1}{3} x^{3}\)
38. \(y=2 \sqrt{x}\)

39. \(y=\frac{x^{3}}{6}+\frac{1}{2 x}, \quad 1 \leq x \leq 2\)
40. \(y=\frac{x}{2}, \quad 0 \leq x \leq 6\)
41. \(y=\sqrt{4-x^{2}}, \quad-1 \leq x \leq 1\)
42. \(y=\sqrt{9-x^{2}}, \quad-2 \leq x \leq 2\)

In Exercises 43-46, set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the \(y\)-axis.
43. \(y=\sqrt[3]{x}+2\)

44. \(y=9-x^{2}\)

45. \(y=1-\frac{x^{2}}{4}, \quad 0 \leq x \leq 2\)
46. \(y=2 x+5, \quad 1 \leq x \leq 4\)

In Exercises 47 and 48, use the integration capabilities of a graphing utility to approximate the surface area of the solid of revolution.

Function
47. \(y=\sin x\) revolved about the \(x\)-axis
48. \(y=\ln x\) revolved about the \(y\)-axis
\[
\frac{\text { Interval }}{[0, \pi]}
\]
\[
[1, e]
\]

\section*{WRITING ABOUT CONCEPTS}
49. Define a rectifiable curve.
50. What precalculus formula and representative element are used to develop the integration formula for arc length?
51. What precalculus formula and representative element are used to develop the integration formula for the area of a surface of revolution?
52. The graphs of the functions \(f_{1}\) and \(f_{2}\) on the interval \([a, b]\) are shown in the figure. The graph of each function is revolved about the \(x\)-axis. Which surface of revolution has the greater surface area? Explain.

53. Think About It The figure shows the graphs of the functions \(y_{1}=x, y_{2}=\frac{1}{2} x^{3 / 2}, y_{3}=\frac{1}{4} x^{2}\), and \(y_{4}=\frac{1}{8} x^{5 / 2}\) on the interval \([0,4]\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(a) Label the functions.
(b) List the functions in order of increasing arc length.
(c) Verify your answer in part (b) by approximating each arc length accurate to three decimal places.

\section*{CAPSTONE}
54. Think About It Explain why the two integrals are equal.
\[
\int_{1}^{e} \sqrt{1+\frac{1}{x^{2}}} d x=\int_{0}^{1} \sqrt{1+e^{2 x}} d x
\]

Use the integration capabilities of a graphing utility to verify that the integrals are equal.
55. A right circular cone is generated by revolving the region bounded by \(y=3 x / 4, y=3\), and \(x=0\) about the \(y\)-axis. Find the lateral surface area of the cone.
56. A right circular cone is generated by revolving the region bounded by \(y=h x / r, y=h\), and \(x=0\) about the \(y\)-axis. Verify that the lateral surface area of the cone is
\(S=\pi r \sqrt{r^{2}+h^{2}}\).
57. Find the area of the zone of a sphere formed by revolving the graph of \(y=\sqrt{9-x^{2}}, 0 \leq x \leq 2\), about the \(y\)-axis.
58. Find the area of the zone of a sphere formed by revolving the graph of \(y=\sqrt{r^{2}-x^{2}}, 0 \leq x \leq a\), about the \(y\)-axis. Assume that \(a<r\).
59. Modeling Data The circumference \(C\) (in inches) of a vase is measured at three-inch intervals starting at its base. The measurements are shown in the table, where \(y\) is the vertical distance in inches from the base.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(y\) & 0 & 3 & 6 & 9 & 12 & 15 & 18 \\
\hline\(C\) & 50 & 65.5 & 70 & 66 & 58 & 51 & 48 \\
\hline
\end{tabular}
(a) Use the data to approximate the volume of the vase by summing the volumes of approximating disks.
(b) Use the data to approximate the outside surface area (excluding the base) of the vase by summing the outside surface areas of approximating frustums of right circular cones.
(c) Use the regression capabilities of a graphing utility to find a cubic model for the points \((y, r)\) where \(r=C /(2 \pi)\). Use the graphing utility to plot the points and graph the model.
(d) Use the model in part (c) and the integration capabilities of a graphing utility to approximate the volume and outside surface area of the vase. Compare the results with your answers in parts (a) and (b).
60. Modeling Data Property bounded by two perpendicular roads and a stream is shown in the figure. All distances are measured in feet.

(a) Use the regression capabilities of a graphing utility to fit a fourth-degree polynomial to the path of the stream.
(b) Use the model in part (a) to approximate the area of the property in acres.
(c) Use the integration capabilities of a graphing utility to find the length of the stream that bounds the property.
61. Let \(R\) be the region bounded by \(y=1 / x\), the \(x\)-axis, \(x=1\), and \(x=b\), where \(b>1\). Let \(D\) be the solid formed when \(R\) is revolved about the \(x\)-axis.
(a) Find the volume \(V\) of \(D\).
(b) Write the surface area \(S\) as an integral.
(c) Show that \(V\) approaches a finite limit as \(b \rightarrow \infty\).
(d) Show that \(S \rightarrow \infty\) as \(b \rightarrow \infty\).
62. (a) Given a circular sector with radius \(L\) and central angle \(\theta\) (see figure), show that the area of the sector is given by
\(S=\frac{1}{2} L^{2} \theta\).
(b) By joining the straight-line edges of the sector in part (a), a right circular cone is formed (see figure) and the lateral surface area of the cone is the same as the area of the sector. Show that the area is \(S=\pi r L\), where \(r\) is the radius of the base of the cone. (Hint: The arc length of the sector equals the circumference of the base of the cone.)


Figure for 62(a)


Figure for 62(b)
(c) Use the result of part (b) to verify that the formula for the lateral surface area of the frustum of a cone with slant height \(L\) and radii \(r_{1}\) and \(r_{2}\) (see figure) is \(S=\pi\left(r_{1}+r_{2}\right) L\). (Note: This formula was used to develop the integral for finding the surface area of a surface of revolution.)

63. Think About It Consider the equation \(\frac{x^{2}}{9}+\frac{y^{2}}{4}=1\).
(a) Use a graphing utility to graph the equation.
(b) Set up the definite integral for finding the first-quadrant arc length of the graph in part (a).
(c) Compare the interval of integration in part (b) and the domain of the integrand. Is it possible to evaluate the definite integral? Is it possible to use Simpson's Rule to evaluate the definite integral? Explain. (You will learn how to evaluate this type of integral in Section 8.8.)
64. Writing Read the article "Arc Length, Area and the Arcsine Function" by Andrew M. Rockett in Mathematics Magazine. Then write a paragraph explaining how the arcsine function can be defined in terms of an arc length. (To view this article, go to the website www.matharticles.com.)

In Exercises 65-68, set up the definite integral for finding the indicated arc length or surface area. Then use the integration capabilities of a graphing utility to approximate the arc length or surface area. (You will learn how to evaluate this type of integral in Section 8.8.)
65. Length of Pursuit A fleeing object leaves the origin and moves up the \(y\)-axis (see figure). At the same time, a pursuer leaves the point \((1,0)\) and always moves toward the fleeing object. The pursuer's speed is twice that of the fleeing object. The equation of the path is modeled by
\(y=\frac{1}{3}\left(x^{3 / 2}-3 x^{1 / 2}+2\right)\).
How far has the fleeing object traveled when it is caught? Show that the pursuer has traveled twice as far.


Figure for 65


Figure for 66
66. Bulb Design An ornamental light bulb is designed by revolving the graph of \(y=\frac{1}{3} x^{1 / 2}-x^{3 / 2}, 0 \leq x \leq \frac{1}{3}\), about the \(x\)-axis, where \(x\) and \(y\) are measured in feet (see figure). Find the surface area of the bulb and use the result to approximate the amount of glass needed to make the bulb. (Assume that the glass is 0.015 inch thick.)
67. Astroid Find the area of the surface formed by revolving the portion in the first quadrant of the graph of \(x^{2 / 3}+y^{2 / 3}=4\), \(0 \leq y \leq 8\) about the \(y\)-axis.


Figure for 67


Figure for 68
68. Consider the graph of \(y^{2}=\frac{1}{12} x(4-x)^{2}\) (see figure). Find the area of the surface formed when the loop of this graph is revolved about the \(x\)-axis.
69. Suspension Bridge A cable for a suspension bridge has the shape of a parabola with equation \(y=k x^{2}\). Let \(h\) represent the height of the cable from its lowest point to its highest point and let \(2 w\) represent the total span of the bridge (see figure). Show that the length \(C\) of the cable is given by \(C=2 \int_{0}^{w} \sqrt{1+\left(4 h^{2} / w^{4}\right) x^{2}} d x\).

70. Suspension Bridge The Humber Bridge, located in the United Kingdom and opened in 1981, has a main span of about 1400 meters. Each of its towers has a height of about 155 meters. Use these dimensions, the integral in Exercise 69, and the integration capabilities of a graphing utility to approximate the length of a parabolic cable along the main span.
71. Let \(C\) be the curve given by \(f(x)=\cosh x\) for \(0 \leq x \leq t\), where \(t>0\). Show that the arc length of \(C\) is equal to the area bounded by \(C\) and the \(x\)-axis. Identify another curve on the interval \(0 \leq x \leq t\) with this property.

\section*{PUTNAM EXAM CHALLENGE}
72. Find the length of the curve \(y^{2}=x^{3}\) from the origin to the point where the tangent makes an angle of \(45^{\circ}\) with the \(x\)-axis.
This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{7.5 Work}


The work done in lifting a 50 -pound object 4 feet is 200 foot-pounds.
Figure 7.48
- Find the work done by a constant force.
- Find the work done by a variable force.

\section*{Work Done by a Constant Force}

The concept of work is important to scientists and engineers for determining the energy needed to perform various jobs. For instance, it is useful to know the amount of work done when a crane lifts a steel girder, when a spring is compressed, when a rocket is propelled into the air, or when a truck pulls a load along a highway.

In general, work is done by a force when it moves an object. If the force applied to the object is constant, then the definition of work is as follows.

\section*{DEFINITION OF WORK DONE BY A CONSTANT FORCE}

If an object is moved a distance \(D\) in the direction of an applied constant force \(F\), then the work \(W\) done by the force is defined as \(W=F D\).

There are many types of forces-centrifugal, electromotive, and gravitational, to name a few. A force can be thought of as a push or a pull; a force changes the state of rest or state of motion of a body. For gravitational forces on Earth, it is common to use units of measure corresponding to the weight of an object.

\section*{EXAMPLE 1 Lifting an Object}

Determine the work done in lifting a 50-pound object 4 feet.
Solution The magnitude of the required force \(F\) is the weight of the object, as shown in Figure 7.48. So, the work done in lifting the object 4 feet is
\[
\begin{array}{rlrl}
W & =F D & & \text { Work }=(\text { force })(\text { distance }) \\
& =50(4) & \text { Force }=50 \text { pounds, distance }=4 \text { feet } \\
& =200 \text { foot-pounds } .
\end{array}
\]

In the U.S. measurement system, work is typically expressed in foot-pounds (ft-lb), inch-pounds, or foot-tons. In the centimeter-gram-second (C-G-S) system, the basic unit of force is the dyne-the force required to produce an acceleration of 1 centimeter per second per second on a mass of 1 gram. In this system, work is typically expressed in dyne-centimeters (ergs) or newton-meters (joules), where 1 joule \(=10^{7}\) ergs .

\section*{E X P L ORATION}

How Much Work? In Example 1, 200 foot-pounds of work was needed to lift the 50-pound object 4 feet vertically off the ground. Suppose that once you lifted the object, you held it and walked a horizontal distance of 4 feet. Would this require an additional 200 foot-pounds of work? Explain your reasoning.


The amount of force changes as an object changes position \((\Delta x)\).
Figure 7.49


\section*{Work Done by a Variable Force}

In Example 1, the force involved was constant. If a variable force is applied to an object, calculus is needed to determine the work done, because the amount of force changes as the object changes position. For instance, the force required to compress a spring increases as the spring is compressed.

Suppose that an object is moved along a straight line from \(x=a\) to \(x=b\) by a continuously varying force \(F(x)\). Let \(\Delta\) be a partition that divides the interval \([a, b]\) into \(n\) subintervals determined by
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
\]
and let \(\Delta x_{i}=x_{i}-x_{i-1}\). For each \(i\), choose \(c_{i}\) such that \(x_{i-1} \leq c_{i} \leq x_{i}\). Then at \(c_{i}\) the force is given by \(F\left(c_{i}\right)\). Because \(F\) is continuous, you can approximate the work done in moving the object through the \(i\) th subinterval by the increment
\[
\Delta W_{i}=F\left(c_{i}\right) \Delta x_{i}
\]
as shown in Figure 7.49. So, the total work done as the object moves from \(a\) to \(b\) is approximated by
\[
\begin{aligned}
W & \approx \sum_{i=1}^{n} \Delta W_{i} \\
& =\sum_{i=1}^{n} F\left(c_{i}\right) \Delta x_{i} .
\end{aligned}
\]

This approximation appears to become better and better as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\). So, the work done is
\[
\begin{aligned}
W & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} F\left(c_{i}\right) \Delta x_{i} \\
& =\int_{a}^{b} F(x) d x .
\end{aligned}
\]

\section*{DEFINITION OF WORK DONE BY A VARIABLE FORCE}

If an object is moved along a straight line by a continuously varying force \(F(x)\), then the work \(W\) done by the force as the object is moved from \(x=a\) to \(x=b\) is
\[
\begin{aligned}
W & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \Delta W_{i} \\
& =\int_{a}^{b} F(x) d x .
\end{aligned}
\]

The remaining examples in this section use some well-known physical laws. The discoveries of many of these laws occurred during the same period in which calculus was being developed. In fact, during the seventeenth and eighteenth centuries, there was little difference between physicists and mathematicians. One such physicistmathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing the work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and Descartes. Her physics text Institutions was widely used for many years.

The following three laws of physics were developed by Robert Hooke (1635-1703), Isaac Newton (1642-1727), and Charles Coulomb (1736-1806).
1. Hooke's Law: The force \(F\) required to compress or stretch a spring (within its elastic limits) is proportional to the distance \(d\) that the spring is compressed or stretched from its original length. That is,
\[
F=k d
\]
where the constant of proportionality \(k\) (the spring constant) depends on the specific nature of the spring.
2. Newton's Law of Universal Gravitation: The force \(F\) of attraction between two particles of masses \(m_{1}\) and \(m_{2}\) is proportional to the product of the masses and inversely proportional to the square of the distance \(d\) between the two particles. That is,
\[
F=k \frac{m_{1} m_{2}}{d^{2}}
\]

If \(m_{1}\) and \(m_{2}\) are given in grams and \(d\) in centimeters, \(F\) will be in dynes for a value of \(k=6.670 \times 10^{-8}\) cubic centimeter per gram-second squared.
3. Coulomb's Law: The force \(F\) between two charges \(q_{1}\) and \(q_{2}\) in a vacuum is proportional to the product of the charges and inversely proportional to the square of the distance \(d\) between the two charges. That is,
\[
F=k \frac{q_{1} q_{2}}{d^{2}}
\]

If \(q_{1}\) and \(q_{2}\) are given in electrostatic units and \(d\) in centimeters, \(F\) will be in dynes for a value of \(k=1\).

\section*{Cexample 2 Compressing a Spring}

A force of 750 pounds compresses a spring 3 inches from its natural length of 15 inches. Find the work done in compressing the spring an additional 3 inches.

Solution By Hooke's Law, the force \(F(x)\) required to compress the spring \(x\) units (from its natural length) is \(F(x)=k x\). Using the given data, it follows that \(F(3)=\) \(750=(k)(3)\) and so \(k=250\) and \(F(x)=250 x\), as shown in Figure 7.50. To find the increment of work, assume that the force required to compress the spring over a small increment \(\Delta x\) is nearly constant. So, the increment of work is
\[
\Delta W=(\text { force })(\text { distance increment })=(250 x) \Delta x
\]

Because the spring is compressed from \(x=3\) to \(x=6\) inches less than its natural length, the work required is
\[
\begin{aligned}
W & =\int_{a}^{b} F(x) d x=\int_{3}^{6} 250 x d x \quad \text { Formula for work } \\
& \left.=125 x^{2}\right]_{3}^{6}=4500-1125=3375 \text { inch-pounds. }
\end{aligned}
\]

Note that you do not integrate from \(x=0\) to \(x=6\) because you were asked to determine the work done in compressing the spring an additional 3 inches (not including the first 3 inches).


Figure 7.51

\section*{EXAMPLE 3 Moving a Space Module into Orbit}

A space module weighs 15 metric tons on the surface of Earth. How much work is done in propelling the module to a height of 800 miles above Earth, as shown in Figure 7.51? (Use 4000 miles as the radius of Earth. Do not consider the effect of air resistance or the weight of the propellant.)
Solution Because the weight of a body varies inversely as the square of its distance from the center of Earth, the force \(F(x)\) exerted by gravity is
\[
F(x)=\frac{C}{x^{2}} . \quad C \text { is the constant of proportionality. }
\]

Because the module weighs 15 metric tons on the surface of Earth and the radius of Earth is approximately 4000 miles, you have
\[
\begin{aligned}
15 & =\frac{C}{(4000)^{2}} \\
240,000,000 & =C
\end{aligned}
\]

So, the increment of work is
\[
\begin{aligned}
\Delta W & =(\text { force })(\text { distance increment }) \\
& =\frac{240,000,000}{x^{2}} \Delta x
\end{aligned}
\]

Finally, because the module is propelled from \(x=4000\) to \(x=4800\) miles, the total work done is
\[
\begin{array}{rlrl}
W & =\int_{a}^{b} F(x) d x=\int_{4000}^{4800} \frac{240,000,000}{x^{2}} d x & \text { Formula for work } \\
& \left.=\frac{-240,000,000}{x}\right]_{4000}^{4800} & & \text { Integrate. } \\
& =-50,000+60,000 & \\
& =10,000 \text { mile-tons } & \\
& \approx 1.164 \times 10^{11} \text { foot-pounds. } &
\end{array}
\]

In the C-G-S system, using a conversion factor of 1 foot-pound \(\approx 1.35582\) joules, the work done is
\[
W \approx 1.578 \times 10^{11} \text { joules. }
\]

The solutions to Examples 2 and 3 conform to our development of work as the summation of increments in the form
\[
\Delta W=(\text { force })(\text { distance increment })=(F)(\Delta x)
\]

Another way to formulate the increment of work is
\[
\Delta W=(\text { force increment })(\text { distance })=(\Delta F)(x)
\]

This second interpretation of \(\Delta W\) is useful in problems involving the movement of nonrigid substances such as fluids and chains.


Figure 7.52

\section*{EXAMPLE 4 Emptying a Tank of Oil}

A spherical tank of radius 8 feet is half full of oil that weighs 50 pounds per cubic foot. Find the work required to pump oil out through a hole in the top of the tank.
Solution Consider the oil to be subdivided into disks of thickness \(\Delta y\) and radius \(x\), as shown in Figure 7.52. Because the increment of force for each disk is given by its weight, you have
\[
\begin{aligned}
\Delta F & =\text { weight } \\
& =\left(\frac{50 \text { pounds }}{\text { cubic foot }}\right)(\text { volume }) \\
& =50\left(\pi x^{2} \Delta y\right) \text { pounds. }
\end{aligned}
\]

For a circle of radius 8 and center at \((0,8)\), you have
\[
\begin{aligned}
x^{2}+(y-8)^{2} & =8^{2} \\
x^{2} & =16 y-y^{2}
\end{aligned}
\]
and you can write the force increment as
\[
\begin{aligned}
\Delta F & =50\left(\pi x^{2} \Delta y\right) \\
& =50 \pi\left(16 y-y^{2}\right) \Delta y .
\end{aligned}
\]

In Figure 7.52, note that a disk \(y\) feet from the bottom of the tank must be moved a distance of \((16-y)\) feet. So, the increment of work is
\[
\begin{aligned}
\Delta W & =\Delta F(16-y) \\
& =50 \pi\left(16 y-y^{2}\right) \Delta y(16-y) \\
& =50 \pi\left(256 y-32 y^{2}+y^{3}\right) \Delta y .
\end{aligned}
\]

Because the tank is half full, \(y\) ranges from 0 to 8 , and the work required to empty the tank is
\[
\begin{aligned}
W & =\int_{0}^{8} 50 \pi\left(256 y-32 y^{2}+y^{3}\right) d y \\
& =50 \pi\left[128 y^{2}-\frac{32}{3} y^{3}+\frac{y^{4}}{4}\right]_{0}^{8} \\
& =50 \pi\left(\frac{11,264}{3}\right) \\
& \approx 589,782 \text { foot-pounds. }
\end{aligned}
\]

To estimate the reasonableness of the result in Example 4, consider that the weight of the oil in the tank is
\[
\begin{aligned}
\left(\frac{1}{2}\right)(\text { volume })(\text { density }) & =\frac{1}{2}\left(\frac{4}{3} \pi 8^{3}\right)(50) \\
& \approx 53,616.5 \text { pounds. }
\end{aligned}
\]

Lifting the entire half-tank of oil 8 feet would involve work of \(8(53,616.5) \approx 428,932\) foot-pounds. Because the oil is actually lifted between 8 and 16 feet, it seems reasonable that the work done is 589,782 foot-pounds.


Work required to raise one end of the chain Figure 7.53


Work done by expanding gas
Figure 7.54

\section*{EXAMPLE 5 Lifting a Chain}

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much work is required to raise one end of the chain to a height of 20 feet so that it is fully extended, as shown in Figure 7.53?
Solution Imagine that the chain is divided into small sections, each of length \(\Delta y\). Then the weight of each section is the increment of force
\[
\Delta F=(\text { weight })=\left(\frac{5 \text { pounds }}{\text { foot }}\right)(\text { length })=5 \Delta y
\]

Because a typical section (initially on the ground) is raised to a height of \(y\), the increment of work is
\[
\Delta W=(\text { force increment })(\text { distance })=(5 \Delta y) y=5 y \Delta y
\]

Because \(y\) ranges from 0 to 20, the total work is
\[
\left.W=\int_{0}^{20} 5 y d y=\frac{5 y^{2}}{2}\right]_{0}^{20}=\frac{5(400)}{2}=1000 \text { foot-pounds. }
\]

In the next example you will consider a piston of radius \(r\) in a cylindrical casing, as shown in Figure 7.54. As the gas in the cylinder expands, the piston moves and work is done. If \(p\) represents the pressure of the gas (in pounds per square foot) against the piston head and \(V\) represents the volume of the gas (in cubic feet), the work increment involved in moving the piston \(\Delta x\) feet is
\[
\Delta W=(\text { force })(\text { distance increment })=F(\Delta x)=p\left(\pi r^{2}\right) \Delta x=p \Delta V
\]

So, as the volume of the gas expands from \(V_{0}\) to \(V_{1}\), the work done in moving the piston is
\[
W=\int_{V_{0}}^{V_{1}} p d V
\]

Assuming the pressure of the gas to be inversely proportional to its volume, you have \(p=k / V\) and the integral for work becomes
\[
W=\int_{V_{0}}^{V_{1}} \frac{k}{V} d V
\]

\section*{EXAMPLE 6 Work Done by an Expanding Gas}

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds per square foot expands to a volume of 2 cubic feet. Find the work done by the gas. (Assume that the pressure is inversely proportional to the volume.)

Solution Because \(p=k / V\) and \(p=500\) when \(V=1\), you have \(k=500\). So, the work is
\[
\begin{aligned}
W & =\int_{V_{0}}^{V_{1}} \frac{k}{V} d V \\
& =\int_{1}^{2} \frac{500}{V} d V \\
& =500 \ln |V|]_{1}^{2} \approx 346.6 \text { foot-pounds. }
\end{aligned}
\]

\subsection*{7.5 Exercises}

Constant Force In Exercises 1-4, determine the work done by the constant force.
1. A 100 -pound bag of sugar is lifted 20 feet.
2. An electric hoist lifts a 3500 -pound car 4 feet.
3. A force of 112 newtons is required to slide a cement block 8 meters in a construction project.
4. The locomotive of a freight train pulls its cars with a constant force of 9 tons a distance of one-half mile.

\section*{Hooke's Law In Exercises 5-12, use Hooke's Law to determine the variable force in the spring problem.}
5. A force of 5 pounds compresses a 15 -inch spring a total of 3 inches. How much work is done in compressing the spring 7 inches?
6. How much work is done in compressing the spring in Exercise 5 from a length of 10 inches to a length of 6 inches?
7. A force of 250 newtons stretches a spring 30 centimeters. How much work is done in stretching the spring from 20 centimeters to 50 centimeters?
8. A force of 800 newtons stretches a spring 70 centimeters on a mechanical device for driving fence posts. Find the work done in stretching the spring the required 70 centimeters.
9. A force of 20 pounds stretches a spring 9 inches in an exercise machine. Find the work done in stretching the spring 1 foot from its natural position.
10. An overhead garage door has two springs, one on each side of the door. A force of 15 pounds is required to stretch each spring 1 foot. Because of the pulley system, the springs stretch only one-half the distance the door travels. The door moves a total of 8 feet and the springs are at their natural length when the door is open. Find the work done by the pair of springs.
11. Eighteen foot-pounds of work is required to stretch a spring 4 inches from its natural length. Find the work required to stretch the spring an additional 3 inches.
12. Seven and one-half foot-pounds of work is required to compress a spring 2 inches from its natural length. Find the work required to compress the spring an additional one-half inch.
13. Propulsion Neglecting air resistance and the weight of the propellant, determine the work done in propelling a five-ton satellite to a height of
(a) 100 miles above Earth.
(b) 300 miles above Earth.
14. Propulsion Use the information in Exercise 13 to write the work \(W\) of the propulsion system as a function of the height \(h\) of the satellite above Earth. Find the limit (if it exists) of \(W\) as \(h\) approaches infinity.
15. Propulsion Neglecting air resistance and the weight of the propellant, determine the work done in propelling a 10 -ton satellite to a height of
(a) 11,000 miles above Earth.
(b) 22,000 miles above Earth.
16. Propulsion A lunar module weighs 12 tons on the surface of Earth. How much work is done in propelling the module from the surface of the moon to a height of 50 miles? Consider the radius of the moon to be 1100 miles and its force of gravity to be one-sixth that of Earth.
17. Pumping Water A rectangular tank with a base 4 feet by 5 feet and a height of 4 feet is full of water (see figure). The water weighs 62.4 pounds per cubic foot. How much work is done in pumping water out over the top edge in order to empty (a) half of the tank? (b) all of the tank?

18. Think About It Explain why the answer in part (b) of Exercise 17 is not twice the answer in part (a).
19. Pumping Water A cylindrical water tank 4 meters high with a radius of 2 meters is buried so that the top of the tank is 1 meter below ground level (see figure). How much work is done in pumping a full tank of water up to ground level? (The water weighs 9800 newtons per cubic meter.)


Figure for 19


Figure for 20
20. Pumping Water Suppose the tank in Exercise 19 is located on a tower so that the bottom of the tank is 10 meters above the level of a stream (see figure). How much work is done in filling the tank half full of water through a hole in the bottom, using water from the stream?
21. Pumping Water An open tank has the shape of a right circular cone (see figure on the next page). The tank is 8 feet across the top and 6 feet high. How much work is done in emptying the tank by pumping the water over the top edge?


Figure for 21


Figure for 24
22. Pumping Water Water is pumped in through the bottom of the tank in Exercise 21. How much work is done to fill the tank
(a) to a depth of 2 feet?
(b) from a depth of 4 feet to a depth of 6 feet?
23. Pumping Water A hemispherical tank of radius 6 feet is positioned so that its base is circular. How much work is required to fill the tank with water through a hole in the base if the water source is at the base?
24. Pumping Diesel Fuel The fuel tank on a truck has trapezoidal cross sections with the dimensions (in feet) shown in the figure. Assume that the engine is approximately 3 feet above the top of the fuel tank and that diesel fuel weighs approximately 53.1 pounds per cubic foot. Find the work done by the fuel pump in raising a full tank of fuel to the level of the engine.

Pumping Gasoline In Exercises 25 and 26, find the work done in pumping gasoline that weighs 42 pounds per cubic foot. (Hint: Evaluate one integral by a geometric formula and the other by observing that the integrand is an odd function.)
25. A cylindrical gasoline tank 3 feet in diameter and 4 feet long is carried on the back of a truck and is used to fuel tractors. The axis of the tank is horizontal. The opening on the tractor tank is 5 feet above the top of the tank in the truck. Find the work done in pumping the entire contents of the fuel tank into the tractor.
26. The top of a cylindrical gasoline storage tank at a service station is 4 feet below ground level. The axis of the tank is horizontal and its diameter and length are 5 feet and 12 feet, respectively. Find the work done in pumping the entire contents of the full tank to a height of 3 feet above ground level.

Lifting a Chain In Exercises 27-30, consider a 20-foot chain that weighs 3 pounds per foot hanging from a winch 20 feet above ground level. Find the work done by the winch in winding up the specified amount of chain.
27. Wind up the entire chain.
28. Wind up one-third of the chain.
29. Run the winch until the bottom of the chain is at the 10 -foot level.
30. Wind up the entire chain with a 500 -pound load attached to it.

Lifting a Chain In Exercises 31 and 32, consider a 15-foot hanging chain that weighs 3 pounds per foot. Find the work done in lifting the chain vertically to the indicated position.
31. Take the bottom of the chain and raise it to the 15 -foot level, leaving the chain doubled and still hanging vertically (see figure).

32. Repeat Exercise 31 raising the bottom of the chain to the 12-foot level.

\section*{WRITING ABOUT CONCEPTS}
33. State the definition of work done by a constant force.
34. State the definition of work done by a variable force.
35. Which of the following requires more work? Explain your reasoning.
(a) A 60-pound box of books is lifted 3 feet.
(b) A 60-pound box of books is held 3 feet in the air for 2 minutes.

\section*{CAPSTONE}
36. The graphs show the force \(F_{i}\) (in pounds) required to move an object 9 feet along the \(x\)-axis. Order the force functions from the one that yields the least work to the one that yields the most work without doing any calculations. Explain your reasoning.
(a)

(b)

(c)

(d)

37. Verify your answer to Exercise 36 by calculating the work for each force function.
38. Demolition Crane Consider a demolition crane with a 50 -pound ball suspended from a 40 -foot cable that weighs 2 pounds per foot.
(a) Find the work required to wind up 15 feet of the apparatus.
(b) Find the work required to wind up all 40 feet of the apparatus.

Boyle's Law In Exercises 39 and 40, find the work done by the gas for the given volume and pressure. Assume that the pressure is inversely proportional to the volume. (See Example 6.)
39. A quantity of gas with an initial volume of 2 cubic feet and a pressure of 1000 pounds per square foot expands to a volume of 3 cubic feet.
40. A quantity of gas with an initial volume of 1 cubic foot and a pressure of 2500 pounds per square foot expands to a volume of 3 cubic feet.
41. Electric Force Two electrons repel each other with a force that varies inversely as the square of the distance between them. One electron is fixed at the point \((2,4)\). Find the work done in moving the second electron from \((-2,4)\) to \((1,4)\).
42. Modeling Data The hydraulic cylinder on a woodsplitter has a four-inch bore (diameter) and a stroke of 2 feet. The hydraulic pump creates a maximum pressure of 2000 pounds per square inch. Therefore, the maximum force created by the cylinder is \(2000\left(\pi 2^{2}\right)=8000 \pi\) pounds.
(a) Find the work done through one extension of the cylinder given that the maximum force is required.
(b) The force exerted in splitting a piece of wood is variable. Measurements of the force obtained in splitting a piece of wood are shown in the table. The variable \(x\) measures the extension of the cylinder in feet, and \(F\) is the force in pounds. Use Simpson's Rule to approximate the work done in splitting the piece of wood.

\section*{SECTION PROJECT}

\section*{Tidal Energy}

Tidal power plants use "tidal energy" to produce electrical energy. To construct a tidal power plant, a dam is built to separate a basin from the sea. Electrical energy is produced as the water flows back and forth between the basin and the sea. The amount of "natural energy" produced depends on the volume of the basin and the tidal range-the vertical distance between high and low tides. (Several natural basins have tidal ranges in excess of 15 feet; the Bay of Fundy in Nova Scotia has a tidal range of 53 feet.)

(a) Consider a basin with a rectangular base, as shown in the figure. The basin has a tidal range of 25 feet, with low tide corresponding to \(y=0\). How much water does the basin hold at high tide?
\begin{tabular}{|l|c|c|c|c|c|c|l|}
\hline\(x\) & 0 & \(\frac{1}{3}\) & \(\frac{2}{3}\) & 1 & \(\frac{4}{3}\) & \(\frac{5}{3}\) & 2 \\
\hline\(F(x)\) & 0 & 20,000 & 22,000 & 15,000 & 10,000 & 5000 & 0 \\
\hline
\end{tabular}

Table for 42(b)
(c) Use the regression capabilities of a graphing utility to find a fourth-degree polynomial model for the data. Plot the data and graph the model.
(d) Use the model in part (c) to approximate the extension of the cylinder when the force is maximum.
(e) Use the model in part (c) to approximate the work done in splitting the piece of wood.

Hydraulic Press In Exercises 43-46, use the integration capabilities of a graphing utility to approximate the work done by a press in a manufacturing process. A model for the variable force \(\boldsymbol{F}\) (in pounds) and the distance \(\boldsymbol{x}\) (in feet) the press moves is given.
\begin{tabular}{ll} 
Force & \(\frac{\text { Interval }}{}\) \\
43. \(F(x)=1000[1.8-\ln (x+1)]\) & \(0 \leq x \leq 5\) \\
44. \(F(x)=\frac{e^{x^{2}}-1}{100}\) & \(0 \leq x \leq 4\) \\
45. \(F(x)=100 x \sqrt{125-x^{3}}\) & \(0 \leq x \leq 5\) \\
46. \(F(x)=1000 \sinh x\) & \(0 \leq x \leq 2\)
\end{tabular}
(b) The amount of energy produced during the filling (or the emptying) of the basin is proportional to the amount of work required to fill (or empty) the basin. How much work is required to fill the basin with seawater? (Use a seawater density of 64 pounds per cubic foot.)


The Bay of Fundy in Nova Scotia has an extreme tidal range, as displayed in the greatly contrasting photos above.
- FOR FURTHER INFORMATION For more information on tidal power, see the article "LaRance: Six Years of Operating a Tidal Power Plant in France" by J. Cotillon in Water Power Magazine.

\subsection*{7.6 Moments, Centers of Mass, and Centroids}
- Understand the definition of mass.
- Find the center of mass in a one-dimensional system.
\(\square\) Find the center of mass in a two-dimensional system.
- Find the center of mass of a planar lamina.

■ Use the Theorem of Pappus to find the volume of a solid of revolution.

\section*{Mass}

In this section you will study several important applications of integration that are related to mass. Mass is a measure of a body's resistance to changes in motion, and is independent of the particular gravitational system in which the body is located. However, because so many applications involving mass occur on Earth's surface, an object's mass is sometimes equated with its weight. This is not technically correct. Weight is a type of force and as such is dependent on gravity. Force and mass are related by the equation
\[
\text { Force }=(\text { mass })(\text { acceleration })
\]

The table below lists some commonly used measures of mass and force, together with their conversion factors.
\begin{tabular}{|c|c|c|}
\hline System of Measurement & Measure of Mass & Measure of Force \\
\hline U.S. & Slug & Pound \(=(\) slug \()\left(\mathrm{ft} / \mathrm{sec}^{2}\right)\) \\
\hline International & Kilogram & Newton \(=(\) kilogram \()\left(\mathrm{m} / \mathrm{sec}^{2}\right)\) \\
\hline C-G-S & Gram & Dyne \(=(\) gram \()\left(\mathrm{cm} / \mathrm{sec}^{2}\right)\) \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{ll} 
Conversions: & \\
1 pound \(=4.448\) newtons & 1 slug \(=14.59\) kilograms \\
1 newton \(=0.2248\) pound & 1 kilogram \(=0.06852\) slug \\
1 dyne \(=0.000002248\) pound & 1 gram \(=0.00006852\) slug \\
1 dyne \(=0.00001\) newton & 1 foot \(=0.3048\) meter
\end{tabular}} \\
\hline
\end{tabular}

\section*{EXAMPLE 1 Mass on the Surface of Earth}

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.
Solution Using 32 feet per second per second as the acceleration due to gravity produces
\[
\begin{aligned}
\text { Mass } & =\frac{\text { force }}{\text { acceleration }} \quad \text { Force }=(\text { mass })(\text { acceleration }) \\
& =\frac{1 \text { pound }}{32 \text { feet per second per second }} \\
& =0.03125 \frac{\text { pound }}{\text { foot per second per second }} \\
& =0.03125 \text { slug. }
\end{aligned}
\]

Because many applications involving mass occur on Earth's surface, this amount of mass is called a pound mass.


The seesaw will balance when the left and the right moments are equal.
Figure 7.55

\section*{Center of Mass in a One-Dimensional System}

You will now consider two types of moments of a mass-the moment about a point and the moment about a line. To define these two moments, consider an idealized situation in which a mass \(m\) is concentrated at a point. If \(x\) is the distance between this point mass and another point \(P\), the moment of \(\boldsymbol{m}\) about the point \(P\) is
\[
\text { Moment }=m x
\]
and \(x\) is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in Figure 7.55. A child of mass 20 kilograms sits 2 meters to the left of fulcrum \(P\), and an older child of mass 30 kilograms sits 2 meters to the right of \(P\). From experience, you know that the seesaw will begin to rotate clockwise, moving the larger child down. This rotation occurs because the moment produced by the child on the left is less than the moment produced by the child on the right.
\[
\begin{aligned}
\text { Left moment } & =(20)(2)=40 \text { kilogram-meters } \\
\text { Right moment } & =(30)(2)=60 \text { kilogram-meters }
\end{aligned}
\]

To balance the seesaw, the two moments must be equal. For example, if the larger child moved to a position \(\frac{4}{3}\) meters from the fulcrum, the seesaw would balance, because each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin corresponds to the fulcrum, as shown in Figure 7.56. Suppose several point masses are located on the \(x\)-axis. The measure of the tendency of this system to rotate about the origin is the moment about the origin, and it is defined as the sum of the \(n\) products \(m_{i} x_{i}\).
\[
M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}
\]


If \(m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=0\), the system is in equilibrium.

\section*{Figure 7.56}

If \(M_{0}\) is 0 , the system is said to be in equilibrium.
For a system that is not in equilibrium, the center of mass is defined as the point \(\bar{x}\) at which the fulcrum could be relocated to attain equilibrium. If the system were translated \(\bar{x}\) units, each coordinate \(x_{i}\) would become \(\left(x_{i}-\bar{x}\right)\), and because the moment of the translated system is 0 , you have
\[
\sum_{i=1}^{n} m_{i}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} m_{i} x_{i}-\sum_{i=1}^{n} m_{i} \bar{x}=0 .
\]

Solving for \(\bar{x}\) produces
\[
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\text { moment of system about origin }}{\text { total mass of system }}
\]

If \(m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=0\), the system is in equilibrium.

\section*{MOMENTS AND CENTER OF MASS: ONE-DIMENSIONAL SYSTEM}

Let the point masses \(m_{1}, m_{2}, \ldots, m_{n}\) be located at \(x_{1}, x_{2}, \ldots, x_{n}\).
1. The moment about the origin is \(M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}\).
2. The center of mass is \(\bar{x}=\frac{M_{0}}{m}\), where \(m=m_{1}+m_{2}+\cdots+m_{n}\) is the total mass of the system.

\section*{EXAMPLE 2 The Center of Mass of a Linear System}

Find the center of mass of the linear system shown in Figure 7.57.


Figure 7.57
Solution The moment about the origin is
\[
\begin{aligned}
M_{0} & =m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4} \\
& =10(-5)+15(0)+5(4)+10(7) \\
& =-50+0+20+70 \\
& =40
\end{aligned}
\]

Because the total mass of the system is \(m=10+15+5+10=40\), the center of mass is
\[
\bar{x}=\frac{M_{0}}{m}=\frac{40}{40}=1 .
\]

NOTE In Example 2, where should you locate the fulcrum so that the point masses will be in equilibrium?

Rather than define the moment of a mass, you could define the moment of a force. In this context, the center of mass is called the center of gravity. Suppose that a system of point masses \(m_{1}, m_{2}, \ldots, m_{n}\) is located at \(x_{1}, x_{2}, \ldots, x_{n}\). Then, because force \(=(\) mass \()(\) acceleration \()\), the total force of the system is
\[
\begin{aligned}
F & =m_{1} a+m_{2} a+\cdots+m_{n} a \\
& =m a
\end{aligned}
\]

The torque (moment) about the origin is
\[
\begin{aligned}
T_{0} & =\left(m_{1} a\right) x_{1}+\left(m_{2} a\right) x_{2}+\cdots+\left(m_{n} a\right) x_{n} \\
& =M_{0} a
\end{aligned}
\]
and the center of gravity is
\[
\frac{T_{0}}{F}=\frac{M_{0} a}{m a}=\frac{M_{0}}{m}=\bar{x}
\]

So, the center of gravity and the center of mass have the same location.


In a two-dimensional system, there is a moment about the \(y\)-axis, \(M_{y}\), and a moment about the \(x\)-axis, \(M_{x}\).
Figure 7.58

\section*{Center of Mass in a Two-Dimensional System}

You can extend the concept of moment to two dimensions by considering a system of masses located in the \(x y\)-plane at the points \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\), as shown in Figure 7.58. Rather than defining a single moment (with respect to the origin), two moments are defined-one with respect to the \(x\)-axis and one with respect to the \(y\)-axis.

\section*{MOMENT AND CENTER OF MASS: TWO-DIMENSIONAL SYSTEM}

Let the point masses \(m_{1}, m_{2}, \ldots, m_{n}\) be located at \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\).
1. The moment about the \(\boldsymbol{y}\)-axis is \(M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}\).
2. The moment about the \(\boldsymbol{x}\)-axis is \(M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}\).
3. The center of mass \((\bar{x}, \bar{y}\) ) (or center of gravity) is
\[
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
\]
where \(m=m_{1}+m_{2}+\cdots+m_{n}\) is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizontal or vertical line. In general, the moment about a line is the sum of the product of the masses and the directed distances from the points to the line.
\[
\begin{array}{ll}
\text { Moment }=m_{1}\left(y_{1}-b\right)+m_{2}\left(y_{2}-b\right)+\cdots+m_{n}\left(y_{n}-b\right) & \text { Horizontal line } y=b \\
\text { Moment }=m_{1}\left(x_{1}-a\right)+m_{2}\left(x_{2}-a\right)+\cdots+m_{n}\left(x_{n}-a\right) & \text { Vertical line } x=a
\end{array}
\]

\section*{EXAMPLE 3 The Center of Mass of a Two-Dimensional System}

Find the center of mass of a system of point masses \(m_{1}=6, m_{2}=3, m_{3}=2\), and \(m_{4}=9\), located at
\[
(3,-2),(0,0),(-5,3), \text { and }(4,2)
\]
as shown in Figure 7.59.

\section*{Solution}
\begin{tabular}{lll}
\(m=6+3+2+9\) & \(=20\) & \\
\(M_{y}=6(3)+3(0)+2(-5)+9(4)\) & \(=44\) & \\
\(M_{x}=6(-2)+3(0)+2(3)+9(2)\) & \(=12\) & \\
Moment about \(y\)-axis \\
Moment about \(x\)-axis
\end{tabular}

So,
\[
\bar{x}=\frac{M_{y}}{m}=\frac{44}{20}=\frac{11}{5}
\]
and
\[
\bar{y}=\frac{M_{x}}{m}=\frac{12}{20}=\frac{3}{5}
\]
and so the center of mass is \(\left(\frac{11}{5}, \frac{3}{5}\right)\).


You can think of the center of mass \((\bar{x}, \bar{y})\) of a lamina as its balancing point. For a circular lamina, the center of mass is the center of the circle. For a rectangular lamina, the center of mass is the center of the rectangle.
Figure 7.60


Planar lamina of uniform density \(\rho\) Figure 7.61

\section*{Center of Mass of a Planar Lamina}

So far in this section you have assumed the total mass of a system to be distributed at discrete points in a plane or on a line. Now consider a thin, flat plate of material of constant density called a planar lamina (see Figure 7.60). Density is a measure of mass per unit of volume, such as grams per cubic centimeter. For planar laminas, however, density is considered to be a measure of mass per unit of area. Density is denoted by \(\rho\), the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina of uniform density \(\rho\), bounded by the graphs of \(y=f(x), y=g(x)\), and \(a \leq x \leq b\), as shown in Figure 7.61. The mass of this region is given by
\[
\begin{aligned}
m & =(\text { density })(\text { area }) \\
& =\rho \int_{a}^{b}[f(x)-g(x)] d x \\
& =\rho A
\end{aligned}
\]
where \(A\) is the area of the region. To find the center of mass of this lamina, partition the interval \([a, b]\) into \(n\) subintervals of equal width \(\Delta x\). Let \(x_{i}\) be the center of the \(i\) th subinterval. You can approximate the portion of the lamina lying in the \(i\) th subinterval by a rectangle whose height is \(h=f\left(x_{i}\right)-g\left(x_{i}\right)\). Because the density of the rectangle is \(\rho\), its mass is
\[
\begin{aligned}
m_{i} & =(\text { density })(\text { area }) \\
& =\rho \underbrace{\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right]}_{\text {| }} \underbrace{\Delta x .}_{\text {Density }}
\end{aligned}
\]

Now, considering this mass to be located at the center \(\left(x_{i}, y_{i}\right)\) of the rectangle, the directed distance from the \(x\)-axis to \(\left(x_{i}, y_{i}\right)\) is \(y_{i}=\left[f\left(x_{i}\right)+g\left(x_{i}\right)\right] / 2\). So, the moment of \(m_{i}\) about the \(x\)-axis is
\[
\begin{aligned}
\text { Moment } & =(\text { mass })(\text { distance }) \\
& =m_{i} y_{i} \\
& =\rho\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x\left[\frac{f\left(x_{i}\right)+g\left(x_{i}\right)}{2}\right] .
\end{aligned}
\]

Summing the moments and taking the limit as \(n \rightarrow \infty\) suggest the definitions below.

\section*{MOMENTS AND CENTER OF MASS OF A PLANAR LAMINA}

Let \(f\) and \(g\) be continuous functions such that \(f(x) \geq g(x)\) on \([a, b]\), and consider the planar lamina of uniform density \(\rho\) bounded by the graphs of \(y=f(x), y=g(x)\), and \(a \leq x \leq b\).
1. The moments about the \(\boldsymbol{x}\) - and \(\boldsymbol{y}\)-axes are
\[
\begin{aligned}
& M_{x}=\rho \int_{a}^{b}\left[\frac{f(x)+g(x)}{2}\right][f(x)-g(x)] d x \\
& M_{y}=\rho \int_{a}^{b} x[f(x)-g(x)] d x .
\end{aligned}
\]
2. The center of mass \((\bar{x}, \bar{y})\) is given by \(\bar{x}=\frac{M_{y}}{m}\) and \(\bar{y}=\frac{M_{x}}{m}\), where \(m=\rho \int_{a}^{b}[f(x)-g(x)] d x\) is the mass of the lamina.


Figure 7.62


The center of mass is the balancing point. Figure 7.63

\section*{EXAMPLE 4 The Center of Mass of a Planar Lamina}

Find the center of mass of the lamina of uniform density \(\rho\) bounded by the graph of \(f(x)=4-x^{2}\) and the \(x\)-axis.
Solution Because the center of mass lies on the axis of symmetry, you know that \(\bar{x}=0\). Moreover, the mass of the lamina is
\[
\begin{aligned}
m & =\rho \int_{-2}^{2}\left(4-x^{2}\right) d x \\
& =\rho\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2} \\
& =\frac{32 \rho}{3} .
\end{aligned}
\]

To find the moment about the \(x\)-axis, place a representative rectangle in the region, as shown in Figure 7.62. The distance from the \(x\)-axis to the center of this rectangle is
\[
y_{i}=\frac{f(x)}{2}=\frac{4-x^{2}}{2} .
\]

Because the mass of the representative rectangle is
\[
\rho f(x) \Delta x=\rho\left(4-x^{2}\right) \Delta x
\]
you have
\[
\begin{aligned}
M_{x} & =\rho \int_{-2}^{2} \frac{4-x^{2}}{2}\left(4-x^{2}\right) d x \\
& =\frac{\rho}{2} \int_{-2}^{2}\left(16-8 x^{2}+x^{4}\right) d x \\
& =\frac{\rho}{2}\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{-2}^{2} \\
& =\frac{256 \rho}{15}
\end{aligned}
\]
and \(\bar{y}\) is given by
\[
\bar{y}=\frac{M_{x}}{m}=\frac{256 \rho / 15}{32 \rho / 3}=\frac{8}{5} .
\]

So, the center of mass (the balancing point) of the lamina is \(\left(0, \frac{8}{5}\right)\), as shown in Figure 7.63.

The density \(\rho\) in Example 4 is a common factor of both the moments and the mass, and as such divides out of the quotients representing the coordinates of the center of mass. So, the center of mass of a lamina of uniform density depends only on the shape of the lamina and not on its density. For this reason, the point

Center of mass or centroid
is sometimes called the center of mass of a region in the plane, or the centroid of the region. In other words, to find the centroid of a region in the plane, you simply assume that the region has a constant density of \(\rho=1\) and compute the corresponding center of mass.


Figure 7.64

\section*{EXPLORATION}

Cut an irregular shape from a piece of cardboard.
a. Hold a pencil vertically and move the object on the pencil point until the centroid is located.
b. Divide the object into representative elements. Make the necessary measurements and numerically approximate the centroid. Compare your result with the result in part (a).

(a) Original region

(b) The centroids of the three rectangles

\section*{EXAMPLE 5 The Centroid of a Plane Region}

Find the centroid of the region bounded by the graphs of \(f(x)=4-x^{2}\) and \(g(x)=x+2\).
Solution The two graphs intersect at the points \((-2,0)\) and \((1,3)\), as shown in Figure 7.64. So, the area of the region is
\[
A=\int_{-2}^{1}[f(x)-g(x)] d x=\int_{-2}^{1}\left(2-x-x^{2}\right) d x=\frac{9}{2}
\]

The centroid \((\bar{x}, \bar{y})\) of the region has the following coordinates.
\[
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{-2}^{1} x\left[\left(4-x^{2}\right)-(x+2)\right] d x=\frac{2}{9} \int_{-2}^{1}\left(-x^{3}-x^{2}+2 x\right) d x \\
& =\frac{2}{9}\left[-\frac{x^{4}}{4}-\frac{x^{3}}{3}+x^{2}\right]_{-2}^{1}=-\frac{1}{2} \\
\bar{y} & =\frac{1}{A} \int_{-2}^{1}\left[\frac{\left(4-x^{2}\right)+(x+2)}{2}\right]\left[\left(4-x^{2}\right)-(x+2)\right] d x \\
& =\frac{2}{9}\left(\frac{1}{2}\right) \int_{-2}^{1}\left(-x^{2}+x+6\right)\left(-x^{2}-x+2\right) d x \\
& =\frac{1}{9} \int_{-2}^{1}\left(x^{4}-9 x^{2}-4 x+12\right) d x \\
& =\frac{1}{9}\left[\frac{x^{5}}{5}-3 x^{3}-2 x^{2}+12 x\right]_{-2}^{1}=\frac{12}{5}
\end{aligned}
\]

So, the centroid of the region is \((\bar{x}, \bar{y})=\left(-\frac{1}{2}, \frac{12}{5}\right)\).

For simple plane regions, you may be able to find the centroids without resorting to integration.

\section*{EXAMPLE 6 The Centroid of a Simple Plane Region}

Find the centroid of the region shown in Figure 7.65(a).
Solution By superimposing a coordinate system on the region, as shown in Figure 7.65(b), you can locate the centroids of the three rectangles at
\[
\left(\frac{1}{2}, \frac{3}{2}\right), \quad\left(\frac{5}{2}, \frac{1}{2}\right), \quad \text { and } \quad(5,1)
\]

Using these three points, you can find the centroid of the region.
\[
\begin{aligned}
& A=\text { area of region }=3+3+4=10 \\
& \bar{x}=\frac{(1 / 2)(3)+(5 / 2)(3)+(5)(4)}{10}=\frac{29}{10}=2.9 \\
& \bar{y}=\frac{(3 / 2)(3)+(1 / 2)(3)+(1)(4)}{10}=\frac{10}{10}=1
\end{aligned}
\]

So, the centroid of the region is \((2.9,1)\).

NOTE In Example 6, notice that \((2.9,1)\) is not the "average" of \(\left(\frac{1}{2}, \frac{3}{2}\right),\left(\frac{5}{2}, \frac{1}{2}\right)\), and \((5,1)\).


The volume \(V\) is \(2 \pi r A\), where \(A\) is the area of region \(R\).
Figure 7.66

\section*{Theorem of Pappus}

The final topic in this section is a useful theorem credited to Pappus of Alexandria (ca. 300 A.D.), a Greek mathematician whose eight-volume Mathematical Collection is a record of much of classical Greek mathematics. You are asked to prove this theorem in Section 14.4.

\section*{THEOREM 7.1 THE THEOREM OF PAPPUS}

Let \(R\) be a region in a plane and let \(L\) be a line in the same plane such that \(L\) does not intersect the interior of \(R\), as shown in Figure 7.66. If \(r\) is the distance between the centroid of \(R\) and the line, then the volume \(V\) of the solid of revolution formed by revolving \(R\) about the line is
\[
V=2 \pi r A
\]
where \(A\) is the area of \(R\). (Note that \(2 \pi r\) is the distance traveled by the centroid as the region is revolved about the line.)

The Theorem of Pappus can be used to find the volume of a torus, as shown in the following example. Recall that a torus is a doughnut-shaped solid formed by revolving a circular region about a line that lies in the same plane as the circle (but does not intersect the circle).

\section*{EXAMPLE 7 Finding Volume by the Theorem of Pappus}

Find the volume of the torus shown in Figure 7.67(a), which was formed by revolving the circular region bounded by
\[
(x-2)^{2}+y^{2}=1
\]
about the \(y\)-axis, as shown in Figure 7.67(b).


Solution In Figure 7.67(b), you can see that the centroid of the circular region is \((2,0)\). So, the distance between the centroid and the axis of revolution is \(r=2\). Because the area of the circular region is \(A=\pi\), the volume of the torus is
\[
\begin{aligned}
V & =2 \pi r A \\
& =2 \pi(2)(\pi) \\
& =4 \pi^{2} \\
& \approx 39.5 .
\end{aligned}
\]

\subsection*{7.6 Exercises}

In Exercises 1-4, find the center of mass of the point masses lying on the \(x\)-axis.
\[
\begin{aligned}
& \text { 1. } m_{1}=7, m_{2}=3, m_{3}=5 \\
& x_{1}=-5, x_{2}=0, x_{3}=3 \\
& \text { 2. } m_{1}=7, m_{2}=4, m_{3}=3, m_{4}=8 \\
& x_{1}=-3, x_{2}=-2, x_{3}=5, x_{4}=4 \\
& \text { 3. } m_{1}=1, m_{2}=1, m_{3}=1, m_{4}=1, m_{5}=1 \\
& x_{1}=7, x_{2}=8, x_{3}=12, x_{4}=15, x_{5}=18 \\
& \text { 4. } m_{1}=12, m_{2}=1, m_{3}=6, m_{4}=3, m_{5}=11 \\
& x_{1}=-6, x_{2}=-4, x_{3}=-2, x_{4}=0, x_{5}=8
\end{aligned}
\]

\section*{5. Graphical Reasoning}
(a) Translate each point mass in Exercise 3 to the right four units and determine the resulting center of mass.
(b) Translate each point mass in Exercise 4 to the left two units and determine the resulting center of mass.
6. Conjecture Use the result of Exercise 5 to make a conjecture about the change in the center of mass that results when each point mass is translated \(k\) units horizontally.

Statics Problems In Exercises 7 and 8, consider a beam of length \(L\) with a fulcrum \(x\) feet from one end (see figure). There are objects with weights \(W_{1}\) and \(W_{2}\) placed on opposite ends of the beam. Find \(x\) such that the system is in equilibrium.

7. Two children weighing 48 pounds and 72 pounds are going to play on a seesaw that is 10 feet long.
8. In order to move a 600 -pound rock, a person weighing 200 pounds wants to balance it on a beam that is 5 feet long.

In Exercises 9-12, find the center of mass of the given system of point masses.
9.
\begin{tabular}{|l|c|c|c|}
\hline\(m_{i}\) & 5 & 1 & 3 \\
\hline\(\left(x_{1}, y_{1}\right)\) & \((2,2)\) & \((-3,1)\) & \((1,-4)\) \\
\hline
\end{tabular}
10.
\begin{tabular}{|l|c|c|c|}
\hline\(m_{i}\) & 10 & 2 & 5 \\
\hline\(\left(x_{1}, y_{1}\right)\) & \((1,-1)\) & \((5,5)\) & \((-4,0)\) \\
\hline
\end{tabular}
11.
\begin{tabular}{|l|c|c|c|c|}
\hline\(m_{i}\) & 12 & 6 & 4.5 & 15 \\
\hline\(\left(x_{1}, y_{1}\right)\) & \((2,3)\) & \((-1,5)\) & \((6,8)\) & \((2,-2)\) \\
\hline
\end{tabular}
12.
\begin{tabular}{|l|c|c|}
\hline\(m_{i}\) & 3 & 4 \\
\hline\(\left(x_{1}, y_{1}\right)\) & \((-2,-3)\) & \((5,5)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline\(m_{i}\) & 2 & 1 & 6 \\
\hline\(\left(x_{1}, y_{1}\right)\) & \((7,1)\) & \((0,0)\) & \((-3,0)\) \\
\hline
\end{tabular}

In Exercises 13-26, find \(M_{x}, M_{y}\), and \((\bar{x}, \bar{y})\) for the laminas of uniform density \(\rho\) bounded by the graphs of the equations.
13. \(y=\frac{1}{2} x, y=0, x=2\)
14. \(y=-x+3, y=0, x=0\)
15. \(y=\sqrt{x}, y=0, x=4\)
16. \(y=\frac{1}{3} x^{2}, y=0, x=3\)
17. \(y=x^{2}, y=x^{3}\)
18. \(y=\sqrt{x}, y=\frac{1}{2} x\)
19. \(y=-x^{2}+4 x+2, y=x+2\)
20. \(y=\sqrt{x}+1, y=\frac{1}{3} x+1\)
21. \(y=x^{2 / 3}, y=0, x=8\)
22. \(y=x^{2 / 3}, y=4\)
23. \(x=4-y^{2}, x=0\)
24. \(x=2 y-y^{2}, x=0\)
25. \(x=-y, x=2 y-y^{2}\)
26. \(x=y+2, x=y^{2}\)

In Exercises 27-30, set up and evaluate the integrals for finding the area and moments about the \(x\) - and \(y\)-axes for the region bounded by the graphs of the equations. (Assume \(\rho=1\).)
27. \(y=x^{2}, y=2 x\)
28. \(y=\frac{1}{x}, y=0,1 \leq x \leq 4\)
29. \(y=2 x+4, y=0,0 \leq x \leq 3\)
30. \(y=x^{2}-4, y=0\)

In Exercises 31-34, use a graphing utility to graph the region bounded by the graphs of the equations. Use the integration capabilities of the graphing utility to approximate the centroid of the region.
31. \(y=10 x \sqrt{125-x^{3}}, y=0\)
32. \(y=x e^{-x / 2}, y=0, x=0, x=4\)
33. Prefabricated End Section of a Building
\[
y=5 \sqrt[3]{400-x^{2}}, y=0
\]
34. Witch of Agnesi
\[
y=\frac{8}{x^{2}+4}, y=0, x=-2, x=2
\]

In Exercises 35-40, find and/or verify the centroid of the common region used in engineering.
35. Triangle Show that the centroid of the triangle with vertices \((-a, 0),(a, 0)\), and \((b, c)\) is the point of intersection of the medians (see figure).


Figure for 35


Figure for 36
36. Parallelogram Show that the centroid of the parallelogram with vertices \((0,0),(a, 0),(b, c)\), and \((a+b, c)\) is the point of intersection of the diagonals (see figure).
37. Trapezoid Find the centroid of the trapezoid with vertices \((0,0),(0, a),(c, b)\), and \((c, 0)\). Show that it is the intersection of the line connecting the midpoints of the parallel sides and the line connecting the extended parallel sides, as shown in the figure.


Figure for 37


Figure for 38
38. Semicircle Find the centroid of the region bounded by the graphs of \(y=\sqrt{r^{2}-x^{2}}\) and \(y=0\) (see figure).
39. Semiellipse Find the centroid of the region bounded by the graphs of \(y=\frac{b}{a} \sqrt{a^{2}-x^{2}}\) and \(y=0\) (see figure).


Figure for 39


Figure for 40
40. Parabolic Spandrel Find the centroid of the parabolic spandrel shown in the figure.
41. Graphical Reasoning Consider the region bounded by the graphs of \(y=x^{2}\) and \(y=b\), where \(b>0\).
(a) Sketch a graph of the region.
(b) Use the graph in part (a) to determine \(\bar{x}\). Explain.
(c) Set up the integral for finding \(M_{y}\). Because of the form of the integrand, the value of the integral can be obtained without integrating. What is the form of the integrand and what is the value of the integral? Compare with the result in part (b).
(d) Use the graph in part (a) to determine whether \(\bar{y}>\frac{b}{2}\) or \(\bar{y}<\frac{b}{2}\). Explain.
(e) Use integration to verify your answer in part (d).
42. Graphical and Numerical Reasoning Consider the region bounded by the graphs of \(y=x^{2 n}\) and \(y=b\), where \(b>0\) and \(n\) is a positive integer.
(a) Set up the integral for finding \(M_{y}\). Because of the form of the integrand, the value of the integral can be obtained without integrating. What is the form of the integrand and what is the value of the integral? Compare with the result in part (b).
(b) Is \(\bar{y}>\frac{b}{2}\) or \(\bar{y}<\frac{b}{2}\) ? Explain.
(c) Use integration to find \(\bar{y}\) as a function of \(n\).
(d) Use the result of part (c) to complete the table.

(e) Find \(\lim _{n \rightarrow \infty} \bar{y}\).
(f) Give a geometric explanation of the result in part (e).
43. Modeling Data The manufacturer of glass for a window in a conversion van needs to approximate its center of mass. A coordinate system is superimposed on a prototype of the glass (see figure). The measurements (in centimeters) for the right half of the symmetric piece of glass are shown in the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & 0 & 10 & 20 & 30 & 40 \\
\hline\(y\) & 30 & 29 & 26 & 20 & 0 \\
\hline
\end{tabular}
(a) Use Simpson's Rule to approximate the center of mass of the glass.
(b) Use the regression capabilities of a graphing utility to find a fourth-degree polynomial model for the data.
(c) Use the integration capabilities of a graphing utility and the model to approximate the center of mass of the glass. Compare with the result in part (a).

44. Modeling Data The manufacturer of a boat needs to approximate the center of mass of a section of the hull. A coordinate system is superimposed on a prototype (see figure). The measurements (in feet) for the right half of the symmetric prototype are listed in the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 0.5 & 1.0 & 1.5 & 2 \\
\hline\(l\) & 1.50 & 1.45 & 1.30 & 0.99 & 0 \\
\hline\(d\) & 0.50 & 0.48 & 0.43 & 0.33 & 0 \\
\hline
\end{tabular}
(a) Use Simpson's Rule to approximate the center of mass of the hull section.
(b) Use the regression capabilities of a graphing utility to find fourth-degree polynomial models for both curves shown in the figure. Plot the data and graph the models.
(c) Use the integration capabilities of a graphing utility and the model to approximate the center of mass of the hull section. Compare with the result in part (a).


In Exercises 45-48, introduce an appropriate coordinate system and find the coordinates of the center of mass of the planar lamina. (The answer depends on the position of the coordinate system.)
45.

46.

47.

48.

49. Find the center of mass of the lamina in Exercise 45 if the circular portion of the lamina has twice the density of the square portion of the lamina.
50. Find the center of mass of the lamina in Exercise 45 if the square portion of the lamina has twice the density of the circular portion of the lamina.

In Exercises 51-54, use the Theorem of Pappus to find the volume of the solid of revolution.
51. The torus formed by revolving the circle \((x-5)^{2}+y^{2}=16\) about the \(y\)-axis
52. The torus formed by revolving the circle \(x^{2}+(y-3)^{2}=4\) about the \(x\)-axis
53. The solid formed by revolving the region bounded by the graphs of \(y=x, y=4\), and \(x=0\) about the \(x\)-axis
54. The solid formed by revolving the region bounded by the graphs of \(y=2 \sqrt{x-2}, y=0\), and \(x=6\) about the \(y\)-axis

\section*{WRITING ABOUT CONCEPTS}
55. Let the point masses \(m_{1}, m_{2}, \ldots, m_{n}\) be located at \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\). Define the center of mass \((\bar{x}, \bar{y})\).
56. What is a planar lamina? Describe what is meant by the center of mass \((\bar{x}, \bar{y})\) of a planar lamina.
57. State the Theorem of Pappus.

\section*{CAPSTONE}
58. The centroid of the plane region bounded by the graphs of \(y=f(x), y=0, x=0\), and \(x=1\) is \(\left(\frac{5}{6}, \frac{5}{18}\right)\). Is it possible to find the centroid of each of the regions bounded by the graphs of the following sets of equations? If so, identify the centroid and explain your answer.
(a) \(y=f(x)+2, y=2, x=0\), and \(x=1\)
(b) \(y=f(x-2), y=0, x=2\), and \(x=3\)
(c) \(y=-f(x), y=0, x=0\), and \(x=1\)
(d) \(y=f(x), y=0, x=-1\), and \(x=1\)

In Exercises 59 and 60, use the Second Theorem of Pappus, which is stated as follows. If a segment of a plane curve \(C\) is revolved about an axis that does not intersect the curve (except possibly at its endpoints), the area \(S\) of the resulting surface of revolution is equal to the product of the length of \(C\) times the distance \(d\) traveled by the centroid of \(C\).
59. A sphere is formed by revolving the graph of \(y=\sqrt{r^{2}-x^{2}}\) about the \(x\)-axis. Use the formula for surface area, \(S=4 \pi r^{2}\), to find the centroid of the semicircle \(y=\sqrt{r^{2}-x^{2}}\).
60. A torus is formed by revolving the graph of \((x-1)^{2}+y^{2}=1\) about the \(y\)-axis. Find the surface area of the torus.
61. Let \(n \geq 1\) be constant, and consider the region bounded by \(f(x)=x^{n}\), the \(x\)-axis, and \(x=1\). Find the centroid of this region. As \(n \rightarrow \infty\), what does the region look like, and where is its centroid?

\section*{PUTNAM EXAM CHALLENGE}
62. Let \(V\) be the region in the cartesian plane consisting of all points \((x, y)\) satisfying the simultaneous conditions \(|x| \leq y \leq|x|+3\) and \(y \leq 4\). Find the centroid \((\bar{x}, \bar{y})\) of \(V\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{7.7 Fluid Pressure and Fluid Force}

\section*{- Find fluid pressure and fluid force.}

\section*{Fluid Pressure and Fluid Force}

Swimmers know that the deeper an object is submerged in a fluid, the greater the pressure on the object. Fessure is defined as the force per unit of area over the surface of a body. For example, because a column of water that is 10 feet in height and 1 inch square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is 4.3 pounds per square inch.* At 20 feet, this would increase to 8.6 pounds per square inch, and in general the pressure is proportional to the depth of the object in the fluid.

\section*{DEFINITION OF FLUID PRESSURE}

The pressure on an object at depth \(h\) in a liquid is
Pressure \(=P=w h\)
where \(w\) is the weight-density of the liquid per unit of volume.

Below are some common weight-densities of fluids in pounds per cubic foot.
\begin{tabular}{lr} 
Ethyl alcohol & 49.4 \\
Gasoline & \(41.0-43.0\) \\
Glycerin & 78.6 \\
Kerosene & 51.2 \\
Mercury & 849.0 \\
Seawater & 64.0 \\
Water & 62.4
\end{tabular}

When calculating fluid pressure, you can use an important (and rather surprising) physical law called scals Finciple, named after the French mathematician Blaise Pascal. Pascal's Principle states that the pressure exerted by a fluid at a depth \(h\) is transmitted equally in all directions. For example, in Figure 7.68, the pressure at the indicated depth is the same for all three objects. Because fluid pressure is given in terms of force per unit area ( \(P=F / A\) ), the fluid force on a submerged horizontal surface of area \(A\) is

Fluid force \(=F=P A=(\) pressure \()(\) area \()\).


The pressure at \(h\) is the same for all three objects.
Figure 7.68

\footnotetext{
* The total pressure on an object in 10 feet of water would also include the pressure due to Earth's atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per square inch.
}


The fluid force on a horizontal metal sheet is equal to the fluid pressure times the area.
Figure 7.69


Calculus methods must be used to find the fluid force on a vertical metal plate.
Figure 7.70

\section*{EXAMPLE 1 Fluid Force on a Submerged Sheet}

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is submerged in 6 feet of water, as shown in Figure 7.69.
Solution Because the weight-density of water is 62.4 pounds per cubic foot and the sheet is submerged in 6 feet of water, the fluid pressure is
\[
\begin{aligned}
P & =(62.4)(6) \quad P=w h \\
& =374.4 \text { pounds per square foot. }
\end{aligned}
\]

Because the total area of the sheet is \(A=(3)(4)=12\) square feet, the fluid force is
\[
\begin{aligned}
F=P A & =\left(374.4 \frac{\text { pounds }}{\text { square foot }}\right)(12 \text { square feet }) \\
& =4492.8 \text { pounds. }
\end{aligned}
\]

This result is independent of the size of the body of water. The fluid force would be the same in a swimming pool or lake.

In Example 1, the fact that the sheet is rectangular and horizontal means that you do not need the methods of calculus to solve the problem. Consider a surface that is submerged vertically in a fluid. This problem is more difficult because the pressure is not constant over the surface.

Suppose a vertical plate is submerged in a fluid of weight-density \(w\) (per unit of volume), as shown in Figure 7.70. To determine the total force against one side of the region from depth \(c\) to depth \(d\), you can subdivide the interval \([c, d]\) into \(n\) subintervals, each of width \(\Delta y\). Next, consider the representative rectangle of width \(\Delta y\) and length \(L\left(y_{i}\right)\), where \(y_{i}\) is in the \(i\) th subinterval. The force against this representative rectangle is
\[
\begin{aligned}
\Delta F_{i} & =w(\text { depth })(\text { area }) \\
& =w h\left(y_{i}\right) L\left(y_{i}\right) \Delta y .
\end{aligned}
\]

The force against \(n\) such rectangles is
\[
\sum_{i=1}^{n} \Delta F_{i}=w \sum_{i=1}^{n} h\left(y_{i}\right) L\left(y_{i}\right) \Delta y .
\]

Note that \(w\) is considered to be constant and is factored out of the summation. Therefore, taking the limit as \(\|\Delta\| \rightarrow 0(n \rightarrow \infty)\) suggests the following definition.

\section*{DEFINITION OF FORCE EXERTED BY A FLUID}

The force \(\boldsymbol{F}\) exerted by a fluid of constant weight-density \(w\) (per unit of volume) against a submerged vertical plane region from \(y=c\) to \(y=d\) is
\[
\begin{aligned}
F & =w \lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} h\left(y_{i}\right) L\left(y_{i}\right) \Delta y \\
& =w \int_{c}^{d} h(y) L(y) d y
\end{aligned}
\]
where \(h(y)\) is the depth of the fluid at \(y\) and \(L(y)\) is the horizontal length of the region at \(y\).

(a) Water gate in a dam

(b) The fluid force against the gate

Figure 7.71

\section*{EXAMPLE 2 Fluid Force on a Vertical Surface}

A vertical gate in a dam has the shape of an isosceles trapezoid 8 feet across the top and 6 feet across the bottom, with a height of 5 feet, as shown in Figure 7.71(a). What is the fluid force on the gate when the top of the gate is 4 feet below the surface of the water?

Solution In setting up a mathematical model for this problem, you are at liberty to locate the \(x\) - and \(y\)-axes in several different ways. A convenient approach is to let the \(y\)-axis bisect the gate and place the \(x\)-axis at the surface of the water, as shown in Figure 7.71(b). So, the depth of the water at \(y\) in feet is
\[
\text { Depth }=h(y)=-y .
\]

To find the length \(L(y)\) of the region at \(y\), find the equation of the line forming the right side of the gate. Because this line passes through the points \((3,-9)\) and \((4,-4)\), its equation is
\[
\begin{aligned}
y-(-9) & =\frac{-4-(-9)}{4-3}(x-3) \\
y+9 & =5(x-3) \\
y & =5 x-24 \\
x & =\frac{y+24}{5} .
\end{aligned}
\]

In Figure 7.71(b) you can see that the length of the region at \(y\) is
\[
\begin{aligned}
\text { Length } & =2 x \\
& =\frac{2}{5}(y+24) \\
& =L(y) .
\end{aligned}
\]

Finally, by integrating from \(y=-9\) to \(y=-4\), you can calculate the fluid force to be
\[
\begin{aligned}
F & =w \int_{c}^{d} h(y) L(y) d y \\
& =62.4 \int_{-9}^{-4}(-y)\left(\frac{2}{5}\right)(y+24) d y \\
& =-62.4\left(\frac{2}{5}\right) \int_{-9}^{-4}\left(y^{2}+24 y\right) d y \\
& =-62.4\left(\frac{2}{5}\right)\left[\frac{y^{3}}{3}+12 y^{2}\right]_{-9}^{-4} \\
& =-62.4\left(\frac{2}{5}\right)\left(\frac{-1675}{3}\right) \\
& =13,936 \text { pounds. }
\end{aligned}
\]

NOTE In Example 2, the \(x\)-axis coincided with the surface of the water. This was convenient, but arbitrary. In choosing a coordinate system to represent a physical situation, you should consider various possibilities. Often you can simplify the calculations in a problem by locating the coordinate system to take advantage of special characteristics of the problem, such as symmetry.


The fluid force on the window Figure 7.72

\(f\) is not differentiable at \(x= \pm 1\).
Figure 7.73

\section*{EXAMPLE 3 Fluid Force on a Vertical Surface}

A circular observation window on a marine science ship has a radius of 1 foot, and the center of the window is 8 feet below water level, as shown in Figure 7.72. What is the fluid force on the window?

Solution To take advantage of symmetry, locate a coordinate system such that the origin coincides with the center of the window, as shown in Figure 7.72. The depth at \(y\) is then
\[
\text { Depth }=h(y)=8-y \text {. }
\]

The horizontal length of the window is \(2 x\), and you can use the equation for the circle, \(x^{2}+y^{2}=1\), to solve for \(x\) as follows.
\[
\begin{aligned}
\text { Length } & =2 x \\
& =2 \sqrt{1-y^{2}}=L(y)
\end{aligned}
\]

Finally, because \(y\) ranges from -1 to 1 , and using 64 pounds per cubic foot as the weight-density of seawater, you have
\[
\begin{aligned}
F & =w \int_{c}^{d} h(y) L(y) d y \\
& =64 \int_{-1}^{1}(8-y)(2) \sqrt{1-y^{2}} d y
\end{aligned}
\]

Initially it looks as if this integral would be difficult to solve. However, if you break the integral into two parts and apply symmetry, the solution is simple.
\[
F=64(16) \int_{-1}^{1} \sqrt{1-y^{2}} d y-64(2) \int_{-1}^{1} y \sqrt{1-y^{2}} d y
\]

The second integral is 0 (because the integrand is odd and the limits of integration are symmetric with respect to the origin). Moreover, by recognizing that the first integral represents the area of a semicircle of radius 1 , you obtain
\[
\begin{aligned}
F & =64(16)\left(\frac{\pi}{2}\right)-64(2)(0) \\
& =512 \pi \\
& \approx 1608.5 \text { pounds. }
\end{aligned}
\]

So, the fluid force on the window is 1608.5 pounds.

TECHNOLOGY To confirm the result obtained in Example 3, you might have considered using Simpson's Rule to approximate the value of
\[
128 \int_{-1}^{1}(8-x) \sqrt{1-x^{2}} d x
\]

From the graph of
\[
f(x)=(8-x) \sqrt{1-x^{2}}
\]
however, you can see that \(f\) is not differentiable when \(x= \pm 1\) (see Figure 7.73). This means that you cannot apply Theorem 4.19 from Section 4.6 to determine the potential error in Simpson's Rule. Without knowing the potential error, the approximation is of little value. Use a graphing utility to approximate the integral.

\subsection*{7.7 Exercises}

Force on a Submerged Sheet In Exercises 1-4, the area of the top side of a piece of sheet metal is given. The sheet metal is submerged horimntally in \(\mathbf{8}\) feet of water. Find the fluid force on the top side.
1. 3 square feet
2. 16 square feet
3. 10 square feet
4. 22 square feet

Buoyant Force In Exercises 5 and 6, find the buoyant force of a rectangular solid of the given dimensions submerged in water so that the top side is parallel to the surface of the water. The buoyant force is the difference between the fluid forces on the top and bottom sides of the solid.


Fluid Force on a Tank Wall In Exercises 7-12, find the fluid force on the vertical side of the tank, where the dimensions are given in feet. ssume that the tank is full of water.

\section*{7. Rectangle}

9. Trapezoid

11. Parabola, \(y=x^{2}\)

8. Triangle

10. Semicircle

12. Semiellipse, \(y=-\frac{1}{2} \sqrt{36-9 x^{2}}\)


Fluid Force of Water In Exercises 13-16, find the fluid force on the vertical plate submerged in water, where the dimensions are given in meters and the weight-density of water is \(\mathbf{9 8 0 0}\) newtons per cubic meter.
13. Square

15. Triangle

14. Square

16. Rectangle


Force on a Concrete Form In Exercises 17-20, the figure is the vertical side of a form for poured concrete that weighs \(\mathbf{1 4 0 . 7}\) pounds per cubic foot. Determine the force on this part of the concrete form.
17. Rectangle

19. Rectangle

18. Semiellipse,
\[
y=-\frac{3}{4} \sqrt{16-x^{2}}
\]

20. Triangle

21. Fluid Force of Gasoline A cylindrical gasoline tank is placed so that the axis of the cylinder is horizontal. Find the fluid force on a circular end of the tank if the tank is half full, assuming that the diameter is 3 feet and the gasoline weighs 42 pounds per cubic foot.
22. Fluid Force of Gasoline Repeat Exercise 21 for a tank that is full. (Evaluate one integral by a geometric formula and the other by observing that the integrand is an odd function.)
23. Fluid Force on a Circular Plate A circular plate of radius \(r\) feet is submerged vertically in a tank of fluid that weighs \(w\) pounds per cubic foot. The center of the circle is \(k(k>r)\) feet below the surface of the fluid. Show that the fluid force on the surface of the plate is
\(F=w k\left(\pi r^{2}\right)\).
(Evaluate one integral by a geometric formula and the other by observing that the integrand is an odd function.)
24. Fluid Force on a Circular Plate Use the result of Exercise 23 to find the fluid force on the circular plate shown in each figure. Assume the plates are in the wall of a tank filled with water and the measurements are given in feet.
(a)

(b)

25. Fluid Force on a Rectangular Plate A rectangular plate of height \(h\) feet and base \(b\) feet is submerged vertically in a tank of fluid that weighs \(w\) pounds per cubic foot. The center is \(k\) feet below the surface of the fluid, where \(k>h / 2\). Show that the fluid force on the surface of the plate is
\(F=w k h b\).
26. Fluid Force on a Rectangular Plate Use the result of Exercise 25 to find the fluid force on the rectangular plate shown in each figure. Assume the plates are in the wall of a tank filled with water and the measurements are given in feet.
(a)

(b)

27. Submarine Porthole A square porthole on a vertical side of a submarine (submerged in seawater) has an area of 1 square foot. Find the fluid force on the porthole, assuming that the center of the square is 15 feet below the surface.
28. Submarine Porthole Repeat Exercise 27 for a circular porthole that has a diameter of 1 foot. The center is 15 feet below the surface.
29. Modeling Data The vertical stern of a boat with a superimposed coordinate system is shown in the figure. The table shows the widths \(w\) of the stern at indicated values of \(y\). Find the fluid force against the stern if the measurements are given in feet.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(y\) & 0 & \(\frac{1}{2}\) & 1 & \(\frac{3}{2}\) & 2 & \(\frac{5}{2}\) & 3 & \(\frac{7}{2}\) & 4 \\
\hline\(w\) & 0 & 3 & 5 & 8 & 9 & 10 & 10.25 & 10.5 & 10.5 \\
\hline
\end{tabular}

30. Irrigation Canal Gate The vertical cross section of an irrigation canal is modeled by \(f(x)=5 x^{2} /\left(x^{2}+4\right)\), where \(x\) is measured in feet and \(x=0\) corresponds to the center of the canal. Use the integration capabilities of a graphing utility to approximate the fluid force against a vertical gate used to stop the flow of water if the water is 3 feet deep.

In Exercises 31 and 32, use the integration capabilities of a graphing utility to approximate the fluid force on the vertical plate bounded by the \(x\)-axis and the top half of the graph of the equation. ssume that the base of the plate is 15 feet beneath the surface of the water.
31. \(x^{2 / 3}+y^{2 / 3}=4^{2 / 3}\)
32. \(\frac{x^{2}}{28}+\frac{y^{2}}{16}=1\)

\section*{WRITING ABOUT CONCEPTS}
33. Think About It Approximate the depth of the water in the tank in Exercise 7 if the fluid force is one-half as great as when the tank is full. Explain why the answer is not \(\frac{3}{2}\).
34. (a) Define fluid pressure.
(b) Define fluid force against a submerged vertical plane region.
35. Explain why fluid pressure on a surface is calculated using horizontal representative rectangles instead of vertical representative rectangles.

\section*{CAPSTONE}
36. Two identical semicircular windows are placed at the same depth in the vertical wall of an aquarium (see figure). Which is subjected to the greater fluid force? Explain.


\section*{1 REVIEW EXERCISES}

In Exercises 1-10, sketch the region bounded by the graphs of the equations, and determine the area of the region.
1. \(y=\frac{1}{x^{2}}, y=0, x=1, x=5\)
2. \(y=\frac{1}{x^{2}}, y=4, x=5\)
3. \(y=\frac{1}{x^{2}+1}, y=0, x=-1, x=1\)
4. \(x=y^{2}-2 y, x=-1, y=0\)
5. \(y=x, y=x^{3}\)
6. \(x=y^{2}+1, x=y+3\)
7. \(y=e^{x}, y=e^{2}, x=0\)
8. \(y=\csc x, y=2\) (one region)
9. \(y=\sin x, y=\cos x, \frac{\pi}{4} \leq x \leq \frac{5 \pi}{4}\)
10. \(x=\cos y, x=\frac{1}{2}, \frac{\pi}{3} \leq y \leq \frac{7 \pi}{3}\)

In Exercises 11-14, use a graphing utility to graph the region bounded by the graphs of the functions, and use the integration capabilities of the graphing utility to find the area of the region.
11. \(y=x^{2}-8 x+3, y=3+8 x-x^{2}\)
12. \(y=x^{2}-4 x+3, y=x^{3}, x=0\)
13. \(\sqrt{x}+\sqrt{y}=1, y=0, x=0\)
14. \(y=x^{4}-2 x^{2}, y=2 x^{2}\)

In Exercises 15-18, use vertical and horiontal representative rectangles to set up integrals for finding the area of the region bounded by the graphs of the equations. Find the area of the region by evaluating the easier of the two integrals.
15. \(x=y^{2}-2 y, x=0\)
16. \(y=\sqrt{x-1}, y=\frac{x-1}{2}\)
17. \(y=1-\frac{x}{2}, y=x-2, y=1\)
18. \(y=\sqrt{x-1}, y=2, y=0, x=0\)
19. Estimate the surface area of the pond using (a) the Trapezoidal Rule and (b) Simpson's Rule.

20. Modeling Data The table shows the annual service revenues \(R_{1}\) in billions of dollars for the cellular telephone industry for the years 2000 through 2006. (Source:Cellular Telecommunications \& Internet Association)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline dar & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline\(R_{1}\) & 52.5 & 65.3 & 76.5 & 87.6 & 102.1 & 113.5 & 125.5 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find an exponential model for the data. Let \(t\) represent the year, with \(t=10\) corresponding to 2000 . Use the graphing utility to plot the data and graph the model in the same viewing window.
(b) A financial consultant believes that a model for service revenues for the years 2010 through 2015 is \(R_{2}=6+13.9 e^{0.14 t}\). What is the difference in total service revenues between the two models for the years 2010 through 2015?

In Exercises 21-28, find the volume of the solid generated by revolving the plane region bounded by the equations about the indicated line(s).
21. \(y=x, y=0, x=3\)
(a) the \(x\)-axis
(b) the \(y\)-axis
(c) the line \(x=3\)
(d) the line \(x=6\)
22. \(y=\sqrt{x}, y=2, x=0\)
(a) the \(x\)-axis
(b) the line \(y=2\)
(c) the \(y\)-axis
(d) the line \(x=-1\)
23. \(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\)
(a) the \(y\)-axis (oblate spheroid)
(b) the \(x\)-axis (prolate spheroid)
24. \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)
(a) the \(y\)-axis (oblate spheroid)
(b) the \(x\)-axis (prolate spheroid)
25. \(y=1 /\left(x^{4}+1\right), y=0, x=0, x=1\)
revolved about the \(y\)-axis
26. \(y=1 / \sqrt{1+x^{2}}, y=0, x=-1, x=1\)
revolved about the \(x\)-axis
27. \(y=1 /(1+\sqrt{x-2}), y=0, x=2, x=6\)
revolved about the \(y\)-axis
28. \(y=e^{-x}, y=0, x=0, x=1\)
revolved about the \(x\)-axis
29. Area and Volume Consider the region bounded by the graphs of the equations \(y=x \sqrt{x+1}\) and \(y=0\).
(a) Find the area of the region.
(b) Find the volume of the solid generated by revolving the region about the \(x\)-axis.
(c) Find the volume of the solid generated by revolving the region about the \(y\)-axis.
30. Think About It A solid is generated by revolving the region bounded by \(y=x^{2}+4, y=0, x=0\), and \(x=3\) about the \(x\)-axis. Set up the integral that gives the volume of this solid using (a) the disk method and (b) the shell method. (Do not integrate.) (c) Does each method lead to an integral with respect to \(x\) ?
31. Depth of Gasoline in a Tank A gasoline tank is an oblate spheroid generated by revolving the region bounded by the graph of \(\left(x^{2} / 16\right)+\left(y^{2} / 9\right)=1\) about the \(y\)-axis, where \(x\) and \(y\) are measured in feet. Find the depth of the gasoline in the tank when it is filled to one-fourth its capacity.
32. Magnitude of a Base The base of a solid is a circle of radius \(a\), and its vertical cross sections are equilateral triangles. The volume of the solid is 10 cubic meters. Find the radius of the circle.

In Exercises 33 and 34, find the arc length of the graph of the function over the given interval.
33. \(f(x)=\frac{4}{5} x^{5 / 4}, \quad[0,4] \quad\) 34. \(y=\frac{1}{6} x^{3}+\frac{1}{2 x}, \quad[1,3]\)
35. Length of a Catenary A cable of a suspension bridge forms a catenary modeled by the equation
\(y=300 \cosh \left(\frac{x}{2000}\right)-280, \quad-2000 \leq x \leq 2000\)
where \(x\) and \(y\) are measured in feet. Use a graphing utility to approximate the length of the cable.
36. Approximation Determine which value best approximates the length of the arc represented by the integral
\(\int_{0}^{\pi / 4} \sqrt{1+\left(\sec ^{2} x\right)^{2}} d x\).
(Make your selection on the basis of a sketch of the arc and not by performing any calculations.)
(a) -2
(b) 1
(c) \(\pi\)
(d) 4
(e) 3
37. Surface Area Use integration to find the lateral surface area of a right circular cone of height 4 and radius 3 .
38. Surface Area The region bounded by the graphs of \(y=2 \sqrt{x}, y=0, x=3\), and \(x=8\) is revolved about the \(x\)-axis. Find the surface area of the solid generated.
39. Work A force of 5 pounds is needed to stretch a spring 1 inch from its natural position. Find the work done in stretching the spring from its natural length of 10 inches to a length of 15 inches.
40. Work A force of 50 pounds is needed to stretch a spring 1 inch from its natural position. Find the work done in stretching the spring from its natural length of 10 inches to double that length.
41. Work A water well has an eight-inch casing (diameter) and is 190 feet deep. The water is 25 feet from the top of the well. Determine the amount of work done in pumping the well dry, assuming that no water enters it while it is being pumped.
42. Work Repeat Exercise 41, assuming that water enters the well at a rate of 4 gallons per minute and the pump works at a rate of 12 gallons per minute. How many gallons are pumped in this case?
43. Work A chain 10 feet long weighs 4 pounds per foot and is hung from a platform 20 feet above the ground. How much work is required to raise the entire chain to the 20 -foot level?
44. Work A windlass, 200 feet above ground level on the top of a building, uses a cable weighing 5 pounds per foot. Find the work done in winding up the cable if
(a) one end is at ground level.
(b) there is a 300 -pound load attached to the end of the cable.
45. Work The work done by a variable force in a press is 80 footpounds. The press moves a distance of 4 feet and the force is a quadratic of the form \(F=a x^{2}\). Find \(a\).
46. Work Find the work done by the force \(F\) shown in the figure.


In Exercises 47-50, find the centroid of the region bounded by the graphs of the equations.
47. \(\sqrt{x}+\sqrt{y}=\sqrt{a}, x=0, y=0\)
48. \(y=x^{2}, y=2 x+3\)
49. \(y=a^{2}-x^{2}, y=0\)
50. \(y=x^{2 / 3}, y=\frac{1}{2} x\)
51. Centroid A blade on an industrial fan has the configuration of a semicircle attached to a trapezoid (see figure). Find the centroid of the blade.

52. Fluid Force A swimming pool is 5 feet deep at one end and 10 feet deep at the other, and the bottom is an inclined plane. The length and width of the pool are 40 feet and 20 feet. If the pool is full of water, what is the fluid force on each of the vertical walls?
53. Fluid Force Show that the fluid force against any vertical region in a liquid is the product of the weight per cubic volume of the liquid, the area of the region, and the depth of the centroid of the region.
54. Fluid Force Using the result of Exercise 53, find the fluid force on one side of a vertical circular plate of radius 4 feet that is submerged in water so that its center is 10 feet below the surface.

\section*{P.S. PROBLEM SOLVING}
1. Let \(R\) be the area of the region in the first quadrant bounded by the parabola \(y=x^{2}\) and the line \(y=c x, c>0\). Let \(T\) be the area of the triangle \(A O B\). Calculate the limit
\(\lim _{c \rightarrow 0^{+}} \frac{T}{R}\).


Figure for 1


Figure for 2
2. Let \(L\) be the lamina of uniform density \(\rho=1\) obtained by removing circle \(A\) of radius \(r\) from circle \(B\) of radius \(2 r\) (see figure).
(a) Show that \(M_{x}=0\) for \(L\).
(b) Show that \(M_{y}\) for \(L\) is equal to \(\left(M_{y}\right.\) for \(\left.B\right)-\left(M_{y}\right.\) for \(\left.A\right)\).
(c) Find \(M_{y}\) for \(B\) and \(M_{y}\) for \(A\). Then use part (b) to compute \(M_{y}\) for \(L\).
(d) What is the center of mass of \(L\) ?
3. Let \(R\) be the region bounded by the parabola \(y=x-x^{2}\) and the \(x\)-axis. Find the equation of the line \(y=m x\) that divides this region into two regions of equal area.

4. (a) A torus is formed by revolving the region bounded by the circle
\((x-2)^{2}+y^{2}=1\)
about the \(y\)-axis (see figure). Use the disk method to calculate the volume of the torus.

(b) Use the disk method to find the volume of the general torus if the circle has radius \(r\) and its center is \(R\) units from the axis of rotation.
5. Graph the curve
\(8 y^{2}=x^{2}\left(1-x^{2}\right)\).
Use a computer algebra system to find the surface area of the solid of revolution obtained by revolving the curve about the \(y\)-axis.
6. A hole is cut through the center of a sphere of radius \(r\) (see figure). The height of the remaining spherical ring is \(h\). Find the volume of the ring and show that it is independent of the radius of the sphere.

7. A rectangle \(R\) of length \(l\) and width \(w\) is revolved about the line \(L\) (see figure). Find the volume of the resulting solid of revolution.


Figure for 7


Figure for 8
8. (a) The tangent line to the curve \(y=x^{3}\) at the point \(A(1,1)\) intersects the curve at another point \(B\). Let \(R\) be the area of the region bounded by the curve and the tangent line. The tangent line at \(B\) intersects the curve at another point \(C\) (see figure). Let \(S\) be the area of the region bounded by the curve and this second tangent line. How are the areas \(R\) and \(S\) related?
(b) Repeat the construction in part (a) by selecting an arbitrary point \(A\) on the curve \(y=x^{3}\). Show that the two areas \(R\) and \(S\) are always related in the same way.
9. The graph of \(y=f(x)\) passes through the origin. The arc length of the curve from \((0,0)\) to \((x, f(x))\) is given by
\(s(x)=\int_{0}^{x} \sqrt{1+e^{t}} d t\).
Identify the function \(f\).
10. Let \(f\) be rectifiable on the interval \([a, b]\), and let
\(s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t\).
(a) Find \(\frac{d s}{d x}\).
(b) Find \(d s\) and \((d s)^{2}\).
(c) If \(f(t)=t^{3 / 2}\), find \(s(x)\) on \([1,3]\).
(d) Calculate \(s(2)\) and describe what it signifies.
11. Achimedes Tinciple states that the upward or buoyant force on an object within a fluid is equal to the weight of the fluid that the object displaces. For a partially submerged object, you can obtain information about the relative densities of the floating object and the fluid by observing how much of the object is above and below the surface. You can also determine the size of a floating object if you know the amount that is above the surface and the relative densities. You can see the top of a floating iceberg (see figure). The density of ocean water is \(1.03 \times 10^{3}\) kilograms per cubic meter, and that of ice is \(0.92 \times 10^{3}\) kilograms per cubic meter. What percent of the total iceberg is below the surface?

12. Sketch the region bounded on the left by \(x=1\), bounded above by \(y=1 / x^{3}\), and bounded below by \(y=-1 / x^{3}\).
(a) Find the centroid of the region for \(1 \leq x \leq 6\).
(b) Find the centroid of the region for \(1 \leq x \leq b\).
(c) Where is the centroid as \(b \rightarrow \infty\) ?
13. Sketch the region to the right of the \(y\)-axis, bounded above by \(y=1 / x^{4}\) and bounded below by \(y=-1 / x^{4}\).
(a) Find the centroid of the region for \(1 \leq x \leq 6\).
(b) Find the centroid of the region for \(1 \leq x \leq b\).
(c) Where is the centroid as \(b \rightarrow \infty\) ?
14. Find the work done by each force \(F\).
(a)

(b)


In Exercises 15 and 16, find the consumer surplus and producer surplus for the given demand \(\left[p_{1}(x)\right]\) and supply \(\left[p_{2}(x)\right]\) curves. The consumer surplus and producer surplus are represented by the areas shown in the figure.

15. \(p_{1}(x)=50-0.5 x, \quad p_{2}(x)=0.125 x\)
16. \(p_{1}(x)=1000-0.4 x^{2}, \quad p_{2}(x)=42 x\)
17. A swimming pool is 20 feet wide, 40 feet long, 4 feet deep at one end, and 8 feet deep at the other end (see figure). The bottom is an inclined plane. Find the fluid force on each vertical wall.


18. (a) Find at least two continuous functions \(f\) that satisfy each condition.
(i) \(f(x) \geq 0\) on \([0,1]\)
(ii) \(f(0)=0\) and \(f(1)=0\)
(iii) The area bounded by the graph of \(f\) and the \(x\)-axis for \(0 \leq x \leq 1\) equals 1 .
(b) For each function found in part (a), approximate the arc length of the graph of the function on the interval \([0,1]\). (Use a graphing utility if necessary.)
(c) Can you find a function \(f\) that satisfies each condition in part (a) and whose graph has an arc length of less than 3 on the interval \([0,1]\) ?


\section*{Integration Techniques, L'Hôpital's Rule, and Improper Integrals}

In previous chapters, you studied several basic techniques for evaluating simple integrals. In this chapter, you will study other integration techniques, such as integration by parts, that are used to evaluate more complicated integrals. You will also learn an important rule for evaluating limits called L'Hôpital's Rule. This rule can also help you evaluate improper integrals.

In this chapter, you should learn the following
- How to fit an integrand to one of the basic integration rules. (8.1)
- How to find an antiderivative using integration by parts. (8.2)
- How to evaluate trigonometric integrals. (8.3)
- How to use trigonometric substitution to evaluate an integral. (8.4)
- How to use partial fraction decomposition to integrate rational functions. (8.5)
- How to evaluate an indefinite integral using a table of integrals and using reduction formulas. (8.6)
- How to apply L'Hôpital's Rule to evaluate a limit. (8.7)
- How to evaluate an improper integral. (8.8)


Partial fraction decomposition is an integration technique that can be used to evaluate integrals involving rational functions. How can partial fraction decomposition
be used to evaluate an integral that gives the average cost of removing a certain percent of a chemical from a company's waste water? (See Section 8.5, Exercise 63.)


From your studies of calculus thus far, you know that a definite integral has finite limits of integration and a continuous integrand. In Section 8.8, you will study improper integrals. Improper integrals have at least one infinite limit of integration or have an integrand with an infinite discontinuity. You will see that improper integrals either converge or diverge.

\subsection*{8.1 Basic Integration Rules}
- Review procedures for fitting an integrand to one of the basic integration rules.

\section*{Fitting Integrands to Basic Integration Rules}

In this chapter, you will study several integration techniques that greatly expand the set of integrals to which the basic integration rules can be applied. These rules are reviewed on page 522. A major step in solving any integration problem is recognizing which basic integration rule to use. As shown in Example 1, slight differences in the integrand can lead to very different solution techniques.

\section*{Cexample 1 A Comparison of Three Similar Integrals}

\section*{EXPLORATION}

\section*{A Comparison of Three Similar}

Integrals Which, if any, of the following integrals can be evaluated using the 20 basic integration rules? For any that can be evaluated, do so. For any that can't, explain why.
a. \(\int \frac{3}{\sqrt{1-x^{2}}} d x\)
b. \(\int \frac{3 x}{\sqrt{1-x^{2}}} d x\)
c. \(\int \frac{3 x^{2}}{\sqrt{1-x^{2}}} d x\)

NOTE Notice in Example 1(c) that some preliminary algebra is required before applying the rules for integration, and that subsequently more than one rule is needed to evaluate the resulting integral.

Find each integral.
a. \(\int \frac{4}{x^{2}+9} d x\)
b. \(\int \frac{4 x}{x^{2}+9} d x\)
c. \(\int \frac{4 x^{2}}{x^{2}+9} d x\)

\section*{Solution}
a. Use the Arctangent Rule and let \(u=x\) and \(a=3\).
\[
\begin{aligned}
\int \frac{4}{x^{2}+9} d x & =4 \int \frac{1}{x^{2}+3^{2}} d x & & \text { Constant Multiple Rule } \\
& =4\left(\frac{1}{3} \arctan \frac{x}{3}\right)+C & & \text { Arctangent Rule } \\
& =\frac{4}{3} \arctan \frac{x}{3}+C & & \text { Simplify. }
\end{aligned}
\]
b. Here the Arctangent Rule does not apply because the numerator contains a factor of \(x\). Consider the Log Rule and let \(u=x^{2}+9\). Then \(d u=2 x d x\), and you have
\[
\begin{aligned}
\int \frac{4 x}{x^{2}+9} d x & =2 \int \frac{2 x d x}{x^{2}+9} & & \text { Constant Multiple Rule } \\
& =2 \int \frac{d u}{u} & & \text { Substitution: } u=x^{2}+9 \\
& =2 \ln |u|+C=2 \ln \left(x^{2}+9\right)+C . & & \text { Log Rule }
\end{aligned}
\]
c. Because the degree of the numerator is equal to the degree of the denominator, you should first use division to rewrite the improper rational function as the sum of a polynomial and a proper rational function.
\[
\begin{aligned}
\int \frac{4 x^{2}}{x^{2}+9} d x & =\int\left(4-\frac{36}{x^{2}+9}\right) d x & & \text { Rewrite using long division. } \\
& =\int 4 d x-36 \int \frac{1}{x^{2}+9} d x & & \text { Write as two integrals. } \\
& =4 x-36\left(\frac{1}{3} \arctan \frac{x}{3}\right)+C & & \text { Integrate. } \\
& =4 x-12 \arctan \frac{x}{3}+C & & \text { Simplify. }
\end{aligned}
\]

\footnotetext{
The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.
}


The area of the region is approximately 1.839.

Figure 8.1

STUDY TIP Rules 18, 19, and 20 of the basic integration rules on the next page all have expressions involving the sum or difference of two squares:
\[
\begin{aligned}
& a^{2}-u^{2} \\
& a^{2}+u^{2} \\
& u^{2}-a^{2}
\end{aligned}
\]

These expressions are often apparent after a \(u\)-substitution, as shown in Example 3.

\section*{EXAMPLE 2 Using Two Basic Rules to Solve a Single Integral}

Evaluate \(\int_{0}^{1} \frac{x+3}{\sqrt{4-x^{2}}} d x\).
Solution Begin by writing the integral as the sum of two integrals. Then apply the Power Rule and the Arcsine Rule, as follows.
\[
\begin{aligned}
\int_{0}^{1} \frac{x+3}{\sqrt{4-x^{2}}} d x & =\int_{0}^{1} \frac{x}{\sqrt{4-x^{2}}} d x+\int_{0}^{1} \frac{3}{\sqrt{4-x^{2}}} d x \\
& =-\frac{1}{2} \int_{0}^{1}\left(4-x^{2}\right)^{-1 / 2}(-2 x) d x+3 \int_{0}^{1} \frac{1}{\sqrt{2^{2}-x^{2}}} d x \\
& =\left[-\left(4-x^{2}\right)^{1 / 2}+3 \arcsin \frac{x}{2}\right]_{0}^{1} \\
& =\left(-\sqrt{3}+\frac{\pi}{2}\right)-(-2+0) \\
& \approx 1.839
\end{aligned}
\]

See Figure 8.1.

TECHNOLOGY Simpson's Rule can be used to give a good approximation of the value of the integral in Example 2 (for \(n=10\), the approximation is 1.839 ). When using numerical integration, however, you should be aware that Simpson's Rule does not always give good approximations when one or both of the limits of integration are near a vertical asymptote. For instance, using the Fundamental Theorem of Calculus, you can obtain
\[
\int_{0}^{1.99} \frac{x+3}{\sqrt{4-x^{2}}} d x \approx 6.213
\]

Applying Simpson's Rule (with \(n=10\) ) to this integral produces an approximation of 6.889 .

\section*{EXAMPLE 3 A Substitution Involving \(\boldsymbol{a}^{\mathbf{2}} \boldsymbol{-} \mathbf{u}^{\mathbf{2}}\)}

Find \(\int \frac{x^{2}}{\sqrt{16-x^{6}}} d x\).
Solution Because the radical in the denominator can be written in the form
\[
\sqrt{a^{2}-u^{2}}=\sqrt{4^{2}-\left(x^{3}\right)^{2}}
\]
you can try the substitution \(u=x^{3}\). Then \(d u=3 x^{2} d x\), and you have
\[
\begin{aligned}
\int \frac{x^{2}}{\sqrt{16-x^{6}}} d x & =\frac{1}{3} \int \frac{3 x^{2} d x}{\sqrt{16-\left(x^{3}\right)^{2}}} & & \text { Rewrite integral. } \\
& =\frac{1}{3} \int \frac{d u}{\sqrt{4^{2}-u^{2}}} & & \text { Substitution: } u=x^{3} \\
& =\frac{1}{3} \arcsin \frac{u}{4}+C & & \text { Arcsine Rule } \\
& =\frac{1}{3} \arcsin \frac{x^{3}}{4}+C . & & \text { Rewrite as a function of } x .
\end{aligned}
\]

\section*{REVIEW OF BASIC INTEGRATION RULES ( \(a>0\) )}
1. \(\int k f(u) d u=k \int f(u) d u\)
2. \(\int[f(u) \pm g(u)] d u=\)
\[
\int f(u) d u \pm \int g(u) d u
\]
3. \(\int d u=u+C\)
4. \(\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \neq-1\)
5. \(\int \frac{d u}{u}=\ln |u|+C\)
6. \(\int e^{u} d u=e^{u}+C\)
7. \(\int a^{u} d u=\left(\frac{1}{\ln a}\right) a^{u}+C\)
8. \(\int \sin u d u=-\cos u+C\)
9. \(\int \cos u d u=\sin u+C\)
10. \(\int \tan u d u=-\ln |\cos u|+C\)
11. \(\int \cot u d u=\ln |\sin u|+C\)
12. \(\int \sec u d u=\)
\[
\ln |\sec u+\tan u|+C
\]
13. \(\int \csc u d u=\)
\[
-\ln |\csc u+\cot u|+C
\]
14. \(\int \sec ^{2} u d u=\tan u+C\)
15. \(\int \csc ^{2} u d u=-\cot u+C\)
16. \(\int \sec u \tan u d u=\sec u+C\)
17. \(\int \csc u \cot u d u=-\csc u+C\)
18. \(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C\)
19. \(\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C\)
20. \(\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C\)

Surprisingly, two of the most commonly overlooked integration rules are the Log Rule and the Power Rule. Notice in the next two examples how these two integration rules can be disguised.

\section*{EXAMPLE 4 A Disguised Form of the Log Rule}

Find \(\int \frac{1}{1+e^{x}} d x\).
Solution The integral does not appear to fit any of the basic rules. However, the quotient form suggests the Log Rule. If you let \(u=1+e^{x}\), then \(d u=e^{x} d x\). You can obtain the required \(d u\) by adding and subtracting \(e^{x}\) in the numerator, as follows.
\[
\begin{aligned}
\int \frac{1}{1+e^{x}} d x & =\int \frac{1+e^{x}-e^{x}}{1+e^{x}} d x & & \text { Add and subtract } e^{x} \text { in numerator. } \\
& =\int\left(\frac{1+e^{x}}{1+e^{x}}-\frac{e^{x}}{1+e^{x}}\right) d x & & \text { Rewrite as two fractions. } \\
& =\int d x-\int \frac{e^{x} d x}{1+e^{x}} & & \text { Rewrite as two integrals. } \\
& =x-\ln \left(1+e^{x}\right)+C & & \text { Integrate. }
\end{aligned}
\]

NOTE There is usually more than one way to solve an integration problem. For instance, in Example 4, try integrating by multiplying the numerator and denominator by \(e^{-x}\) to obtain an integral of the form \(-\int d u / u\). See if you can get the same answer by this procedure. (Be careful: the answer will appear in a different form.)

\section*{EXAMPLE 5 A Disguised Form of the Power Rule}

Find \(\int(\cot x)[\ln (\sin x)] d x\).
Solution Again, the integral does not appear to fit any of the basic rules. However, considering the two primary choices for \(u[u=\cot x\) and \(u=\ln (\sin x)]\), you can see that the second choice is the appropriate one because
\[
u=\ln (\sin x) \quad \text { and } \quad d u=\frac{\cos x}{\sin x} d x=\cot x d x
\]

So,
\[
\begin{aligned}
\int(\cot x)[\ln (\sin x)] d x & =\int u d u & & \text { Substitution: } u=\ln (\sin x) \\
& =\frac{u^{2}}{2}+C & & \text { Integrate. } \\
& =\frac{1}{2}[\ln (\sin x)]^{2}+C . & & \text { Rewrite as a function of } x .
\end{aligned}
\]

NOTE In Example 5, try checking that the derivative of
\[
\frac{1}{2}[\ln (\sin x)]^{2}+C
\]
is the integrand of the original integral.

Trigonometric identities can often be used to fit integrals to one of the basic integration rules.

\section*{EXAMPLE 6 Using Trigonometric Identities}

Find \(\int \tan ^{2} 2 x d x\).

TECHNOLOGY If you have access to a computer algebra system, try using it to evaluate the integrals in this section. Compare the forms of the antiderivatives given by the software with the forms obtained by hand. Sometimes the forms will be the same, but often they will differ. For instance, why is the antiderivative \(\ln 2 x+C\) equivalent to the antiderivative \(\ln x+C\) ?

Solution Note that \(\tan ^{2} u\) is not in the list of basic integration rules. However, \(\sec ^{2} u\) is in the list. This suggests the trigonometric identity \(\tan ^{2} u=\sec ^{2} u-1\). If you let \(u=2 x\), then \(d u=2 d x\) and
\[
\begin{aligned}
\int \tan ^{2} 2 x d x & =\frac{1}{2} \int \tan ^{2} u d u & & \text { Substitution: } u=2 x \\
& =\frac{1}{2} \int\left(\sec ^{2} u-1\right) d u & & \text { Trigonometric identity } \\
& =\frac{1}{2} \int \sec ^{2} u d u-\frac{1}{2} \int d u & & \text { Rewrite as two integrals. } \\
& =\frac{1}{2} \tan u-\frac{u}{2}+C & & \text { Integrate. } \\
& =\frac{1}{2} \tan 2 x-x+C . & & \text { Rewrite as a function of } x .
\end{aligned}
\]

This section concludes with a summary of the common procedures for fitting integrands to the basic integration rules.

\section*{PROCEDURES FOR FITTING INTEGRANDS TO BASIC INTEGRATION RULES}

\section*{Technique}

Expand (numerator).
Separate numerator.

Complete the square.

Divide improper rational function.

Add and subtract terms in numerator.
Use trigonometric identities.
Multiply and divide by Pythagorean conjugate.

\section*{Example}
\[
\begin{aligned}
& \left(1+e^{x}\right)^{2}=1+2 e^{x}+e^{2 x} \\
& \frac{1+x}{x^{2}+1}=\frac{1}{x^{2}+1}+\frac{x}{x^{2}+1} \\
& \frac{1}{\sqrt{2 x-x^{2}}}=\frac{1}{\sqrt{1-(x-1)^{2}}} \\
& \frac{x^{2}}{x^{2}+1}=1-\frac{1}{x^{2}+1} \\
& \frac{2 x}{x^{2}+2 x+1}=\frac{2 x+2-2}{x^{2}+2 x+1}=\frac{2 x+2}{x^{2}+2 x+1}-\frac{2}{(x+1)^{2}} \\
& \cot ^{2} x=\csc ^{2} x-1 \\
& \frac{1}{1+\sin x}
\end{aligned}=\left(\frac{1}{1+\sin x}\right)\left(\frac{1-\sin x}{1-\sin x}\right)=\frac{1-\sin x}{1-\sin ^{2} x} .
\]

NOTE Remember that you can separate numerators but not denominators. Watch out for this common error when fitting integrands to basic rules.
\[
\frac{1}{x^{2}+1} \neq \frac{1}{x^{2}}+\frac{1}{1} \quad \text { Do not separate denominators. }
\]

\subsection*{8.1 Exercises}

In Exercises 1-4, select the correct antiderivative.
1. \(\frac{d y}{d x}=\frac{x}{\sqrt{x^{2}+1}}\)
(a) \(2 \sqrt{x^{2}+1}+C\)
(b) \(\sqrt{x^{2}+1}+C\)
(c) \(\frac{1}{2} \sqrt{x^{2}+1}+C\)
(d) \(\ln \left(x^{2}+1\right)+C\)
2. \(\frac{d y}{d x}=\frac{x}{x^{2}+1}\)
(a) \(\ln \sqrt{x^{2}+1}+C\)
(b) \(\frac{2 x}{\left(x^{2}+1\right)^{2}}+C\)
(c) \(\arctan x+C\)
(d) \(\ln \left(x^{2}+1\right)+C\)
3. \(\frac{d y}{d x}=\frac{1}{x^{2}+1}\)
(a) \(\ln \sqrt{x^{2}+1}+C\)
(b) \(\frac{2 x}{\left(x^{2}+1\right)^{2}}+C\)
(c) \(\arctan x+C\)
(d) \(\ln \left(x^{2}+1\right)+C\)
4. \(\frac{d y}{d x}=x \cos \left(x^{2}+1\right)\)
(a) \(2 x \sin \left(x^{2}+1\right)+C\)
(b) \(-\frac{1}{2} \sin \left(x^{2}+1\right)+C\)
(c) \(\frac{1}{2} \sin \left(x^{2}+1\right)+C\)
(d) \(-2 x \sin \left(x^{2}+1\right)+C\)

In Exercises 5-14, select the basic integration formula you can use to find the integral, and identify \(u\) and \(a\) when appropriate.
5. \(\int(5 x-3)^{4} d x\)
6. \(\int \frac{2 t+1}{t^{2}+t-4} d t\)
7. \(\int \frac{1}{\sqrt{x}(1-2 \sqrt{x})} d x\)
8. \(\int \frac{2}{(2 t-1)^{2}+4} d t\)
9. \(\int \frac{3}{\sqrt{1-t^{2}}} d t\)
10. \(\int \frac{-2 x}{\sqrt{x^{2}-4}} d x\)
11. \(\int t \sin t^{2} d t\)
12. \(\int \sec 5 x \tan 5 x d x\)
13. \(\int(\cos x) e^{\sin x} d x\)
14. \(\int \frac{1}{x \sqrt{x^{2}-4}} d x\)

In Exercises 15-52, find the indefinite integral.
15. \(\int 14(x-5)^{6} d x\)
16. \(\int \frac{9}{(t-8)^{2}} d t\)
17. \(\int \frac{7}{(z-10)^{7}} d z\)
18. \(\int t^{2} \sqrt[3]{t^{3}-1} d t\)
19. \(\int\left[v+\frac{1}{(3 v-1)^{3}}\right] d v\)
20. \(\int\left[x-\frac{5}{(3 x+5)^{2}}\right] d x\)
21. \(\int \frac{t^{2}-3}{-t^{3}+9 t+1} d t\)
22. \(\int \frac{x+1}{\sqrt{x^{2}+2 x-4}} d x\)
23. \(\int \frac{x^{2}}{x-1} d x\)
24. \(\int \frac{4 x}{x-8} d x\)
25. \(\int \frac{e^{x}}{1+e^{x}} d x\)
26. \(\int\left(\frac{1}{7 x-2}-\frac{1}{7 x+2}\right) d x\)
27. \(\int\left(5+4 x^{2}\right)^{2} d x\)
28. \(\int x\left(1+\frac{1}{x}\right)^{3} d x\)
29. \(\int x \cos 2 \pi x^{2} d x\)
30. \(\int \sec 4 x d x\)
31. \(\int \csc \pi x \cot \pi x d x\)
32. \(\int \frac{\sin x}{\sqrt{\cos x}} d x\)
33. \(\int e^{11 x} d x\)
34. \(\int \csc ^{2} x e^{\cot x} d x\)
35. \(\int \frac{2}{e^{-x}+1} d x\)
36. \(\int \frac{5}{3 e^{x}-2} d x\)
37. \(\int \frac{\ln x^{2}}{x} d x\)
38. \(\int(\tan x)[\ln (\cos x)] d x\)
39. \(\int \frac{1+\sin x}{\cos x} d x\)
40. \(\int \frac{1+\cos \alpha}{\sin \alpha} d \alpha\)
41. \(\int \frac{1}{\cos \theta-1} d \theta\)
42. \(\int \frac{2}{3(\sec x-1)} d x\)
43. \(\int \frac{-1}{\sqrt{1-(4 t+1)^{2}}} d t\)
44. \(\int \frac{1}{9+5 x^{2}} d x\)
45. \(\int \frac{\tan (2 / t)}{t^{2}} d t\)
46. \(\int \frac{e^{1 / t}}{t^{2}} d t\)
47. \(\int \frac{6}{\sqrt{10 x-x^{2}}} d x\)
48. \(\int \frac{1}{(x-1) \sqrt{4 x^{2}-8 x+3}} d x\)
49. \(\int \frac{4}{4 x^{2}+4 x+65} d x\)
50. \(\int \frac{1}{x^{2}-4 x+9} d x\)
51. \(\int \frac{1}{\sqrt{1-4 x-x^{2}}} d x\)
52. \(\int \frac{12}{\sqrt{3-8 x-x^{2}}} d x\)

Slope Fields In Exercises 53-56, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
53. \(\frac{d s}{d t}=\frac{t}{\sqrt{1-t^{4}}}\)
54. \(\frac{d y}{d x}=\tan ^{2}(2 x)\)
\[
\begin{equation*}
\left(0,-\frac{1}{2}\right) \tag{0,0}
\end{equation*}
\]


55. \(\frac{d y}{d x}=(\sec x+\tan x)^{2}\)
56. \(\frac{d y}{d x}=\frac{1}{\sqrt{4 x-x^{2}}}\)
\((0,1)\)
\(\left(2, \frac{1}{2}\right)\)



CAS Slope Fields In Exercises 57 and 58, use a computer algebra system to graph the slope field for the differential equation and graph the solution through the specified initial condition.
57. \(\frac{d y}{d x}=0.8 y, y(0)=4\)
58. \(\frac{d y}{d x}=5-y, y(0)=1\)

In Exercises 59-64, solve the differential equation.
59. \(\frac{d y}{d x}=\left(e^{x}+5\right)^{2}\)
60. \(\frac{d y}{d x}=\left(3-e^{x}\right)^{2}\)
61. \(\frac{d r}{d t}=\frac{10 e^{t}}{\sqrt{1-e^{2 t}}}\)
62. \(\frac{d r}{d t}=\frac{\left(1+e^{t}\right)^{2}}{e^{t}}\)
63. \(\left(4+\tan ^{2} x\right) y^{\prime}=\sec ^{2} x\)
64. \(y^{\prime}=\frac{1}{x \sqrt{4 x^{2}-1}}\)

In Exercises 65-72, evaluate the definite integral. Use the integration capabilities of a graphing utility to verify your result.
65. \(\int_{0}^{\pi / 4} \cos 2 x d x\)
66. \(\int_{0}^{\pi} \sin ^{2} t \cos t d t\)
67. \(\int_{0}^{1} x e^{-x^{2}} d x\)
68. \(\int_{1}^{e} \frac{1-\ln x}{x} d x\)
69. \(\int_{0}^{8} \frac{2 x}{\sqrt{x^{2}+36}} d x\)
70. \(\int_{1}^{2} \frac{x-2}{x} d x\)
71. \(\int_{0}^{2 / \sqrt{3}} \frac{1}{4+9 x^{2}} d x\)
72. \(\int_{0}^{7} \frac{1}{\sqrt{100-x^{2}}} d x\)

Area In Exercises 73-78, find the area of the region.
73. \(y=(-4 x+6)^{3 / 2}\)

74. \(y=x \sqrt{8-2 x^{2}}\)

75. \(y=\frac{3 x+2}{x^{2}+9}\)
76. \(y=\frac{5}{x^{2}+1}\)


77. \(y^{2}=x^{2}\left(1-x^{2}\right)\)



CAS In Exercises 79-82, use a computer algebra system to find the integral. Use the computer algebra system to graph two antiderivatives. Describe the relationship between the graphs of the two antiderivatives.
79. \(\int \frac{1}{x^{2}+4 x+13} d x\)
80. \(\int \frac{x-2}{x^{2}+4 x+13} d x\)
81. \(\int \frac{1}{1+\sin \theta} d \theta\)
82. \(\int\left(\frac{e^{x}+e^{-x}}{2}\right)^{3} d x\)

\section*{WRITING ABOUT CONCEPTS}

In Exercises 83-86, state the integration formula you would use to perform the integration. Explain why you chose that formula. Do not integrate.
83. \(\int x\left(x^{2}+1\right)^{3} d x\)
84. \(\int x \sec \left(x^{2}+1\right) \tan \left(x^{2}+1\right) d x\)
85. \(\int \frac{x}{x^{2}+1} d x\)
86. \(\int \frac{1}{x^{2}+1} d x\)
87. Determine the constants \(a\) and \(b\) such that
\(\sin x+\cos x=a \sin (x+b)\).
Use this result to integrate \(\int \frac{d x}{\sin x+\cos x}\).
88. Show that \(\sec x=\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}\). Then use this identity to derive the basic integration rule
\(\int \sec x d x=\ln |\sec x+\tan x|+C\).
89. Area The graphs of \(f(x)=x\) and \(g(x)=a x^{2}\) intersect at the points \((0,0)\) and \((1 / a, 1 / a)\). Find \(a(a>0)\) such that the area of the region bounded by the graphs of these two functions is \(\frac{2}{3}\).

\section*{CAPSTONE}
90. (a) Explain why the antiderivative \(y_{1}=e^{x+C_{1}}\) is equivalent to the antiderivative \(y_{2}=C e^{x}\).
(b) Explain why the antiderivative \(y_{1}=\sec ^{2} x+C_{1}\) is equivalent to the antiderivative \(y_{2}=\tan ^{2} x+C\).
91. Think About It Use a graphing utility to graph the function \(f(x)=\frac{1}{5}\left(x^{3}-7 x^{2}+10 x\right)\). Use the graph to determine whether \(\int_{0}^{5} f(x) d x\) is positive or negative. Explain.
92. Think About It When evaluating \(\int_{-1}^{1} x^{2} d x\), is it appropriate to substitute \(u=x^{2}, x=\sqrt{u}\), and \(d x=\frac{d u}{2 \sqrt{u}}\) to obtain \(\frac{1}{2} \int_{1}^{1} \sqrt{u} d u=0\) ? Explain.

Approximation In Exercises 93 and 94, determine which value best approximates the area of the region between the \(x\)-axis and the function over the given interval. (Make your selection on the basis of a sketch of the region and not by integrating.)
93. \(f(x)=\frac{4 x}{x^{2}+1}, \quad[0,2]\)
(a) 3
(b) 1
(c) -8
(d) 8
(e) 10
94. \(f(x)=\frac{4}{x^{2}+1}, \quad[0,2]\)
(a) 3
(b) 1
(c) -4
(d) 4
(e) 10

Interpreting Integrals In Exercises 95 and 96, (a) sketch the region whose area is given by the integral, (b) sketch the solid whose volume is given by the integral if the disk method is used, and (c) sketch the solid whose volume is given by the integral if the shell method is used. (There is more than one correct answer for each part.)
95. \(\int_{0}^{2} 2 \pi x^{2} d x\)
96. \(\int_{0}^{4} \pi y d y\)
97. Volume The region bounded by \(y=e^{-x^{2}}, y=0, x=0\), and \(x=b(b>0)\) is revolved about the \(y\)-axis.
(a) Find the volume of the solid generated if \(b=1\).
(b) Find \(b\) such that the volume of the generated solid is \(\frac{4}{3}\) cubic units.
98. Volume Consider the region bounded by the graphs of \(x=0\), \(y=\cos x^{2}, y=\sin x^{2}\), and \(x=\sqrt{\pi} / 2\). Find the volume of the solid generated by revolving the region about the \(y\)-axis.
99. Arc Length Find the arc length of the graph of \(y=\ln (\sin x)\) from \(x=\pi / 4\) to \(x=\pi / 2\).
100. Arc Length Find the arc length of the graph of \(y=\ln (\cos x)\) from \(x=0\) to \(x=\pi / 3\).
101. Surface Area Find the area of the surface formed by revolving the graph of \(y=2 \sqrt{x}\) on the interval \([0,9]\) about the \(x\)-axis.
102. Centroid Find the \(x\)-coordinate of the centroid of the region bounded by the graphs of
\[
y=\frac{5}{\sqrt{25-x^{2}}}, \quad y=0, \quad x=0, \quad \text { and } \quad x=4
\]

In Exercises 103 and 104, find the average value of the function over the given interval.
103. \(f(x)=\frac{1}{1+x^{2}}, \quad-3 \leq x \leq 3\)
104. \(f(x)=\sin n x, \quad 0 \leq x \leq \pi / n, n\) is a positive integer.

Arc Length In Exercises 105 and 106, use the integration capabilities of a graphing utility to approximate the arc length of the curve over the given interval.
105. \(y=\tan \pi x, \quad\left[0, \frac{1}{4}\right]\)
106. \(y=x^{2 / 3}, \quad[1,8]\)

\section*{107. Finding a Pattern}
(a) Find \(\int \cos ^{3} x d x\).
(b) Find \(\int \cos ^{5} x d x\).
(c) Find \(\int \cos ^{7} x d x\).
(d) Explain how to find \(\int \cos ^{15} x d x\) without actually integrating.
108. Finding a Pattern
(a) Write \(\int \tan ^{3} x d x\) in terms of \(\int \tan x d x\). Then find \(\int \tan ^{3} x d x\)
(b) Write \(\int \tan ^{5} x d x\) in terms of \(\int \tan ^{3} x d x\).
(c) Write \(\int \tan ^{2 k+1} x d x\), where \(k\) is a positive integer, in terms of \(\int \tan ^{2 k-1} x d x\).
(d) Explain how to find \(\int \tan ^{15} x d x\) without actually integrating.
109. Methods of Integration Show that the following results are equivalent.
Integration by tables:
\(\int \sqrt{x^{2}+1} d x=\frac{1}{2}\left(x \sqrt{x^{2}+1}+\ln \left|x+\sqrt{x^{2}+1}\right|\right)+C\)
Integration by computer algebra system:
\(\int \sqrt{x^{2}+1} d x=\frac{1}{2}\left[x \sqrt{x^{2}+1}+\operatorname{arcsinh}(x)\right]+C\)

\section*{PUTNAM EXAM CHALLENGE}
110. Evaluate \(\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{8.2 Integration by Parts}

\section*{EXPLORATION}

Proof Without Words Here is a different approach to proving the formula for integration by parts. Exercise taken from "Proof Without Words: Integration by Parts" by Roger B. Nelsen, Mathematics Magazine, 64, No. 2, April 1991, p. 130, by permission of the author.


Area \(\square\) Area \(\square=q s-p r\)
\(\int_{r}^{s} u d v+\int_{q}^{p} v d u=[u v]_{(p, r)}^{(q, s)}\)
\(\int_{r}^{s} u d v=[u v]_{(p, r)}^{(q, s)}-\int_{q}^{p} v d u\)
Explain how this graph proves the theorem. Which notation in this proof is unfamiliar? What do you think it means?
- Find an antiderivative using integration by parts.
- Use a tabular method to perform integration by parts.

\section*{Integration by Parts}

In this section you will study an important integration technique called integration by parts. This technique can be applied to a wide variety of functions and is particularly useful for integrands involving products of algebraic and transcendental functions. For instance, integration by parts works well with integrals such as
\[
\int x \ln x d x, \quad \int x^{2} e^{x} d x, \quad \text { and } \quad \int e^{x} \sin x d x
\]

Integration by parts is based on the formula for the derivative of a product
\[
\begin{aligned}
\frac{d}{d x}[u v] & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =u v^{\prime}+v u^{\prime}
\end{aligned}
\]
where both \(u\) and \(v\) are differentiable functions of \(x\). If \(u^{\prime}\) and \(v^{\prime}\) are continuous, you can integrate both sides of this equation to obtain
\[
\begin{aligned}
u v & =\int u v^{\prime} d x+\int v u^{\prime} d x \\
& =\int u d v+\int v d u
\end{aligned}
\]

By rewriting this equation, you obtain the following theorem.

\section*{THEOREM 8.1 INTEGRATION BY PARTS}

If \(u\) and \(v\) are functions of \(x\) and have continuous derivatives, then
\[
\int u d v=u v-\int v d u
\]

This formula expresses the original integral in terms of another integral. Depending on the choices of \(u\) and \(d v\), it may be easier to evaluate the second integral than the original one. Because the choices of \(u\) and \(d v\) are critical in the integration by parts process, the following guidelines are provided.

\section*{GUIDELINES FOR INTEGRATION BY PARTS}
1. Try letting \(d v\) be the most complicated portion of the integrand that fits a basic integration rule. Then \(u\) will be the remaining factor(s) of the integrand.
2. Try letting \(u\) be the portion of the integrand whose derivative is a function simpler than \(u\). Then \(d v\) will be the remaining factor( s ) of the integrand.

Note that \(d v\) always includes the \(d x\) of the original integrand.

NOTE In Example 1, note that it is not necessary to include a constant of integration when solving
\[
v=\int e^{x} d x=e^{x}+C_{1}
\]

To illustrate this, replace \(v=e^{x}\) by \(v=e^{x}+C_{1}\) and apply integration by parts to see that you obtain the same result.

TECHNOLOGY Try graphing
\[
\int x^{2} \ln x d x \quad \text { and } \quad \frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}
\]
on your graphing utility. Do you get the same graph? (This will take a while, so be patient.)

\section*{EXAMPLE 1 Integration by Parts}

Find \(\int x e^{x} d x\).
Solution To apply integration by parts, you need to write the integral in the form \(\int u d v\). There are several ways to do this.
\[
\int \underbrace{(x)}_{u} \underbrace{\left(e^{x} d x\right)}_{d v}, \int \underbrace{\left(e^{x}\right)}_{u} \underbrace{x d x)}_{d v}, \int(\underbrace{1}_{u}) \underbrace{\left(x e^{x} d x\right)}_{d v}, \int \underbrace{\left(x e^{x}\right)}_{u} \underbrace{d x)}_{d v}
\]

The guidelines on page 527 suggest the first option because the derivative of \(u=x\) is simpler than \(x\), and \(d v=e^{x} d x\) is the most complicated portion of the integrand that fits a basic integration formula.
\[
\begin{array}{rlr}
d v=e^{x} d x \quad \square \quad v & =\int d v=\int e^{x} d x=e^{x} \\
u & =x & \square \\
d u & =d x
\end{array}
\]

Now, integration by parts produces
\[
\begin{aligned}
\int u d v & =u v-\int v d u & & \text { Integration by parts formula } \\
\int x e^{x} d x & =x e^{x}-\int e^{x} d x & & \text { Substitute. } \\
& =x e^{x}-e^{x}+C . & & \text { Integrate. }
\end{aligned}
\]

To check this, differentiate \(x e^{x}-e^{x}+C\) to see that you obtain the original integrand.

\section*{EXAMPLE 2 Integration by Parts}

Find \(\int x^{2} \ln x d x\).
Solution In this case, \(x^{2}\) is more easily integrated than \(\ln x\). Furthermore, the derivative of \(\ln x\) is simpler than \(\ln x\). So, you should let \(d v=x^{2} d x\).
\[
\begin{aligned}
d v=x^{2} d x \quad \square & v=\int x^{2} d x=\frac{x^{3}}{3} \\
u=\ln x \quad \square & d u=\frac{1}{x} d x
\end{aligned}
\]

Integration by parts produces
\[
\begin{aligned}
\int u d v & =u v-\int v d u & & \text { Integration by parts formula } \\
\int x^{2} \ln x d x & =\frac{x^{3}}{3} \ln x-\int\left(\frac{x^{3}}{3}\right)\left(\frac{1}{x}\right) d x & & \text { Substitute. } \\
& =\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x & & \text { Simplify. } \\
& =\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+C . & & \text { Integrate. }
\end{aligned}
\]

You can check this result by differentiating.
\[
\frac{d}{d x}\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]=\frac{x^{3}}{3}\left(\frac{1}{x}\right)+(\ln x)\left(x^{2}\right)-\frac{x^{2}}{3}=x^{2} \ln x
\]

FOR FURTHER INFORMATION To see how integration by parts is used to prove Stirling's approximation
\[
\ln (n!)=n \ln n-n
\]
see the article "The Validity of Stirling's Approximation: A Physical Chemistry Project" by A. S. Wallner and K. A. Brandt in Journal of Chemical Education.


The area of the region is approximately 0.571 .

Figure 8.2

One surprising application of integration by parts involves integrands consisting of single terms, such as \(\int \ln x d x\) or \(\int \arcsin x d x\). In these cases, try letting \(d v=d x\), as shown in the next example.

\section*{EXAMPLE 3 An Integrand with a Single Term}

Evaluate \(\int_{0}^{1} \arcsin x d x\).
Solution Let \(d v=d x\).
\[
\begin{aligned}
d v & =d x & \square & v=\int d x=x \\
u & =\arcsin x & \square & d u=\frac{1}{\sqrt{1-x^{2}}} d x
\end{aligned}
\]

Integration by parts now produces
\[
\begin{aligned}
\int u d v & =u v-\int v d u & & \begin{array}{l}
\text { Integration by parts } \\
\text { formula }
\end{array} \\
\int \arcsin x d x & =x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x & & \text { Substitute. } \\
& =x \arcsin x+\frac{1}{2} \int\left(1-x^{2}\right)^{-1 / 2}(-2 x) d x & & \text { Rewrite. } \\
& =x \arcsin x+\sqrt{1-x^{2}}+C . & & \text { Integrate. }
\end{aligned}
\]

Using this antiderivative, you can evaluate the definite integral as follows.
\[
\begin{aligned}
\int_{0}^{1} \arcsin x d x & =\left[x \arcsin x+\sqrt{1-x^{2}}\right]_{0}^{1} \\
& =\frac{\pi}{2}-1 \\
& \approx 0.571
\end{aligned}
\]

The area represented by this definite integral is shown in Figure 8.2.

TECHNOLOGY Remember that there are two ways to use technology to evaluate a definite integral: (1) you can use a numerical approximation such as the Trapezoidal Rule or Simpson's Rule, or (2) you can use a computer algebra system to find the antiderivative and then apply the Fundamental Theorem of Calculus. Both methods have shortcomings. To find the possible error when using a numerical method, the integrand must have a second derivative (Trapezoidal Rule) or a fourth derivative (Simpson's Rule) in the interval of integration: the integrand in Example 3 fails to meet either of these requirements. To apply the Fundamental Theorem of Calculus, the symbolic integration utility must be able to find the antiderivative.
Which method would you use to evaluate
\[
\int_{0}^{1} \arctan x d x ?
\]

Which method would you use to evaluate
\[
\int_{0}^{1} \arctan x^{2} d x ?
\]

\section*{Some integrals require repeated use of the integration by parts formula.}

\section*{EXAMPLE 4 Repeated Use of Integration by Parts}

Find \(\int x^{2} \sin x d x\).
Solution The factors \(x^{2}\) and \(\sin x\) are equally easy to integrate. However, the derivative of \(x^{2}\) becomes simpler, whereas the derivative of \(\sin x\) does not. So, you should let \(u=x^{2}\).
\[
\left.\begin{array}{rlrl}
d v & =\sin x d x & \square & v \\
u & =\int \sin x d x=-\cos x \\
u & & \square & d u
\end{array}\right)=2 x d x
\]

Now, integration by parts produces
\[
\int x^{2} \sin x d x=-x^{2} \cos x+\int 2 x \cos x d x . \quad \text { First use of integration by parts }
\]

This first use of integration by parts has succeeded in simplifying the original integral, but the integral on the right still doesn't fit a basic integration rule. To evaluate that integral, you can apply integration by parts again. This time, let \(u=2 x\).
\[
\begin{array}{rlrl}
d v & =\cos x d x & \square & \\
u & =2 x & \square & \cos x d x=\sin x \\
u & \\
& \\
\end{array}
\]

Now, integration by parts produces
\[
\begin{aligned}
\int 2 x \cos x d x & =2 x \sin x-\int 2 \sin x d x \quad \text { Second use of integration by parts } \\
& =2 x \sin x+2 \cos x+C
\end{aligned}
\]

Combining these two results, you can write
\[
\int x^{2} \sin x d x=-x^{2} \cos x+2 x \sin x+2 \cos x+C
\]

When making repeated applications of integration by parts, you need to be careful not to interchange the substitutions in successive applications. For instance, in Example 4, the first substitution was \(u=x^{2}\) and \(d v=\sin x d x\). If, in the second application, you had switched the substitution to \(u=\cos x\) and \(d v=2 x\), you would have obtained
\[
\begin{aligned}
\int x^{2} \sin x d x & =-x^{2} \cos x+\int 2 x \cos x d x \\
& =-x^{2} \cos x+x^{2} \cos x+\int x^{2} \sin x d x=\int x^{2} \sin x d x
\end{aligned}
\]
thereby undoing the previous integration and returning to the original integral. When making repeated applications of integration by parts, you should also watch for the appearance of a constant multiple of the original integral. For instance, this occurs when you use integration by parts to evaluate \(\int e^{x} \cos 2 x d x\), and also occurs in Example 5 on the next page.

The integral in Example 5 is an important one. In Section 8.4 (Example 5), you will see that it is used to find the arc length of a parabolic segment.

STUDY TIP The trigonometric identities
\[
\begin{aligned}
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& \cos ^{2} x=\frac{1+\cos 2 x}{2}
\end{aligned}
\]
play an important role in this chapter.


Figure 8.3

\section*{EXAMPLE 5 Integration by Parts}

Find \(\int \sec ^{3} x d x\).
Solution The most complicated portion of the integrand that can be easily integrated is \(\sec ^{2} x\), so you should let \(d v=\sec ^{2} x d x\) and \(u=\sec x\).
\[
\begin{array}{rlrl}
d v & =\sec ^{2} x d x & \square & v \\
& =\int \sec ^{2} x d x=\tan x \\
u & =\sec x & \square & d u
\end{array}=\sec x \tan x d x
\]

Integration by parts produces
\[
\begin{array}{cll}
\int u d v & =u v-\int v d u & \begin{array}{l}
\text { Integration by parts } \\
\text { formula }
\end{array} \\
\int \sec ^{3} x d x & =\sec x \tan x-\int \sec x \tan ^{2} x d x & \text { Substitute. } \\
\int \sec ^{3} x d x & =\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x & \text { Trigonometric identity } \\
\int \sec ^{3} x d x & =\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x & \text { Rewrite. } \\
2 \int \sec ^{3} x d x & =\sec x \tan x+\int \sec x d x & \text { Collect like integrals. } \\
2 \int \sec ^{3} x d x & =\sec x \tan x+\ln |\sec x+\tan x|+C & \text { Integrate. } \\
\iint \sec ^{3} x d x & =\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C . & \text { Divide by } 2 .
\end{array}
\]

\section*{EXAMPLE 6 Finding a Centroid}

A machine part is modeled by the region bounded by the graph of \(y=\sin x\) and the \(x\)-axis, \(0 \leq x \leq \pi / 2\), as shown in Figure 8.3. Find the centroid of this region.
Solution Begin by finding the area of the region.
\[
A=\int_{0}^{\pi / 2} \sin x d x=[-\cos x]_{0}^{\pi / 2}=1
\]

Now, you can find the coordinates of the centroid as follows.
\[
\bar{y}=\frac{1}{A} \int_{0}^{\pi / 2} \frac{\sin x}{2}(\sin x) d x=\frac{1}{4} \int_{0}^{\pi / 2}(1-\cos 2 x) d x=\frac{1}{4}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}=\frac{\pi}{8}
\]

You can evaluate the integral for \(\bar{x},(1 / A) \int_{0}^{\pi / 2} x \sin x d x\), with integration by parts. To do this, let \(d v=\sin x d x\) and \(u=x\). This produces \(v=-\cos x\) and \(d u=d x\), and you can write
\[
\int x \sin x d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x+C
\]

Finally, you can determine \(\bar{x}\) to be
\[
\bar{x}=\frac{1}{A} \int_{0}^{\pi / 2} x \sin x d x=[-x \cos x+\sin x]_{0}^{\pi / 2}=1
\]

So, the centroid of the region is \((1, \pi / 8)\).

STUDY TIP You can use the acronym LIATE as a guideline for choosing \(u\) in integration by parts. In order, check the integrand for the following.

Is there a Logarithmic part?
Is there an Inverse trigonometric part?
Is there an Algebraic part?
Is there a Trigonometric part?
Is there an Exponential part?

FOR FURTHER INFORMATION
For more information on the tabular method, see the article "Tabular Integration by Parts" by David Horowitz in The College Mathematics Journal, and the article "More on Tabular Integration by Parts" by Leonard Gillman in The College Mathematics Journal. To view these articles, go to the website www.matharticles.com.

As you gain experience in using integration by parts, your skill in determining \(u\) and \(d v\) will increase. The following summary lists several common integrals with suggestions for the choices of \(u\) and \(d v\).

\section*{SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS}
1. For integrals of the form
\[
\int x^{n} e^{a x} d x, \quad \int x^{n} \sin a x d x, \quad \text { or } \quad \int x^{n} \cos a x d x
\]
let \(u=x^{n}\) and let \(d v=e^{a x} d x, \sin a x d x\), or \(\cos a x d x\).
2. For integrals of the form
\[
\int x^{n} \ln x d x, \quad \int x^{n} \arcsin a x d x, \quad \text { or } \quad \int x^{n} \arctan a x d x
\]
let \(u=\ln x, \arcsin a x\), or \(\arctan a x\) and let \(d v=x^{n} d x\).
3. For integrals of the form
\[
\int e^{a x} \sin b x d x \quad \text { or } \quad \int e^{a x} \cos b x d x
\]
let \(u=\sin b x\) or \(\cos b x\) and let \(d v=e^{a x} d x\).

\section*{Tabular Method}

In problems involving repeated applications of integration by parts, a tabular method, illustrated in Example 7, can help to organize the work. This method works well for integrals of the form \(\int x^{n} \sin a x d x, \int x^{n} \cos a x d x\), and \(\int x^{n} e^{a x} d x\).

\section*{EXAMPLE 7 Using the Tabular Method}

Find \(\int x^{2} \sin 4 x d x\).
Solution Begin as usual by letting \(u=x^{2}\) and \(d v=v^{\prime} d x=\sin 4 x d x\). Next, create a table consisting of three columns, as shown.


The solution is obtained by adding the signed products of the diagonal entries:
\[
\int x^{2} \sin 4 x d x=-\frac{1}{4} x^{2} \cos 4 x+\frac{1}{8} x \sin 4 x+\frac{1}{32} \cos 4 x+C
\]

\subsection*{8.2 Exercises}

In Exercises 1-6, identify \(u\) and \(d v\) for finding the integral using integration by parts. (Dnot evaluate the integral.)
1. \(\int x e^{2 x} d x\)
2. \(\int x^{2} e^{2 x} d x\)
3. \(\int(\ln x)^{2} d x\)
4. \(\int \ln 5 x d x\)
5. \(\int x \sec ^{2} x d x\)
6. \(\int x^{2} \cos x d x\)

In Exercises 7-10, evaluate the integral using integration by parts with the given choices of \(u\) and \(d v\).
7. \(\int x^{3} \ln x d x ; u=\ln x, d v=x^{3} d x\)
8. \(\int(4 x+7) e^{x} d x ; u=4 x+7, d v=e^{x} d x\)
9. \(\int x \sin 3 x d x ; u=x, d v=\sin 3 x d x\)
10. \(\int x \cos 4 x d x ; u=x, d v=\cos 4 x d x\)

In Exercises 11-38, find the integral. (Note: Solve by the simplest methodnet all require integration by parts.)
11. \(\int x e^{-4 x} d x\)
12. \(\int \frac{4 x}{e^{x}} d x\)
13. \(\int x^{3} e^{x} d x\)
14. \(\int \frac{e^{1 / t}}{t^{2}} d t\)
15. \(\int x^{2} e^{x^{3}} d x\)
16. \(\int x^{4} \ln x d x\)
17. \(\int t \ln (t+1) d t\)
18. \(\int \frac{1}{x(\ln x)^{3}} d x\)
19. \(\int \frac{(\ln x)^{2}}{x} d x\)
20. \(\int \frac{\ln x}{x^{2}} d x\)
21. \(\int \frac{x e^{2 x}}{(2 x+1)^{2}} d x\)
22. \(\int \frac{x^{3} e^{x^{2}}}{\left(x^{2}+1\right)^{2}} d x\)
23. \(\int\left(x^{2}-1\right) e^{x} d x\)
24. \(\int \frac{\ln 2 x}{x^{2}} d x\)
25. \(\int x \sqrt{x-5} d x\)
26. \(\int \frac{x}{\sqrt{5+4 x}} d x\)
27. \(\int x \cos x d x\)
28. \(\int x \sin x d x\)
29. \(\int x^{3} \sin x d x\)
30. \(\int x^{2} \cos x d x\)
31. \(\int t \csc t \cot t d t\)
32. \(\int \theta \sec \theta \tan \theta d \theta\)
33. \(\int \arctan x d x\)
34. \(\int 4 \arccos x d x\)
35. \(\int e^{2 x} \sin x d x\)
36. \(\int e^{-3 x} \sin 5 x d x\)
37. \(\int e^{-x} \cos 2 x d x\)
38. \(\int e^{3 x} \cos 4 x d x\)

In Exercises 39-44, solve the differential equation.
39. \(y^{\prime}=x e^{x^{2}}\)
40. \(y^{\prime}=\ln x\)
41. \(\frac{d y}{d t}=\frac{t^{2}}{\sqrt{3+5 t}}\)
42. \(\frac{d y}{d x}=x^{2} \sqrt{x-3}\)
43. \((\cos y) y^{\prime}=2 x\)
44. \(y^{\prime}=\arctan \frac{x}{2}\)

Slope Fields In Exercises 45 and 46, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website ww.mathgraphs.com.
45. \(\frac{d y}{d x}=x \sqrt{y} \cos x,(0,4)\)
46. \(\frac{d y}{d x}=e^{-x / 3} \sin 2 x,\left(0,-\frac{18}{37}\right)\)



CAS Slope Fields In Exercises 47 and 48, use a computer algebra system to graph the slope field for the differential equation and graph the solution through the specified initial condition.
47. \(\frac{d y}{d x}=\frac{x}{y} e^{x / 8}\)
48. \(\frac{d y}{d x}=\frac{x}{y} \sin x\)
\(y(0)=2\)
\(y(0)=4\)

In Exercises 49-60, evaluate the definite integral. Use a graphing utility to confirm your result.
49. \(\int_{0}^{3} x e^{x / 2} d x\)
50. \(\int_{0}^{2} x^{2} e^{-2 x} d x\)
51. \(\int_{0}^{\pi / 4} x \cos 2 x d x\)
52. \(\int_{0}^{\pi} x \sin 2 x d x\)
53. \(\int_{0}^{1 / 2} \arccos x d x\)
54. \(\int_{0}^{1} x \arcsin x^{2} d x\)
55. \(\int_{0}^{1} e^{x} \sin x d x\)
56. \(\int_{0}^{2} e^{-x} \cos x d x\)
57. \(\int_{1}^{2} \sqrt{x} \ln x d x\)
58. \(\int_{0}^{1} \ln \left(4+x^{2}\right) d x\)
59. \(\int_{2}^{4} x \operatorname{arcsec} x d x\)
60. \(\int_{0}^{\pi / 8} x \sec ^{2} 2 x d x\)

In Exercises 61-66, use the tabular method to find the integral.
61. \(\int x^{2} e^{2 x} d x\)
62. \(\int x^{3} e^{-2 x} d x\)
63. \(\int x^{3} \sin x d x\)
64. \(\int x^{3} \cos 2 x d x\)
65. \(\int x \sec ^{2} x d x\)
66. \(\int x^{2}(x-2)^{3 / 2} d x\)

In Exercises 67-74, find or evaluate the integral using substitution first, then using integration by parts.
67. \(\int \sin \sqrt{x} d x\)
68. \(\int \cos \sqrt{x} d x\)
69. \(\int_{0}^{4} x \sqrt{4-x} d x\)
70. \(\int 2 x^{3} \cos x^{2} d x\)
71. \(\int x^{5} e^{x^{2}} d x\)
72. \(\int_{0}^{2} e^{\sqrt{2 x}} d x\)
73. \(\int \cos (\ln x) d x\)
74. \(\int \ln \left(x^{2}+1\right) d x\)

\section*{WRITING ABOUT CONGEPTS}
75. Integration by parts is based on what differentiation rule? Explain.
76. In your own words, state how you determine which parts of the integrand should be \(u\) and \(d v\).
77. When evaluating \(\int x \sin x d x\), explain how letting \(u=\sin x\) and \(d v=x d x\) makes the solution more difficult to find.

\section*{CAPSTONE}
78. State whether you would use integration by parts to evaluate each integral. If so, identify what you would use for \(u\) and \(d v\). Explain your reasoning.
(a) \(\int \frac{\ln x}{x} d x\)
(b) \(\int x \ln x d x\)
(c) \(\int x^{2} e^{-3 x} d x\)
(d) \(\int 2 x e^{x^{2}} d x\)
(e) \(\int \frac{x}{\sqrt{x+1}} d x\)
(f) \(\int \frac{x}{\sqrt{x^{2}+1}} d x\)

CAS In Exercises 79-82, use a computer algebra system to (a) find or evaluate the integral and (b) graph two antiderivatives. (c) Bcribe the relationship between the graphs of the antiderivatives.
79. \(\int t^{3} e^{-4 t} d t\)
80. \(\int \alpha^{4} \sin \pi \alpha d \alpha\)
81. \(\int_{0}^{\pi / 2} e^{-2 x} \sin 3 x d x\)
82. \(\int_{0}^{5} x^{4}\left(25-x^{2}\right)^{3 / 2} d x\)
83. Integrate \(\int 2 x \sqrt{2 x-3} d x\)
(a) by parts, letting \(d v=\sqrt{2 x-3} d x\).
(b) by substitution, letting \(u=2 x-3\).
84. Integrate \(\int x \sqrt{9+x} d x\)
(a) by parts, letting \(d v=\sqrt{9+x} d x\).
(b) by substitution, letting \(u=9+x\).
85. Integrate \(\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x\)
(a) by parts, letting \(d v=\left(x / \sqrt{4+x^{2}}\right) d x\).
(b) by substitution, letting \(u=4+x^{2}\).
86. Integrate \(\int x \sqrt{4-x} d x\)
(a) by parts, letting \(d v=\sqrt{4-x} d x\).
(b) by substitution, letting \(u=4-x\).

CAS In Exercises 87 and 88, use a computer algebra system to find the integrals for \(n=0,1,2\), and 3 . Use the result to obtain a general rule for the integrals for any positive integer \(n\) and test your results for \(\boldsymbol{n}=4\).
87. \(\int x^{n} \ln x d x\)
88. \(\int x^{n} e^{x} d x\)

In Exercises 89-94, use integration by parts to prove the formula. (For Exercises 89-92, assume that \(\boldsymbol{n}\) is a positive integer.)
89. \(\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x\)
90. \(\int x^{n} \cos x d x=x^{n} \sin x-n \int x^{n-1} \sin x d x\)
91. \(\int x^{n} \ln x d x=\frac{x^{n+1}}{(n+1)^{2}}[-1+(n+1) \ln x]+C\)
92. \(\int x^{n} e^{a x} d x=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x\)
93. \(\int e^{a x} \sin b x d x=\frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}+C\)
94. \(\int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}+C\)

In Exercises 95-98, find the integral by using the appropriate formula from Exercises 89-94.
95. \(\int x^{5} \ln x d x\)
96. \(\int x^{2} \cos x d x\)
97. \(\int e^{2 x} \cos 3 x d x\)
98. \(\int x^{3} e^{2 x} d x\)

Area In Exercises 99-102, use a graphing utility to graph the region bounded by the graphs of the equations, and find the area of the region.
99. \(y=2 x e^{-x}, y=0, x=3\)
100. \(y=\frac{1}{16} x e^{-x / 4}, y=0, x=0, x=4\)
101. \(y=e^{-x} \sin \pi x, y=0, x=1\)
102. \(y=x \sin x, y=0, x=\pi\)
103. Area, Volume, and Centroid Given the region bounded by the graphs of \(y=\ln x, y=0\), and \(x=e\), find
(a) the area of the region.
(b) the volume of the solid generated by revolving the region about the \(x\)-axis.
(c) the volume of the solid generated by revolving the region about the \(y\)-axis.
(d) the centroid of the region.
104. Volume and Centroid Given the region bounded by the graphs of \(y=x \sin x, y=0, x=0\), and \(x=\pi\), find
(a) the volume of the solid generated by revolving the region about the \(x\)-axis.
(b) the volume of the solid generated by revolving the region about the \(y\)-axis.
(c) the centroid of the region.
105. Centroid Find the centroid of the region bounded by the graphs of \(y=\arcsin x, x=0\), and \(y=\pi / 2\). How is this problem related to Example 6 in this section?
106. Centroid Find the centroid of the region bounded by the graphs of \(f(x)=x^{2}, g(x)=2^{x}, x=2\), and \(x=4\).
107. Average Displacement A damping force affects the vibration of a spring so that the displacement of the spring is given by \(y=e^{-4 t}(\cos 2 t+5 \sin 2 t)\). Find the average value of \(y\) on the interval from \(t=0\) to \(t=\pi\).
108. Memory Model A model for the ability \(M\) of a child to memorize, measured on a scale from 0 to 10 , is given by \(M=1+1.6 t \ln t, 0<t \leq 4\), where \(t\) is the child's age in years. Find the average value of this model
(a) between the child's first and second birthdays.
(b) between the child's third and fourth birthdays.

Present Value In Exercises 109 and 110, find the present value \(P\) of a continuous income flow of \(c(t)\) dollars per year if
\(P=\int_{0}^{t_{1}} c(t) e^{-r t} d t\)
where \(t_{1}\) is the time in years and \(r\) is the annual interest rate compounded continuously.
109. \(c(t)=100,000+4000 t, r=5 \%, t_{1}=10\)
110. \(c(t)=30,000+500 t, r=7 \%, t_{1}=5\)

Integrals Used to Find Fourier Coefficients In Exercises 111 and 112, verify the value of the definite integral, where \(n\) is a positive integer.
111. \(\int_{-\pi}^{\pi} x \sin n x d x=\left\{\begin{array}{cl}\frac{2 \pi}{n}, & n \text { is odd } \\ -\frac{2 \pi}{n}, & n \text { is even }\end{array}\right.\)
112. \(\int_{-\pi}^{\pi} x^{2} \cos n x d x=\frac{(-1)^{n} 4 \pi}{n^{2}}\)
113. Vibrating String A string stretched between the two points \((0,0)\) and \((2,0)\) is plucked by displacing the string \(h\) units at its midpoint. The motion of the string is modeled by a Fourier Sine Series whose coefficients are given by
\(b_{n}=h \int_{0}^{1} x \sin \frac{n \pi x}{2} d x+h \int_{1}^{2}(-x+2) \sin \frac{n \pi x}{2} d x\).
Find \(b_{n}\).
114. Find the fallacy in the following argument that \(0=1\).
\[
\begin{aligned}
& d v=d x \quad \square \quad v=\int d x=x \\
& u=\frac{1}{x} \quad \square d u=-\frac{1}{x^{2}} d x \\
& 0+\int \frac{d x}{x}=\left(\frac{1}{x}\right)(x)-\int\left(-\frac{1}{x^{2}}\right)(x) d x=1+\int \frac{d x}{x}
\end{aligned}
\]

So, \(0=1\).
115. Let \(y=f(x)\) be positive and strictly increasing on the interval \(0<a \leq x \leq b\). Consider the region \(R\) bounded by the graphs of \(y=f(x), y=0, x=a\), and \(x=b\). If \(R\) is revolved about the \(y\)-axis, show that the disk method and shell method yield the same volume.
116. Euler's Method Consider the differential equation \(f^{\prime}(x)=x e^{-x}\) with the initial condition \(f(0)=0\).
(a) Use integration to solve the differential equation.
(b) Use a graphing utility to graph the solution of the differential equation.
(c) Use Euler's Method with \(h=0.05\), and the recursive capabilities of a graphing utility, to generate the first 80 points of the graph of the approximate solution. Use the graphing utility to plot the points. Compare the result with the graph in part (b).
(d) Repeat part (c) using \(h=0.1\) and generate the first 40 points.
(e) Why is the result in part (c) a better approximation of the solution than the result in part (d)?

Euler's Method In Exercises 117 and 118, consider the differential equation and repeat parts (a)-(d) of Exercise 116.
117. \(f^{\prime}(x)=3 x \sin (2 x)\)
\(f(0)=0\)
118. \(f^{\prime}(x)=\cos \sqrt{x}\)
\(f(0)=1\)
119. Think About It Give a geometric explanation of why
\(\int_{0}^{\pi / 2} x \sin x d x \leq \int_{0}^{\pi / 2} x d x\).
Verify the inequality by evaluating the integrals.
120. Finding a Pattern Find the area bounded by the graphs of \(y=x \sin x\) and \(y=0\) over each interval.
(a) \([0, \pi]\)
(b) \([\pi, 2 \pi]\)
(c) \([2 \pi, 3 \pi]\)

Describe any patterns that you notice. What is the area between the graphs of \(y=x \sin x\) and \(y=0\) over the interval \([n \pi,(n+1) \pi]\), where \(n\) is any nonnegative integer? Explain.

\subsection*{8.3 Trigonometric Integrals}

\section*{SHEILA SCOTT MACINTYRE (1910-1960)}

Sheila Scott Macintyre published her first paper on the asymptotic periods of integral functions in 1935. She completed her doctorate work at Aberdeen University, where she taught. In 1958 she accepted a visiting research fellowship at the University of Cincinnati.
- Solve trigonometric integrals involving powers of sine and cosine.
- Solve trigonometric integrals involving powers of secant and tangent.
- Solve trigonometric integrals involving sine-cosine products with different angles.

\section*{Integrals Involving Powers of Sine and Cosine}

In this section you will study techniques for evaluating integrals of the form
\[
\int \sin ^{m} x \cos ^{n} x d x \quad \text { and } \quad \int \sec ^{m} x \tan ^{n} x d x
\]
where either \(m\) or \(n\) is a positive integer. To find antiderivatives for these forms, try to break them into combinations of trigonometric integrals to which you can apply the Power Rule.

For instance, you can evaluate \(\int \sin ^{5} x \cos x d x\) with the Power Rule by letting \(u=\sin x\). Then, \(d u=\cos x d x\) and you have
\[
\int \sin ^{5} x \cos x d x=\int u^{5} d u=\frac{u^{6}}{6}+C=\frac{\sin ^{6} x}{6}+C
\]

To break up \(\int \sin ^{m} x \cos ^{n} x d x\) into forms to which you can apply the Power Rule, use the following identities.
\[
\begin{array}{ll}
\sin ^{2} x+\cos ^{2} x=1 & \text { Pythagorean identity } \\
\sin ^{2} x=\frac{1-\cos 2 x}{2} & \text { Half-angle identity for } \sin ^{2} x \\
\cos ^{2} x=\frac{1+\cos 2 x}{2} & \text { Half-angle identity for } \cos ^{2} x
\end{array}
\]

\section*{gUidelines for evaluating integrals involving powers of sine and cosine}
1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. Then, expand and integrate.
\[
\int \sin ^{2 k+1} x \cos ^{n} x d x=\int_{\left(\sin ^{2} x\right)^{k} \cos ^{n} x}^{\text {Odd }} \overbrace{\sin x d x}^{\text {Convert to cosines }}=\int\left(1-\cos ^{2} x\right)^{k} \cos ^{n} x \sin x d x
\]
2. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to sines. Then, expand and integrate.
\[
\int \sin ^{m} x \cos ^{2 k+1} x d x=\int \sin ^{m} x \overbrace{\left(\cos ^{2} x\right)^{k}}^{\text {Odd }} \overbrace{\cos x d x}^{\text {Convert to sines }}=\int \sin ^{m} x\left(1-\sin ^{2} x\right)^{k} \cos x d x
\]
3. If the powers of both the sine and cosine are even and nonnegative, make repeated use of the identities
\[
\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \text { and } \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}
\]
to convert the integrand to odd powers of the cosine. Then proceed as in guideline 2 .

TECHNOLOGY A computer algebra system used to find the integral in Example 1 yielded the following.
\[
\begin{aligned}
& \int \sin ^{3} x \cos ^{4} x d x= \\
& -\cos ^{5} x\left(\frac{1}{7} \sin ^{2} x+\frac{2}{35}\right)+C
\end{aligned}
\]

Is this equivalent to the result obtained in Example 1?


The area of the region is approximately 0.239 .

Figure 8.4

\section*{EXAMPLE 1 Power of Sine Is Odd and Positive}

Find \(\int \sin ^{3} x \cos ^{4} x d x\).
Solution Because you expect to use the Power Rule with \(u=\cos x\), save one sine factor to form \(d u\) and convert the remaining sine factors to cosines.
\[
\begin{array}{rlrl}
\int \sin ^{3} x \cos ^{4} x d x & =\int \sin ^{2} x \cos ^{4} x(\sin x) d x & & \text { Rewrite. } \\
& =\int\left(1-\cos ^{2} x\right) \cos ^{4} x \sin x d x & & \text { Trigonometric identity } \\
& =\int\left(\cos ^{4} x-\cos ^{6} x\right) \sin x d x & \text { Multiply. } \\
& =\int \cos ^{4} x \sin x d x-\int \cos ^{6} x \sin x d x & \text { Rewrite. } \\
& =-\int \cos ^{4} x(-\sin x) d x+\int \cos ^{6} x(-\sin x) d x \\
& =-\frac{\cos ^{5} x}{5}+\frac{\cos ^{7} x}{7}+C & \text { Integrate. }
\end{array}
\]

In Example 1, both of the powers \(m\) and \(n\) happened to be positive integers. However, the same strategy will work as long as either \(m\) or \(n\) is odd and positive. For instance, in the next example the power of the cosine is 3 , but the power of the sine is \(-\frac{1}{2}\).

\section*{EXAMPLE 2 Power of Cosine Is Odd and Positive}

Evaluate \(\int_{\pi / 6}^{\pi / 3} \frac{\cos ^{3} x}{\sqrt{\sin x}} d x\).
Solution Because you expect to use the Power Rule with \(u=\sin x\), save one cosine factor to form \(d u\) and convert the remaining cosine factors to sines.
\[
\begin{aligned}
\int_{\pi / 6}^{\pi / 3} \frac{\cos ^{3} x}{\sqrt{\sin x}} d x & =\int_{\pi / 6}^{\pi / 3} \frac{\cos ^{2} x \cos x}{\sqrt{\sin x}} d x \\
& =\int_{\pi / 6}^{\pi / 3} \frac{\left(1-\sin ^{2} x\right)(\cos x)}{\sqrt{\sin x}} d x \\
& =\int_{\pi / 6}^{\pi / 3}\left[(\sin x)^{-1 / 2} \cos x-(\sin x)^{3 / 2} \cos x\right] d x \\
& =\left[\frac{(\sin x)^{1 / 2}}{1 / 2}-\frac{(\sin x)^{5 / 2}}{5 / 2}\right]_{\pi / 6}^{\pi / 3} \\
& =2\left(\frac{\sqrt{3}}{2}\right)^{1 / 2}-\frac{2}{5}\left(\frac{\sqrt{3}}{2}\right)^{5 / 2}-\sqrt{2}+\frac{\sqrt{32}}{80} \\
& \approx 0.239
\end{aligned}
\]

Figure 8.4 shows the region whose area is represented by this integral.


\section*{EXAMPLE 3 Power of Cosine Is Even and Nonnegative}

Find \(\int \cos ^{4} x d x\).
Solution Because \(m\) and \(n\) are both even and nonnegative ( \(m=0\) ), you can replace \(\cos ^{4} x\) by \([(1+\cos 2 x) / 2]^{2}\).
\[
\begin{aligned}
\int \cos ^{4} x d x & =\int\left(\frac{1+\cos 2 x}{2}\right)^{2} d x & & \text { Half-angle identity } \\
& =\int\left(\frac{1}{4}+\frac{\cos 2 x}{2}+\frac{\cos ^{2} 2 x}{4}\right) d x & & \text { Expand. } \\
& =\int\left[\frac{1}{4}+\frac{\cos 2 x}{2}+\frac{1}{4}\left(\frac{1+\cos 4 x}{2}\right)\right] d x & & \text { Half-angle identity } \\
& =\frac{3}{8} \int d x+\frac{1}{4} \int 2 \cos 2 x d x+\frac{1}{32} \int 4 \cos 4 x d x & & \text { Rewrite. } \\
& =\frac{3 x}{8}+\frac{\sin 2 x}{4}+\frac{\sin 4 x}{32}+C & & \text { Integrate. }
\end{aligned}
\]

Use a symbolic differentiation utility to verify this. Can you simplify the derivative to obtain the original integrand?

In Example 3, if you were to evaluate the definite integral from 0 to \(\pi / 2\), you would obtain
\[
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{4} x d x & =\left[\frac{3 x}{8}+\frac{\sin 2 x}{4}+\frac{\sin 4 x}{32}\right]_{0}^{\pi / 2} \\
& =\left(\frac{3 \pi}{16}+0+0\right)-(0+0+0) \\
& =\frac{3 \pi}{16}
\end{aligned}
\]

Note that the only term that contributes to the solution is \(3 x / 8\). This observation is generalized in the following formulas developed by John Wallis.

\section*{WALLIS'S FORMULAS}
1. If \(n\) is odd \((n \geq 3)\), then
\[
\int_{0}^{\pi / 2} \cos ^{n} x d x=\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right) \cdots\left(\frac{n-1}{n}\right)
\]
2. If \(n\) is even \((n \geq 2)\), then
\[
\int_{0}^{\pi / 2} \cos ^{n} x d x=\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right) \cdots\left(\frac{n-1}{n}\right)\left(\frac{\pi}{2}\right)
\]

These formulas are also valid if \(\cos ^{n} x\) is replaced by \(\sin ^{n} x\). (You are asked to prove both formulas in Exercise 108.)

\section*{Integrals Involving Powers of Secant and Tangent}

The following guidelines can help you evaluate integrals of the form
\[
\int \sec ^{m} x \tan ^{n} x d x
\]

\section*{GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SECANT AND TANGENT}
1. If the power of the secant is even and positive, save a secant-squared factor and convert the remaining factors to tangents. Then expand and integrate.
\[
\int \sec ^{2 k} x \tan ^{n} x d x=\int \overbrace{\left(\sec ^{2} x\right)^{k-1}}^{\text {Even }} \tan ^{n} x \overbrace{\sec ^{2} x d x}^{\text {Convert to tangents }}=\int\left(1+\tan ^{2} x\right)^{k-1} \tan ^{n} x \sec ^{2} x d x
\]
2. If the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining factors to secants. Then expand and integrate.
\[
\int \sec ^{m} x \tan ^{2 k+1} x d x=\int \sec ^{m-1} x \overbrace{\left(\tan ^{2} x\right)^{k}}^{\text {Odd }} \overbrace{\sec x \tan x d x}^{\text {Convert to secants }}=\int \sec ^{m-1} x\left(\sec ^{2} x-1\right)^{k} \sec x \tan x d x
\]
3. If there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared factor to a secant-squared factor, then expand and repeat if necessary.
\[
\int \tan ^{n} x d x=\int \tan ^{n-2} x \overbrace{\left(\tan ^{2} x\right)}^{\text {Convert to secants }} d x=\int \tan ^{n-2} x\left(\sec ^{2} x-1\right) d x
\]
4. If the integral is of the form \(\int \sec ^{m} x d x\), where \(m\) is odd and positive, use integration by parts, as illustrated in Example 5 in the preceding section.
5. If none of the first four guidelines applies, try converting to sines and cosines.

\section*{EXAMPLE 4 Power of Tangent Is Odd and Positive}

Find \(\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x\).
Solution Because you expect to use the Power Rule with \(u=\sec x\), save a factor of \((\sec x \tan x)\) to form \(d u\) and convert the remaining tangent factors to secants.
\[
\begin{aligned}
\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x & =\int(\sec x)^{-1 / 2} \tan ^{3} x d x \\
& =\int(\sec x)^{-3 / 2}\left(\tan ^{2} x\right)(\sec x \tan x) d x \\
& =\int(\sec x)^{-3 / 2}\left(\sec ^{2} x-1\right)(\sec x \tan x) d x \\
& =\int\left[(\sec x)^{1 / 2}-(\sec x)^{-3 / 2}\right](\sec x \tan x) d x \\
& =\frac{2}{3}(\sec x)^{3 / 2}+2(\sec x)^{-1 / 2}+C
\end{aligned}
\]

NOTE In Example 5, the power of the tangent is odd and positive. So, you could also find the integral using the procedure described in guideline 2 on page 539. In Exercise 89, you are asked to show that the results obtained by these two procedures differ only by a constant.


The area of the region is approximately 0.119 .

Figure 8.5

\section*{EXAMPLE 5 Power of Secant Is Even and Positive}

Find \(\int \sec ^{4} 3 x \tan ^{3} 3 x d x\).
Solution Let \(u=\tan 3 x\), then \(d u=3 \sec ^{2} 3 x d x\) and you can write
\[
\begin{aligned}
\int \sec ^{4} 3 x \tan ^{3} 3 x d x & =\int \sec ^{2} 3 x \tan ^{3} 3 x\left(\sec ^{2} 3 x\right) d x \\
& =\int\left(1+\tan ^{2} 3 x\right) \tan ^{3} 3 x\left(\sec ^{2} 3 x\right) d x \\
& =\frac{1}{3} \int\left(\tan ^{3} 3 x+\tan ^{5} 3 x\right)\left(3 \sec ^{2} 3 x\right) d x \\
& =\frac{1}{3}\left(\frac{\tan ^{4} 3 x}{4}+\frac{\tan ^{6} 3 x}{6}\right)+C \\
& =\frac{\tan ^{4} 3 x}{12}+\frac{\tan ^{6} 3 x}{18}+C .
\end{aligned}
\]

\section*{EXAMPLE 6 Power of Tangent Is Even}

Evaluate \(\int_{0}^{\pi / 4} \tan ^{4} x d x\).
Solution Because there are no secant factors, you can begin by converting a tangentsquared factor to a secant-squared factor.
\[
\begin{aligned}
\int \tan ^{4} x d x & =\int \tan ^{2} x\left(\tan ^{2} x\right) d x \\
& =\int \tan ^{2} x\left(\sec ^{2} x-1\right) d x \\
& =\int \tan ^{2} x \sec ^{2} x d x-\int \tan ^{2} x d x \\
& =\int \tan ^{2} x \sec ^{2} x d x-\int\left(\sec ^{2} x-1\right) d x \\
& =\frac{\tan ^{3} x}{3}-\tan x+x+C
\end{aligned}
\]

You can evaluate the definite integral as follows.
\[
\begin{aligned}
\int_{0}^{\pi / 4} \tan ^{4} x d x & =\left[\frac{\tan ^{3} x}{3}-\tan x+x\right]_{0}^{\pi / 4} \\
& =\frac{\pi}{4}-\frac{2}{3} \\
& \approx 0.119
\end{aligned}
\]

The area represented by the definite integral is shown in Figure 8.5. Try using Simpson's Rule to approximate this integral. With \(n=18\), you should obtain an approximation that is within 0.00001 of the actual value.

\section*{FOR FURTHER INFORMATION}

To learn more about integrals involving sine-cosine products with different angles, see the article "Integrals of Products of Sine and Cosine with Different Arguments" by Sherrie J. Nicol in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

For integrals involving powers of cotangents and cosecants, you can follow a strategy similar to that used for powers of tangents and secants. Also, when integrating trigonometric functions, remember that it sometimes helps to convert the entire integrand to powers of sines and cosines.

\section*{EXAMPLE 7 Converting to Sines and Cosines}

Find \(\int \frac{\sec x}{\tan ^{2} x} d x\).
Solution Because the first four guidelines on page 539 do not apply, try converting the integrand to sines and cosines. In this case, you are able to integrate the resulting powers of sine and cosine as follows.
\[
\begin{aligned}
\int \frac{\sec x}{\tan ^{2} x} d x & =\int\left(\frac{1}{\cos x}\right)\left(\frac{\cos x}{\sin x}\right)^{2} d x \\
& =\int(\sin x)^{-2}(\cos x) d x \\
& =-(\sin x)^{-1}+C \\
& =-\csc x+C
\end{aligned}
\]

\section*{Integrals Involving Sine-Cosine Products with Different Angles}

Integrals involving the products of sines and cosines of two different angles occur in many applications. In such instances you can use the following product-to-sum identities.
\[
\begin{aligned}
& \sin m x \sin n x=\frac{1}{2}(\cos [(m-n) x]-\cos [(m+n) x]) \\
& \sin m x \cos n x=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) \\
& \cos m x \cos n x=\frac{1}{2}(\cos [(m-n) x]+\cos [(m+n) x])
\end{aligned}
\]

\section*{EXAMPLE 8 Using Product-to-Sum Identities}

Find \(\int \sin 5 x \cos 4 x d x\).
Solution Considering the second product-to-sum identity above, you can write
\[
\begin{aligned}
\int \sin 5 x \cos 4 x d x & =\frac{1}{2} \int(\sin x+\sin 9 x) d x \\
& =\frac{1}{2}\left(-\cos x-\frac{\cos 9 x}{9}\right)+C \\
& =-\frac{\cos x}{2}-\frac{\cos 9 x}{18}+C
\end{aligned}
\]

\subsection*{8.3 Exercises}

In Exercises 1-4, use differentiation to match the antiderivative with the correct integral. [Integrals are labeled (a), (b), (c), and (d).]
(a) \(\int \sin x \tan ^{2} x d x\)
(b) \(8 \int \cos ^{4} x d x\)
(c) \(\int \sin x \sec ^{2} x d x\)
(d) \(\int \tan ^{4} x d x\)
1. \(y=\sec x\)
2. \(y=\cos x+\sec x\)
3. \(y=x-\tan x+\frac{1}{3} \tan ^{3} x\)
4. \(y=3 x+2 \sin x \cos ^{3} x+3 \sin x \cos x\)

In Exercises 5-18, find the integral.
5. \(\int \cos ^{5} x \sin x d x\)
6. \(\int \cos ^{3} x \sin ^{4} x d x\)
7. \(\int \sin ^{7} 2 x \cos 2 x d x\)
8. \(\int \sin ^{3} x d x\)
9. \(\int \sin ^{3} x \cos ^{2} x d x\)
10. \(\int \cos ^{3} \frac{x}{3} d x\)
11. \(\int \sin ^{3} 2 \theta \sqrt{\cos 2 \theta} d \theta\)
12. \(\int \frac{\cos ^{5} t}{\sqrt{\sin t}} d t\)
13. \(\int \cos ^{2} 3 x d x\)
14. \(\int \sin ^{2} 5 x d x\)
15. \(\int \cos ^{4} 3 \alpha d \alpha\)
16. \(\int \sin ^{4} 6 \theta d \theta\)
17. \(\int x \sin ^{2} x d x\)
18. \(\int x^{2} \sin ^{2} x d x\)

In Exercises 19-24, use Wallis's Formulas to evaluate the integral.
19. \(\int_{0}^{\pi / 2} \cos ^{7} x d x\)
20. \(\int_{0}^{\pi / 2} \cos ^{9} x d x\)
21. \(\int_{0}^{\pi / 2} \cos ^{10} x d x\)
22. \(\int_{0}^{\pi / 2} \sin ^{5} x d x\)
23. \(\int_{0}^{\pi / 2} \sin ^{6} x d x\)
24. \(\int_{0}^{\pi / 2} \sin ^{8} x d x\)

In Exercises 25-42, find the integral involving secant and tangent.
25. \(\int \sec 7 x d x\)
26. \(\int \sec ^{2}(2 x-1) d x\)
27. \(\int \sec ^{4} 5 x d x\)
28. \(\int \sec ^{6} 3 x d x\)
29. \(\int \sec ^{3} \pi x d x\)
30. \(\int \tan ^{5} x d x\)
31. \(\int \tan ^{5} \frac{x}{2} d x\)
32. \(\int \tan ^{3} \frac{\pi x}{2} \sec ^{2} \frac{\pi x}{2} d x\)
33. \(\int \sec ^{2} x \tan x d x\)
34. \(\int \tan ^{3} 2 t \sec ^{3} 2 t d t\)
35. \(\int \tan ^{2} x \sec ^{4} x d x\)
36. \(\int \tan ^{5} 2 x \sec ^{4} 2 x d x\)
37. \(\int \sec ^{6} 4 x \tan 4 x d x\)
38. \(\int \sec ^{2} \frac{x}{2} \tan \frac{x}{2} d x\)
39. \(\int \sec ^{5} x \tan ^{3} x d x\)
40. \(\int \tan ^{3} 3 x d x\)
41. \(\int \frac{\tan ^{2} x}{\sec x} d x\)
42. \(\int \frac{\tan ^{2} x}{\sec ^{5} x} d x\)

In Exercises 43-46, solve the differential equation.
43. \(\frac{d r}{d \theta}=\sin ^{4} \pi \theta\)
44. \(\frac{d s}{d \alpha}=\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2}\)
45. \(y^{\prime}=\tan ^{3} 3 x \sec 3 x\)
46. \(y^{\prime}=\sqrt{\tan x} \sec ^{4} x\)

Slope Fields In Exercises 47 and 48, a differential equation, a point, and a slope field are given. (a) Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the given point. (b) Use integration to find the particular solution of the differential equation and use a graphing utility to graph the solution. Compare the result with the sketches in part (a). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.
47. \(\frac{d y}{d x}=\sin ^{2} x,(0,0)\)
48. \(\frac{d y}{d x}=\sec ^{2} x \tan ^{2} x,\left(0,-\frac{1}{4}\right)\)



CAS Slope Fields In Exercises 49 and 50, use a computer algebra system to graph the slope field for the differential equation, and graph the solution through the specified initial condition.
49. \(\frac{d y}{d x}=\frac{3 \sin x}{y}, y(0)=2\)
50. \(\frac{d y}{d x}=3 \sqrt{y} \tan ^{2} x, y(0)=3\)

In Exercises 51-56, find the integral.
51. \(\int \cos 2 x \cos 6 x d x\)
52. \(\int \cos 4 \theta \cos (-3 \theta) d \theta\)
53. \(\int \sin 2 x \cos 4 x d x\)
54. \(\int \sin (-4 x) \cos 3 x d x\)
55. \(\int \sin \theta \sin 3 \theta d \theta\)
56. \(\int \sin 5 x \sin 4 x d x\)

In Exercises 57-66, find the integral. Use a computer algebra system to confirm your result.
57. \(\int \cot ^{3} 2 x d x\)
58. \(\int \tan ^{4} \frac{x}{2} \sec ^{4} \frac{x}{2} d x\)
59. \(\int \csc ^{4} 2 x d x\)
60. \(\int \cot ^{3} x \csc ^{3} x d x\)
61. \(\int \frac{\cot ^{2} t}{\csc t} d t\)
62. \(\int \frac{\cot ^{3} t}{\csc t} d t\)
63. \(\int \frac{1}{\sec x \tan x} d x\)
64. \(\int \frac{\sin ^{2} x-\cos ^{2} x}{\cos x} d x\)
65. \(\int\left(\tan ^{4} t-\sec ^{4} t\right) d t\)
66. \(\int \frac{1-\sec t}{\cos t-1} d t\)

In Exercises 67-74, evaluate the definite integral.
67. \(\int_{-\pi}^{\pi} \sin ^{2} x d x\)
68. \(\int_{0}^{\pi / 3} \tan ^{2} x d x\)
69. \(\int_{0}^{\pi / 4} 6 \tan ^{3} x d x\)
70. \(\int_{0}^{\pi / 4} \sec ^{2} t \sqrt{\tan t} d t\)
71. \(\int_{0}^{\pi / 2} \frac{\cos t}{1+\sin t} d t\)
72. \(\int_{-\pi}^{\pi} \sin 5 x \cos 3 x d x\)
73. \(\int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x\)
74. \(\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2} x+1\right) d x\)

CAS In Exercises 75-80, use a computer algebra system to find the integral. Graph the antiderivatives for two different values of the constant of integration.
75. \(\int \cos ^{4} \frac{x}{2} d x\)
76. \(\int \sin ^{2} x \cos ^{2} x d x\)
77. \(\int \sec ^{5} \pi x d x\)
78. \(\int \tan ^{3}(1-x) d x\)
79. \(\int \sec ^{5} \pi x \tan \pi x d x\)
80. \(\int \sec ^{4}(1-x) \tan (1-x) d x\)

CAS In Exercises 81-84, use a computer algebra system to evaluate the definite integral.
81. \(\int_{0}^{\pi / 4} \sin 3 \theta \sin 4 \theta d \theta\)
82. \(\int_{0}^{\pi / 2}(1-\cos \theta)^{2} d \theta\)
83. \(\int_{0}^{\pi / 2} \sin ^{4} x d x\)
84. \(\int_{0}^{\pi / 2} \sin ^{12} x d x\)

\section*{WRITING ABOUT CONCEPTS}
85. In your own words, describe how you would integrate \(\int \sin ^{m} x \cos ^{n} x d x\) for each condition.
(a) \(m\) is positive and odd.
(b) \(n\) is positive and odd.
(c) \(m\) and \(n\) are both positive and even.
86. In your own words, describe how you would integrate \(\int \sec ^{m} x \tan ^{n} x d x\) for each condition.
(a) \(m\) is positive and even.
(b) \(n\) is positive and odd.
(c) \(n\) is positive and even, and there are no secant factors.
(d) \(m\) is positive and odd, and there are no tangent factors.
87. Evaluate \(\int \sin x \cos x d x\) using the given method. Explain how your answers differ for each method.
(a) Substitution where \(u=\sin x\)
(b) Substitution where \(u=\cos x\)
(c) Integration by parts
(d) Using the identity \(\sin 2 x=2 \sin x \cos x\)

\section*{CAPSTONE}
88. For each pair of integrals, determine which one is more difficult to evaluate. Explain your reasoning.
(a) \(\int \sin ^{372} x \cos x d x, \quad \int \sin ^{4} x \cos ^{4} x d x\)
(b) \(\int \tan ^{400} x \sec ^{2} x d x, \int \tan ^{400} x \sec x d x\)

In Exercises 89 and 90, (a) find the indefinite integral in two different ways. (b) Use a graphing utility to graph the antiderivative (without the constant of integration) obtained by each method to show that the results differ only by a constant. (c) Verify analytically that the results differ only by a constant.
\[
\text { 89. } \int \sec ^{4} 3 x \tan ^{3} 3 x d x \quad \text { 90. } \int \sec ^{2} x \tan x d x
\]

Area In Exercises 91-94, find the area of the region bounded by the graphs of the equations.
91. \(y=\sin x, \quad y=\sin ^{3} x, \quad x=0, \quad x=\pi / 2\)
92. \(y=\sin ^{2} \pi x, \quad y=0, \quad x=0, \quad x=1\)
93. \(y=\cos ^{2} x, \quad y=\sin ^{2} x, \quad x=-\pi / 4, \quad x=\pi / 4\)
94. \(y=\cos ^{2} x, \quad y=\sin x \cos x, \quad x=-\pi / 2, \quad x=\pi / 4\)

Volume In Exercises 95 and 96, find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\)-axis.
\[
\begin{aligned}
& \text { 95. } y=\tan x, \quad y=0, \quad x=-\pi / 4, \quad x=\pi / 4 \\
& \text { 96. } y=\cos \frac{x}{2}, \quad y=\sin \frac{x}{2}, \quad x=0, \quad x=\pi / 2
\end{aligned}
\]

Volume and Centroid In Exercises 97 and 98, for the region bounded by the graphs of the equations, find (a) the volume of the solid formed by revolving the region about the \(x\)-axis and (b) the centroid of the region.
97. \(y=\sin x, y=0, x=0, x=\pi\)
98. \(y=\cos x, y=0, x=0, x=\pi / 2\)

In Exercises 99-102, use integration by parts to verify the reduction formula.
99. \(\int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x\)
100. \(\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x\)
101. \(\int \cos ^{m} x \sin ^{n} x d x=-\frac{\cos ^{m+1} x \sin ^{n-1} x}{m+n}+\)
\[
\frac{n-1}{m+n} \int \cos ^{m} x \sin ^{n-2} x d x
\]
102. \(\int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x\)

In Exercises 103-106, use the results of Exercises 99-102 to find the integral.
103. \(\int \sin ^{5} x d x\)
104. \(\int \cos ^{4} x d x\)
105. \(\int \sec ^{4}(2 \pi x / 5) d x\)
106. \(\int \sin ^{4} x \cos ^{2} x d x\)
107. Modeling Data The table shows the normal maximum (high) and minimum (low) temperatures (in degrees Fahrenheit) in Erie, Pennsylvania for each month of the year. (Source: NOAA)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Month & Jan & Feb & Mar & Apr & May & Jun \\
\hline Max & 33.5 & 35.4 & 44.7 & 55.6 & 67.4 & 76.2 \\
\hline Min & 20.3 & 20.9 & 28.2 & 37.9 & 48.7 & 58.5 \\
\hline Month & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline Max & 80.4 & 79.0 & 72.0 & 61.0 & 49.3 & 38.6 \\
\hline Min & 63.7 & 62.7 & 55.9 & 45.5 & 36.4 & 26.8 \\
\hline
\end{tabular}

The maximum and minimum temperatures can be modeled by \(f(t)=a_{0}+a_{1} \cos (\pi t / 6)+b_{1} \sin (\pi t / 6)\), where \(t=0\) corresponds to January 1 and \(a_{0}, a_{1}\), and \(b_{1}\) are as follows.
\(a_{0}=\frac{1}{12} \int_{0}^{12} f(t) d t\)
\(a_{1}=\frac{1}{6} \int_{0}^{12} f(t) \cos \frac{\pi t}{6} d t\)
\(b_{1}=\frac{1}{6} \int_{0}^{12} f(t) \sin \frac{\pi t}{6} d t\)

\section*{SECTION PROJECT}

\section*{Power Lines}

Power lines are constructed by stringing wire between supports and adjusting the tension on each span. The wire hangs between supports in the shape of a catenary, as shown in the figure.


Let \(T\) be the tension (in pounds) on a span of wire, let \(u\) be the density (in pounds per foot), let \(g \approx 32.2\) be the acceleration due to gravity (in feet per second per second), and let \(L\) be the distance (in feet) between the supports. Then the equation of the catenary is \(y=\frac{T}{u g}\left(\cosh \frac{u g x}{T}-1\right)\), where \(x\) and \(y\) are measured in feet.
(a) Approximate the model \(H(t)\) for the maximum temperatures. (Hint: Use Simpson's Rule to approximate the integrals and use the January data twice.)
(b) Repeat part (a) for a model \(L(t)\) for the minimum temperature data.
(c) Use a graphing utility to graph each model. During what part of the year is the difference between the maximum and minimum temperatures greatest?
108. Wallis's Formulas Use the result of Exercise 100 to prove the following versions of Wallis's Formulas.
(a) If \(n\) is odd \((n \geq 3)\), then
\[
\int_{0}^{\pi / 2} \cos ^{n} x d x=\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right) \cdots\left(\frac{n-1}{n}\right) .
\]
(b) If \(n\) is even \((n \geq 2)\), then
\[
\int_{0}^{\pi / 2} \cos ^{n} x d x=\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right) \cdots\left(\frac{n-1}{n}\right)\left(\frac{\pi}{2}\right) .
\]
109. The inner product of two functions \(f\) and \(g\) on \([a, b]\) is given by \(\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x\). Two distinct functions \(f\) and \(g\) are said to be orthogonal if \(\langle f, g\rangle=0\). Show that the following set of functions is orthogonal on \([-\pi, \pi]\).
\(\{\sin x, \sin 2 x, \sin 3 x, \ldots, \cos x, \cos 2 x, \cos 3 x, \ldots\}\)
110. Fourier Series The following sum is a finite Fourier series. \(f(x)=\sum_{i=1}^{N} a_{i} \sin i x\)
\[
=a_{1} \sin x+a_{2} \sin 2 x+a_{3} \sin 3 x+\cdots+a_{N} \sin N x
\]
(a) Use Exercise 109 to show that the \(n\)th coefficient \(a_{n}\) is given by \(a_{n}=(1 / \pi) \int_{-\pi}^{\pi} f(x) \sin n x d x\).
(b) Let \(f(x)=x\). Find \(a_{1}, a_{2}\), and \(a_{3}\).
(a) Find the length of the wire between two spans.
(b) To measure the tension in a span, power line workers use the return wave method. The wire is struck at one support, creating a wave in the line, and the time \(t\) (in seconds) it takes for the wave to make a round trip is measured. The velocity \(v\) (in feet per second) is given by \(v=\sqrt{T / u}\). How long does it take the wave to make a round trip between supports?
(c) The sag \(s\) (in inches) can be obtained by evaluating \(y\) when \(x=L / 2\) in the equation for the catenary (and multiplying by 12). In practice, however, power line workers use the "lineman's equation" given by \(s \approx 12.075 t^{2}\). Use the fact that \([\cosh (u g L / 2 T)+1] \approx 2\) to derive this equation.

FOR FURTHER INFORMATION To learn more about the mathematics of power lines, see the article "Constructing Power Lines" by Thomas O'Neil in The UMAP Journal.

\subsection*{8.4 Trigonometric Substitution}

\section*{E X P L ORATION}

Integrating a Radical Function
Up to this point in the text, you have not evaluated the following integral.
\[
\int_{-1}^{1} \sqrt{1-x^{2}} d x
\]

From geometry, you should be able to find the exact value of this integral—what is it? Using numerical integration, with Simpson's Rule or the Trapezoidal Rule, you can't be sure of the accuracy of the approximation. Why?
Try finding the exact value using the substitution
\[
x=\sin \theta \text { and } d x=\cos \theta d \theta .
\]

Does your answer agree with the value you obtained using geometry?
- Use trigonometric substitution to solve an integral.
- Use integrals to model and solve real-life applications.

\section*{Trigonometric Substitution}

Now that you can evaluate integrals involving powers of trigonometric functions, you can use trigonometric substitution to evaluate integrals involving the radicals
\[
\sqrt{a^{2}-u^{2}}, \quad \sqrt{a^{2}+u^{2}}, \quad \text { and } \quad \sqrt{u^{2}-a^{2}} .
\]

The objective with trigonometric substitution is to eliminate the radical in the integrand. You do this by using the Pythagorean identities
\[
\cos ^{2} \theta=1-\sin ^{2} \theta, \quad \sec ^{2} \theta=1+\tan ^{2} \theta, \quad \text { and } \quad \tan ^{2} \theta=\sec ^{2} \theta-1
\]

For example, if \(a>0\), let \(u=a \sin \theta\), where \(-\pi / 2 \leq \theta \leq \pi / 2\). Then
\[
\begin{aligned}
\sqrt{a^{2}-u^{2}} & =\sqrt{a^{2}-a^{2} \sin ^{2} \theta} \\
& =\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)} \\
& =\sqrt{a^{2} \cos ^{2} \theta} \\
& =a \cos \theta .
\end{aligned}
\]

Note that \(\cos \theta \geq 0\), because \(-\pi / 2 \leq \theta \leq \pi / 2\).

\section*{TRIGONOMETRIC SUBSTITUTION \((a>0)\)}
1. For integrals involving \(\sqrt{a^{2}-u^{2}}\), let
\[
u=a \sin \theta
\]

Then \(\sqrt{a^{2}-u^{2}}=a \cos \theta\), where \(-\pi / 2 \leq \theta \leq \pi / 2\).

2. For integrals involving \(\sqrt{a^{2}+u^{2}}\), let
\[
u=a \tan \theta .
\]

Then \(\sqrt{a^{2}+u^{2}}=a \sec \theta\), where
\(-\pi / 2<\theta<\pi / 2\).

3. For integrals involving \(\sqrt{u^{2}-a^{2}}\), let
\[
u=a \sec \theta
\]

\[
\sqrt{u^{2}-a^{2}}=\left\{\begin{array}{l}
a \tan \theta \text { if } u>a, \text { where } 0 \leq \theta<\pi / 2 \\
-a \tan \theta \text { if } u<-a, \text { where } \pi / 2<\theta \leq \pi
\end{array}\right.
\]

NOTE The restrictions on \(\theta\) ensure that the function that defines the substitution is one-to-one. In fact, these are the same intervals over which the arcsine, arctangent, and arcsecant are defined.

\(\sin \theta=\frac{x}{3}, \cot \theta=\frac{\sqrt{9-x^{2}}}{x}\)
Figure 8.6

\section*{EXAMPLE 1 Trigonometric Substitution: \(\boldsymbol{u}=\boldsymbol{a} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}\)}

Find \(\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}\).
Solution First, note that none of the basic integration rules applies. To use trigonometric substitution, you should observe that \(\sqrt{9-x^{2}}\) is of the form \(\sqrt{a^{2}-u^{2}}\). So, you can use the substitution
\[
x=a \sin \theta=3 \sin \theta
\]

Using differentiation and the triangle shown in Figure 8.6, you obtain
\[
d x=3 \cos \theta d \theta, \quad \sqrt{9-x^{2}}=3 \cos \theta, \quad \text { and } \quad x^{2}=9 \sin ^{2} \theta
\]

So, trigonometric substitution yields
\[
\begin{array}{rlrl}
\int \frac{d x}{x^{2} \sqrt{9-x^{2}}} & =\int \frac{3 \cos \theta d \theta}{\left(9 \sin ^{2} \theta\right)(3 \cos \theta)} & & \text { Substitute. } \\
& =\frac{1}{9} \int \frac{d \theta}{\sin ^{2} \theta} & & \text { Simplify. } \\
& =\frac{1}{9} \int \csc ^{2} \theta d \theta & & \text { Trigonometric identity } \\
& =-\frac{1}{9} \cot \theta+C & & \text { Apply Cosecant Rule. } \\
& =-\frac{1}{9}\left(\frac{\sqrt{9-x^{2}}}{x}\right)+C & & \text { Substitute for } \cot \theta \\
& =-\frac{\sqrt{9-x^{2}}}{9 x}+C
\end{array}
\]

Note that the triangle in Figure 8.6 can be used to convert the \(\theta\) 's back to \(x\) 's, as follows.
\[
\begin{aligned}
\cot \theta & =\frac{\text { adj. }}{\text { opp. }} \\
& =\frac{\sqrt{9-x^{2}}}{x}
\end{aligned}
\]

TECHNOLOGY Use a computer algebra system to find each indefinite integral.
\[
\int \frac{d x}{\sqrt{9-x^{2}}} \quad \int \frac{d x}{x \sqrt{9-x^{2}}} \quad \int \frac{d x}{x^{2} \sqrt{9-x^{2}}} \quad \int \frac{d x}{x^{3} \sqrt{9-x^{2}}}
\]

Then use trigonometric substitution to duplicate the results obtained with the computer algebra system.

In an earlier chapter, you saw how the inverse hyperbolic functions can be used to evaluate the integrals
\[
\int \frac{d u}{\sqrt{u^{2} \pm a^{2}}}, \quad \int \frac{d u}{a^{2}-u^{2}}, \quad \text { and } \quad \int \frac{d u}{u \sqrt{a^{2} \pm u^{2}}}
\]

You can also evaluate these integrals using trigonometric substitution. This is shown in the next example.

\(\tan \theta=2 x, \sec \theta=\sqrt{4 x^{2}+1}\)
Figure 8.7

\(\tan \theta=x, \sin \theta=\frac{x}{\sqrt{x^{2}+1}}\)
Figure 8.8

\section*{EXAMPLE 2 Trigonometric Substitution: u \(=a \tan \theta\)}

Find \(\int \frac{d x}{\sqrt{4 x^{2}+1}}\).
Solution Let \(u=2 x, a=1\), and \(2 x=\tan \theta\), as shown in Figure 8.7. Then,
\[
d x=\frac{1}{2} \sec ^{2} \theta d \theta \quad \text { and } \quad \sqrt{4 x^{2}+1}=\sec \theta
\]

Trigonometric substitution produces
\[
\begin{aligned}
\int \frac{1}{\sqrt{4 x^{2}+1}} d x & =\frac{1}{2} \int \frac{\sec ^{2} \theta d \theta}{\sec \theta} & & \text { Substitute. } \\
& =\frac{1}{2} \int \sec \theta d \theta & & \text { Simplify. } \\
& =\frac{1}{2} \ln |\sec \theta+\tan \theta|+C & & \text { Apply Secant Rule. } \\
& =\frac{1}{2} \ln \left|\sqrt{4 x^{2}+1}+2 x\right|+C . & & \text { Back-substitute. }
\end{aligned}
\]

Try checking this result with a computer algebra system. Is the result given in this form or in the form of an inverse hyperbolic function?

You can extend the use of trigonometric substitution to cover integrals involving expressions such as \(\left(a^{2}-u^{2}\right)^{n / 2}\) by writing the expression as
\[
\left(a^{2}-u^{2}\right)^{n / 2}=\left(\sqrt{a^{2}-u^{2}}\right)^{n} .
\]

\section*{Cexample 3 Trigonometric Substitution: Rational Powers}

Find \(\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}}\).
Solution Begin by writing \(\left(x^{2}+1\right)^{3 / 2}\) as \(\left(\sqrt{x^{2}+1}\right)^{3}\). Then, let \(a=1\) and \(u=x=\tan \theta\), as shown in Figure 8.8. Using
\[
d x=\sec ^{2} \theta d \theta \quad \text { and } \quad \sqrt{x^{2}+1}=\sec \theta
\]
you can apply trigonometric substitution, as follows.
\[
\begin{aligned}
\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}} & =\int \frac{d x}{\left(\sqrt{x^{2}+1}\right)^{3}} & & \text { Rewrite denominator. } \\
& =\int \frac{\sec ^{2} \theta d \theta}{\sec ^{3} \theta} & & \text { Substitute. } \\
& =\int \frac{d \theta}{\sec \theta} & & \text { Simplify. } \\
& =\int \cos \theta d \theta & & \text { Trigonometric identity } \\
& =\sin \theta+C & & \text { Apply Cosine Rule. } \\
& =\frac{x}{\sqrt{x^{2}+1}}+C & & \text { Back-substitute. }
\end{aligned}
\]

\(\sec \theta=\frac{x}{\sqrt{3}}, \tan \theta=\frac{\sqrt{x^{2}-3}}{\sqrt{3}}\)
Figure 8.9

For definite integrals, it is often convenient to determine the integration limits for \(\theta\) that avoid converting back to \(x\). You might want to review this procedure in Section 4.5 , Examples 8 and 9.

\section*{EXAMPLE 4 Converting the Limits of Integration}

Evaluate \(\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3}}{x} d x\).
Solution Because \(\sqrt{x^{2}-3}\) has the form \(\sqrt{u^{2}-a^{2}}\), you can consider
\[
u=x, \quad a=\sqrt{3}, \quad \text { and } \quad x=\sqrt{3} \sec \theta
\]
as shown in Figure 8.9. Then,
\(d x=\sqrt{3} \sec \theta \tan \theta d \theta \quad\) and \(\quad \sqrt{x^{2}-3}=\sqrt{3} \tan \theta\).
To determine the upper and lower limits of integration, use the substitution \(x=\sqrt{3} \sec \theta\), as follows.

Lower Limit
\[
\begin{array}{r}
\text { When } x=\sqrt{3}, \sec \theta=1 \\
\text { and } \theta=0 .
\end{array}
\]

Upper Limit
When \(x=2, \sec \theta=\frac{2}{\sqrt{3}}\) and \(\theta=\frac{\pi}{6}\).

So, you have
\[
\begin{aligned}
\begin{array}{l}
\begin{array}{l}
\text { Integration } \\
\text { limits for } x
\end{array} \\
\qquad
\end{array} & \begin{array}{l}
\text { Integration } \\
\text { limits for } \theta
\end{array} \\
\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3}}{x} d x & =\int_{0}^{\pi / 6} \frac{(\sqrt{3} \tan \theta)(\sqrt{3} \sec \theta \tan \theta) d \theta}{\sqrt{3} \sec \theta} \\
& =\int_{0}^{\pi / 6} \sqrt{3} \tan ^{2} \theta d \theta \\
& =\sqrt{3} \int_{0}^{\pi / 6}\left(\sec ^{2} \theta-1\right) d \theta \\
& =\sqrt{3}[\tan \theta-\theta]_{0}^{\pi / 6} \\
& =\sqrt{3}\left(\frac{1}{\sqrt{3}}-\frac{\pi}{6}\right) \\
& =1-\frac{\sqrt{3} \pi}{6} \\
& \approx 0.0931 .
\end{aligned}
\]

In Example 4, try converting back to the variable \(x\) and evaluating the antiderivative at the original limits of integration. You should obtain
\[
\left.\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3}}{x} d x=\sqrt{3} \frac{\sqrt{x^{2}-3}}{\sqrt{3}}-\operatorname{arcsec} \frac{x}{\sqrt{3}}\right]_{\sqrt{3}}^{2} .
\]

When using trigonometric substitution to evaluate definite integrals, you must be careful to check that the values of \(\theta\) lie in the intervals discussed at the beginning of this section. For instance, if in Example 4 you had been asked to evaluate the definite integral
\[
\int_{-2}^{-\sqrt{3}} \frac{\sqrt{x^{2}-3}}{x} d x
\]
then using \(u=x\) and \(a=\sqrt{3}\) in the interval \([-2,-\sqrt{3}]\) would imply that \(u<-a\). So, when determining the upper and lower limits of integration, you would have to choose \(\theta\) such that \(\pi / 2<\theta \leq \pi\). In this case the integral would be evaluated as follows.
\[
\begin{aligned}
\int_{-2}^{-\sqrt{3}} \frac{\sqrt{x^{2}-3}}{x} d x & =\int_{5 \pi / 6}^{\pi} \frac{(-\sqrt{3} \tan \theta)(\sqrt{3} \sec \theta \tan \theta) d \theta}{\sqrt{3} \sec \theta} \\
& =\int_{5 \pi / 6}^{\pi}-\sqrt{3} \tan ^{2} \theta d \theta \\
& =-\sqrt{3} \int_{5 \pi / 6}^{\pi}\left(\sec ^{2} \theta-1\right) d \theta \\
& =-\sqrt{3}[\tan \theta-\theta]_{5 \pi / 6}^{\pi} \\
& =-\sqrt{3}\left[(0-\pi)-\left(-\frac{1}{\sqrt{3}}-\frac{5 \pi}{6}\right)\right] \\
& =-1+\frac{\sqrt{3} \pi}{6} \\
& \approx-0.0931
\end{aligned}
\]

Trigonometric substitution can be used with completing the square. For instance, try evaluating the following integral.
\[
\int \sqrt{x^{2}-2 x} d x
\]

To begin, you could complete the square and write the integral as
\[
\int \sqrt{(x-1)^{2}-1^{2}} d x
\]

Trigonometric substitution can be used to evaluate the three integrals listed in the following theorem. These integrals will be encountered several times in the remainder of the text. When this happens, we will simply refer to this theorem. (In Exercise 85, you are asked to verify the formulas given in the theorem.)

\section*{THEOREM 8.2 SPECIAL INTEGRATION FORMULAS ( \(a>0\) )}
1. \(\int \sqrt{a^{2}-u^{2}} d u=\frac{1}{2}\left(a^{2} \arcsin \frac{u}{a}+u \sqrt{a^{2}-u^{2}}\right)+C\)
2. \(\int \sqrt{u^{2}-a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2}-a^{2}}-a^{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|\right)+C, \quad u>a\)
3. \(\int \sqrt{u^{2}+a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2}+a^{2}}+a^{2} \ln \left|u+\sqrt{u^{2}+a^{2}}\right|\right)+C\)


The arc length of the curve from \((0,0)\) to \(\left(1, \frac{1}{2}\right)\) Figure 8.10


The barrel is not quite full of oil-the top 0.2 foot of the barrel is empty.

Figure 8.11


Figure 8.12

\section*{Applications}

\section*{EXAMPLE 5 Finding Arc Length}

Find the arc length of the graph of \(f(x)=\frac{1}{2} x^{2}\) from \(x=0\) to \(x=1\) (see Figure 8.10).
Solution Refer to the arc length formula in Section 7.4.
\[
\begin{aligned}
s & =\int_{0}^{1} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & & \text { Formula for arc length } \\
& =\int_{0}^{1} \sqrt{1+x^{2}} d x & & f^{\prime}(x)=x \\
& =\int_{0}^{\pi / 4} \sec ^{3} \theta d \theta & & \text { Let } a=1 \text { and } x=\tan \theta . \\
& =\frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{0}^{\pi / 4} & & \text { Example } 5, \text { Section } 8.2 \\
& =\frac{1}{2}[\sqrt{2}+\ln (\sqrt{2}+1)] \approx 1.148 & &
\end{aligned}
\]

\section*{EXAMPLE 6 Comparing Two Fluid Forces}

A sealed barrel of oil (weighing 48 pounds per cubic foot) is floating in seawater (weighing 64 pounds per cubic foot), as shown in Figures 8.11 and 8.12. (The barrel is not completely full of oil. With the barrel lying on its side, the top 0.2 foot of the barrel is empty.) Compare the fluid forces against one end of the barrel from the inside and from the outside.

Solution In Figure 8.12, locate the coordinate system with the origin at the center of the circle given by \(x^{2}+y^{2}=1\). To find the fluid force against an end of the barrel from the inside, integrate between -1 and 0.8 (using a weight of \(w=48\) ).
\[
\begin{array}{rlr}
F & =w \int_{c}^{d} h(y) L(y) d y & \text { General equation (see Section 7.7) } \\
F_{\text {inside }} & =48 \int_{-1}^{0.8}(0.8-y)(2) \sqrt{1-y^{2}} d y \\
& =76.8 \int_{-1}^{0.8} \sqrt{1-y^{2}} d y-96 \int_{-1}^{0.8} y \sqrt{1-y^{2}} d y
\end{array}
\]

To find the fluid force from the outside, integrate between -1 and 0.4 (using a weight of \(w=64\) ).
\[
\begin{aligned}
F_{\text {outside }} & =64 \int_{-1}^{0.4}(0.4-y)(2) \sqrt{1-y^{2}} d y \\
& =51.2 \int_{-1}^{0.4} \sqrt{1-y^{2}} d y-128 \int_{-1}^{0.4} y \sqrt{1-y^{2}} d y
\end{aligned}
\]

The details of integration are left for you to complete in Exercise 84. Intuitively, would you say that the force from the oil (the inside) or the force from the seawater (the outside) is greater? By evaluating these two integrals, you can determine that
\[
F_{\text {inside }} \approx 121.3 \text { pounds } \quad \text { and } \quad F_{\text {outside }} \approx 93.0 \text { pounds. }
\]

\subsection*{8.4 Exercises}

In Exercises 1-4, state the trigonometric substitution you would use to find the integral. Do not integrate.
1. \(\int\left(9+x^{2}\right)^{-2} d x\)
2. \(\int \sqrt{4-x^{2}} d x\)
3. \(\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x\)
4. \(\int x^{2}\left(x^{2}-25\right)^{3 / 2} d x\)

In Exercises 5-8, find the indefinite integral using the substitution \(\boldsymbol{x}=\mathbf{4} \sin \boldsymbol{\theta}\).
5. \(\int \frac{1}{\left(16-x^{2}\right)^{3 / 2}} d x\)
6. \(\int \frac{4}{x^{2} \sqrt{16-x^{2}}} d x\)
7. \(\int \frac{\sqrt{16-x^{2}}}{x} d x\)
8. \(\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x\)

In Exercises 9-12, find the indefinite integral using the substitution \(\boldsymbol{x}=\mathbf{5} \sec \boldsymbol{\theta}\).
9. \(\int \frac{1}{\sqrt{x^{2}-25}} d x\)
10. \(\int \frac{\sqrt{x^{2}-25}}{x} d x\)
11. \(\int x^{3} \sqrt{x^{2}-25} d x\)
12. \(\int \frac{x^{3}}{\sqrt{x^{2}-25}} d x\)

In Exercises 13-16, find the indefinite integral using the substitution \(x=\tan \boldsymbol{\theta}\).
13. \(\int x \sqrt{1+x^{2}} d x\)
14. \(\int \frac{9 x^{3}}{\sqrt{1+x^{2}}} d x\)
15. \(\int \frac{1}{\left(1+x^{2}\right)^{2}} d x\)
16. \(\int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x\)

In Exercises 17-20, use the Special Integration Formulas (Theorem 8.2) to find the integral.
17. \(\int \sqrt{9+16 x^{2}} d x\)
18. \(\int \sqrt{4+x^{2}} d x\)
19. \(\int \sqrt{25-4 x^{2}} d x\)
20. \(\int \sqrt{5 x^{2}-1} d x\)

In Exercises 21-42, find the integral.
21. \(\int \frac{x}{\sqrt{x^{2}+36}} d x\)
22. \(\int \frac{x}{\sqrt{36-x^{2}}} d x\)
23. \(\int \frac{1}{\sqrt{16-x^{2}}} d x\)
24. \(\int \frac{1}{\sqrt{49-x^{2}}} d x\)
25. \(\int \sqrt{16-4 x^{2}} d x\)
26. \(\int x \sqrt{16-4 x^{2}} d x\)
27. \(\int \frac{1}{\sqrt{x^{2}-4}} d x\)
28. \(\int \frac{t}{\left(4-t^{2}\right)^{3 / 2}} d t\)
29. \(\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x\)
30. \(\int \frac{\sqrt{4 x^{2}+9}}{x^{4}} d x\)
31. \(\int \frac{1}{x \sqrt{4 x^{2}+9}} d x\)
32. \(\int \frac{1}{x \sqrt{4 x^{2}+16}} d x\)
33. \(\int \frac{-3 x}{\left(x^{2}+3\right)^{3 / 2}} d x\)
34. \(\int \frac{1}{\left(x^{2}+5\right)^{3 / 2}} d x\)
35. \(\int e^{2 x} \sqrt{1+e^{2 x}} d x\)
36. \(\int(x+1) \sqrt{x^{2}+2 x+2} d x\)
37. \(\int e^{x} \sqrt{1-e^{2 x}} d x\)
38. \(\int \frac{\sqrt{1-x}}{\sqrt{x}} d x\)
39. \(\int \frac{1}{4+4 x^{2}+x^{4}} d x\)
40. \(\int \frac{x^{3}+x+1}{x^{4}+2 x^{2}+1} d x\)
41. \(\int \operatorname{arcsec} 2 x d x, x>\frac{1}{2}\)
42. \(\int x \arcsin x d x\)

In Exercises 43-46, complete the square and find the integral.
43. \(\int \frac{1}{\sqrt{4 x-x^{2}}} d x\)
44. \(\int \frac{x^{2}}{\sqrt{2 x-x^{2}}} d x\)
45. \(\int \frac{x}{\sqrt{x^{2}+6 x+12}} d x\)
46. \(\int \frac{x}{\sqrt{x^{2}-6 x+5}} d x\)

In Exercises 47-52, evaluate the integral using (a) the given integration limits and (b) the limits obtained by trigonometric substitution.
47. \(\int_{0}^{\sqrt{3} / 2} \frac{t^{2}}{\left(1-t^{2}\right)^{3 / 2}} d t\)
48. \(\int_{0}^{\sqrt{3} / 2} \frac{1}{\left(1-t^{2}\right)^{5 / 2}} d t\)
49. \(\int_{0}^{3} \frac{x^{3}}{\sqrt{x^{2}+9}} d x\)
50. \(\int_{0}^{3 / 5} \sqrt{9-25 x^{2}} d x\)
51. \(\int_{4}^{6} \frac{x^{2}}{\sqrt{x^{2}-9}} d x\)
52. \(\int_{3}^{6} \frac{\sqrt{x^{2}-9}}{x^{2}} d x\)

In Exercises 53 and 54, find the particular solution of the differential equation.
53. \(x \frac{d y}{d x}=\sqrt{x^{2}-9}, \quad x \geq 3, \quad y(3)=1\)
54. \(\sqrt{x^{2}+4} \frac{d y}{d x}=1, \quad x \geq-2, \quad y(0)=4\)

CAS In Exercises 55-58, use a computer algebra system to find the integral. Verify the result by differentiation.
55. \(\int \frac{x^{2}}{\sqrt{x^{2}+10 x+9}} d x\)
56. \(\int\left(x^{2}+2 x+11\right)^{3 / 2} d x\)
57. \(\int \frac{x^{2}}{\sqrt{x^{2}-1}} d x\)
58. \(\int x^{2} \sqrt{x^{2}-4} d x\)

\section*{WRITING ABOUT CONCEPTS}
59. State the substitution you would make if you used trigonometric substitution and the integral involving the given radical, where \(a>0\). Explain your reasoning.
(a) \(\sqrt{a^{2}-u^{2}}\)
(b) \(\sqrt{a^{2}+u^{2}}\)
(c) \(\sqrt{u^{2}-a^{2}}\)

\section*{WRITING ABOUT CONCEPTS (continued)}

In Exercises 60 and 61, state the method of integration you would use to perform each integration. Explain why you chose that method. Do not integrate.
60. \(\int x \sqrt{x^{2}+1} d x\)
61. \(\int x^{2} \sqrt{x^{2}-1} d x\)

\section*{CAPSTONE}
62. (a) Evaluate the integral \(\int \frac{x}{x^{2}+9} d x\) using \(u\)-substitution. Then evaluate using trigonometric substitution. Discuss the results.
(b) Evaluate the integral \(\int \frac{x^{2}}{x^{2}+9} d x\) algebraically using \(x^{2}=\left(x^{2}+9\right)-9\). Then evaluate using trigonometric substitution. Discuss the results.
(c) Evaluate the integral \(\int \frac{4}{4-x^{2}} d x\) using trigonometric substitution. Then evaluate using the identity \(\frac{4}{4-x^{2}}=\left(\frac{1}{x+2}-\frac{1}{x-2}\right)\). Discuss the results.

True or False? In Exercises 63-66, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
63. If \(x=\sin \theta\), then \(\int \frac{d x}{\sqrt{1-x^{2}}}=\int d \theta\).
64. If \(x=\sec \theta\), then \(\int \frac{\sqrt{x^{2}-1}}{x} d x=\int \sec \theta \tan \theta d \theta\).
65. If \(x=\tan \theta\), then \(\int_{0}^{\sqrt{3}} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}=\int_{0}^{4 \pi / 3} \cos \theta d \theta\).
66. If \(x=\sin \theta\), then \(\int_{-1}^{1} x^{2} \sqrt{1-x^{2}} d x=2 \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta\).
67. Area Find the area enclosed by the ellipse shown in the figure. \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)


Figure for 67


Figure for 68
68. Area Find the area of the shaded region of the circle of radius \(a\), if the chord is \(h\) units \((0<h<a)\) from the center of the circle (see figure).
69. Mechanical Design The surface of a machine part is the region between the graphs of \(y=|x|\) and \(x^{2}+(y-k)^{2}=25\) (see figure).
(a) Find \(k\) if the circle is tangent to the graph of \(y=|x|\).
(b) Find the area of the surface of the machine part.
(c) Find the area of the surface of the machine part as a function of the radius \(r\) of the circle.

70. Volume The axis of a storage tank in the form of a right circular cylinder is horizontal (see figure). The radius and length of the tank are 1 meter and 3 meters, respectively.

(a) Determine the volume of fluid in the tank as a function of its depth \(d\).
(b) Use a graphing utility to graph the function in part (a).
(c) Design a dip stick for the tank with markings of \(\frac{1}{4}, \frac{1}{2}\), and \(\frac{3}{4}\).
(d) Fluid is entering the tank at a rate of \(\frac{1}{4}\) cubic meter per minute. Determine the rate of change of the depth of the fluid as a function of its depth \(d\).
(e) Use a graphing utility to graph the function in part (d). When will the rate of change of the depth be minimum? Does this agree with your intuition? Explain.

Volume of a Torus In Exercises 71 and 72, find the volume of the torus generated by revolving the region bounded by the graph of the circle about the \(\boldsymbol{y}\)-axis.
71. \((x-3)^{2}+y^{2}=1\) (see figure)

72. \((x-h)^{2}+y^{2}=r^{2}, h>r\)

Arc Length In Exercises 73 and 74, find the arc length of the curve over the given interval.
73. \(y=\ln x, \quad[1,5]\)
74. \(y=\frac{1}{2} x^{2}, \quad[0,4]\)
75. Arc Length Show that the length of one arch of the sine curve is equal to the length of one arch of the cosine curve.

\section*{76. Conjecture}
(a) Find formulas for the distances between \((0,0)\) and \(\left(a, a^{2}\right)\) along the line between these points and along the parabola \(y=x^{2}\).
(b) Use the formulas from part (a) to find the distances for \(a=1\) and \(a=10\).
(c) Make a conjecture about the difference between the two distances as \(a\) increases.

Projectile Motion In Exercises 77 and 78, (a) use a graphing utility to graph the path of a projectile that follows the path given by the graph of the equation, (b) determine the range of the projectile, and (c) use the integration capabilities of a graphing utility to determine the distance the projectile travels.
77. \(y=x-0.005 x^{2}\)
78. \(y=x-\frac{x^{2}}{72}\)

Centroid In Exercises 79 and 80, find the centroid of the region determined by the graphs of the inequalities.
79. \(y \leq 3 / \sqrt{x^{2}+9}, y \geq 0, x \geq-4, x \leq 4\)
80. \(y \leq \frac{1}{4} x^{2},(x-4)^{2}+y^{2} \leq 16, y \geq 0\)
81. Surface Area Find the surface area of the solid generated by revolving the region bounded by the graphs of \(y=x^{2}, y=0\), \(x=0\), and \(x=\sqrt{2}\) about the \(x\)-axis.
82. Field Strength The field strength \(H\) of a magnet of length \(2 L\) on a particle \(r\) units from the center of the magnet is
\(H=\frac{2 m L}{\left(r^{2}+L^{2}\right)^{3 / 2}}\)
where \(\pm m\) are the poles of the magnet (see figure). Find the average field strength as the particle moves from 0 to \(R\) units from the center by evaluating the integral
\(\frac{1}{R} \int_{0}^{R} \frac{2 m L}{\left(r^{2}+L^{2}\right)^{3 / 2}} d r\).


Figure for 82


Figure for 83
83. Fluid Force Find the fluid force on a circular observation window of radius 1 foot in a vertical wall of a large water-filled tank at a fish hatchery when the center of the window is (a) 3 feet and (b) \(d\) feet \((d>1)\) below the water's surface (see figure). Use trigonometric substitution to evaluate the one integral. (Recall that in Section 7.7 in a similar problem, you evaluated one integral by a geometric formula and the other by observing that the integrand was odd.)
84. Fluid Force Evaluate the following two integrals, which yield the fluid forces given in Example 6.
(a) \(F_{\text {inside }}=48 \int_{-1}^{0.8}(0.8-y)(2) \sqrt{1-y^{2}} d y\)
(b) \(F_{\text {outside }}=64 \int_{-1}^{0.4}(0.4-y)(2) \sqrt{1-y^{2}} d y\)
85. Use trigonometric substitution to verify the integration formulas given in Theorem 8.2.
86. Arc Length Show that the arc length of the graph of \(y=\sin x\) on the interval \([0,2 \pi]\) is equal to the circumference of the ellipse \(x^{2}+2 y^{2}=2\) (see figure).


Figure for 86


Figure for 87
87. Area of a Lune The crescent-shaped region bounded by two circles forms a lune (see figure). Find the area of the lune given that the radius of the smaller circle is 3 and the radius of the larger circle is 5 .
88. Area Two circles of radius 3 , with centers at \((-2,0)\) and \((2,0)\), intersect as shown in the figure. Find the area of the shaded region.


\section*{PUTNAM EXAM CHALLENGE}
89. Evaluate
\[
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
\]

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{8.5 Partial Fractions}

\(\sec \theta=2 x-5\)
Figure 8.13

The method of partial fractions was introduced by John Bernoulli, a Swiss mathematician who was instrumental in the early development of calculus. John Bernoulli was a professor at the University of Basel and taught many outstanding students, the most famous of whom was Leonhard Euler.
- Understand the concept of partial fraction decomposition.
- Use partial fraction decomposition with linear factors to integrate rational functions.
- Use partial fraction decomposition with quadratic factors to integrate rational functions.

\section*{Partial Fractions}

This section examines a procedure for decomposing a rational function into simpler rational functions to which you can apply the basic integration formulas. This procedure is called the method of partial fractions. To see the benefit of the method of partial fractions, consider the integral
\[
\int \frac{1}{x^{2}-5 x+6} d x
\]

To evaluate this integral without partial fractions, you can complete the square and use trigonometric substitution (see Figure 8.13) to obtain
\[
\begin{aligned}
\int \frac{1}{x^{2}-5 x+6} d x & =\int \frac{d x}{(x-5 / 2)^{2}-(1 / 2)^{2}} \quad a=\frac{1}{2}, x-\frac{5}{2}=\frac{1}{2} \sec \theta \\
& =\int \frac{(1 / 2) \sec \theta \tan \theta d \theta}{(1 / 4) \tan ^{2} \theta} \\
& =2 \int \csc \theta d \theta \\
& =2 \ln |\csc \theta-\cot \theta|+C \\
& =2 \ln \left|\frac{2 x-5}{2 \sqrt{x^{2}-5 x+6} \sec \theta \tan \theta d \theta}-\frac{1}{2 \sqrt{x^{2}-5 x+6}}\right|+C \\
& =2 \ln \left|\frac{x-3}{\sqrt{x^{2}-5 x+6}}\right|+C \\
& =2 \ln \left|\frac{\sqrt{x-3}}{\sqrt{x-2}}\right|+C \\
& =\ln \left|\frac{x-3}{x-2}\right|+C \\
& =\ln |x-3|-\ln |x-2|+C .
\end{aligned}
\]

Now, suppose you had observed that
\[
\frac{1}{x^{2}-5 x+6}=\frac{1}{x-3}-\frac{1}{x-2} . \quad \text { Partial fraction decomposition }
\]

Then you could evaluate the integral easily, as follows.
\[
\begin{aligned}
\int \frac{1}{x^{2}-5 x+6} d x & =\int\left(\frac{1}{x-3}-\frac{1}{x-2}\right) d x \\
& =\ln |x-3|-\ln |x-2|+C
\end{aligned}
\]

This method is clearly preferable to trigonometric substitution. However, its use depends on the ability to factor the denominator, \(x^{2}-5 x+6\), and to find the partial fractions
\[
\frac{1}{x-3} \quad \text { and } \quad-\frac{1}{x-2}
\]

In this section, you will study techniques for finding partial fraction decompositions.

STUDY TIP In precalculus you learned how to combine functions such as
\[
\frac{1}{x-2}+\frac{-1}{x+3}=\frac{5}{(x-2)(x+3)}
\]

The method of partial fractions shows you how to reverse this process.
\[
\frac{5}{(x-2)(x+3)}=\frac{?}{x-2}+\frac{?}{x+3}
\]

Recall from algebra that every polynomial with real coefficients can be factored into linear and irreducible quadratic factors.* For instance, the polynomial
\[
x^{5}+x^{4}-x-1
\]
can be written as
\[
\begin{aligned}
x^{5}+x^{4}-x-1 & =x^{4}(x+1)-(x+1) \\
& =\left(x^{4}-1\right)(x+1) \\
& =\left(x^{2}+1\right)\left(x^{2}-1\right)(x+1) \\
& =\left(x^{2}+1\right)(x+1)(x-1)(x+1) \\
& =(x-1)(x+1)^{2}\left(x^{2}+1\right)
\end{aligned}
\]
where \((x-1)\) is a linear factor, \((x+1)^{2}\) is a repeated linear factor, and \(\left(x^{2}+1\right)\) is an irreducible quadratic factor. Using this factorization, you can write the partial fraction decomposition of the rational expression
\[
\frac{N(x)}{x^{5}+x^{4}-x-1}
\]
where \(N(x)\) is a polynomial of degree less than 5 , as follows.
\[
\frac{N(x)}{(x-1)(x+1)^{2}\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}+\frac{D x+E}{x^{2}+1}
\]

\section*{DECOMPOSITION OF \(N(x) / D(x)\) INTO PARTIAL FRACTIONS}
1. Divide if improper: If \(N(x) / D(x)\) is an improper fraction (that is, if the degree of the numerator is greater than or equal to the degree of the denominator), divide the denominator into the numerator to obtain
\[
\frac{N(x)}{D(x)}=(\text { a polynomial })+\frac{N_{1}(x)}{D(x)}
\]
where the degree of \(N_{1}(x)\) is less than the degree of \(D(x)\). Then apply Steps 2,3 , and 4 to the proper rational expression \(N_{1}(x) / D(x)\).
2. Factor denominator: Completely factor the denominator into factors of the form
\[
(p x+q)^{m} \quad \text { and } \quad\left(a x^{2}+b x+c\right)^{n}
\]
where \(a x^{2}+b x+c\) is irreducible.
3. Linear factors: For each factor of the form \((p x+q)^{m}\), the partial fraction decomposition must include the following sum of \(m\) fractions.
\[
\frac{A_{1}}{(p x+q)}+\frac{A_{2}}{(p x+q)^{2}}+\cdots+\frac{A_{m}}{(p x+q)^{m}}
\]
4. Quadratic factors: For each factor of the form \(\left(a x^{2}+b x+c\right)^{n}\), the partial fraction decomposition must include the following sum of \(n\) fractions.
\[
\frac{B_{1} x+C_{1}}{a x^{2}+b x+c}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{B_{n} x+C_{n}}{\left(a x^{2}+b x+c\right)^{n}}
\]

\footnotetext{
* For a review of factorization techniques, see Precalculus, 7th edition, by Larson and Hostetler or Precalculus: A Graphing Approach, 5th edition, by Larson, Hostetler, and Edwards (Boston, Massachusetts: Houghton Mifflin, 2007 and 2008, respectively).
}

NOTE Note that the substitutions for \(x\) in Example 1 are chosen for their convenience in determining values for \(A\) and \(B ; x=2\) is chosen to eliminate the term \(A(x-2)\), and \(x=3\) is chosen to eliminate the term \(B(x-3)\). The goal is to make convenient substitutions whenever possible.

FOR FURTHER INFORMATION To
learn a different method for finding partial fraction decompositions, called the Heavyside Method, see the article "Calculus to Algebra Connections in Partial Fraction Decomposition" by Joseph Wiener and Will Watkins in The AMATYC Review.

\section*{Linear Factors}

Algebraic techniques for determining the constants in the numerators of a partial fraction decomposition with linear or repeated linear factors are shown in Examples 1 and 2.

\section*{EXAMPLE 1 Distinct Linear Factors}

Write the partial fraction decomposition for \(\frac{1}{x^{2}-5 x+6}\).
Solution Because \(x^{2}-5 x+6=(x-3)(x-2)\), you should include one partial fraction for each factor and write
\[
\frac{1}{x^{2}-5 x+6}=\frac{A}{x-3}+\frac{B}{x-2}
\]
where \(A\) and \(B\) are to be determined. Multiplying this equation by the least common denominator \((x-3)(x-2)\) yields the basic equation
\[
1=A(x-2)+B(x-3) . \quad \text { Basic equation }
\]

Because this equation is to be true for all \(x\), you can substitute any convenient values for \(x\) to obtain equations in \(A\) and \(B\). The most convenient values are the ones that make particular factors equal to 0 .

To solve for \(A\), let \(x=3\) and obtain
\[
\begin{aligned}
& 1=A(3-2)+B(3-3) \quad \text { Let } x=3 \text { in basic equation. } \\
& 1=A(1)+B(0) \\
& A=1
\end{aligned}
\]

To solve for \(B\), let \(x=2\) and obtain
\[
\begin{aligned}
& 1=A(2-2)+B(2-3) \quad \text { Let } x=2 \text { in basic equation. } \\
& 1=A(0)+B(-1) \\
& B=-1
\end{aligned}
\]

So, the decomposition is
\[
\frac{1}{x^{2}-5 x+6}=\frac{1}{x-3}-\frac{1}{x-2}
\]
as shown at the beginning of this section.

Be sure you see that the method of partial fractions is practical only for integrals of rational functions whose denominators factor "nicely." For instance, if the denominator in Example 1 were changed to \(x^{2}-5 x+5\), its factorization as
\[
x^{2}-5 x+5=\left[x+\frac{5+\sqrt{5}}{2}\right]\left[x-\frac{5-\sqrt{5}}{2}\right]
\]
would be too cumbersome to use with partial fractions. In such cases, you should use completing the square or a computer algebra system to perform the integration. If you do this, you should obtain
\[
\int \frac{1}{x^{2}-5 x+5} d x=\frac{\sqrt{5}}{5} \ln |2 x-\sqrt{5}-5|-\frac{\sqrt{5}}{5} \ln |2 x+\sqrt{5}-5|+C
\]

FOR FURTHER INFORMATION For an alternative approach to using partial fractions, see the article "A Shortcut in Partial Fractions" by Xun-Cheng Huang in The College Mathematics Journal.

TECHNOLOGY Most computer algebra systems, such as Maple, Mathematica, and the TI-89, can be used to convert a rational function to its partial fraction decomposition. For instance, using Maple, you obtain the following.
\(>\operatorname{convert}\left(\frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x}\right.\), parfrac, \(\left.x\right)\) \(\frac{6}{x}+\frac{9}{(x+1)^{2}}-\frac{1}{x+1}\)

\section*{EXAMPLE 2 Repeated Linear Factors}

Find \(\int \frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x} d x\).

\section*{Solution Because}
\[
\begin{aligned}
x^{3}+2 x^{2}+x & =x\left(x^{2}+2 x+1\right) \\
& =x(x+1)^{2}
\end{aligned}
\]
you should include one fraction for each power of \(x\) and \((x+1)\) and write
\[
\frac{5 x^{2}+20 x+6}{x(x+1)^{2}}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} .
\]

Multiplying by the least common denominator \(x(x+1)^{2}\) yields the basic equation
\[
5 x^{2}+20 x+6=A(x+1)^{2}+B x(x+1)+C x
\]

To solve for \(A\), let \(x=0\). This eliminates the \(B\) and \(C\) terms and yields
\[
\begin{aligned}
6 & =A(1)+0+0 \\
A & =6
\end{aligned}
\]

To solve for \(C\), let \(x=-1\). This eliminates the \(A\) and \(B\) terms and yields
\[
\begin{aligned}
5-20+6 & =0+0-C \\
C & =9 .
\end{aligned}
\]

The most convenient choices for \(x\) have been used, so to find the value of \(B\), you can use any other value of \(x\) along with the calculated values of \(A\) and \(C\). Using \(x=1\), \(A=6\), and \(C=9\) produces
\[
\begin{aligned}
5+20+6 & =A(4)+B(2)+C \\
31 & =6(4)+2 B+9 \\
-2 & =2 B \\
B & =-1 .
\end{aligned}
\]

So, it follows that
\[
\begin{aligned}
\int \frac{5 x^{2}+20 x+6}{x(x+1)^{2}} d x & =\int\left(\frac{6}{x}-\frac{1}{x+1}+\frac{9}{(x+1)^{2}}\right) d x \\
& =6 \ln |x|-\ln |x+1|+9 \frac{(x+1)^{-1}}{-1}+C \\
& =\ln \left|\frac{x^{6}}{x+1}\right|-\frac{9}{x+1}+C
\end{aligned}
\]

Try checking this result by differentiating. Include algebra in your check, simplifying the derivative until you have obtained the original integrand.

NOTE It is necessary to make as many substitutions for \(x\) as there are unknowns ( \(A, B, C, \ldots\) ) to be determined. For instance, in Example 2, three substitutions ( \(x=0\), \(x=-1\), and \(x=1\) ) were made to solve for \(A, B\), and \(C\).

\section*{Quadratic Factors}

When using the method of partial fractions with linear factors, a convenient choice of \(x\) immediately yields a value for one of the coefficients. With quadratic factors, a system of linear equations usually has to be solved, regardless of the choice of \(x\).

\section*{EXAMPLE 3 Distinct Linear and Quadratic Factors}

Find \(\int \frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)} d x\).
Solution Because
\[
\left(x^{2}-x\right)\left(x^{2}+4\right)=x(x-1)\left(x^{2}+4\right)
\]
you should include one partial fraction for each factor and write
\[
\frac{2 x^{3}-4 x-8}{x(x-1)\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+4} .
\]

Multiplying by the least common denominator \(x(x-1)\left(x^{2}+4\right)\) yields the basic equation
\[
2 x^{3}-4 x-8=A(x-1)\left(x^{2}+4\right)+B x\left(x^{2}+4\right)+(C x+D)(x)(x-1) .
\]

To solve for \(A\), let \(x=0\) and obtain
\[
-8=A(-1)(4)+0+0 \quad \square \quad 2=A .
\]

To solve for \(B\), let \(x=1\) and obtain
\[
-10=0+B(5)+0 \quad \square \quad-2=B .
\]

At this point, \(C\) and \(D\) are yet to be determined. You can find these remaining constants by choosing two other values for \(x\) and solving the resulting system of linear equations. If \(x=-1\), then, using \(A=2\) and \(B=-2\), you can write
\[
\begin{aligned}
-6 & =(2)(-2)(5)+(-2)(-1)(5)+(-C+D)(-1)(-2) \\
2 & =-C+D .
\end{aligned}
\]

If \(x=2\), you have
\[
\begin{aligned}
& 0=(2)(1)(8)+(-2)(2)(8)+(2 C+D)(2)(1) \\
& 8=2 C+D .
\end{aligned}
\]

Solving the linear system by subtracting the first equation from the second
\[
\begin{array}{r}
-C+D=2 \\
2 C+D=8
\end{array}
\]
yields \(C=2\). Consequently, \(D=4\), and it follows that
\[
\begin{aligned}
\int \frac{2 x^{3}-4 x-8}{x(x-1)\left(x^{2}+4\right)} d x & =\int\left(\frac{2}{x}-\frac{2}{x-1}+\frac{2 x}{x^{2}+4}+\frac{4}{x^{2}+4}\right) d x \\
& =2 \ln |x|-2 \ln |x-1|+\ln \left(x^{2}+4\right)+2 \arctan \frac{x}{2}+C
\end{aligned}
\]

In Examples 1, 2, and 3, the solution of the basic equation began with substituting values of \(x\) that made the linear factors equal to 0 . This method works well when the partial fraction decomposition involves linear factors. However, if the decomposition involves only quadratic factors, an alternative procedure is often more convenient.

\section*{EXAMPLE 4 Repeated Quadratic Factors}

Find \(\int \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}} d x\).
Solution Include one partial fraction for each power of \(\left(x^{2}+2\right)\) and write
\[
\frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}}=\frac{A x+B}{x^{2}+2}+\frac{C x+D}{\left(x^{2}+2\right)^{2}}
\]

Multiplying by the least common denominator \(\left(x^{2}+2\right)^{2}\) yields the basic equation
\[
8 x^{3}+13 x=(A x+B)\left(x^{2}+2\right)+C x+D
\]

Expanding the basic equation and collecting like terms produces
\[
\begin{aligned}
& 8 x^{3}+13 x=A x^{3}+2 A x+B x^{2}+2 B+C x+D \\
& 8 x^{3}+13 x=A x^{3}+B x^{2}+(2 A+C) x+(2 B+D)
\end{aligned}
\]

Now, you can equate the coefficients of like terms on opposite sides of the equation.


Using the known values \(A=8\) and \(B=0\), you can write
\[
\begin{aligned}
13 & =2 A+C=2(8)+C \quad \square \quad C=-3 \\
0 & =2 B+D=2(0)+D \quad \square \quad D=0 .
\end{aligned}
\]

Finally, you can conclude that
\[
\begin{aligned}
\int \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}} d x & =\int\left(\frac{8 x}{x^{2}+2}+\frac{-3 x}{\left(x^{2}+2\right)^{2}}\right) d x \\
& =4 \ln \left(x^{2}+2\right)+\frac{3}{2\left(x^{2}+2\right)}+C
\end{aligned}
\]

TECHNOLOGY Use a computer algebra system to evaluate the integral in Example 4-you might find that the form of the antiderivative is different. For instance, when you use a computer algebra system to work Example 4, you obtain
\[
\int \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}} d x=\ln \left(x^{8}+8 x^{6}+24 x^{4}+32 x^{2}+16\right)+\frac{3}{2\left(x^{2}+2\right)}+C
\]

Is this result equivalent to that obtained in Example 4?

When integrating rational expressions, keep in mind that for improper rational expressions such as
\[
\frac{N(x)}{D(x)}=\frac{2 x^{3}+x^{2}-7 x+7}{x^{2}+x-2}
\]
you must first divide to obtain
\[
\frac{N(x)}{D(x)}=2 x-1+\frac{-2 x+5}{x^{2}+x-2} .
\]

The proper rational expression is then decomposed into its partial fractions by the usual methods. Here are some guidelines for solving the basic equation that is obtained in a partial fraction decomposition.

\section*{GUIDELINES FOR SOLVING THE BASIC EQUATION}

\section*{Linear Factors}
1. Substitute the roots of the distinct linear factors in the basic equation.
2. For repeated linear factors, use the coefficients determined in guideline 1 to rewrite the basic equation. Then substitute other convenient values of \(x\) and solve for the remaining coefficients.

\section*{Quadratic Factors}
1. Expand the basic equation.
2. Collect terms according to powers of \(x\).
3. Equate the coefficients of like powers to obtain a system of linear equations involving \(A, B, C\), and so on.
4. Solve the system of linear equations.

Before concluding this section, here are a few things you should remember. First, it is not necessary to use the partial fractions technique on all rational functions. For instance, the following integral is evaluated more easily by the Log Rule.
\[
\begin{aligned}
\int \frac{x^{2}+1}{x^{3}+3 x-4} d x & =\frac{1}{3} \int \frac{3 x^{2}+3}{x^{3}+3 x-4} d x \\
& =\frac{1}{3} \ln \left|x^{3}+3 x-4\right|+C
\end{aligned}
\]

Second, if the integrand is not in reduced form, reducing it may eliminate the need for partial fractions, as shown in the following integral.
\[
\begin{aligned}
\int \frac{x^{2}-x-2}{x^{3}-2 x-4} d x & =\int \frac{(x+1)(x-2)}{(x-2)\left(x^{2}+2 x+2\right)} d x \\
& =\int \frac{x+1}{x^{2}+2 x+2} d x \\
& =\frac{1}{2} \ln \left|x^{2}+2 x+2\right|+C
\end{aligned}
\]

Finally, partial fractions can be used with some quotients involving transcendental functions. For instance, the substitution \(u=\sin x\) allows you to write
\[
\int \frac{\cos x}{\sin x(\sin x-1)} d x=\int \frac{d u}{u(u-1)} . \quad u=\sin x, d u=\cos x d x
\]

\subsection*{8.5 Exercises}

In Exercises 1-6, write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants.
1. \(\frac{4}{x^{2}-8 x}\)
2. \(\frac{2 x^{2}+1}{(x-3)^{3}}\)
3. \(\frac{2 x-3}{x^{3}+10 x}\)
4. \(\frac{x-4}{x^{2}+6 x+5}\)
5. \(\frac{x-9}{x^{2}-6 x}\)
6. \(\frac{2 x-1}{x\left(x^{2}+1\right)^{2}}\)

In Exercises 7-28, use partial fractions to find the integral.
7. \(\int \frac{1}{x^{2}-9} d x\)
8. \(\int \frac{1}{4 x^{2}-1} d x\)
9. \(\int \frac{5}{x^{2}+3 x-4} d x\)
10. \(\int \frac{x+2}{x^{2}+11 x+18} d x\)
11. \(\int \frac{5-x}{2 x^{2}+x-1} d x\)
12. \(\int \frac{5 x^{2}-12 x-12}{x^{3}-4 x} d x\)
13. \(\int \frac{x^{2}+12 x+12}{x^{3}-4 x} d x\)
14. \(\int \frac{x^{3}-x+3}{x^{2}+x-2} d x\)
15. \(\int \frac{2 x^{3}-4 x^{2}-15 x+5}{x^{2}-2 x-8} d x\)
16. \(\int \frac{x+2}{x^{2}-4 x} d x\)
17. \(\int \frac{4 x^{2}+2 x-1}{x^{3}+x^{2}} d x\)
18. \(\int \frac{3 x-4}{(x-1)^{2}} d x\)
19. \(\int \frac{x^{2}+3 x-4}{x^{3}-4 x^{2}+4 x} d x\)
20. \(\int \frac{4 x^{2}}{x^{3}+x^{2}-x-1} d x\)
21. \(\int \frac{x^{2}-1}{x^{3}+x} d x\)
22. \(\int \frac{6 x}{x^{3}-8} d x\)
23. \(\int \frac{x^{2}}{x^{4}-2 x^{2}-8} d x\)
24. \(\int \frac{x^{2}-x+9}{\left(x^{2}+9\right)^{2}} d x\)
25. \(\int \frac{x}{16 x^{4}-1} d x\)
26. \(\int \frac{x^{2}-4 x+7}{x^{3}-x^{2}+x+3} d x\)
27. \(\int \frac{x^{2}+5}{x^{3}-x^{2}+x+3} d x\)
28. \(\int \frac{x^{2}+x+3}{x^{4}+6 x^{2}+9} d x\)

In Exercises 29-32, evaluate the definite integral. Use a graphing utility to verify your result.
29. \(\int_{0}^{2} \frac{3}{4 x^{2}+5 x+1} d x\)
30. \(\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} d x\)
31. \(\int_{1}^{2} \frac{x+1}{x\left(x^{2}+1\right)} d x\)
32. \(\int_{0}^{1} \frac{x^{2}-x}{x^{2}+x+1} d x\)

CAS In Exercises 33-40, use a computer algebra system to determine the antiderivative that passes through the given point. Use the system to graph the resulting antiderivative.
33. \(\int \frac{5 x}{x^{2}-10 x+25} d x\),
\((6,0)\) 34. \(\int \frac{6 x^{2}+1}{x^{2}(x-1)^{3}} d x\),
35. \(\int \frac{x^{2}+x+2}{\left(x^{2}+2\right)^{2}} d x\),
36. \(\int \frac{x^{3}}{\left(x^{2}-4\right)^{2}} d x\),
37. \(\int \frac{2 x^{2}-2 x+3}{x^{3}-x^{2}-x-2} d x\),
38. \(\int \frac{x(2 x-9)}{x^{3}-6 x^{2}+12 x-8} d x\),
39. \(\int \frac{1}{x^{2}-25} d x,(7,2)\)
40. \(\int \frac{x^{2}-x+2}{x^{3}-x^{2}+x-1} d x\),

In Exercises 41-50, use substitution to find the integral.
41. \(\int \frac{\sin x}{\cos x(\cos x-1)} d x\)
42. \(\int \frac{\sin x}{\cos x+\cos ^{2} x} d x\)
43. \(\int \frac{\cos x}{\sin x+\sin ^{2} x} d x\)
44. \(\int \frac{5 \cos x}{\sin ^{2} x+3 \sin x-4} d x\)
45. \(\int \frac{\sec ^{2} x}{\tan ^{2} x+5 \tan x+6} d x\)
46. \(\int \frac{\sec ^{2} x}{\tan x(\tan x+1)} d x\)
47. \(\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+4\right)} d x\)
\(48 \int \frac{e^{x}}{\left(e^{2 x}+1\right)\left(e^{x}-1\right)} d x\)
49. \(\int \frac{\sqrt{x}}{x-4} d x\)
50. \(\int \frac{1}{\sqrt{x}-\sqrt[3]{x}} d x\)

In Exercises 51-54, use the method of partial fractions to verify the integration formula.
51. \(\int \frac{1}{x(a+b x)} d x=\frac{1}{a} \ln \left|\frac{x}{a+b x}\right|+C\)
52. \(\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+C\)
53. \(\int \frac{x}{(a+b x)^{2}} d x=\frac{1}{b^{2}}\left(\frac{a}{a+b x}+\ln |a+b x|\right)+C\)
54. \(\int \frac{1}{x^{2}(a+b x)} d x=-\frac{1}{a x}-\frac{b}{a^{2}} \ln \left|\frac{x}{a+b x}\right|+C\)

Slope Fields In Exercises 55 and 56, use a computer algebra system to graph the slope field for the differential equation and graph the solution through the given initial condition.
55. \(\frac{d y}{d x}=\frac{6}{4-x^{2}}\)
56. \(\frac{d y}{d x}=\frac{4}{x^{2}-2 x-3}\)
\(y(0)=3\)
\[
y(0)=5
\]

\section*{WRITING ABOUT CONCEPTS}
57. What is the first step when integrating \(\int \frac{x^{3}}{x-5} d x\) ? Explain.
58. Describe the decomposition of the proper rational function \(N(x) / D(x)\) (a) if \(D(x)=(p x+q)^{m}\) and (b) if \(D(x)=\) \(\left(a x^{2}+b x+c\right)^{n}\), where \(a x^{2}+b x+c\) is irreducible. Explain why you chose that method.
59. Area Find the area of the region bounded by the graphs of \(y=12 /\left(x^{2}+5 x+6\right), y=0, x=0\), and \(x=1\).
60. Area Find the area of the region bounded by the graphs of \(y=15 /\left(x^{2}+7 x+12\right), y=0, x=0\), and \(x=2\).
61. Area Find the area of the region bounded by the graphs of \(y=7 /\left(16-x^{2}\right)\) and \(y=1\).

\section*{CAPSTONE}
62. State the method you would use to evaluate each integral. Explain why you chose that method. Do not integrate.
(a) \(\int \frac{x+1}{x^{2}+2 x-8} d x\)
(b) \(\int \frac{7 x+4}{x^{2}+2 x-8} d x\)
(c) \(\int \frac{4}{x^{2}+2 x+5} d x\)
63. Modeling Data The predicted cost \(C\) (in hundreds of thousands of dollars) for a company to remove \(p \%\) of a chemical from its waste water is shown in the table.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline\(p\) & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline\(C\) & 0 & 0.7 & 1.0 & 1.3 & 1.7 & 2.0 & 2.7 & 3.6 & 5.5 & 11.2 \\
\hline
\end{tabular}

A model for the data is given by \(C=\frac{124 p}{(10+p)(100-p)}\), \(0 \leq p<100\). Use the model to find the average cost of removing between \(75 \%\) and \(80 \%\) of the chemical.
64. Logistic Growth In Chapter 6, the exponential growth equation was derived from the assumption that the rate of growth was proportional to the existing quantity. In practice, there often exists some upper limit \(L\) past which growth cannot occur. In such cases, you assume the rate of growth to be proportional not only to the existing quantity, but also to the difference between the existing quantity \(y\) and the upper limit \(L\). That is, \(d y / d t=k y(L-y)\). In integral form, you can write this relationship as \(\int \frac{d y}{y(L-y)}=\int k d t\).
(a) A slope field for the differential equation \(d y / d t=y(3-y)\) is shown. Draw a possible solution to the differential equation if \(y(0)=5\), and another if \(y(0)=\frac{1}{2}\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

(b) Where \(y(0)\) is greater than 3 , what is the sign of the slope of the solution?
(c) For \(y>0\), find \(\lim _{t \rightarrow \infty} y(t)\).
(d) Evaluate the two given integrals and solve for \(y\) as a function of \(t\), where \(y_{0}\) is the initial quantity.
(e) Use the result of part (d) to find and graph the solutions in part (a). Use a graphing utility to graph the solutions and compare the results with the solutions in part (a).
(f) The graph of the function \(y\) is a logistic curve. Show that the rate of growth is maximum at the point of inflection, and that this occurs when \(y=L / 2\).
65. Volume and Centroid Consider the region bounded by the graphs of \(y=2 x /\left(x^{2}+1\right), y=0, x=0\), and \(x=3\). Find the volume of the solid generated by revolving the region about the \(x\)-axis. Find the centroid of the region.
66. Volume Consider the region bounded by the graph of \(y^{2}=(2-x)^{2} /(1+x)^{2}\) on the interval \([0,1]\). Find the volume of the solid generated by revolving this region about the \(x\)-axis.
67. Epidemic Model A single infected individual enters a community of \(n\) susceptible individuals. Let \(x\) be the number of newly infected individuals at time \(t\). The common epidemic model assumes that the disease spreads at a rate proportional to the product of the total number infected and the number not yet infected. So, \(d x / d t=k(x+1)(n-x)\) and you obtain
\(\int \frac{1}{(x+1)(n-x)} d x=\int k d t\).
Solve for \(x\) as a function of \(t\).
68. Chemical Reactions In a chemical reaction, one unit of compound Y and one unit of compound Z are converted into a single unit of compound X. \(x\) is the amount of compound X formed, and the rate of formation of X is proportional to the product of the amounts of unconverted compounds Y and Z . So, \(d x / d t=k\left(y_{0}-x\right)\left(z_{0}-x\right)\), where \(y_{0}\) and \(z_{0}\) are the initial amounts of compounds Y and Z . From this equation you obtain \(\int \frac{1}{\left(y_{0}-x\right)\left(z_{0}-x\right)} d x=\int k d t\).
(a) Perform the two integrations and solve for \(x\) in terms of \(t\).
(b) Use the result of part (a) to find \(x\) as \(t \rightarrow \infty\) if (1) \(y_{0}<z_{0}\), (2) \(y_{0}>z_{0}\), and (3) \(y_{0}=z_{0}\).
69. Evaluate
\[
\int_{0}^{1} \frac{x}{1+x^{4}} d x
\]
in two different ways, one of which is partial fractions.

\section*{PUTNAM EXAM CHALLENGE}
70. Prove \(\frac{22}{7}-\pi=\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{8.6 Integration by Tables and Other Integration Techniques}

TECHNOLOGY A computer algebra system consists, in part, of a database of integration formulas. The primary difference between using a computer algebra system and using tables of integrals is that with a computer algebra system the computer searches through the database to find a fit. With integration tables, you must do the searching.
- Evaluate an indefinite integral using a table of integrals.
- Evaluate an indefinite integral using reduction formulas.
- Evaluate an indefinite integral involving rational functions of sine and cosine.

\section*{Integration by Tables}

So far in this chapter you have studied several integration techniques that can be used with the basic integration rules. But merely knowing how to use the various techniques is not enough. You also need to know when to use them. Integration is first and foremost a problem of recognition. That is, you must recognize which rule or technique to apply to obtain an antiderivative. Frequently, a slight alteration of an integrand will require a different integration technique (or produce a function whose antiderivative is not an elementary function), as shown below.
\[
\begin{aligned}
\int x \ln x d x & =\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C & & \text { Integration by parts } \\
\int \frac{\ln x}{x} d x & =\frac{(\ln x)^{2}}{2}+C & & \text { Power Rule } \\
\int \frac{1}{x \ln x} d x & =\ln |\ln x|+C & & \text { Log Rule } \\
\int \frac{x}{\ln x} d x & =? & & \text { Not an elementary function }
\end{aligned}
\]

Many people find tables of integrals to be a valuable supplement to the integration techniques discussed in this chapter. Tables of common integrals can be found in Appendix B. Integration by tables is not a "cure-all" for all of the difficulties that can accompany integration-using tables of integrals requires considerable thought and insight and often involves substitution.

Each integration formula in Appendix B can be developed using one or more of the techniques in this chapter. You should try to verify several of the formulas. For instance, Formula 4
\[
\int \frac{u}{(a+b u)^{2}} d u=\frac{1}{b^{2}}\left(\frac{a}{a+b u}+\ln |a+b u|\right)+C \quad \text { Formula } 4
\]
can be verified using the method of partial fractions, and Formula 19
\[
\int \frac{\sqrt{a+b u}}{u} d u=2 \sqrt{a+b u}+a \int \frac{d u}{u \sqrt{a+b u}} \quad \text { Formula } 19
\]
can be verified using integration by parts. Note that the integrals in Appendix B are classified according to forms involving the following.
\[
\begin{aligned}
& u^{n} \\
& \left(a+b u+c u^{2}\right) \\
& \left(a^{2} \pm u^{2}\right) \\
& \sqrt{a^{2}-u^{2}}
\end{aligned}
\]

Inverse trigonometric functions
Logarithmic functions
\[
\begin{aligned}
& (a+b u) \\
& \sqrt{a+b u} \\
& \sqrt{u^{2} \pm a^{2}}
\end{aligned}
\]

Trigonometric functions
Exponential functions

\section*{EXPLORATION}

Use the tables of integrals in Appendix B and the substitution
\[
u=\sqrt{x-1}
\]
to evaluate the integral in Example 1. If you do this, you should obtain
\[
\int \frac{d x}{x \sqrt{x-1}}=\int \frac{2 d u}{u^{2}+1}
\]

Does this produce the same result as that obtained in Example 1?

\section*{EXAMPLE 1 Integration by Tables}

Find \(\int \frac{d x}{x \sqrt{x-1}}\).
Solution Because the expression inside the radical is linear, you should consider forms involving \(\sqrt{a+b u}\).
\[
\int \frac{d u}{u \sqrt{a+b u}}=\frac{2}{\sqrt{-a}} \arctan \sqrt{\frac{a+b u}{-a}}+C \quad \text { Formula } 17(a<0)
\]

Let \(a=-1, b=1\), and \(u=x\). Then \(d u=d x\), and you can write
\[
\int \frac{d x}{x \sqrt{x-1}}=2 \arctan \sqrt{x-1}+C
\]

\section*{EXAMPLE 2 Integration by Tables}

Find \(\int x \sqrt{x^{4}-9} d x\).
Solution Because the radical has the form \(\sqrt{u^{2}-a^{2}}\), you should consider Formula 26.
\[
\int \sqrt{u^{2}-a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2}-a^{2}}-a^{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|\right)+C
\]

Let \(u=x^{2}\) and \(a=3\). Then \(d u=2 x d x\), and you have
\[
\begin{aligned}
\int x \sqrt{x^{4}-9} d x & =\frac{1}{2} \int \sqrt{\left(x^{2}\right)^{2}-3^{2}}(2 x) d x \\
& =\frac{1}{4}\left(x^{2} \sqrt{x^{4}-9}-9 \ln \left|x^{2}+\sqrt{x^{4}-9}\right|\right)+C
\end{aligned}
\]

\section*{EXAMPLE 3 Integration by Tables}

Find \(\int \frac{x}{1+e^{-x^{2}}} d x\).
Solution Of the forms involving \(e^{u}\), consider the following formula.
\[
\int \frac{d u}{1+e^{u}}=u-\ln \left(1+e^{u}\right)+C \quad \text { Formula } 84
\]

Let \(u=-x^{2}\). Then \(d u=-2 x d x\), and you have
\[
\begin{aligned}
\int \frac{x}{1+e^{-x^{2}}} d x & =-\frac{1}{2} \int \frac{-2 x d x}{1+e^{-x^{2}}} \\
& =-\frac{1}{2}\left[-x^{2}-\ln \left(1+e^{-x^{2}}\right)\right]+C \\
& =\frac{1}{2}\left[x^{2}+\ln \left(1+e^{-x^{2}}\right)\right]+C
\end{aligned}
\]

TECHNOLOGY Example 3 shows the importance of having several solution techniques at your disposal. This integral is not difficult to solve with a table, but when it was entered into a well-known computer algebra system, the utility was unable to find the antiderivative.

\section*{Reduction Formulas}

Several of the integrals in the integration tables have the form \(\int f(x) d x=g(x)+\) \(\int h(x) d x\). Such integration formulas are called reduction formulas because they reduce a given integral to the sum of a function and a simpler integral.

\section*{EXAMPLE 4 Using a Reduction Formula}

Find \(\int x^{3} \sin x d x\).
Solution Consider the following three formulas.
\[
\begin{array}{ll}
\int u \sin u d u=\sin u-u \cos u+C & \text { Formula } 52 \\
\int u^{n} \sin u d u=-u^{n} \cos u+n \int u^{n-1} \cos u d u & \text { Formula } 54 \\
\int u^{n} \cos u d u=u^{n} \sin u-n \int u^{n-1} \sin u d u & \text { Formula } 55
\end{array}
\]

Using Formula 54, Formula 55, and then Formula 52 produces
\[
\begin{aligned}
\int x^{3} \sin x d x & =-x^{3} \cos x+3 \int x^{2} \cos x d x \\
& =-x^{3} \cos x+3\left(x^{2} \sin x-2 \int x \sin x d x\right) \\
& =-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x+C
\end{aligned}
\]

\section*{EXAMPLE 5 Using a Reduction Formula}

Find \(\int \frac{\sqrt{3-5 x}}{2 x} d x\).
Solution Consider the following two formulas.
\[
\begin{aligned}
\int \frac{d u}{u \sqrt{a+b u}} & =\frac{1}{\sqrt{a}} \ln \left|\frac{\sqrt{a+b u}-\sqrt{a}}{\sqrt{a+b u}+\sqrt{a}}\right|+C & & \text { Formula } 17(a>0) \\
\int \frac{\sqrt{a+b u}}{u} d u & =2 \sqrt{a+b u}+a \int \frac{d u}{u \sqrt{a+b u}} & & \text { Formula } 19
\end{aligned}
\]

Using Formula 19, with \(a=3, b=-5\), and \(u=x\), produces
\[
\begin{aligned}
\frac{1}{2} \int \frac{\sqrt{3-5 x}}{x} d x & =\frac{1}{2}\left(2 \sqrt{3-5 x}+3 \int \frac{d x}{x \sqrt{3-5 x}}\right) \\
& =\sqrt{3-5 x}+\frac{3}{2} \int \frac{d x}{x \sqrt{3-5 x}}
\end{aligned}
\]

Using Formula 17, with \(a=3, b=-5\), and \(u=x\), produces
\[
\begin{aligned}
\int \frac{\sqrt{3-5 x}}{2 x} d x & =\sqrt{3-5 x}+\frac{3}{2}\left(\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3-5 x}-\sqrt{3}}{\sqrt{3-5 x}+\sqrt{3}}\right|\right)+C \\
& =\sqrt{3-5 x}+\frac{\sqrt{3}}{2} \ln \left|\frac{\sqrt{3-5 x}-\sqrt{3}}{\sqrt{3-5 x}+\sqrt{3}}\right|+C
\end{aligned}
\]

\section*{Rational Functions of Sine and Cosine}

\section*{EXAMPLE 6 Integration by Tables}

Find \(\int \frac{\sin 2 x}{2+\cos x} d x\).
Solution Substituting \(2 \sin x \cos x\) for \(\sin 2 x\) produces
\[
\int \frac{\sin 2 x}{2+\cos x} d x=2 \int \frac{\sin x \cos x}{2+\cos x} d x
\]

A check of the forms involving \(\sin u\) or \(\cos u\) in Appendix B shows that none of those listed applies. So, you can consider forms involving \(a+b u\). For example,
\[
\int \frac{u d u}{a+b u}=\frac{1}{b^{2}}(b u-a \ln |a+b u|)+C . \quad \text { Formula 3 }
\]

Let \(a=2, b=1\), and \(u=\cos x\). Then \(d u=-\sin x d x\), and you have
\[
\begin{aligned}
2 \int \frac{\sin x \cos x}{2+\cos x} d x & =-2 \int \frac{\cos x(-\sin x d x)}{2+\cos x} \\
& =-2(\cos x-2 \ln |2+\cos x|)+C \\
& =-2 \cos x+4 \ln |2+\cos x|+C
\end{aligned}
\]

Example 6 involves a rational expression of \(\sin x\) and \(\cos x\). If you are unable to find an integral of this form in the integration tables, try using the following special substitution to convert the trigonometric expression to a standard rational expression.

\section*{SUBSTITUTION FOR RATIONAL FUNCTIONS OF SINE AND COSINE}

For integrals involving rational functions of sine and cosine, the substitution
\[
u=\frac{\sin x}{1+\cos x}=\tan \frac{x}{2}
\]
yields
\[
\cos x=\frac{1-u^{2}}{1+u^{2}}, \quad \sin x=\frac{2 u}{1+u^{2}}, \quad \text { and } \quad d x=\frac{2 d u}{1+u^{2}} .
\]
(PROOF From the substitution for \(u\), it follows that
\[
u^{2}=\frac{\sin ^{2} x}{(1+\cos x)^{2}}=\frac{1-\cos ^{2} x}{(1+\cos x)^{2}}=\frac{1-\cos x}{1+\cos x}
\]

Solving for \(\cos x\) produces \(\cos x=\left(1-u^{2}\right) /\left(1+u^{2}\right)\). To find \(\sin x\), write \(u=\sin x /(1+\cos x)\) as
\[
\sin x=u(1+\cos x)=u\left(1+\frac{1-u^{2}}{1+u^{2}}\right)=\frac{2 u}{1+u^{2}} .
\]

Finally, to find \(d x\), consider \(u=\tan (x / 2)\). Then you have \(\arctan u=x / 2\) and \(d x=(2 d u) /\left(1+u^{2}\right)\).

\subsection*{8.6 Exercises}

In Exercises 1 and 2, use a table of integrals with forms involving \(a+b u\) to find the integral.
1. \(\int \frac{x^{2}}{5+x} d x\)
2. \(\int \frac{2}{3 x^{2}(2 x-5)^{2}} d x\)

In Exercises 3 and 4, use a table of integrals with forms involving \(\sqrt{u^{2} \pm a^{2}}\) to find the integral.
3. \(\int e^{x} \sqrt{1+e^{2 x}} d x\)
4. \(\int \frac{\sqrt{x^{2}-36}}{6 x} d x\)

In Exercises 5 and 6, use a table of integrals with forms involving \(\sqrt{a^{2}-u^{2}}\) to find the integral.
5. \(\int \frac{1}{x^{2} \sqrt{1-x^{2}}} d x\)
6. \(\int \frac{x}{\sqrt{100-x^{4}}} d x\)

In Exercises 7-10, use a table of integrals with forms involving the trigonometric functions to find the integral.
7. \(\int \cos ^{4} 3 x d x\)
8. \(\int \frac{\sin ^{3} \sqrt{x}}{\sqrt{x}} d x\)
9. \(\int \frac{1}{\sqrt{x}(1-\cos \sqrt{x})} d x\)
10. \(\int \frac{1}{1-\tan 5 x} d x\)

In Exercises 11 and 12, use a table of integrals with forms involving \(e^{u}\) to find the integral.
11. \(\int \frac{1}{1+e^{2 x}} d x\)
12. \(\int e^{-x / 2} \sin 2 x d x\)

In Exercises 13 and 14, use a table of integrals with forms involving \(\ln u\) to find the integral.
13. \(\int x^{7} \ln x d x\)
14. \(\int(\ln x)^{3} d x\)

In Exercises 15-18, find the indefinite integral (a) using integration tables and (b) using the given method.
15. \(\frac{\text { Integral }}{\int x^{2} e^{3 x} d x}\)
Method
Integration by parts
16. \(\int x^{6} \ln x d x\)
Integration by parts
17. \(\int \frac{1}{x^{2}(x+1)} d x\)
Partial fractions
18. \(\int \frac{1}{x^{2}-48} d x\)
Partial fractions

In Exercises 19-42, use integration tables to find the integral.
19. \(\int x \operatorname{arccsc}\left(x^{2}+1\right) d x\)
20. \(\int \operatorname{arcsec} 2 x d x\)
21. \(\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x\)
22. \(\int \frac{1}{x^{2}+4 x+8} d x\)
23. \(\int \frac{4 x}{(2-5 x)^{2}} d x \quad\) 24. \(\int \frac{\theta^{2}}{1-\sin \theta^{3}} d \theta\)
25. \(\int e^{x} \arccos e^{x} d x\)
26. \(\int \frac{e^{x}}{1-\tan e^{x}} d x\)
27. \(\int \frac{x}{1-\sec x^{2}} d x\)
28. \(\int \frac{1}{t\left[1+(\ln t)^{2}\right]} d t\)
29. \(\int \frac{\cos \theta}{3+2 \sin \theta+\sin ^{2} \theta} d \theta\)
30. \(\int x^{2} \sqrt{2+9 x^{2}} d x\)
31. \(\int \frac{1}{x^{2} \sqrt{2+9 x^{2}}} d x\)
32. \(\int \sqrt{x} \arctan x^{3 / 2} d x\)
33. \(\int \frac{\ln x}{x(3+2 \ln x)} d x\)
34. \(\int \frac{e^{x}}{\left(1-e^{2 x}\right)^{3 / 2}} d x\)
35. \(\int \frac{x}{\left(x^{2}-6 x+10\right)^{2}} d x\)
36. \(\int(2 x-3)^{2} \sqrt{(2 x-3)^{2}+4} d x\)
37. \(\int \frac{x}{\sqrt{x^{4}-6 x^{2}+5}} d x\)
38. \(\int \frac{\cos x}{\sqrt{\sin ^{2} x+1}} d x\)
39. \(\int \frac{x^{3}}{\sqrt{4-x^{2}}} d x\)
40. \(\int \sqrt{\frac{5-x}{5+x}} d x\)
41. \(\int \frac{e^{3 x}}{\left(1+e^{x}\right)^{3}} d x\)
42. \(\int \cot ^{4} \theta d \theta\)

In Exercises 43-50, use integration tables to evaluate the integral.
43. \(\int_{0}^{1} x e^{x^{2}} d x\)
44. \(\int_{0}^{7} \frac{x}{\sqrt{9+x}} d x\)
45. \(\int_{1}^{2} x^{4} \ln x d x\)
46. \(\int_{0}^{\pi / 2} x \cos x d x\)
47. \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+\sin ^{2} x} d x\)
48. \(\int_{4}^{6} \frac{x^{2}}{(2 x-7)^{2}} d x\)
49. \(\int_{0}^{\pi / 2} t^{3} \cos t d t\)
50. \(\int_{0}^{1} \sqrt{3+x^{2}} d x\)

In Exercises 51-56, verify the integration formula.
51. \(\int \frac{u^{2}}{(a+b u)^{2}} d u=\frac{1}{b^{3}}\left(b u-\frac{a^{2}}{a+b u}-2 a \ln |a+b u|\right)+C\)
52. \(\int \frac{u^{n}}{\sqrt{a+b u}} d u=\frac{2}{(2 n+1) b}\left(u^{n} \sqrt{a+b u}-n a \int \frac{u^{n-1}}{\sqrt{a+b u}} d u\right)\)
53. \(\int \frac{1}{\left(u^{2} \pm a^{2}\right)^{3 / 2}} d u=\frac{ \pm u}{a^{2} \sqrt{u^{2} \pm a^{2}}}+C\)
54. \(\int u^{n} \cos u d u=u^{n} \sin u-n \int u^{n-1} \sin u d u\)
55. \(\int \arctan u d u=u \arctan u-\ln \sqrt{1+u^{2}}+C\)
56. \(\int(\ln u)^{n} d u=u(\ln u)^{n}-n \int(\ln u)^{n-1} d u\)

CAS In Exercises 57-62, use a computer algebra system to determine the antiderivative that passes through the given point. Use the system to graph the resulting antiderivative.
57. \(\int \frac{1}{x^{3 / 2} \sqrt{1-x}} d x,\left(\frac{1}{2}, 5\right)\)
58. \(\int x \sqrt{x^{2}+2 x} d x,(0,0)\)
59. \(\int \frac{1}{\left(x^{2}-6 x+10\right)^{2}} d x,(3,0)\)
60. \(\int \frac{\sqrt{2-2 x-x^{2}}}{x+1} d x,(0, \sqrt{2})\)
61. \(\int \frac{1}{\sin \theta \tan \theta} d \theta,\left(\frac{\pi}{4}, 2\right)\)
62. \(\int \frac{\sin \theta}{(\cos \theta)(1+\sin \theta)} d \theta,(0,1)\)

In Exercises 63-70, find or evaluate the integral.
63. \(\int \frac{1}{2-3 \sin \theta} d \theta\)
64. \(\int \frac{\sin \theta}{1+\cos ^{2} \theta} d \theta\)
65. \(\int_{0}^{\pi / 2} \frac{1}{1+\sin \theta+\cos \theta} d \theta\)
66. \(\int_{0}^{\pi / 2} \frac{1}{3-2 \cos \theta} d \theta\)
67. \(\int \frac{\sin \theta}{3-2 \cos \theta} d \theta\)
68. \(\int \frac{\cos \theta}{1+\cos \theta} d \theta\)
69. \(\int \frac{\sin \sqrt{\theta}}{\sqrt{\theta}} d \theta\)
70. \(\int \frac{4}{\csc \theta-\cot \theta} d \theta\)

Area In Exercises 71 and 72, find the area of the region bounded by the graphs of the equations.
71. \(y=\frac{x}{\sqrt{x+3}}, y=0, x=6\)
72. \(y=\frac{x}{1+e^{x^{2}}}, y=0, x=2\)

\section*{WRITING ABOUT CONCEPTS}
73. (a) Evaluate \(\int x^{n} \ln x d x\) for \(n=1,2\), and 3. Describe any patterns you notice.
(b) Write a general rule for evaluating the integral in part (a), for an integer \(n \geq 1\).
74. Describe what is meant by a reduction formula. Give an example.

True or False? In Exercises 75 and 76, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
75. To use a table of integrals, the integral you are evaluating must appear in the table.
76. When using a table of integrals, you may have to make substitutions to rewrite your integral in the form in which it appears in the table.
77. Volume Consider the region bounded by the graphs of \(y=x \sqrt{16-x^{2}}, y=0, x=0\), and \(x=4\). Find the volume of the solid generated by revolving the region about the \(y\)-axis.

\section*{CAPSTONE}
78. State (if possible) the method or integration formula you would use to find the antiderivative. Explain why you chose that method or formula. Do not integrate.
(a) \(\int \frac{e^{x}}{e^{2 x}+1} d x\)
(b) \(\int \frac{e^{x}}{e^{x}+1} d x\)
(c) \(\int x e^{x^{2}} d x\)
(d) \(\int x e^{x} d x\)
(e) \(\int e^{x^{2}} d x\)
(f) \(\int e^{2 x} \sqrt{e^{2 x}+1} d x\)
79. Work A hydraulic cylinder on an industrial machine pushes a steel block a distance of \(x\) feet \((0 \leq x \leq 5)\), where the variable force required is \(F(x)=2000 x e^{-x}\) pounds. Find the work done in pushing the block the full 5 feet through the machine.
80. Work Repeat Exercise 79, using \(F(x)=\frac{500 x}{\sqrt{26-x^{2}}}\) pounds.
81. Building Design The cross section of a precast concrete beam for a building is bounded by the graphs of the equations \(x=\frac{2}{\sqrt{1+y^{2}}}, x=\frac{-2}{\sqrt{1+y^{2}}}, y=0\), and \(y=3\)
where \(x\) and \(y\) are measured in feet. The length of the beam is 20 feet (see figure). (a) Find the volume \(V\) and the weight \(W\) of the beam. Assume the concrete weighs 148 pounds per cubic foot. (b) Then find the centroid of a cross section of the beam.

82. Population A population is growing according to the logistic model \(N=\frac{5000}{1+e^{4.8-1.9 t}}\), where \(t\) is the time in days. Find the average population over the interval \([0,2]\).

In Exercises 83 and 84, use a graphing utility to (a) solve the integral equation for the constant \(k\) and (b) graph the region whose area is given by the integral.
83. \(\int_{0}^{4} \frac{k}{2+3 x} d x=10\)
84. \(\int_{0}^{k} 6 x^{2} e^{-x / 2} d x=50\)

\section*{PUTNAM EXAM CHALLENGE}
85. Evaluate \(\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{8.7 Indeterminate Forms and L'Hôpital's Rule}

\section*{- Recognize limits that produce indeterminate forms.}
- Apply L'Hôpital's Rule to evaluate a limit.

\section*{Indeterminate Forms}

Recall that the forms \(0 / 0\) and \(\infty / \infty\) are called indeterminate because they do not guarantee that a limit exists, nor do they indicate what the limit is, if one does exist. When you encountered one of these indeterminate forms earlier in the text, you attempted to rewrite the expression by using various algebraic techniques.

\section*{Indeterminate}
Form
Limit
\(\frac{0}{0} \quad \lim _{x \rightarrow-1} \frac{2 x^{2}-2}{x+1}=\lim _{x \rightarrow-1} 2(x-1)\)
\[
=-4
\]
\[
\frac{\infty}{\infty} \quad \lim _{x \rightarrow \infty} \frac{3 x^{2}-1}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{3-\left(1 / x^{2}\right)}{2+\left(1 / x^{2}\right)}
\]
\[
=\frac{3}{2}
\]

Occasionally, you can extend these algebraic techniques to find limits of transcendental functions. For instance, the limit
\[
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}-1}
\]
produces the indeterminate form \(0 / 0\). Factoring and then dividing produces
\[
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\left(e^{x}+1\right)\left(e^{x}-1\right)}{e^{x}-1}=\lim _{x \rightarrow 0}\left(e^{x}+1\right)=2
\]

However, not all indeterminate forms can be evaluated by algebraic manipulation. This is often true when both algebraic and transcendental functions are involved. For instance, the limit
\[
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}
\]
produces the indeterminate form \(0 / 0\). Rewriting the expression to obtain
\[
\lim _{x \rightarrow 0}\left(\frac{e^{2 x}}{x}-\frac{1}{x}\right)
\]
merely produces another indeterminate form, \(\infty-\infty\). Of course, you could use technology to estimate the limit, as shown in the table and in Figure 8.14. From the table and the graph, the limit appears to be 2. (This limit will be verified in Example 1.)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -1 & -0.1 & -0.01 & -0.001 & 0 & 0.001 & 0.01 & 0.1 & 1 \\
\hline\(\frac{e^{2 x}-1}{x}\) & 0.865 & 1.813 & 1.980 & 1.998 & \(?\) & 2.002 & 2.020 & 2.214 & 6.389 \\
\hline
\end{tabular}
GUILLAUME L'HÔPITAL (1661-1704)
L'Hôpital's Rule is named after the French
mathematician Guillaume François Antoine de
L'Hôpital. L'Hôpital is credited with writing the
first text on differential calculus (in 1696) in
which the rule publicly appeared. It was
recently discovered that the rule and its proof
were written in a letter from John Bernoulli to
L'Hôpital. "... I acknowledge that I owe very
much to the bright minds of the Bernoulli
brothers. ... I have made free use of their
discoveries ...", said l'Hôpital.

\section*{FOR FURTHER INFORMATION}

To enhance your understanding of the necessity of the restriction that \(g^{\prime}(x)\) be nonzero for all \(x\) in \((a, b)\), except possibly at \(c\), see the article "Counterexamples to L'Hôpital's Rule" by R. P. Boas in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

\section*{L'Hôpital's Rule}

To find the limit illustrated in Figure 8.14, you can use a theorem called L'Ĥpital's Rule. This theorem states that under certain conditions the limit of the quotient \(f(x) / g(x)\) is determined by the limit of the quotient of the derivatives
\[
\frac{f^{\prime}(x)}{g^{\prime}(x)}
\]

To prove this theorem, you can use a more general result called the Extended Mean aue Theorem.

\section*{THEOREM 8.3 THE EXTENDED MEAN VALUE THEOREM}

If \(f\) and \(g\) are differentiable on an open interval \((a, b)\) and continuous on \([a, b]\) such that \(g^{\prime}(x) \neq 0\) for any \(x\) in \((a, b)\), then there exists a point \(c\) in \((a, b)\) such that
\[
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
\]

NOTE To see why this is called the Extended Mean Value Theorem, consider the special case in which \(g(x)=x\). For this case, you obtain the "standard" Mean Value Theorem as presented in Section 3.2.

The Extended Mean Value Theorem and L'Hôpital's Rule are both proved in Appendix A.

\section*{THEOREM 8.4 L'HÔPITAL'S RULE}

Let \(f\) and \(g\) be functions that are differentiable on an open interval \((a, b)\) containing \(c\), except possibly at \(c\) itself. Assume that \(g^{\prime}(x) \neq 0\) for all \(x\) in \((a, b)\), except possibly at \(c\) itself. If the limit of \(f(x) / g(x)\) as \(x\) approaches \(c\) produces the indeterminate form \(0 / 0\), then
\[
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\]
provided the limit on the right exists (or is infinite). This result also applies if the limit of \(f(x) / g(x)\) as \(x\) approaches \(c\) produces any one of the indeterminate forms \(\infty / \infty,(-\infty) / \infty, \infty /(-\infty)\), or \((-\infty) /(-\infty)\).

NOTE People occasionally use L'Hôpital's Rule incorrectly by applying the Quotient Rule to \(f(x) / g(x)\). Be sure you see that the rule involves \(f^{\prime}(x) / g^{\prime}(x)\), not the derivative of \(f(x) / g(x)\).

L'Hôpital's Rule can also be applied to one-sided limits. For instance, if the limit of \(f(x) / g(x)\) as \(x\) approaches \(c\) from the right produces the indeterminate form \(0 / 0\), then
\[
\lim _{x \rightarrow c^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\]
provided the limit exists (or is infinite).

TECHNOLOGY Numerical and Graphical Approaches Use a numerical or a graphical approach to approximate each limit.
a. \(\lim _{x \rightarrow 0} \frac{2^{2 x}-1}{x}\)
b. \(\lim _{x \rightarrow 0} \frac{3^{2 x}-1}{x}\)
c. \(\lim _{x \rightarrow 0} \frac{4^{2 x}-1}{x}\)
d. \(\lim _{x \rightarrow 0} \frac{5^{2 x}-1}{x}\)

What pattern do you observe? Does an analytic approach have an advantage for these limits? If so, explain your reasoning.

NOTE Try graphing \(y_{1}=\ln x\) and \(y_{2}=x\) in the same viewing window. Which function grows faster as \(x\) approaches \(\infty\) ? How is this observation related to Example 2?

\section*{EXAMPLE 1 Indeterminate Form 0/0}

Evaluate \(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}\).
Solution Because direct substitution results in the indeterminate form 0/0

you can apply L'Hôpital's Rule, as shown below.
\[
\begin{array}{rlrl}
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left[e^{2 x}-1\right]}{\frac{d}{d x}[x]} & & \\
& =\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{1} & & \text { Apply L'Hôpital's Rule. } \\
& =2 & & \text { Differentiate numerator and denominator. } \\
& & \text { Evaluate the limit. }
\end{array}
\]

NOTE In writing the string of equations in Example 1, you actually do not know that the first limit is equal to the second until you have shown that the second limit exists. In other words, if the second limit had not existed, it would not have been permissible to apply L'Hôpital's Rule.

Another form of L'Hôpital's Rule states that if the limit of \(f(x) / g(x)\) as \(x\) approaches \(\infty(\) or \(-\infty)\) produces the indeterminate form \(0 / 0\) or \(\infty / \infty\), then
\[
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\]
provided the limit on the right exists.

\section*{EXAMPLE 2 Indeterminate Form \(\infty / \infty\)}

Evaluate \(\lim _{x \rightarrow \infty} \frac{\ln x}{x}\).
Solution Because direct substitution results in the indeterminate form \(\infty / \infty\), you can apply L'Hôpital's Rule to obtain
\[
\begin{array}{rlrl}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}[\ln x]}{\frac{d}{d x}[x]} & & \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} & & \text { Apply L'Hôpital's Rule. } \\
& =0 . & & \text { Differentiate numerator and denominator. } \\
& & \text { Evaluate the limit. }
\end{array}
\]

Occasionally it is necessary to apply L'Hôpital's Rule more than once to remove an indeterminate form, as shown in Example 3.

\section*{EXAMPLE 3 Applying L'Hôpital's Rule More Than Once}

Evaluate \(\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}}\).
Solution Because direct substitution results in the indeterminate form \(\infty / \infty\), you can apply L'Hôpital's Rule.
\[
\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}}=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x}\left[x^{2}\right]}{\frac{d}{d x}\left[e^{-x}\right]}=\lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}}
\]

This limit yields the indeterminate form \((-\infty) /(-\infty)\), so you can apply L'Hôpital's Rule again to obtain
\[
\lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}}=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x}[2 x]}{\frac{d}{d x}\left[-e^{-x}\right]}=\lim _{x \rightarrow-\infty} \frac{2}{e^{-x}}=0
\]

In addition to the forms \(0 / 0\) and \(\infty / \infty\), there are other indeterminate forms such as \(0 \cdot \infty, 1^{\infty}, \infty^{0}, 0^{0}\), and \(\infty-\infty\). For example, consider the following four limits that lead to the indeterminate form \(0 \cdot \infty\).
\[
\underbrace{\lim _{x \rightarrow 0}(x)\left(\frac{1}{x}\right)}_{\text {Limit is 1. }}, \underbrace{\lim _{x \rightarrow 0}(x)\left(\frac{2}{x}\right)}_{\text {Limit is 2. }}, \quad \underbrace{\lim _{x \rightarrow \infty}(x)\left(\frac{1}{e^{x}}\right)}_{\text {Limit is } 0 .}, \quad \underbrace{\lim _{x \rightarrow \infty}\left(e^{x}\right)\left(\frac{1}{x}\right)}_{\text {Limit is } \infty .}
\]

Because each limit is different, it is clear that the form \(0 \cdot \infty\) is indeterminate in the sense that it does not determine the value (or even the existence) of the limit. The following examples indicate methods for evaluating these forms. Basically, you attempt to convert each of these forms to \(0 / 0\) or \(\infty / \infty\) so that L'Hôpital's Rule can be applied.

\section*{EXAMPLE 4 Indeterminate Form \(0 \cdot \infty\)}

Evaluate \(\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}\).
Solution Because direct substitution produces the indeterminate form \(0 \cdot \infty\), you should try to rewrite the limit to fit the form \(0 / 0\) or \(\infty / \infty\). In this case, you can rewrite the limit to fit the second form.
\[
\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x}}
\]

Now, by L'Hôpital's Rule, you have
\[
\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1 /(2 \sqrt{x})}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x} e^{x}}=0 .
\]

If rewriting a limit in one of the forms \(0 / 0\) or \(\infty / \infty\) does not seem to work, try the other form. For instance, in Example 4 you can write the limit as
\[
\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}=\lim _{x \rightarrow \infty} \frac{e^{-x}}{x^{-1 / 2}}
\]
which yields the indeterminate form \(0 / 0\). As it happens, applying L'Hôpital's Rule to this limit produces
\[
\lim _{x \rightarrow \infty} \frac{e^{-x}}{x^{-1 / 2}}=\lim _{x \rightarrow \infty} \frac{-e^{-x}}{-1 /\left(2 x^{3 / 2}\right)}
\]
which also yields the indeterminate form \(0 / 0\).
The indeterminate forms \(1^{\infty}, \infty^{0}\), and \(0^{0}\) arise from limits of functions that have variable bases and variable exponents. When you previously encountered this type of function, you used logarithmic differentiation to find the derivative. You can use a similar procedure when taking limits, as shown in the next example.

\section*{EXAMPLE 5 Indeterminate Form \(1^{\infty}\)}

Evaluate \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\).
Solution Because direct substitution yields the indeterminate form \(1^{\infty}\), you can proceed as follows. To begin, assume that the limit exists and is equal to \(y\).
\[
y=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
\]

Taking the natural logarithm of each side produces
\[
\ln y=\ln \left[\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right]
\]

Because the natural logarithmic function is continuous, you can write
\[
\begin{array}{rlrl}
\ln y & =\lim _{x \rightarrow \infty}\left[x \ln \left(1+\frac{1}{x}\right)\right] & & \text { Indeterminate form } \infty \cdot 0 \\
& =\lim _{x \rightarrow \infty}\left(\frac{\ln [1+(1 / x)]}{1 / x}\right) & & \text { Indeterminate form } 0 / 0 \\
& =\lim _{x \rightarrow \infty}\left(\frac{\left(-1 / x^{2}\right)\{1 /[1+(1 / x)]\}}{-1 / x^{2}}\right) & & \text { L'Hôpital's Rule } \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+(1 / x)} & & \\
& =1 . & & \\
& & \\
& & \\
&
\end{array}
\]

Now, because you have shown that \(\ln y=1\), you can conclude that \(y=e\) and obtain
\[
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
\]

You can use a graphing utility to confirm this result, as shown in Figure 8.15.


The limit of \((\sin x)^{x}\) is 1 as \(x\) approaches 0 from the right.
Figure 8.16

L'Hôpital's Rule can also be applied to one-sided limits, as demonstrated in Examples 6 and 7.

\section*{ⒺXAMPLE 6 Indeterminate Form \(0^{0}\)}

Find \(\lim _{x \rightarrow 0^{+}}(\sin x)^{x}\).
Solution Because direct substitution produces the indeterminate form \(0^{\circ}\), you can proceed as shown below. To begin, assume that the limit exists and is equal to \(y\).
\[
\begin{aligned}
y & =\lim _{x \rightarrow 0^{+}}(\sin x)^{x} & & \text { Indeterminate form } 0^{0} \\
\ln y & =\ln \left[\lim _{x \rightarrow 0^{+}}(\sin x)^{x}\right] & & \text { Take natural log of each side. } \\
& =\lim _{x \rightarrow 0^{+}}\left[\ln (\sin x)^{x}\right] & & \text { Continuity } \\
& =\lim _{x \rightarrow 0^{+}}[x \ln (\sin x)] & & \text { Indeterminate form } 0 \cdot(-\infty) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin x)}{1 / x} & & \text { Indeterminate form }-\infty / \infty \\
& =\lim _{x \rightarrow 0^{+}} \frac{\cot x}{-1 / x^{2}} & & \text { L'Hôpital's Rule } \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{\tan x} & & \text { Indeterminate form } 0 / 0 \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2 x}{\sec ^{2} x}=0 & & \text { L'Hôpital's Rule }
\end{aligned}
\]

Now, because \(\ln y=0\), you can conclude that \(y=e^{0}=1\), and it follows that
\[
\lim _{x \rightarrow 0^{+}}(\sin x)^{x}=1
\]

TECHNOLOGY When evaluating complicated limits such as the one in Example 6, it is helpful to check the reasonableness of the solution with a computer or with a graphing utility. For instance, the calculations in the following table and the graph in Figure 8.16 are consistent with the conclusion that \((\sin x)^{x}\) approaches 1 as \(x\) approaches 0 from the right.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(x\) & 1.0 & 0.1 & 0.01 & 0.001 & 0.0001 & 0.00001 \\
\hline\((\sin x)^{x}\) & 0.8415 & 0.7942 & 0.9550 & 0.9931 & 0.9991 & 0.9999 \\
\hline
\end{tabular}

Use a computer algebra system or graphing utility to estimate the following limits:
\[
\lim _{x \rightarrow 0}(1-\cos x)^{x}
\]
and
\[
\lim _{x \rightarrow 0^{+}}(\tan x)^{x}
\]

Then see if you can verify your estimates analytically.

STUDY TIP In each of the examples presented in this section, L'Hôpital's Rule is used to find a limit that exists. It can also be used to conclude that a limit is infinite. For instance, try using L'Hôpital's Rule to show that
\[
\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\infty
\]

\section*{EXAMPLE 7 Indeterminate Form \(\infty-\infty\)}

Evaluate \(\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)\).
Solution Because direct substitution yields the indeterminate form \(\infty-\infty\), you should try to rewrite the expression to produce a form to which you can apply L'Hôpital's Rule. In this case, you can combine the two fractions to obtain
\[
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=\lim _{x \rightarrow 1^{+}}\left[\frac{x-1-\ln x}{(x-1) \ln x}\right]
\]

Now, because direct substitution produces the indeterminate form \(0 / 0\), you can apply L'Hôpital's Rule to obtain
\[
\begin{aligned}
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) & =\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}[x-1-\ln x]}{\frac{d}{d x}[(x-1) \ln x]} \\
& =\lim _{x \rightarrow 1^{+}}\left[\frac{1-(1 / x)}{(x-1)(1 / x)+\ln x}\right] \\
& =\lim _{x \rightarrow 1^{+}}\left(\frac{x-1}{x-1+x \ln x}\right)
\end{aligned}
\]

This limit also yields the indeterminate form \(0 / 0\), so you can apply L'Hôpital's Rule again to obtain
\[
\begin{aligned}
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) & =\lim _{x \rightarrow 1^{+}}\left[\frac{1}{1+x(1 / x)+\ln x}\right] \\
& =\frac{1}{2}
\end{aligned}
\]

The forms \(0 / 0, \infty / \infty, \infty-\infty, 0 \cdot \infty, 0^{0}, 1^{\infty}\), and \(\infty^{0}\) have been identified as indeterminate. There are similar forms that you should recognize as "determinate."
\[
\begin{aligned}
\infty+\infty & \rightarrow \infty & & \text { Limit is positive infinity. } \\
-\infty-\infty & \rightarrow-\infty & & \text { Limit is negative infinity. } \\
0^{\infty} & \rightarrow 0 & & \text { Limit is zero. } \\
0^{-\infty} & \rightarrow \infty & & \text { Limit is positive infinity. }
\end{aligned}
\]
(You are asked to verify two of these in Exercises 116 and 117.)
As a final comment, remember that L'Hôpital's Rule can be applied only to quotients leading to the indeterminate forms \(0 / 0\) and \(\infty / \infty\). For instance, the following application of L'Hôpital's Rule is incorrect.


The reason this application is incorrect is that, even though the limit of the denominator is 0 , the limit of the numerator is 1 , which means that the hypotheses of L'Hôpital's Rule have not been satisfied.

\subsection*{8.7 Exercises}

Numerical and Graphical Analysis In Exercises 1-4, complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to support your result.
1. \(\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 3 x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
2. \(\lim _{x \rightarrow 0} \frac{1-e^{x}}{x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
3. \(\lim _{x \rightarrow \infty} x^{5} e^{-x / 100}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 1 & 10 & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}
4. \(\lim _{x \rightarrow \infty} \frac{6 x}{\sqrt{3 x^{2}-2 x}}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 1 & 10 & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) \\
\hline\(f(x)\) & & & & & & \\
\hline
\end{tabular}

In Exercises 5-10, evaluate the limit (a) using techniques from Lapters 1 and 3 and (b) using L'Hêital's Rule.
5. \(\lim _{x \rightarrow 4} \frac{3(x-4)}{x^{2}-16}\)
6. \(\lim _{x \rightarrow-2} \frac{2 x^{2}+x-6}{x+2}\)
7. \(\lim _{x \rightarrow 6} \frac{\sqrt{x+10}-4}{x-6}\)
8. \(\lim _{x \rightarrow 0} \frac{\sin 6 x}{4 x}\)
9. \(\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x+1}{3 x^{2}-5}\)
10. \(\lim _{x \rightarrow \infty} \frac{2 x+1}{4 x^{2}+x}\)

In Exercises 11-44, evaluate the limit, using L'Hêital's Rule if necessary. (In Exercise 18, \(n\) is a positive integer.)
11. \(\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}\)
12. \(\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x+1}\)
13. \(\lim _{x \rightarrow 0} \frac{\sqrt{25-x^{2}}-5}{x}\)
14. \(\lim _{x \rightarrow 5^{-}} \frac{\sqrt{25-x^{2}}}{x-5}\)
15. \(\lim _{x \rightarrow 0} \frac{e^{x}-(1-x)}{x}\)
16. \(\lim _{x \rightarrow 1} \frac{\ln x^{2}}{x^{2}-1}\)
17. \(\lim _{x \rightarrow 0^{+}} \frac{e^{x}-(1+x)}{x^{3}}\)
18. \(\lim _{x \rightarrow 0^{+}} \frac{e^{x}-(1+x)}{x^{n}}\)
19. \(\lim _{x \rightarrow 1} \frac{x^{11}-1}{x^{4}-1}\)
20. \(\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}\), where \(a, b \neq 0\)
21. \(\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}\)
23. \(\lim _{x \rightarrow 0} \frac{\arcsin x}{x}\)
25. \(\lim _{x \rightarrow \infty} \frac{5 x^{2}+3 x-1}{4 x^{2}+5}\)
27. \(\lim _{x \rightarrow \infty} \frac{x^{2}+4 x+7}{x-6}\)
29. \(\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x / 2}}\)
31. \(\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}\)
33. \(\lim _{x \rightarrow \infty} \frac{\cos x}{x}\)
35. \(\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}\)
37. \(\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{4}}\)
39. \(\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 9 x}\)
41. \(\lim _{x \rightarrow 0} \frac{\arctan x}{\sin x}\)
43. \(\lim _{x \rightarrow \infty} \frac{\int_{1}^{x} \ln \left(e^{4 t-1}\right) d t}{x}\)
22. \(\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}\), where \(a, b \neq 0\)
24. \(\lim _{x \rightarrow 1} \frac{\arctan x-(\pi / 4)}{x-1}\)
26. \(\lim _{x \rightarrow \infty} \frac{x-6}{x^{2}+4 x+7}\)
28. \(\lim _{x \rightarrow \infty} \frac{x^{3}}{x+2}\)
30. \(\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}\)
32. \(\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{2}+1}}\)
34. \(\lim _{x \rightarrow \infty} \frac{\sin x}{x-\pi}\)
36. \(\lim _{x \rightarrow \infty} \frac{\ln x^{4}}{x^{3}}\)
38. \(\lim _{x \rightarrow \infty} \frac{e^{x / 2}}{x}\)
40. \(\lim _{x \rightarrow 1} \frac{\ln x}{\sin \pi x}\)
42. \(\lim _{x \rightarrow 0} \frac{x}{\arctan 2 x}\)
44. \(\lim _{x \rightarrow 1^{+}} \frac{\int_{1}^{x} \cos \theta d \theta}{x-1}\)

In Exercises 45-62, (a) describe the type of indeterminate form (if any) that is obtained by direct substitution. (b) Evaluate the limit, using L'Hp̂ital's Rule if necessary. (c) Use a graphing utility to graph the function and verify the result in part (b).
45. \(\lim _{x \rightarrow \infty} x \ln x\)
47. \(\lim _{x \rightarrow \infty}\left(x \sin \frac{1}{x}\right)\)
49. \(\lim _{x \rightarrow 0^{+}} x^{1 / x}\)
51. \(\lim _{x \rightarrow \infty} x^{1 / x}\)
53. \(\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}\)
55. \(\lim _{x \rightarrow 0^{+}}\left[3(x)^{x / 2}\right]\)
57. \(\lim _{x \rightarrow 1^{+}}(\ln x)^{x-1}\)
59. \(\lim _{x \rightarrow 2^{+}}\left(\frac{8}{x^{2}-4}-\frac{x}{x-2}\right)\)
61. \(\lim _{x \rightarrow 1^{+}}\left(\frac{3}{\ln x}-\frac{2}{x-1}\right)\)
46. \(\lim _{x \rightarrow 0^{+}} x^{3} \cot x\)
48. \(\lim _{x \rightarrow \infty} x \tan \frac{1}{x}\)
50. \(\lim _{x \rightarrow 0^{+}}\left(e^{x}+x\right)^{2 / x}\)
52. \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\)
54. \(\lim _{x \rightarrow \infty}(1+x)^{1 / x}\)
56. \(\lim _{x \rightarrow 4^{+}}[3(x-4)]^{x-4}\)
58. \(\lim _{x \rightarrow 0^{+}}\left[\cos \left(\frac{\pi}{2}-x\right)\right]^{x}\)
60. \(\lim _{x \rightarrow 2^{+}}\left(\frac{1}{x^{2}-4}-\frac{\sqrt{x-1}}{x^{2}-4}\right)\)
62. \(\lim _{x \rightarrow 0^{+}}\left(\frac{10}{x}-\frac{3}{x^{2}}\right)\)

In Exercises 63-66, use a graphing utility to (a) graph the function and (b) find the required limit (if it exists).
63. \(\lim _{x \rightarrow 3} \frac{x-3}{\ln (2 x-5)}\)
64. \(\lim _{x \rightarrow 0^{+}}(\sin x)^{x}\)
65. \(\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+5 x+2}-x\right)\)
66. \(\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}}\)

\section*{WRITING ABOUT CONCEPTS}
67. List six different indeterminate forms.
68. State L'Hôpital's Rule.
69. Find differentiable functions \(f\) and \(g\) that satisfy the specified condition such that \(\lim _{x \rightarrow 5} f(x)=0\) and \(\lim _{x \rightarrow 5} g(x)=0\).
Explain how you obtained your answers. (Note: There are many correct answers.)
(a) \(\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}=10\)
(b) \(\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}=0\)
(c) \(\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}=\infty\)
70. Find differentiable functions \(f\) and \(g\) such that
\(\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty \quad\) and
\(\lim _{x \rightarrow \infty}[f(x)-g(x)]=25\).
Explain how you obtained your answers. (Note: There are many correct answers.)
71. Numerical Approach Complete the table to show that \(x\) eventually "overpowers" \((\ln x)^{4}\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 10 & \(10^{2}\) & \(10^{4}\) & \(10^{6}\) & \(10^{8}\) & \(10^{10}\) \\
\hline\(\frac{(\ln x)^{4}}{x}\) & & & & & & \\
\hline
\end{tabular}
72. Numerical Approach Complete the table to show that \(e^{x}\) eventually "overpowers" \(x^{5}\).
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(x\) & 1 & 5 & 10 & 20 & 30 & 40 & 50 & 100 \\
\hline\(\frac{e^{x}}{x^{5}}\) & & & & & & & & \\
\hline
\end{tabular}

Comparing Functions In Exercises 73-78, use L'Hp̂ital's Rule to determine the comparative rates of increase of the functions \(f(x)=x^{m}, g(x)=e^{n x}\), and \(h(x)=(\ln x)^{n}\), where \(n>0, m>0\), and \(x \rightarrow \infty\).
73. \(\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{5 x}}\)
74. \(\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}}\)
75. \(\lim _{x \rightarrow \infty} \frac{(\ln x)^{3}}{x}\)
76. \(\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x^{3}}\)
77. \(\lim _{x \rightarrow \infty} \frac{(\ln x)^{n}}{x^{m}}\)
78. \(\lim _{x \rightarrow \infty} \frac{x^{m}}{e^{n x}}\)

In Exercises 79-82, find any asymptotes and relative extrema that may exist and use a graphing utility to graph the function. (Hint: Sme of the limits required in finding asymptotes have been found in previous exercises.)
79. \(y=x^{1 / x}, \quad x>0\)
80. \(y=x^{x}, \quad x>0\)
81. \(y=2 x e^{-x}\)
82. \(y=\frac{\ln x}{x}\)

Think About It In Exercises 83-87, L'Hp̂ital's Rule is used incorrectly. Describe the error.
83. \(\lim _{x \rightarrow 2} \frac{3 x^{2}+4 x+1}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{6 x+4}{2 x-1}=\lim _{x \rightarrow 2} \frac{6}{2}=3\)
84. \(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}} \equiv \lim _{x \rightarrow 0} \frac{2 e^{2 x}}{e^{x}} \equiv \lim _{x \rightarrow 0} 2 e^{x}=2\)
85. \(\lim _{x \rightarrow 0} \frac{\sin \pi x-1}{x} \equiv \lim _{x \rightarrow 0} \frac{\pi \cos \pi x}{1}=\pi\)
86.

87. \(\lim _{x \rightarrow \infty} \frac{e^{-x}}{1+e^{-x}}=\lim _{x \rightarrow \infty} \frac{-e^{-x}}{-e^{-x}}\)


\section*{CAPSTONE}
88. Determine which of the following limits can be evaluated using L'Hôpital's Rule. Explain your reasoning. Do not evaluate the limit.
(a) \(\lim _{x \rightarrow 2} \frac{x-2}{x^{3}-x-6}\)
(b) \(\lim _{x \rightarrow 0} \frac{x^{2}-4 x}{2 x-1}\)
(c) \(\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}\)
(d) \(\lim _{x \rightarrow 3} \frac{e^{x^{2}}-e^{9}}{x-3}\)
(e) \(\lim _{x \rightarrow 1} \frac{\cos \pi x}{\ln x}\)
(f) \(\lim _{x \rightarrow 1} \frac{1+x(\ln x-1)}{\ln x(x-1)}\)

Analytical Approach In Exercises 89 and 90, (a) explain why L'Hêital's Rule cannot be used to find the limit, (b) find the limit analytically, and (c) use a graphing utility to graph the function and approximate the limit from the graph. ©mpare the result with that in part (b).
89. \(\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}\)
90. \(\lim _{x \rightarrow \pi / 2^{-}} \frac{\tan x}{\sec x}\)

Graphical Analysis In Exercises 91 and 92, \(\operatorname{graph} f(x) / g(x)\) and \(f^{\prime}(x) / g^{\prime}(x)\) near \(x=0\). Wht do you notice about these ratios as \(\boldsymbol{x} \boldsymbol{\rightarrow} \mathbf{0}\) ? How does this illustrate L'Hp̂ital's Rule?
91. \(f(x)=\sin 3 x, \quad g(x)=\sin 4 x\)
92. \(f(x)=e^{3 x}-1, \quad g(x)=x\)
93. Velocity in a Resisting Medium The velocity \(v\) of an object falling through a resisting medium such as air or water is given by
\(v=\frac{32}{k}\left(1-e^{-k t}+\frac{v_{0} k e^{-k t}}{32}\right)\)
where \(v_{0}\) is the initial velocity, \(t\) is the time in seconds, and \(k\) is the resistance constant of the medium. Use L'Hôpital's Rule to find the formula for the velocity of a falling body in a vacuum by fixing \(v_{0}\) and \(t\) and letting \(k\) approach zero. (Assume that the downward direction is positive.)
94. Compound Interest The formula for the amount \(A\) in a savings account compounded \(n\) times per year for \(t\) years at an interest rate \(r\) and an initial deposit of \(P\) is given by
\(A=P\left(1+\frac{r}{n}\right)^{n t}\).
Use L'Hôpital's Rule to show that the limiting formula as the number of compoundings per year approaches infinity is given by \(A=P e^{r t}\).
95. The Gamma Function The Gamma Function \(\Gamma(n)\) is defined in terms of the integral of the function given by \(f(x)=x^{n-1} e^{-x}, \quad n>0\). Show that for any fixed value of \(n\), the limit of \(f(x)\) as \(x\) approaches infinity is zero.
96. Tractrix A person moves from the origin along the positive \(y\)-axis pulling a weight at the end of a 12 -meter rope (see figure). Initially, the weight is located at the point \((12,0)\).

(a) Show that the slope of the tangent line of the path of the weight is
\[
\frac{d y}{d x}=-\frac{\sqrt{144-x^{2}}}{x} .
\]
(b) Use the result of part (a) to find the equation of the path of the weight. Use a graphing utility to graph the path and compare it with the figure.
(c) Find any vertical asymptotes of the graph in part (b).
(d) When the person has reached the point \((0,12)\), how far has the weight moved?

In Exercises 97-100, apply the Extended Mean alue Theorem to the functions \(f\) and \(g\) on the given interval. Find all values \(c\) in the interval \((a, b)\) such that
\(\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\).

Functions
97. \(f(x)=x^{3}, \quad g(x)=x^{2}+1\)
98. \(f(x)=\frac{1}{x}, \quad g(x)=x^{2}-4\)
99. \(f(x)=\sin x, \quad g(x)=\cos x\)
100. \(f(x)=\ln x, \quad g(x)=x^{3}\)

Interval
\([0,1]\)
\(\left[0, \frac{\pi}{2}\right]\)
\([1,4]\)

True or False? In Exercises 101-104, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
101. \(\lim _{x \rightarrow 0}\left[\frac{x^{2}+x+1}{x}\right]=\lim _{x \rightarrow 0}\left[\frac{2 x+1}{1}\right]=1\)
102. If \(y=e^{x} / x^{2}\), then \(y^{\prime}=e^{x} / 2 x\).
103. If \(p(x)\) is a polynomial, then \(\lim _{x \rightarrow \infty}\left[p(x) / e^{x}\right]=0\).
104. If \(\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1\), then \(\lim _{x \rightarrow \infty}[f(x)-g(x)]=0\).
105. Area Find the limit, as \(x\) approaches 0 , of the ratio of the area of the triangle to the total shaded area in the figure.

106. In Section 1.3, a geometric argument (see figure) was used to prove that
\[
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
\]

(a) Write the area of \(\triangle A B D\) in terms of \(\theta\).
(b) Write the area of the shaded region in terms of \(\theta\).
(c) Write the ratio \(R\) of the area of \(\triangle A B D\) to that of the shaded region.
(d) Find \(\lim _{\theta \rightarrow 0} R\).

Continuous Functions In Exercises 107 and 108, find the value of \(c\) that makes the function continuous at \(x=0\).
107. \(f(x)= \begin{cases}\frac{4 x-2 \sin 2 x}{2 x^{3}}, & x \neq 0 \\ c, & x=0\end{cases}\)
108. \(f(x)= \begin{cases}\left(e^{x}+x\right)^{1 / x}, & x \neq 0 \\ c, & x=0\end{cases}\)
109. Find the values of \(a\) and \(b\) such that \(\lim _{x \rightarrow 0} \frac{a-\cos b x}{x^{2}}=2\).
110. Show that \(\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0\) for any integer \(n>0\).
111. (a) Let \(f^{\prime}(x)\) be continuous. Show that
\[
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x) .
\]
(b) Explain the result of part (a) graphically.

112. Let \(f^{\prime \prime}(x)\) be continuous. Show that
\(\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x)\).
113. Sketch the graph of
\(g(x)= \begin{cases}e^{-1 / x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}\)
and determine \(g^{\prime}(0)\).
114. Use a graphing utility to graph
\(f(x)=\frac{x^{k}-1}{k}\)
for \(k=1,0.1\), and 0.01 . Then evaluate the limit
\(\lim _{k \rightarrow 0^{+}} \frac{x^{k}-1}{k}\).
115. Consider the limit \(\lim _{x \rightarrow 0^{+}}(-x \ln x)\).
(a) Describe the type of indeterminate form that is obtained by direct substitution.
(b) Evaluate the limit. Use a graphing utility to verify the result.

FOR FURTHER INFORMATION For a geometric approach to this exercise, see the article "A Geometric Proof of \(\lim _{d \rightarrow 0^{+}}(-d \ln d)=0\) " by John H. Mathews in the College Mathematics Journal. To view this article, go to the website www.matharticles.com.
116. Prove that if \(f(x) \geq 0, \lim _{x \rightarrow a} f(x)=0\), and \(\lim _{x \rightarrow a} g(x)=\infty\), then \(\lim _{x \rightarrow a} f(x)^{g(x)}=0\).
117. Prove that if \(f(x) \geq 0, \lim _{x \rightarrow a} f(x)=0\), and \(\lim _{x \rightarrow a} g(x)=-\infty\), then \(\lim _{x \rightarrow a} f(x)^{g(x)}=\infty\).
118. Prove the following generalization of the Mean Value Theorem. If \(f\) is twice differentiable on the closed interval \([a, b]\), then
\(f(b)-f(a)=f^{\prime}(a)(b-a)-\int_{a}^{b} f^{\prime \prime}(t)(t-b) d t\).
119. Indeterminate Forms Show that the indeterminate forms \(0^{0}\), \(\infty^{0}\), and \(1^{\infty}\) do not always have a value of 1 by evaluating each limit.
(a) \(\lim _{x \rightarrow 0^{+}} x^{\ln 2 /(1+\ln x)}\)
(b) \(\lim _{x \rightarrow \infty} x^{\ln 2 /(1+\ln x)}\)
(c) \(\lim _{x \rightarrow 0}(x+1)^{(\ln 2) / x}\)
120. Calculus History In L'Hôpital's 1696 calculus textbook, he illustrated his rule using the limit of the function
\(f(x)=\frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a^{2} x}}{a-\sqrt[4]{a x^{3}}}\)
as \(x\) approaches \(a, a>0\). Find this limit.
121. Consider the function
\(h(x)=\frac{x+\sin x}{x}\).
(a) Use a graphing utility to graph the function. Then use the zoom and trace features to investigate \(\lim _{x \rightarrow \infty} h(x)\).
(b) Find \(\lim _{x \rightarrow \infty} h(x)\) analytically by writing
\(h(x)=\frac{x}{x}+\frac{\sin x}{x}\).
(c) Can you use L'Hôpital's Rule to find \(\lim _{x \rightarrow \infty} h(x)\) ? Explain your reasoning.
122. Let \(f(x)=x+x \sin x\) and \(g(x)=x^{2}-4\).
(a) Show that \(\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0\).
(b) Show that \(\lim _{x \rightarrow \infty} f(x)=\infty\) and \(\lim _{x \rightarrow \infty} g(x)=\infty\).
(c) Evaluate the limit \(\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}\). What do you notice?
(d) Do your answers to parts (a) through (c) contradict L'Hôpital's Rule? Explain your reasoning.

\section*{PUTNAM EXAM CHALLENGE}
123. Evaluate \(\lim _{x \rightarrow \infty}\left[\frac{1}{x} \cdot \frac{a^{x}-1}{a-1}\right]^{1 / x}\) where \(a>0, a \neq 1\).

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{8.8 Improper Integrals}
- Evaluate an improper integral that has an infinite limit of integration.
- Evaluate an improper integral that has an infinite discontinuity.

\section*{Improper Integrals with Infinite Limits of Integration}

The definition of a definite integral
\[
\int_{a}^{b} f(x) d x
\]
requires that the interval \([a, b]\) be finite. Furthermore, the Fundamental Theorem of Calculus, by which you have been evaluating definite integrals, requires that \(f\) be continuous on \([a, b]\). In this section you will study a procedure for evaluating integrals that do not satisfy these requirements-usually because either one or both of the limits of integration are infinite, or \(f\) has a finite number of infinite discontinuities in the interval \([a, b]\). Integrals that possess either property are improper integrals. Note that a function \(f\) is said to have an infinite discontinuity at \(c\) if, from the right or left,
\[
\lim _{x \rightarrow c} f(x)=\infty \quad \text { or } \quad \lim _{x \rightarrow c} f(x)=-\infty
\]

To get an idea of how to evaluate an improper integral, consider the integral
\[
\left.\int_{1}^{b} \frac{d x}{x^{2}}=-\frac{1}{x}\right]_{1}^{b}=-\frac{1}{b}+1=1-\frac{1}{b}
\]
which can be interpreted as the area of the shaded region shown in Figure 8.17. Taking the limit as \(b \rightarrow \infty\) produces
\[
\int_{1}^{\infty} \frac{d x}{x^{2}}=\lim _{b \rightarrow \infty}\left(\int_{1}^{b} \frac{d x}{x^{2}}\right)=\lim _{b \rightarrow \infty}\left(1-\frac{1}{b}\right)=1
\]

This improper integral can be interpreted as the area of the unbounded region between the graph of \(f(x)=1 / x^{2}\) and the \(x\)-axis (to the right of \(x=1\) ).

\section*{DEFINITION OF IMPROPER INTEGRALS WITH INFINITE INTEGRATION LIMITS}
1. If \(f\) is continuous on the interval \([a, \infty)\), then
\[
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
\]
2. If \(f\) is continuous on the interval \((-\infty, b]\), then
\[
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
\]
3. If \(f\) is continuous on the interval \((-\infty, \infty)\), then
\[
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
\]
where \(c\) is any real number (see Exercise 120).
In the first two cases, the improper integral converges if the limit existsotherwise, the improper integral diverges. In the third case, the improper integral on the left diverges if either of the improper integrals on the right diverges.


This unbounded region has an infinite area.
Figure 8.18

\section*{EXAMPLE 1 An Improper Integral That Diverges}

Evaluate \(\int_{1}^{\infty} \frac{d x}{x}\).

\section*{Solution}
\[
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x} & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x} & & \text { Take limit as } b \rightarrow \infty \\
& =\lim _{b \rightarrow \infty}[\ln x]_{1}^{b} & & \text { Apply Log Rule. } \\
& =\lim _{b \rightarrow \infty}(\ln b-0) & & \text { Apply Fundamental Theorem of Calculus. } \\
& =\infty & & \text { Evaluate limit. }
\end{aligned}
\]

See Figure 8.18.

NOTE Try comparing the regions shown in Figures 8.17 and 8.18. They look similar, yet the region in Figure 8.17 has a finite area of 1 and the region in Figure 8.18 has an infinite area.

\section*{EXAMPLE 2 Improper Integrals That Converge}

Evaluate each improper integral.
a. \(\int_{0}^{\infty} e^{-x} d x\)
b. \(\int_{0}^{\infty} \frac{1}{x^{2}+1} d x\)

\section*{Solution}
\[
\text { a. } \begin{aligned}
\int_{0}^{\infty} e^{-x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x} d x \\
& =\lim _{b \rightarrow \infty}\left[-e^{-x}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-e^{-b}+1\right) \\
& =1
\end{aligned}
\]

See Figure 8.19.


The area of the unbounded region is 1 .
Figure 8.19
b. \(\int_{0}^{\infty} \frac{1}{x^{2}+1} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{x^{2}+1} d x\)
\(=\lim _{b \rightarrow \infty}[\arctan x]_{0}^{b}\)
\(=\lim _{b \rightarrow \infty} \arctan b\)
\(=\frac{\pi}{2}\)

See Figure 8.20.


The area of the unbounded region is \(\pi / 2\).
Figure 8.20


The area of the unbounded region is \(|-1 / e|\).
Figure 8.21


The area of the unbounded region is \(\pi / 2\). Figure 8.22

In the following example, note how L'Hôpital's Rule can be used to evaluate an improper integral.

\section*{EXAMPLE 3 Using L'Hôpital's Rule with an Improper Integral}

Evaluate \(\int_{1}^{\infty}(1-x) e^{-x} d x\)
Solution Use integration by parts, with \(d v=e^{-x} d x\) and \(u=(1-x)\).
\[
\begin{aligned}
\int(1-x) e^{-x} d x & =-e^{-x}(1-x)-\int e^{-x} d x \\
& =-e^{-x}+x e^{-x}+e^{-x}+C \\
& =x e^{-x}+C
\end{aligned}
\]

Now, apply the definition of an improper integral.
\[
\begin{aligned}
\int_{1}^{\infty}(1-x) e^{-x} d x & =\lim _{b \rightarrow \infty}\left[x e^{-x}\right]_{1}^{b} \\
& =\left(\lim _{b \rightarrow \infty} \frac{b}{e^{b}}\right)-\frac{1}{e}
\end{aligned}
\]

Finally, using L'Hôpital's Rule on the right-hand limit produces
\[
\lim _{b \rightarrow \infty} \frac{b}{e^{b}}=\lim _{b \rightarrow \infty} \frac{1}{e^{b}}=0
\]
from which you can conclude that
\[
\int_{1}^{\infty}(1-x) e^{-x} d x=-\frac{1}{e}
\]

See Figure 8.21.

\section*{EXAMPLE 4 Infinite Upper and Lower Limits of Integration}

Evaluate \(\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x\)
Solution Note that the integrand is continuous on \((-\infty, \infty)\). To evaluate the integral, you can break it into two parts, choosing \(c=0\) as a convenient value.
\[
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x & =\int_{-\infty}^{0} \frac{e^{x}}{1+e^{2 x}} d x+\int_{0}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x \\
& =\lim _{b \rightarrow-\infty}\left[\arctan e^{x}\right]_{b}^{0}+\lim _{b \rightarrow \infty}\left[\arctan e^{x}\right]_{0}^{b} \\
& =\lim _{b \rightarrow-\infty}\left(\frac{\pi}{4}-\arctan e^{b}\right)+\lim _{b \rightarrow \infty}\left(\arctan e^{b}-\frac{\pi}{4}\right) \\
& =\frac{\pi}{4}-0+\frac{\pi}{2}-\frac{\pi}{4} \\
& =\frac{\pi}{2}
\end{aligned}
\]

See Figure 8.22.


The work required to move a space module an unlimited distance away from Earth is approximately \(6.984 \times 10^{11}\) foot-pounds. Figure 8.23

\section*{EXAMPLE 5 Sending a Space Module into Orbit}

In Example 3 in Section 7.5, you found that it would require 10,000 mile-tons of work to propel a 15 -metric-ton space module to a height of 800 miles above Earth. How much work is required to propel the module an unlimited distance away from Earth's surface?

Solution At first you might think that an infinite amount of work would be required. But if this were the case, it would be impossible to send rockets into outer space. Because this has been done, the work required must be finite. You can determine the work in the following manner. Using the integral in Example 3, Section 7.5, replace the upper bound of 4800 miles by \(\infty\) and write
\[
\begin{aligned}
W & =\int_{4000}^{\infty} \frac{240,000,000}{x^{2}} d x \\
& =\lim _{b \rightarrow \infty}\left[-\frac{240,000,000}{x}\right]_{4000}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{240,000,000}{b}+\frac{240,000,000}{4000}\right) \\
& =60,000 \text { mile-tons } \\
& \approx 6.984 \times 10^{11} \text { foot-pounds. }
\end{aligned}
\]

See Figure 8.23.

\section*{Improper Integrals with Infinite Discontinuities}

The second basic type of improper integral is one that has an infinite discontinuity at or between the limits of integration.

\section*{DEFINITION OF IMPROPER INTEGRALS WITH INFINITE DISCONTINUITIES}
1. If \(f\) is continuous on the interval \([a, b)\) and has an infinite discontinuity at \(b\), then
\[
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x .
\]
2. If \(f\) is continuous on the interval \((a, b]\) and has an infinite discontinuity at \(a\), then
\[
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
\]
3. If \(f\) is continuous on the interval \([a, b]\), except for some \(c\) in \((a, b)\) at which \(f\) has an infinite discontinuity, then
\[
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\]

In the first two cases, the improper integral converges if the limit existsotherwise, the improper integral diverges. In the third case, the improper integral on the left diverges if either of the improper integrals on the right diverges.


Infinite discontinuity at \(x=0\)

\section*{Figure 8.24}


The improper integral \(\int_{-1}^{2} 1 / x^{3} d x\) diverges.
Figure 8.25

\section*{EXAMPLE 6 An Improper Integral with an Infinite Discontinuity}

Evaluate \(\int_{0}^{1} \frac{d x}{\sqrt[3]{x}}\).
Solution The integrand has an infinite discontinuity at \(x=0\), as shown in Figure 8.24. You can evaluate this integral as shown below.
\[
\begin{aligned}
\int_{0}^{1} x^{-1 / 3} d x & =\lim _{b \rightarrow 0^{+}}\left[\frac{x^{2 / 3}}{2 / 3}\right]_{b}^{1} \\
& =\lim _{b \rightarrow 0^{+}} \frac{3}{2}\left(1-b^{2 / 3}\right) \\
& =\frac{3}{2}
\end{aligned}
\]

\section*{EXAMPLE 7 An Improper Integral That Diverges}

Evaluate \(\int_{0}^{2} \frac{d x}{x^{3}}\).
Solution Because the integrand has an infinite discontinuity at \(x=0\), you can write
\[
\begin{aligned}
\int_{0}^{2} \frac{d x}{x^{3}} & =\lim _{b \rightarrow 0^{+}}\left[-\frac{1}{2 x^{2}}\right]_{b}^{2} \\
& =\lim _{b \rightarrow 0^{+}}\left(-\frac{1}{8}+\frac{1}{2 b^{2}}\right) \\
& =\infty
\end{aligned}
\]

So, you can conclude that the improper integral diverges.

\section*{EXAMPLE 8 An Improper Integral with an Interior Discontinuity}

Evaluate \(\int_{-1}^{2} \frac{d x}{x^{3}}\).
Solution This integral is improper because the integrand has an infinite discontinuity at the interior point \(x=0\), as shown in Figure 8.25. So, you can write
\[
\int_{-1}^{2} \frac{d x}{x^{3}}=\int_{-1}^{0} \frac{d x}{x^{3}}+\int_{0}^{2} \frac{d x}{x^{3}}
\]

From Example 7 you know that the second integral diverges. So, the original improper integral also diverges.

NOTE Remember to check for infinite discontinuities at interior points as well as at endpoints when determining whether an integral is improper. For instance, if you had not recognized that the integral in Example 8 was improper, you would have obtained the incorrect result
\[
\left.\int_{-1}^{2} \frac{d x}{x^{3}}, \stackrel{=}{=}, \frac{-1}{2 x^{2}}\right]_{-1}^{2}=-\frac{1}{8}+\frac{1}{2}=\frac{3}{8} . \quad \text { Incorrect evaluation }
\]


The area of the unbounded region is \(\pi\).
Figure 8.26


The circumference of the circle is \(2 \pi\).
Figure 8.27

The integral in the next example is improper for two reasons. One limit of integration is infinite, and the integrand has an infinite discontinuity at the outer limit of integration.

\section*{EXAMPLE 9 A Doubly Improper Integral}

Evaluate \(\int_{0}^{\infty} \frac{d x}{\sqrt{x}(x+1)}\).
Solution To evaluate this integral, split it at a convenient point (say, \(x=1\) ) and write
\[
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{\sqrt{x}(x+1)} & =\int_{0}^{1} \frac{d x}{\sqrt{x}(x+1)}+\int_{1}^{\infty} \frac{d x}{\sqrt{x}(x+1)} \\
& =\lim _{b \rightarrow 0^{+}}[2 \arctan \sqrt{x}]_{b}^{1}+\lim _{c \rightarrow \infty}[2 \arctan \sqrt{x}]_{1}^{c} \\
& =2\left(\frac{\pi}{4}\right)-0+2\left(\frac{\pi}{2}\right)-2\left(\frac{\pi}{4}\right) \\
& =\pi
\end{aligned}
\]

See Figure 8.26.

\section*{EXAMPLE 10 An Application Involving Arc Length}

Use the formula for arc length to show that the circumference of the circle \(x^{2}+y^{2}=1\) is \(2 \pi\).

Solution To simplify the work, consider the quarter circle given by \(y=\sqrt{1-x^{2}}\), where \(0 \leq x \leq 1\). The function \(y\) is differentiable for any \(x\) in this interval except \(x=1\). Therefore, the arc length of the quarter circle is given by the improper integral
\[
\begin{aligned}
s & =\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2}} d x \\
& =\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}} .
\end{aligned}
\]

This integral is improper because it has an infinite discontinuity at \(x=1\). So, you can write
\[
\begin{aligned}
s & =\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}} \\
& =\lim _{b \rightarrow 1^{-}}[\arcsin x]_{0}^{b} \\
& =\frac{\pi}{2}-0 \\
& =\frac{\pi}{2} .
\end{aligned}
\]

Finally, multiplying by 4 , you can conclude that the circumference of the circle is \(4 s=2 \pi\), as shown in Figure 8.27.

FOR FURTHER INFORMATION For
further investigation of solids that have finite volumes and infinite surface areas, see the article "Supersolids: Solids Having FinitedUume and Infinite Surfaces" by William P. Love in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{FOR FURTHER INFORMATION}

To learn about another function that has a finite volume and an infinite surface area, see the article "Gabriel's Wedding Cake" by \(\mathbf{H l i a n}\) F. Fleron in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

This section concludes with a useful theorem describing the convergence or divergence of a common type of improper integral. The proof of this theorem is left as an exercise (see Exercise 55).

\section*{THEOREM 8.5 A SPECIAL TYPE OF IMPROPER INTEGRAL}
\[
\int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\frac{1}{p-1}, & \text { if } p>1 \\ \text { diverges, } & \text { if } p \leq 1\end{cases}
\]

\section*{EXAMPLE 11 An Application Involving A Solid of Revolution}

The solid formed by revolving (about the \(x\)-axis) the unbounded region lying between the graph of \(f(x)=1 / x\) and the \(x\)-axis \((x \geq 1)\) is called Gabriel's Horn. (See Figure 8.28.) Show that this solid has a finite volume and an infinite surface area.

Solution Using the disk method and Theorem 8.5, you can determine the volume to be
\[
\begin{aligned}
V & =\pi \int_{1}^{\infty}\left(\frac{1}{x}\right)^{2} d x \quad \text { Theorem } 8.5, p=2>1 \\
& =\pi\left(\frac{1}{2-1}\right)=\pi
\end{aligned}
\]

The surface area is given by
\[
S=2 \pi \int_{1}^{\infty} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=2 \pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x
\]

Because
\[
\sqrt{1+\frac{1}{x^{4}}}>1
\]
on the interval \([1, \infty)\), and the improper integral
\[
\int_{1}^{\infty} \frac{1}{x} d x
\]
diverges, you can conclude that the improper integral
\[
\int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x
\]
also diverges. (See Exercise 58.) So, the surface area is infinite.


Gabriel's Horn has a finite volume and an infinite surface area.
Figure 8.28

\subsection*{8.8 Exercises}

In Exercises 1-8, decide whether the integral is improper. Explain your reasoning.
1. \(\int_{0}^{1} \frac{d x}{5 x-3}\)
2. \(\int_{1}^{2} \frac{d x}{x^{3}}\)
3. \(\int_{0}^{1} \frac{2 x-5}{x^{2}-5 x+6} d x\)
4. \(\int_{1}^{\infty} \ln \left(x^{2}\right) d x\)
5. \(\int_{0}^{2} e^{-x} d x\)
6. \(\int_{0}^{\infty} \cos x d x\)
7. \(\int_{-\infty}^{\infty} \frac{\sin x}{4+x^{2}} d x\)
8. \(\int_{0}^{\pi / 4} \csc x d x\)

In Exercises 9-14, explain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converges.
9. \(\int_{0}^{4} \frac{1}{\sqrt{x}} d x\)
10. \(\int_{3}^{4} \frac{1}{(x-3)^{3 / 2}} d x\)


11. \(\int_{0}^{2} \frac{1}{(x-1)^{2}} d x\)
12. \(\int_{0}^{2} \frac{1}{(x-1)^{2 / 3}} d x\)


13. \(\int_{0}^{\infty} e^{-4 x} d x\)
14. \(\int_{-\infty}^{0} e^{3 x} d x\)



Writing In Exercises 15-18, explain why the evaluation of the integral is incorrect. Use the integration capabilities of a graphing utility to attempt to evaluate the integral. Determine whether the utility gives the correct answer.
15. \(\int_{-1}^{4} \frac{1}{x^{2}} d x=-2\)
16. \(\int_{-2}^{2} \frac{-2}{(x-1)^{3}} d x=\frac{8}{9}\)
17.

18.


In Exercises 19-36, determine whether the improper integral diverges or converges. Evaluate the integral if it converges.
19. \(\int_{1}^{\infty} \frac{1}{x^{3}} d x\)
20. \(\int_{1}^{\infty} \frac{3}{x^{5}} d x\)
21. \(\int_{1}^{\infty} \frac{3}{\sqrt[3]{x}} d x\)
22. \(\int_{1}^{\infty} \frac{4}{\sqrt[4]{x}} d x\)
23. \(\int_{-\infty}^{0} x e^{-4 x} d x\)
24. \(\int_{0}^{\infty} x e^{-x / 4} d x\)
25. \(\int_{0}^{\infty} x^{2} e^{-x} d x\)
26. \(\int_{0}^{\infty}(x-1) e^{-x} d x\)
27. \(\int_{0}^{\infty} e^{-x} \cos x d x\)
28. \(\int_{0}^{\infty} e^{-a x} \sin b x d x, \quad a>0\)
29. \(\int_{4}^{\infty} \frac{1}{x(\ln x)^{3}} d x\)
30. \(\int_{1}^{\infty} \frac{\ln x}{x} d x\)
31. \(\int_{-\infty}^{\infty} \frac{4}{16+x^{2}} d x\)
32. \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{2}} d x\)
33. \(\int_{0}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\)
34. \(\int_{0}^{\infty} \frac{e^{x}}{1+e^{x}} d x\)
35. \(\int_{0}^{\infty} \cos \pi x d x\)
36. \(\int_{0}^{\infty} \sin \frac{x}{2} d x\)

In Exercises 37-54, determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility.
37. \(\int_{0}^{1} \frac{1}{x^{2}} d x\)
38. \(\int_{0}^{5} \frac{10}{x} d x\)
39. \(\int_{0}^{8} \frac{1}{\sqrt[3]{8-x}} d x\)
40. \(\int_{0}^{12} \frac{9}{\sqrt{12-x}} d x\)
41. \(\int_{0}^{1} x \ln x d x\)
42. \(\int_{0}^{e} \ln x^{2} d x\)
43. \(\int_{0}^{\pi / 2} \tan \theta d \theta\)
44. \(\int_{0}^{\pi / 2} \sec \theta d \theta\)
45. \(\int_{2}^{4} \frac{2}{x \sqrt{x^{2}-4}} d x\)
46. \(\int_{0}^{5} \frac{1}{\sqrt{25-x^{2}}} d x\)
47. \(\int_{2}^{4} \frac{1}{\sqrt{x^{2}-4}} d x\)
48. \(\int_{0}^{5} \frac{1}{25-x^{2}} d x\)
49. \(\int_{0}^{2} \frac{1}{\sqrt[3]{x-1}} d x\)
50. \(\int_{1}^{3} \frac{2}{(x-2)^{8 / 3}} d x\)
51. \(\int_{3}^{\infty} \frac{1}{x \sqrt{x^{2}-9}} d x\)
52. \(\int_{5}^{\infty} \frac{1}{x \sqrt{x^{2}-25}} d x\)
53. \(\int_{0}^{\infty} \frac{4}{\sqrt{x}(x+6)} d x\)
54. \(\int_{1}^{\infty} \frac{1}{x \ln x} d x\)

In Exercises 55 and 56, determine all values of \(p\) for which the improper integral converges.
55. \(\int_{1}^{\infty} \frac{1}{x^{p}} d x\)
56. \(\int_{0}^{1} \frac{1}{x^{p}} d x\)
57. Use mathematical induction to verify that the following integral converges for any positive integer \(n\).
\(\int_{0}^{\infty} x^{n} e^{-x} d x\)
58. Comparison Test for Improper Integrals In some cases, it is impossible to find the exact value of an improper integral but it is important to determine whether the integral converges or diverges. Suppose the functions \(f\) and \(g\) are continuous and \(0 \leq g(x) \leq f(x)\) on the interval \([a, \infty)\). It can be shown that if \(\int_{a}^{\infty} f(x) d x\) converges, then \(\int_{a}^{\infty} g(x) d x\) also converges, and if \(\int_{a}^{\infty} g(x) d x\) diverges, then \(\int_{a}^{\infty} f(x) d x\) also diverges. This is known as the Comparison Test for improper integrals.
(a) Use the Comparison Test to determine if \(\int_{1}^{\infty} e^{-x^{2}} d x\) converges or diverges. (Hint: Use the fact that \(e^{-x^{2}} \leq e^{-x}\) for \(x \geq 1\).)
(b) Use the Comparison Test to determine if \(\int_{1}^{\infty} \frac{1}{x^{5}+1} d x\) converges or diverges. (Hint: Use the fact that \(\frac{1}{x^{5}+1} \leq \frac{1}{x^{5}}\) for \(x \geq 1\).)

In Exercises 59-70, use the results of Exercises 55-58 to determine whether the improper integral converges or diverges.
59. \(\int_{0}^{1} \frac{1}{x^{5}} d x\)
60. \(\int_{0}^{1} \frac{1}{\sqrt[5]{x}} d x\)
61. \(\int_{1}^{\infty} \frac{1}{x^{5}} d x\)
62. \(\int_{0}^{\infty} x^{4} e^{-x} d x\)
63. \(\int_{1}^{\infty} \frac{1}{x^{2}+5} d x\)
64. \(\int_{2}^{\infty} \frac{1}{\sqrt{x-1}} d x\)
65. \(\int_{2}^{\infty} \frac{1}{\sqrt[3]{x(x-1)}} d x\)
66. \(\int_{1}^{\infty} \frac{1}{\sqrt{x}(x+1)} d x\)
67. \(\int_{1}^{\infty} \frac{2+e^{-x}}{x} d x\)
68. \(\int_{0}^{\infty} \frac{1}{e^{x}+x} d x\)
69. \(\int_{1}^{\infty} \frac{1-\sin x}{x^{2}} d x\)
70. \(\int_{2}^{\infty} \frac{1}{\sqrt{x} \ln x} d x\)

\section*{WRITING ABOUT CONCEPTS}
71. Describe the different types of improper integrals.
72. Define the terms converges and diverges when working with improper integrals.

WRITING ABOUT CONCEPTS (continued)
73. Explain why \(\int_{-1}^{1} \frac{1}{x^{3}} d x \neq 0\).
74. Consider the integral
\[
\int_{0}^{3} \frac{10}{x^{2}-2 x} d x .
\]

To determine the convergence or divergence of the integral, how many improper integrals must be analyzed? What must be true of each of these integrals if the given integral converges?

Area In Exercises 75-78, find the area of the unbounded shaded region.
75. \(y=e^{x}, \quad-\infty<x \leq 1\)

77. Witch of Agnesi:
\[
y=\frac{1}{x^{2}+1}
\]


78. Witch of Agnesi:
\[
y=\frac{8}{x^{2}+4}
\]

Area and Volume In Exercises 79 and 80, consider the region satisfying the inequalities. (a) Find the area of the region. (b) Find the volume of the solid generated by revolving the region about the \(x\)-axis. (c) Find the volume of the solid generated by revolving the region about the \(y\)-axis.
79. \(y \leq e^{-x}, y \geq 0, x \geq 0\)
80. \(y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1\)
81. Arc Length Sketch the graph of the hypocycloid of four cusps \(x^{2 / 3}+y^{2 / 3}=4\) and find its perimeter.
82. Arc Length Find the arc length of the graph of \(y=\sqrt{16-x^{2}}\) over the interval \([0,4]\).
83. Surface Area The region bounded by \((x-2)^{2}+y^{2}=1\) is revolved about the \(y\)-axis to form a torus. Find the surface area of the torus.
84. Surface Area Find the area of the surface formed by revolving the graph of \(y=2 e^{-x}\) on the interval \([0, \infty)\) about the \(x\)-axis.

Propulsion In Exercises 85 and 86, use the weight of the rocket to answer each question. (Use \(\mathbf{4 0 0 0}\) miles as the radius of Earth and do not consider the effect of air resistance.)
(a) How much work is required to propel the rocket an unlimited distance away from Earth's surface?
(b) How far has the rocket traveled when half the total work has occurred?
85. 5-ton rocket
86. 10-ton rocket

Probability A nonnegative function \(f\) is called a probability density function if
\(\int_{-\infty}^{\infty} f(t) d t=1\).
The probability that \(x\) lies between \(a\) and \(b\) is given by
\(P(a \leq x \leq b)=\int_{a}^{b} f(t) d t\).
The expected value of \(x\) is given by
\(E(x)=\int_{-\infty}^{\infty} t f(t) d t\).
In Exercises 87 and 88, (a) show that the nonnegative function is a probability density function, (b) find \(P(0 \leq x \leq 4)\), and (c) find \(E(x)\).
87. \(f(t)=\left\{\begin{array}{ll}\frac{1}{7} e^{-t / 7}, & t \geq 0 \\ 0, & t<0\end{array} \quad\right.\) 88. \(f(t)= \begin{cases}\frac{2}{5} e^{-2 t / 5}, & t \geq 0 \\ 0, & t<0\end{cases}\)

Capitalized Cost In Exercises 89 and 90, find the capitalized cost \(C\) of an asset (a) for \(n=5\) years, (b) for \(n=10\) years, and (c) forever. The capitalized cost is given by
\(C=C_{0}+\int_{0}^{n} c(t) e^{-r t} d t\)
where \(C_{0}\) is the original investment, \(t\) is the time in years, \(r\) is the annual interest rate compounded continuously, and \(c(t)\) is the annual cost of maintenance.
89. \(C_{0}=\$ 650,000\)
\(c(t)=\$ 25,000\)
\(r=0.06\)
90. \(C_{0}=\$ 650,000\)
\(c(t)=\$ 25,000(1+0.08 t)\)
\(r=0.06\)
91. Electromagnetic Theory The magnetic potential \(P\) at a point on the axis of a circular coil is given by
\(P=\frac{2 \pi N I r}{k} \int_{c}^{\infty} \frac{1}{\left(r^{2}+x^{2}\right)^{3 / 2}} d x\)
where \(N, I, r, k\), and \(c\) are constants. Find \(P\).
92. Gravitational Force A "semi-infinite" uniform rod occupies the nonnegative \(x\)-axis. The rod has a linear density \(\delta\) which means that a segment of length \(d x\) has a mass of \(\delta d x\). A particle of mass \(M\) is located at the point \((-a, 0)\). The gravitational force \(F\) that the rod exerts on the mass is given by \(F=\int_{0}^{\infty} \frac{G M \delta}{(a+x)^{2}} d x\), where \(G\) is the gravitational constant. Find \(F\).

True or False? In Exercises 93-96, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
93. If \(f\) is continuous on \([0, \infty)\) and \(\lim _{x \rightarrow \infty} f(x)=0\), then \(\int_{0}^{\infty} f(x) d x\) converges.
94. If \(f\) is continuous on \([0, \infty)\) and \(\int_{0}^{\infty} f(x) d x\) diverges, then \(\lim _{x \rightarrow \infty} f(x) \neq 0\).
95. If \(f^{\prime}\) is continuous on \([0, \infty)\) and \(\lim _{x \rightarrow \infty} f(x)=0\), then \(\int_{0}^{\infty} f^{\prime}(x) d x=-f(0)\).
96. If the graph of \(f\) is symmetric with respect to the origin or the \(y\)-axis, then \(\int_{0}^{\infty} f(x) d x\) converges if and only if \(\int_{-\infty}^{\infty} f(x) d x\) converges.
97. (a) Show that \(\int_{-\infty}^{\infty} \sin x d x\) diverges.
(b) Show that \(\lim _{a \rightarrow \infty} \int_{-a}^{a} \sin x d x=0\).
(c) What do parts (a) and (b) show about the definition of improper integrals?

\section*{CAPSTONE}
98. For each integral, find a value of \(b \geq 0\) that makes the integral improper. Explain your reasoning.
(a) \(\int_{0}^{b} \frac{1}{x^{2}-9} d x\)
(b) \(\int_{0}^{b} \frac{1}{\sqrt{4-x}} d x\)
(c) \(\int_{0}^{b} \frac{x}{x^{2}-7 x+12} d x\)
(d) \(\int_{b}^{10} \ln x d x\)
(e) \(\int_{0}^{b} \tan 2 x d x\)
(f) \(\int_{0}^{b} \frac{\cos x}{1-\sin x} d x\)

\section*{99. Writing}
(a) The improper integrals
\(\int_{1}^{\infty} \frac{1}{x} d x \quad\) and \(\quad \int_{1}^{\infty} \frac{1}{x^{2}} d x\)
diverge and converge, respectively. Describe the essential differences between the integrands that cause one integral to converge and the other to diverge.
(b) Sketch a graph of the function \(y=\sin x / x\) over the interval \((1, \infty)\). Use your knowledge of the definite integral to make an inference as to whether or not the integral
\(\int_{1}^{\infty} \frac{\sin x}{x} d x\)
converges. Give reasons for your answer.
(c) Use one iteration of integration by parts on the integral in part (b) to determine its divergence or convergence.
100. Exploration Consider the integral
\[
\int_{0}^{\pi / 2} \frac{4}{1+(\tan x)^{n}} d x
\]
where \(n\) is a positive integer.
(a) Is the integral improper? Explain.
(b) Use a graphing utility to graph the integrand for \(n=2,4\), 8 , and 12 .
(c) Use the graphs to approximate the integral as \(n \rightarrow \infty\).
(d) Use a computer algebra system to evaluate the integral for the values of \(n\) in part (b). Make a conjecture about the value of the integral for any positive integer \(n\). Compare your results with your answer in part (c).
101. The Gamma Function The Gamma Function \(\Gamma(n)\) is defined by
\(\Gamma(n)=\int_{0}^{\infty} x^{n-1} e^{-x} d x, \quad n>0\).
(a) Find \(\Gamma(1), \Gamma(2)\), and \(\Gamma(3)\).
(b) Use integration by parts to show that \(\Gamma(n+1)=n \Gamma(n)\).
(c) Write \(\Gamma(n)\) using factorial notation where \(n\) is a positive integer.
102. Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1}\), where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1\).
Then evaluate each integral.
(a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\)
(b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\)
(c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)

Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by
\(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\)
if the improper integral exists. Laplace Transforms are used to solve differential equations. In Exercises 103-110, find the Laplace Transform of the function.
103. \(f(t)=1\)
104. \(f(t)=t\)
105. \(f(t)=t^{2}\)
106. \(f(t)=e^{a t}\)
107. \(f(t)=\cos a t\)
108. \(f(t)=\sin a t\)
109. \(f(t)=\cosh a t\)
110. \(f(t)=\sinh a t\)
111. Normal Probability The mean height of American men between 20 and 29 years old is 70 inches, and the standard deviation is 3 inches. A 20 - to 29 -year-old man is chosen at random from the population. The probability that he is 6 feet tall or taller is
\(P(72 \leq x<\infty)=\int_{72}^{\infty} \frac{1}{3 \sqrt{2 \pi}} e^{-(x-70)^{2} / 18} d x\).

\section*{(Source: National Center for Health Statistics)}
(a) Use a graphing utility to graph the integrand. Use the graphing utility to convince yourself that the area between the \(x\)-axis and the integrand is 1 .
(b) Use a graphing utility to approximate \(P(72 \leq x<\infty)\).
(c) Approximate \(0.5-P(70 \leq x \leq 72)\) using a graphing utility. Use the graph in part (a) to explain why this result is the same as the answer in part (b).
112. (a) Sketch the semicircle \(y=\sqrt{4-x^{2}}\).
(b) Explain why
\(\int_{-2}^{2} \frac{2 d x}{\sqrt{4-x^{2}}}=\int_{-2}^{2} \sqrt{4-x^{2}} d x\)
without evaluating either integral.
113. For what value of \(c\) does the integral
\(\int_{0}^{\infty}\left(\frac{1}{\sqrt{x^{2}+1}}-\frac{c}{x+1}\right) d x\)
converge? Evaluate the integral for this value of \(c\).
114. For what value of \(c\) does the integral
\(\int_{1}^{\infty}\left(\frac{c x}{x^{2}+2}-\frac{1}{3 x}\right) d x\)
converge? Evaluate the integral for this value of \(c\).
115. Volume Find the volume of the solid generated by revolving the region bounded by the graph of \(f\) about the \(x\)-axis.
\(f(x)= \begin{cases}x \ln x, & 0<x \leq 2 \\ 0, & x=0\end{cases}\)
116. Volume Find the volume of the solid generated by revolving the unbounded region lying between \(y=-\ln x\) and the \(y\)-axis \((y \geq 0)\) about the \(x\)-axis.
u-Substitution In Exercises 117 and 118, rewrite the improper integral as a proper integral using the given \(u\)-substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral.
117. \(\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, \quad u=\sqrt{x}\)
118. \(\int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, \quad u=\sqrt{1-x}\)
119. (a) Use a graphing utility to graph the function \(y=e^{-x^{2}}\).
(b) Show that \(\int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{1} \sqrt{-\ln y} d y\).
120. Let \(\int_{-\infty}^{\infty} f(x) d x\) be convergent and let \(a\) and \(b\) be real numbers where \(a \neq b\). Show that
\(\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\int_{-\infty}^{b} f(x) d x+\int_{b}^{\infty} f(x) d x\).

\section*{8 REVIEW EXERCISES}

In Exercises 1-8, use the basic integration rules to find or evaluate the integral.
1. \(\int x \sqrt{x^{2}-36} d x\)
2. \(\int x e^{x^{2}-1} d x\)
3. \(\int \frac{x}{x^{2}-49} d x\)
4. \(\int \frac{x}{\sqrt{25-x^{2}}} d x\)
5. \(\int_{1}^{e} \frac{\ln (2 x)}{x} d x\)
6. \(\int_{3 / 2}^{2} 2 x \sqrt{2 x-3} d x\)
7. \(\int \frac{100}{\sqrt{100-x^{2}}} d x\)
8. \(\int \frac{x^{4}+2 x^{2}+x+1}{\left(x^{2}+1\right)^{2}} d x\)

In Exercises 9-18, use integration by parts to find the integral.
9. \(\int x e^{3 x} d x\)
10. \(\int x^{3} e^{x} d x\)
11. \(\int e^{2 x} \sin 3 x d x\)
12. \(\int\left(x^{2}-3 x\right) e^{x} d x\)
13. \(\int x \sqrt{x-1} d x\)
14. \(\int \arctan 2 x d x\)
15. \(\int x^{2} \sin 2 x d x\)
16. \(\int \ln \sqrt{x^{2}-4} d x\)
17. \(\int x \arcsin 2 x d x\)
18. \(\int e^{x} \arctan e^{x} d x\)

In Exercises 19-24, find the trigonometric integral.
19. \(\int \cos ^{3}(\pi x-1) d x\)
20. \(\int \sin ^{2} \frac{\pi x}{2} d x\)
21. \(\int \sec ^{4} \frac{x}{2} d x\)
22. \(\int \tan \theta \sec ^{4} \theta d \theta\)
23. \(\int \frac{1}{1-\sin \theta} d \theta\)
24. \(\int \cos 2 \theta(\sin \theta+\cos \theta)^{2} d \theta\)

Area In Exercises 25 and 26, find the area of the region.
25. \(y=\sin ^{4} x\)
26. \(y=\sin 3 x \cos 2 x\)



In Exercises 27-32, use trigonometric substitution to find or evaluate the integral.
27. \(\int \frac{-12}{x^{2} \sqrt{4-x^{2}}} d x\)
28. \(\int \frac{\sqrt{x^{2}-9}}{x} d x, x>3\)
29. \(\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x\)
30. \(\int \sqrt{25-9 x^{2}} d x\)
31. \(\int_{-2}^{0} \sqrt{4-x^{2}} d x\)
32. \(\int_{0}^{\pi / 2} \frac{\sin \theta}{1+2 \cos ^{2} \theta} d \theta\)

In Exercises 33 and 34, find the integral using each method.
33. \(\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x\)
(a) Trigonometric substitution
(b) Substitution: \(u^{2}=4+x^{2}\)
(c) Integration by parts: \(d v=\left(x / \sqrt{4+x^{2}}\right) d x\)
34. \(\int x \sqrt{4+x} d x\)
(a) Trigonometric substitution
(b) Substitution: \(u^{2}=4+x\)
(c) Substitution: \(u=4+x\)
(d) Integration by parts: \(d v=\sqrt{4+x} d x\)

In Exercises 35-40, use partial fractions to find the integral.
35. \(\int \frac{x-39}{x^{2}-x-12} d x\)
36. \(\int \frac{2 x^{3}-5 x^{2}+4 x-4}{x^{2}-x} d x\)
37. \(\int \frac{x^{2}+2 x}{x^{3}-x^{2}+x-1} d x\)
38. \(\int \frac{4 x-2}{3(x-1)^{2}} d x\)
39. \(\int \frac{x^{2}}{x^{2}+5 x-24} d x\)
40. \(\int \frac{\sec ^{2} \theta}{\tan \theta(\tan \theta-1)} d \theta\)

In Exercises 41-48, use integration tables to find or evaluate the integral.
41. \(\int \frac{x}{(4+5 x)^{2}} d x\)
42. \(\int \frac{x}{\sqrt{4+5 x}} d x\)
43. \(\int_{0}^{\sqrt{\pi} / 2} \frac{x}{1+\sin x^{2}} d x\)
44. \(\int_{0}^{1} \frac{x}{1+e^{x^{2}}} d x\)
45. \(\int \frac{x}{x^{2}+4 x+8} d x\)
46. \(\int \frac{3}{2 x \sqrt{9 x^{2}-1}} d x, \quad x>\frac{1}{3}\)
47. \(\int \frac{1}{\sin \pi x \cos \pi x} d x\)
48. \(\int \frac{1}{1+\tan \pi x} d x\)
49. drify the reduction formula
\[
\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x
\]
50. drify the reduction formula
\[
\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x
\]

In Exercises 51-58, find the integral using any method.
51. \(\int \theta \sin \theta \cos \theta d \theta\)
52. \(\int \frac{\csc \sqrt{2 x}}{\sqrt{x}} d x\)
53. \(\int \frac{x^{1 / 4}}{1+x^{1 / 2}} d x\)
54. \(\int \sqrt{1+\sqrt{x}} d x\)
55. \(\int \sqrt{1+\cos x} d x\)
56. \(\int \frac{3 x^{3}+4 x}{\left(x^{2}+1\right)^{2}} d x\)
57. \(\int \cos x \ln (\sin x) d x\)
58. \(\int(\sin \theta+\cos \theta)^{2} d \theta\)

In Exercises 59-62, solve the differential equation using any method.
59. \(\frac{d y}{d x}=\frac{25}{x^{2}-25}\)
60. \(\frac{d y}{d x}=\frac{\sqrt{4-x^{2}}}{2 x}\)
61. \(y^{\prime}=\ln \left(x^{2}+x\right)\)
62. \(y^{\prime}=\sqrt{1-\cos \theta}\)

In Exercises 63-68, evaluate the definite integral using any method. Use a graphing utility to verify your result.
63. \(\int_{2}^{\sqrt{5}} x\left(x^{2}-4\right)^{3 / 2} d x\)
64. \(\int_{0}^{1} \frac{x}{(x-2)(x-4)} d x\)
65. \(\int_{1}^{4} \frac{\ln x}{x} d x\)
66. \(\int_{0}^{2} x e^{3 x} d x\)
67. \(\int_{0}^{\pi} x \sin x d x\)
68. \(\int_{0}^{5} \frac{x}{\sqrt{4+x}} d x\)

Area In Exercises 69 and 70, find the area of the region.
69. \(y=x \sqrt{4-x}\)
70. \(y=\frac{1}{25-x^{2}}\)



Centroid In Exercises 71 and 72, find the centroid of the region bounded by the graphs of the equations.
71. \(y=\sqrt{1-x^{2}}, \quad y=0\)
72. \((x-1)^{2}+y^{2}=1, \quad(x-4)^{2}+y^{2}=4\)

Arc Length In Exercises 73 and 74, approximate to two decimal places the arc length of the curve over the given interval.
\begin{tabular}{lll} 
73. & \begin{tabular}{l} 
Function \\
\(y=\sin x\) \\
\end{tabular} & \(\underline{\text { Interval }}\) \\
74. \(y=\sin ^{2} x\) & & {\([0, \pi]\)} \\
& {\([0, \pi]\)}
\end{tabular}

In Exercises 75-82, use L'Hôpital's Rule to evaluate the limit.
75. \(\lim _{x \rightarrow 1} \frac{(\ln x)^{2}}{x-1}\)
76. \(\lim _{x \rightarrow 0} \frac{\sin \pi x}{\sin 5 \pi x}\)
77. \(\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x^{2}}\)
78. \(\lim _{x \rightarrow \infty} x e^{-x^{2}}\)
79. \(\lim _{x \rightarrow \infty}(\ln x)^{2 / x}\)
80. \(\lim _{x \rightarrow 1^{+}}(x-1)^{\ln x}\)
81. \(\lim _{n \rightarrow \infty} 1000\left(1+\frac{0.09}{n}\right)^{n}\)
82. \(\lim _{x \rightarrow 1^{+}}\left(\frac{2}{\ln x}-\frac{2}{x-1}\right)\)

In Exercises 83-90, determine whether the improper integral diverges or converges. Evaluate the integral if it converges.
83. \(\int_{0}^{16} \frac{1}{\sqrt[4]{x}} d x\)
84. \(\int_{0}^{2} \frac{7}{x-2} d x\)
85. \(\int_{1}^{\infty} x^{2} \ln x d x\)
86. \(\int_{0}^{\infty} \frac{e^{-1 / x}}{x^{2}} d x\)
87. \(\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x\)
88. \(\int_{1}^{\infty} \frac{1}{\sqrt[4]{x}} d x\)
89. \(\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-4}} d x\)
90. \(\int_{0}^{\infty} \frac{2}{\sqrt{x}(x+4)} d x\)
91. Present Value The board of directors of a corporation is calculating the price to pay for a business that is forecast to yield a continuous flow of profit of \(\$ 500,000\) per year. If money will earn a nominal rate of \(5 \%\) per year compounded continuously, what is the present value of the business
(a) for 20 years?
(b) forever (in perpetuity)?
(Note: The present value for \(t_{0}\) years is \(\int_{0}^{t_{0}} 500,000 e^{-0.05 t} d t\).)
92. Volume Find the volume of the solid generated by revolving the region bounded by the graphs of \(y=x e^{-x}, y=0\), and \(x=0\) about the \(x\)-axis.
93. Probability The average lengths (from beak to tail) of different species of warblers in the eastern United States are approximately normally distributed with a mean of 12.9 centimeters and a standard deviation of 0.95 centimeter (see figure). The probability that a randomly selected warbler has a length between \(a\) and \(b\) centimeters is
\(P(a \leq x \leq b)=\frac{1}{0.95 \sqrt{2 \pi}} \int_{a}^{b} e^{-(x-12.9)^{2} / 2(0.95)^{2}} d x\).
Use a graphing utility to approximate the probability that a randomly selected warbler has a length of (a) 13 centimeters or greater and (b) 15 centimeters or greater. (Source: Peterson's Field Guide: Eastern Birds)


\section*{P.S. PROBLEM SOLVING}
1. (a) Evaluate the integrals
\(\int_{-1}^{1}\left(1-x^{2}\right) d x\) and \(\int_{-1}^{1}\left(1-x^{2}\right)^{2} d x\).
(b) Use Wallis's Formulas to prove that
\(\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n+1}(n!)^{2}}{(2 n+1)!}\)
for all positive integers \(n\).
2. (a) Evaluate the integrals \(\int_{0}^{1} \ln x d x\) and \(\int_{0}^{1}(\ln x)^{2} d x\).
(b) Prove that
\(\int_{0}^{1}(\ln x)^{n} d x=(-1)^{n} n!\)
for all positive integers \(n\).
3. Find the value of the positive constant \(c\) such that \(\lim _{x \rightarrow \infty}\left(\frac{x+c}{x-c}\right)^{x}=9\).
4. Find the value of the positive constant \(c\) such that \(\lim _{x \rightarrow \infty}\left(\frac{x-c}{x+c}\right)^{x}=\frac{1}{4}\).
5. The line \(x=1\) is tangent to the unit circle at \(A\). The length of segment \(Q A\) equals the length of the circular arc \(\widehat{P A}\) (see figure). Show that the length of segment \(O R\) approaches 2 as \(P\) approaches \(A\).

6. The segment \(B D\) is the height of \(\triangle O A B\). Let \(R\) be the ratio of the area of \(\triangle D A B\) to that of the shaded region formed by deleting \(\triangle O A B\) from the circular sector subtended by angle \(\theta\) (see figure). Find \(\lim _{\theta \rightarrow 0^{+}} R\).

7. Consider the problem of finding the area of the region bounded by the \(x\)-axis, the line \(x=4\), and the curve
\(y=\frac{x^{2}}{\left(x^{2}+9\right)^{3 / 2}}\).
(a) Use a graphing utility to graph the region and approximate its area.
(b) Use an appropriate trigonometric substitution to find the exact area.
(c) Use the substitution \(x=3 \sinh u\) to find the exact area and verify that you obtain the same answer as in part (b).
8. Use the substitution \(u=\tan \frac{x}{2}\) to find the area of the shaded region under the graph of \(y=\frac{1}{2+\cos x}, 0 \leq x \leq \pi / 2\) (see figure).


Figure for 8


Figure for 9
9. Find the arc length of the graph of the function \(y=\ln \left(1-x^{2}\right)\) on the interval \(0 \leq x \leq \frac{1}{2}\) (see figure).
10. Find the centroid of the region above the \(x\)-axis and bounded above by the curve \(y=e^{-c^{2} x^{2}}\), where \(c\) is a positive constant (see figure).
(Hint: Show that \(\int_{0}^{\infty} e^{-c^{2} x^{2}} d x=\frac{1}{c} \int_{0}^{\infty} e^{-x^{2}} d x\).)

11. Some elementary functions, such as \(f(x)=\sin \left(x^{2}\right)\), do not have antiderivatives that are elementary functions. \(\pitchfork\) seph Liouville proved that
\(\int \frac{e^{x}}{x} d x\)
does not have an elementary antiderivative. Use this fact to prove that
\(\int \frac{1}{\ln x} d x\)
is not elementary.
12. (a) Let \(y=f^{-1}(x)\) be the inverse function of \(f\). Use integration by parts to derive the formula
\[
\int f^{-1}(x) d x=x f^{-1}(x)-\int f(y) d y
\]
(b) Use the formula in part (a) to find the integral \(\int \arcsin x d x\)
(c) Use the formula in part (a) to find the area under the graph of \(y=\ln x, 1 \leq x \leq e\) (see figure).

13. Factor the polynomial \(p(x)=x^{4}+1\) and then find the area under the graph of \(y=\frac{1}{x^{4}+1}, 0 \leq x \leq 1\) (see figure).

14. (a) Use the substitution \(u=\frac{\pi}{2}-x\) to evaluate the integral
\[
\int_{0}^{\pi / 2} \frac{\sin x}{\cos x+\sin x} d x
\]
(b) Let \(n\) be a positive integer. Evaluate the integral
\[
\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\cos ^{n} x+\sin ^{n} x} d x
\]
15. Use a graphing utility to estimate each limit. Then calculate each limit using L'Hôpital's Rule. What can you conclude about the form \(0 \cdot \infty\) ?
(a) \(\lim _{x \rightarrow 0^{+}}\left(\cot x+\frac{1}{x}\right)\)
(b) \(\lim _{x \rightarrow 0^{+}}\left(\cot x-\frac{1}{x}\right)\)
(c) \(\lim _{x \rightarrow 0^{+}}\left[\left(\cot x+\frac{1}{x}\right)\left(\cot x-\frac{1}{x}\right)\right]\)
16. Suppose the denominator of a rational function can be factored into distinct linear factors
\(D(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right)\)
for a positive integer \(n\) and distinct real numbers \(c_{1}, c_{2}, \ldots, c_{n}\). If \(N\) is a polynomial of degree less than \(n\), show that
\(\frac{N(x)}{D(x)}=\frac{P_{1}}{x-c_{1}}+\frac{P_{2}}{x-c_{2}}+\cdots+\frac{P_{n}}{x-c_{n}}\)
where \(P_{k}=N\left(c_{k}\right) / D^{\prime}\left(c_{k}\right)\) for \(k=1,2, \ldots, n\). Note that this is the partial fraction decomposition of \(N(x) / D(x)\).
17. Use the result of Exercise 16 to find the partial fraction decomposition of
\(\frac{x^{3}-3 x^{2}+1}{x^{4}-13 x^{2}+12 x}\).
18. The velocity \(v\) (in feet per second) of a rocket whose initial mass (including fuel) is \(m\) is given by
\(v=g t+u \ln \frac{m}{m-r t}, \quad t<\frac{m}{r}\)
where \(u\) is the expulsion speed of the fuel, \(r\) is the rate at which the fuel is consumed, and \(g=-32\) feet per second per second is the acceleration due to gravity. Find the position equation for a rocket for which \(m=50,000\) pounds, \(u=12,000\) feet per second, and \(r=400\) pounds per second. What is the height of the rocket when \(t=100\) seconds? (Assume that the rocket was fired from ground level and is moving straight upward.)
19. Suppose that \(f(a)=f(b)=g(a)=g(b)=0\) and the second derivatives of \(f\) and \(g\) are continuous on the closed interval \([a, b]\). Prove that
\(\int_{a}^{b} f(x) g^{\prime \prime}(x) d x=\int_{a}^{b} f^{\prime \prime}(x) g(x) d x\).
20. Suppose that \(f(a)=f(b)=0\) and the second derivatives of \(f\) exist on the closed interval \([a, b]\). Prove that
\(\int_{a}^{b}(x-a)(x-b) f^{\prime \prime}(x) d x=2 \int_{a}^{b} f(x) d x\).
21. Using the inequality
\(\frac{1}{x^{5}}+\frac{1}{x^{10}}+\frac{1}{x^{15}}<\frac{1}{x^{5}-1}<\frac{1}{x^{5}}+\frac{1}{x^{10}}+\frac{2}{x^{15}}\)
for \(x \geq 2\), approximate \(\int_{2}^{\infty} \frac{1}{x^{5}-1} d x\).
22. Consider the shaded region between the graph of \(y=\sin x\), where \(0 \leq x \leq \pi\), and the line \(y=c\), where \(0 \leq c \leq 1\) (see figure). A solid is formed by revolving the region about the line \(y=c\).
(a) For what value of \(c\) does the solid have minimum volume?
(b) For what value of \(c\) does the solid have maximum volume?


\section*{Infinite Series}

This chapter is divided into two basic parts. The first six sections discuss infinite sequences and infinite series. The last four sections discuss Taylor and Maclaurin polynomials and power series.

In this chapter, you should learn the following.
- How to determine whether a sequence converges or diverges. (9.1)
- How to determine whether an infinite series converges or diverges. (9.2-9.6)
- How to find Taylor or Maclaurin polynomial approximations of elementary functions. (9.7)
■ How to find the radius and interval of convergence of a power series and how to differentiate and integrate power series. (9.8)
- How to represent functions by power series. (9.9)
- How to find a Taylor or Maclaurin series for a function. (9.10)


The sphereflake shown above is a computer-generated fractal that was created by Eric Haines. The radius of the large sphere is 1 . To the large sphere, nine spheres of radius \(\frac{1}{3}\) are attached. To each of these, nine spheres of radius \(\frac{1}{9}\) are attached. This process is continued infinitely. Does the sphereflake have a finite or an infinite surface area? (See Section 9.2, Exercise 114.)


Maclaurin polynomials approximate a given function in an interval around \(x=0\). As you add terms to the Maclaurin polynomial, it becomes a better and better approximation of the given function near \(x=0\). In Section 9.10, you will see that a Maclaurin series is equivalent to the given function (under suitable conditions).

\subsection*{9.1 Sequences}

\section*{E X P L ORATION}

Finding Patterns Describe a pattern for each of the following sequences. Then use your description to write a formula for the \(n\)th term of each sequence. As \(n\) increases, do the terms appear to be approaching a limit? Explain your reasoning.
a. \(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\)
b. \(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\)
c. \(10, \frac{10}{3}, \frac{10}{6}, \frac{10}{10}, \frac{10}{15}, \ldots\)
d. \(\frac{1}{4}, \frac{4}{9}, \frac{9}{16}, \frac{16}{25}, \frac{25}{36}\),
e. \(\frac{3}{7}, \frac{5}{10}, \frac{7}{13}, \frac{9}{16}, \frac{11}{19}\),

NOTE Occasionally, it is convenient to begin a sequence with \(a_{0}\), so that the terms of the sequence become \(a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\)

STUDY TIP Some sequences are defined recursively. To define a sequence recursively, you need to be given one or more of the first few terms. All other terms of the sequence are then defined using previous terms, as shown in Example 1(d).
- List the terms of a sequence.
- Determine whether a sequence converges or diverges.
- Write a formula for the \(n\)th term of a sequence.
- Use properties of monotonic sequences and bounded sequences.

\section*{Sequences}

In mathematics, the word "sequence" is used in much the same way as in ordinary English. To say that a collection of objects or events is in sequence usually means that the collection is ordered so that it has an identified first member, second member, third member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set of positive integers. Although a sequence is a function, it is common to represent sequences by subscript notation rather than by the standard function notation. For instance, in the sequence


1 is mapped onto \(a_{1}, 2\) is mapped onto \(a_{2}\), and so on. The numbers \(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\), . . are the terms of the sequence. The number \(a_{n}\) is the \(\boldsymbol{n}\) th term of the sequence, and the entire sequence is denoted by \(\left\{a_{n}\right\}\).

\section*{EXAMPLE 1 Listing the Terms of a Sequence}
a. The terms of the sequence \(\left\{a_{n}\right\}=\left\{3+(-1)^{n}\right\}\) are
\[
\begin{array}{cccc}
3+(-1)^{1}, & 3+(-1)^{2}, & 3+(-1)^{3}, & 3+(-1)^{4}, \ldots \\
2, & 4, & 2, & 4,
\end{array} \ldots
\]
b. The terms of the sequence \(\left\{b_{n}\right\}=\left\{\frac{n}{1-2 n}\right\}\) are
\[
\begin{array}{ccc}
\frac{1}{1-2 \cdot 1}, & \frac{2}{1-2 \cdot 2}, \frac{3}{1-2 \cdot 3}, \frac{4}{1-2 \cdot 4}, \cdots \\
-1, & -\frac{2}{3}, & -\frac{3}{5}, \\
-\frac{4}{7}, & \cdots
\end{array}
\]
c. The terms of the sequence \(\left\{c_{n}\right\}=\left\{\frac{n^{2}}{2^{n}-1}\right\}\) are
\[
\begin{aligned}
& \frac{1^{2}}{2^{1}-1}, \frac{2^{2}}{2^{2}-1}, \frac{3^{2}}{2^{3}-1}, \frac{4^{2}}{2^{4}-1}, \\
& \frac{1}{1}, \quad \frac{4}{3}, \quad \frac{9}{7}, \quad \frac{16}{15},
\end{aligned}
\]
d. The terms of the recursively defined sequence \(\left\{d_{n}\right\}\), where \(d_{1}=25\) and \(d_{n+1}=d_{n}-5\), are
\[
25, \quad 25-5=20, \quad 20-5=15, \quad 15-5=10, \ldots
\]


For \(n>M\), the terms of the sequence all lie within \(\varepsilon\) units of \(L\).

\section*{Figure 9.1}

NOTE There are different ways in which a sequence can fail to have a limit. One way is that the terms of the sequence increase without bound or decrease without bound. These cases are written symbolically as follows.

Terms increase without bound:
\[
\lim _{n \rightarrow \infty} a_{n}=\infty
\]

Terms decrease without bound:
\[
\lim _{n \rightarrow \infty} a_{n}=-\infty
\]

\section*{Limit of a Sequence}

The primary focus of this chapter concerns sequences whose terms approach limiting values. Such sequences are said to converge. For instance, the sequence \(\left\{1 / 2^{n}\right\}\)
\(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots\)
converges to 0 , as indicated in the following definition.

\section*{DEFINITION OF THE LIMIT OF A SEQUENCE}

Let \(L\) be a real number. The limit of a sequence \(\left\{a_{n}\right\}\) is \(L\), written as
\[
\lim _{n \rightarrow \infty} a_{n}=L
\]
if for each \(\varepsilon>0\), there exists \(M>0\) such that \(\left|a_{n}-L\right|<\varepsilon\) whenever \(n>M\). If the limit \(L\) of a sequence exists, then the sequence converges to \(L\). If the limit of a sequence does not exist, then the sequence diverges.

Graphically, this definition says that eventually (for \(n>M\) and \(\varepsilon>0\) ) the terms of a sequence that converges to \(L\) will lie within the band between the lines \(y=L+\varepsilon\) and \(y=L-\varepsilon\), as shown in Figure 9.1.

If a sequence \(\left\{a_{n}\right\}\) agrees with a function \(f\) at every positive integer, and if \(f(x)\) approaches a limit \(L\) as \(x \rightarrow \infty\), the sequence must converge to the same limit \(L\).

\section*{THEOREM 9.1 LIMIT OF A SEQUENCE}

Let \(L\) be a real number. Let \(f\) be a function of a real variable such that
\[
\lim _{x \rightarrow \infty} f(x)=L
\]

If \(\left\{a_{n}\right\}\) is a sequence such that \(f(n)=a_{n}\) for every positive integer \(n\), then
\[
\lim _{n \rightarrow \infty} a_{n}=L
\]

NOTE The converse of Theorem 9.1 is not true (see Exercise 138).

\section*{EXAMPLE 2 Finding the Limit of a Sequence}

Find the limit of the sequence whose \(n\)th term is
\[
a_{n}=\left(1+\frac{1}{n}\right)^{n}
\]

Solution In Theorem 5.15, you learned that
\[
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
\]

So, you can apply Theorem 9.1 to conclude that
\[
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& =e
\end{aligned}
\]

TECHNOLOGY Use a graphing utility to graph the function in Example 4. Notice that as \(x\) approaches infinity, the value of the function gets closer and closer to 0 . If you have access to a graphing utility that can generate terms of a sequence, try using it to calculate the first 20 terms of the sequence in Example 4. Then view the terms to observe numerically that the sequence converges to 0 .

The following properties of limits of sequences parallel those given for limits of functions of a real variable in Section 1.3.

\section*{THEOREM 9.2 PROPERTIES OF LIMITS OF SEQUENCES}

Let \(\lim _{n \rightarrow \infty} a_{n}=L\) and \(\lim _{n \rightarrow \infty} b_{n}=K\).
1. \(\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm K\)
2. \(\lim _{n \rightarrow \infty} c a_{n}=c L, c\) is any real number
3. \(\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L K\)
4. \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{K}, \quad b_{n} \neq 0\) and \(K \neq 0\)

\section*{EXAMPLE 3 Determining Convergence or Divergence}
a. Because the sequence \(\left\{a_{n}\right\}=\left\{3+(-1)^{n}\right\}\) has terms
\[
2,4,2,4, \ldots \quad \text { See Example 1(a), page } 596 .
\]
that alternate between 2 and 4, the limit
\[
\lim _{n \rightarrow \infty} a_{n}
\]
does not exist. So, the sequence diverges.
b. For \(\left\{b_{n}\right\}=\left\{\frac{n}{1-2 n}\right\}\), divide the numerator and denominator by \(n\) to obtain
\[
\lim _{n \rightarrow \infty} \frac{n}{1-2 n}=\lim _{n \rightarrow \infty} \frac{1}{(1 / n)-2}=-\frac{1}{2} \quad \text { See Example 1(b), page } 596
\]
which implies that the sequence converges to \(-\frac{1}{2}\).

\section*{EXAMPLE 4 Using L'Hôpital's Rule to Determine Convergence}

Show that the sequence whose \(n\)th term is \(a_{n}=\frac{n^{2}}{2^{n}-1}\) converges.
Solution Consider the function of a real variable
\[
f(x)=\frac{x^{2}}{2^{x}-1}
\]

Applying L'Hôpital's Rule twice produces
\[
\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}-1}=\lim _{x \rightarrow \infty} \frac{2 x}{(\ln 2) 2^{x}}=\lim _{x \rightarrow \infty} \frac{2}{(\ln 2)^{2} 2^{x}}=0
\]

Because \(f(n)=a_{n}\) for every positive integer, you can apply Theorem 9.1 to conclude that
\[
\lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}-1}=0
\]

See Example 1(c), page 596.

So, the sequence converges to 0 .

The icon 〕indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.


For \(n \geq 4,(-1)^{n} / n!\) is squeezed between \(-1 / 2^{n}\) and \(1 / 2^{n}\).
Figure 9.2

NOTE Example 5 suggests something about the rate at which \(n\) ! increases as \(n \rightarrow \infty\). As Figure 9.2 suggests, both \(1 / 2^{n}\) and \(1 / n!\) approach 0 as \(n \rightarrow \infty\). Yet \(1 / n\) ! approaches 0 so much faster than \(1 / 2^{n}\) does that
\[
\lim _{n \rightarrow \infty} \frac{1 / n!}{1 / 2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0
\]

In fact, it can be shown that for any fixed number \(k\),
\[
\lim _{n \rightarrow \infty} \frac{k^{n}}{n!}=0 .
\]

This means that the factorial function grows faster than any exponential function.

The symbol \(n\) ! (read " \(n\) factorial") is used to simplify some of the formulas developed in this chapter. Let \(n\) be a positive integer; then \(\boldsymbol{n}\) factorial is defined as
\[
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots(n-1) \cdot n
\]

As a special case, zero factorial is defined as \(0!=1\). From this definition, you can see that \(1!=1,2!=1 \cdot 2=2,3!=1 \cdot 2 \cdot 3=6\), and so on. Factorials follow the same conventions for order of operations as exponents. That is, just as \(2 x^{3}\) and \((2 x)^{3}\) imply different orders of operations, \(2 n!\) and ( \(2 n\) )! imply the following orders.
\[
2 n!=2(n!)=2(1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots n)
\]
and
\[
(2 n)!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots n \cdot(n+1) \cdot \cdots 2 n
\]

Another useful limit theorem that can be rewritten for sequences is the Squeeze Theorem from Section 1.3.

\section*{THEOREM 9.3 SQUEEZE THEOREM FOR SEQUENCES}

If
\[
\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}
\]
and there exists an integer \(N\) such that \(a_{n} \leq c_{n} \leq b_{n}\) for all \(n>N\), then
\[
\lim _{n \rightarrow \infty} c_{n}=L
\]

\section*{EXAMPLE 5 Using the Squeeze Theorem}

Show that the sequence \(\left\{c_{n}\right\}=\left\{(-1)^{n} \frac{1}{n!}\right\}\) converges, and find its limit.
Solution To apply the Squeeze Theorem, you must find two convergent sequences that can be related to the given sequence. Two possibilities are \(a_{n}=-1 / 2^{n}\) and \(b_{n}=1 / 2^{n}\), both of which converge to 0 . By comparing the term \(n!\) with \(2^{n}\), you can see that
\[
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \cdots n=24 \cdot \underbrace{5 \cdot 6 \cdot \cdots n}_{n-4 \text { factors }} \quad(n \geq 4)
\]
and
\[
2^{n}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdots 2=16 \cdot \underbrace{2 \cdot 2 \cdots \cdot}_{n-4 \text { factors }} \quad(n \geq 4)
\]

This implies that for \(n \geq 4,2^{n}<n!\), and you have
\[
\frac{-1}{2^{n}} \leq(-1)^{n} \frac{1}{n!} \leq \frac{1}{2^{n}}, \quad n \geq 4
\]
as shown in Figure 9.2. So, by the Squeeze Theorem it follows that
\[
\lim _{n \rightarrow \infty}(-1)^{n} \frac{1}{n!}=0
\]

In Example 5, the sequence \(\left\{c_{n}\right\}\) has both positive and negative terms. For this sequence, it happens that the sequence of absolute values, \(\left\{\left|c_{n}\right|\right\}\), also converges to 0 . You can show this by the Squeeze Theorem using the inequality
\[
0 \leq \frac{1}{n!} \leq \frac{1}{2^{n}}, \quad n \geq 4
\]

In such cases, it is often convenient to consider the sequence of absolute values-and then apply Theorem 9.4, which states that if the absolute value sequence converges to 0 , the original signed sequence also converges to 0 .

\section*{THEOREM 9.4 ABSOLUTE VALUE THEOREM}

For the sequence \(\left\{a_{n}\right\}\), if
\[
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \text { then } \quad \lim _{n \rightarrow \infty} a_{n}=0
\]

PROOF Consider the two sequences \(\left\{\left|a_{n}\right|\right\}\) and \(\left\{-\left|a_{n}\right|\right\}\). Because both of these sequences converge to 0 and
\[
-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|
\]
you can use the Squeeze Theorem to conclude that \(\left\{a_{n}\right\}\) converges to 0 .

\section*{Pattern Recognition for Sequences}

Sometimes the terms of a sequence are generated by some rule that does not explicitly identify the \(n\)th term of the sequence. In such cases, you may be required to discover a pattern in the sequence and to describe the \(n\)th term. Once the \(n\)th term has been specified, you can investigate the convergence or divergence of the sequence.

\section*{EXAMPLE 6 Finding the \(n\)th Term of a Sequence}

Find a sequence \(\left\{a_{n}\right\}\) whose first five terms are
\[
\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \ldots
\]
and then determine whether the particular sequence you have chosen converges or diverges.
Solution First, note that the numerators are successive powers of 2 , and the denominators form the sequence of positive odd integers. By comparing \(a_{n}\) with \(n\), you have the following pattern.
\[
\frac{2^{1}}{1}, \frac{2^{2}}{3}, \frac{2^{3}}{5}, \frac{2^{4}}{7}, \frac{2^{5}}{9}, \ldots, \frac{2^{n}}{2 n-1}
\]

Using L'Hôpital's Rule to evaluate the limit of \(f(x)=2^{x} /(2 x-1)\), you obtain
\[
\lim _{x \rightarrow \infty} \frac{2^{x}}{2 x-1}=\lim _{x \rightarrow \infty} \frac{2^{x}(\ln 2)}{2}=\infty \quad \square \lim _{n \rightarrow \infty} \frac{2^{n}}{2 n-1}=\infty
\]

So, the sequence diverges.

Without a specific rule for generating the terms of a sequence or some knowledge of the context in which the terms of the sequence are obtained, it is not possible to determine the convergence or divergence of the sequence merely from its first several terms. For instance, although the first three terms of the following four sequences are identical, the first two sequences converge to 0 , the third sequence converges to \(\frac{1}{9}\), and the fourth sequence diverges.
\[
\begin{aligned}
& \left\{a_{n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots, \frac{1}{2^{n}}, \ldots \\
& \left\{b_{n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{15}, \ldots, \frac{6}{(n+1)\left(n^{2}-n+6\right)}, \ldots \\
& \left\{c_{n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{7}{62}, \ldots, \frac{n^{2}-3 n+3}{9 n^{2}-25 n+18}, \ldots \\
& \left\{d_{n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, 0, \ldots, \frac{-n(n+1)(n-4)}{6\left(n^{2}+3 n-2\right)}, \ldots
\end{aligned}
\]

The process of determining an \(n\)th term from the pattern observed in the first several terms of a sequence is an example of inductive reasoning.

\section*{EXAMPLE 7 Finding the nth Term of a Sequence}

Determine an \(n\)th term for a sequence whose first five terms are
\[
-\frac{2}{1}, \frac{8}{2},-\frac{26}{6}, \frac{80}{24},-\frac{242}{120}, \ldots
\]
and then decide whether the sequence converges or diverges.
Solution Note that the numerators are 1 less than \(3^{n}\). So, you can reason that the numerators are given by the rule \(3^{n}-1\). Factoring the denominators produces
\[
\begin{aligned}
1 & =1 \\
2 & =1 \cdot 2 \\
6 & =1 \cdot 2 \cdot 3 \\
24 & =1 \cdot 2 \cdot 3 \cdot 4 \\
120 & =1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots
\end{aligned}
\]

This suggests that the denominators are represented by \(n\) !. Finally, because the signs alternate, you can write the \(n\)th term as
\[
a_{n}=(-1)^{n}\left(\frac{3^{n}-1}{n!}\right)
\]

From the discussion about the growth of \(n!\), it follows that
\[
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{3^{n}-1}{n!}=0
\]

Applying Theorem 9.4, you can conclude that
\[
\lim _{n \rightarrow \infty} a_{n}=0
\]

So, the sequence \(\left\{a_{n}\right\}\) converges to 0 .

(a) Not monotonic

(b) Monotonic

(c) Not monotonic

Figure 9.3

\section*{Monotonic Sequences and Bounded Sequences}

So far you have determined the convergence of a sequence by finding its limit. Even if you cannot determine the limit of a particular sequence, it still may be useful to know whether the sequence converges. Theorem 9.5 (on page 603) provides a test for convergence of sequences without determining the limit. First, some preliminary definitions are given.

\section*{DEFINITION OF MONOTONIC SEQUENCE}

A sequence \(\left\{a_{n}\right\}\) is monotonic if its terms are nondecreasing
\[
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
\]
or if its terms are nonincreasing
\[
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots .
\]

\section*{EXAMPLE 8 Determining Whether a Sequence Is Monotonic}

Determine whether each sequence having the given \(n\)th term is monotonic.
a. \(a_{n}=3+(-1)^{n}\)
b. \(b_{n}=\frac{2 n}{1+n}\)
c. \(c_{n}=\frac{n^{2}}{2^{n}-1}\)

\section*{Solution}
a. This sequence alternates between 2 and 4 . So, it is not monotonic.
b. This sequence is monotonic because each successive term is larger than its predecessor. To see this, compare the terms \(b_{n}\) and \(b_{n+1}\). [Note that, because \(n\) is positive, you can multiply each side of the inequality by \((1+n)\) and \((2+n)\) without reversing the inequality sign.]
\[
\begin{aligned}
b_{n}=\frac{2 n}{1+n} & \stackrel{?}{<} \frac{2(n+1)}{1+(n+1)}=b_{n+1} \\
2 n(2+n) & \stackrel{?}{<}(1+n)(2 n+2) \\
4 n+2 n^{2} & \stackrel{?}{<} 2+4 n+2 n^{2} \\
0 & <2
\end{aligned}
\]

Starting with the final inequality, which is valid, you can reverse the steps to conclude that the original inequality is also valid.
c. This sequence is not monotonic, because the second term is larger than the first term, and larger than the third. (Note that if you drop the first term, the remaining sequence \(c_{2}, c_{3}, c_{4}, \ldots\) is monotonic.)
Figure 9.3 graphically illustrates these three sequences.

NOTE In Example 8(b), another way to see that the sequence is monotonic is to argue that the derivative of the corresponding differentiable function \(f(x)=2 x /(1+x)\) is positive for all \(x\). This implies that \(f\) is increasing, which in turn implies that \(\left\{a_{n}\right\}\) is increasing.

NOTE
All three sequences shown in Figure 9.3 are bounded. To see this, consider the following.
\[
\begin{aligned}
& 2 \leq a_{n} \leq 4 \\
& 1 \leq b_{n} \leq 2 \\
& 0 \leq c_{n} \leq \frac{4}{3}
\end{aligned}
\]


Every bounded nondecreasing sequence converges.
Figure 9.4

\section*{DEFINITION OF BOUNDED SEQUENCE}
1. A sequence \(\left\{a_{n}\right\}\) is bounded above if there is a real number \(M\) such that \(a_{n} \leq M\) for all \(n\). The number \(M\) is called an upper bound of the sequence.
2. A sequence \(\left\{a_{n}\right\}\) is bounded below if there is a real number \(N\) such that \(N \leq a_{n}\) for all \(n\). The number \(N\) is called a lower bound of the sequence.
3. A sequence \(\left\{a_{n}\right\}\) is bounded if it is bounded above and bounded below.

One important property of the real numbers is that they are complete. Informally, this means that there are no holes or gaps on the real number line. (The set of rational numbers does not have the completeness property.) The completeness axiom for real numbers can be used to conclude that if a sequence has an upper bound, it must have a least upper bound (an upper bound that is smaller than all other upper bounds for the sequence). For example, the least upper bound of the sequence \(\left\{a_{n}\right\}=\{n /(n+1)\}\),
\(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{n}{n+1}, \ldots\)
is 1 . The completeness axiom is used in the proof of Theorem 9.5.

\section*{THEOREM 9.5 BOUNDED MONOTONIC SEQUENCES}

If a sequence \(\left\{a_{n}\right\}\) is bounded and monotonic, then it converges.

PROOF Assume that the sequence is nondecreasing, as shown in Figure 9.4. For the sake of simplicity, also assume that each term in the sequence is positive. Because the sequence is bounded, there must exist an upper bound \(M\) such that
\[
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots \leq M
\]

From the completeness axiom, it follows that there is a least upper bound \(L\) such that
\[
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots \leq L
\]

For \(\varepsilon>0\), it follows that \(L-\varepsilon<L\), and therefore \(L-\varepsilon\) cannot be an upper bound for the sequence. Consequently, at least one term of \(\left\{a_{n}\right\}\) is greater than \(L-\varepsilon\). That is, \(L-\varepsilon<a_{N}\) for some positive integer \(N\). Because the terms of \(\left\{a_{n}\right\}\) are nondecreasing, it follows that \(a_{N} \leq a_{n}\) for \(n>N\). You now know that \(L-\varepsilon<a_{N} \leq a_{n} \leq L<L+\varepsilon\), for every \(n>N\). It follows that \(\left|a_{n}-L\right|<\varepsilon\) for \(n>N\), which by definition means that \(\left\{a_{n}\right\}\) converges to \(L\). The proof for a nonincreasing sequence is similar (see Exercise 139).

\section*{EXAMPLE 9 Bounded and Monotonic Sequences}
a. The sequence \(\left\{a_{n}\right\}=\{1 / n\}\) is both bounded and monotonic and so, by Theorem 9.5 , must converge.
b. The divergent sequence \(\left\{b_{n}\right\}=\left\{n^{2} /(n+1)\right\}\) is monotonic, but not bounded. (It is bounded below.)
c. The divergent sequence \(\left\{c_{n}\right\}=\left\{(-1)^{n}\right\}\) is bounded, but not monotonic.

\subsection*{9.1 Exercises}

In Exercises 1-10, write the first five terms of the sequence.
1. \(a_{n}=3^{n}\)
2. \(a_{n}=\frac{3^{n}}{n!}\)
3. \(a_{n}=\left(-\frac{1}{4}\right)^{n}\)
4. \(a_{n}=\left(-\frac{2}{3}\right)^{n}\)
5. \(a_{n}=\sin \frac{n \pi}{2}\)
6. \(a_{n}=\frac{2 n}{n+3}\)
7. \(a_{n}=\frac{(-1)^{n(n+1) / 2}}{n^{2}}\)
8. \(a_{n}=(-1)^{n+1}\left(\frac{2}{n}\right)\)
9. \(a_{n}=5-\frac{1}{n}+\frac{1}{n^{2}}\)
10. \(a_{n}=10+\frac{2}{n}+\frac{6}{n^{2}}\)

In Exercises 11-14, write the first five terms of the recursively defined sequence.
11. \(a_{1}=3, a_{k+1}=2\left(a_{k}-1\right)\)
12. \(a_{1}=4, a_{k+1}=\left(\frac{k+1}{2}\right) a_{k}\)
13. \(a_{1}=32, a_{k+1}=\frac{1}{2} a_{k}\)
14. \(a_{1}=6, a_{k+1}=\frac{1}{3} a_{k}^{2}\)

In Exercises 15-18, match the sequence with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

15. \(a_{n}=\frac{10}{n+1}\)
16. \(a_{n}=\frac{10 n}{n+1}\)
17. \(a_{n}=(-1)^{n}\)
18. \(a_{n}=\frac{(-1)^{n}}{n}\)

In Exercises 19-22, match the sequence with the correct expression for its \(\boldsymbol{n}\) th term. [The \(\boldsymbol{n}\) th terms are labeled (a), (b), (c), and (d).]
(a) \(a_{n}=\frac{2}{3} n\)
(b) \(a_{n}=2-\frac{4}{n}\)
(c) \(a_{n}=16(-0.5)^{n-1}\)
(d) \(a_{n}=\frac{2 n}{n+1}\)
19. \(-2,0, \frac{2}{3}, 1, \ldots\).
20. \(16,-8,4,-2, \ldots\).
21. \(\frac{2}{3}, \frac{4}{3}, 2, \frac{8}{3}, \ldots\).
22. \(1, \frac{4}{3}, \frac{3}{2}, \frac{8}{5}, \ldots\).

In Exercises 23-28, write the next two apparent terms of the sequence. Describe the pattern you used to find these terms.
23. \(2,5,8,11\), . .
24. \(\frac{7}{2}, 4, \frac{9}{2}, 5, \ldots\)
25. \(5,10,20,40\), . .
26. \(1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}\).
27. \(3,-\frac{3}{2}, \frac{3}{4},-\frac{3}{8}\),
28. \(1,-\frac{3}{2}, \frac{9}{4},-\frac{27}{8}\),

In Exercises 29-34, simplify the ratio of factorials.
29. \(\frac{11!}{8!}\)
30. \(\frac{25!}{20!}\)
31. \(\frac{(n+1)!}{n!}\)
32. \(\frac{(n+2)!}{n!}\)
33. \(\frac{(2 n-1)!}{(2 n+1)!}\)
34. \(\frac{(2 n+2)!}{(2 n)!}\)

In Exercises 35-40, find the limit (if possible) of the sequence.
35. \(a_{n}=\frac{5 n^{2}}{n^{2}+2}\)
36. \(a_{n}=5-\frac{1}{n^{2}}\)
37. \(a_{n}=\frac{2 n}{\sqrt{n^{2}+1}}\)
38. \(a_{n}=\frac{5 n}{\sqrt{n^{2}+4}}\)
39. \(a_{n}=\sin \frac{1}{n}\)
40. \(a_{n}=\cos \frac{2}{n}\)

In Exercises 41-44, use a graphing utility to graph the first 10 terms of the sequence. Use the graph to make an inference about the convergence or divergence of the sequence. Verify your inference analytically and, if the sequence converges, find its limit.
41. \(a_{n}=\frac{n+1}{n}\)
42. \(a_{n}=\frac{1}{n^{3 / 2}}\)
43. \(a_{n}=\cos \frac{n \pi}{2}\)
44. \(a_{n}=3-\frac{1}{2^{n}}\)

In Exercises 45-72, determine the convergence or divergence of the sequence with the given \(n\)th term. If the sequence converges, find its limit.
45. \(a_{n}=(0.3)^{n}-1\)
46. \(a_{n}=4-\frac{3}{n}\)
47. \(a_{n}=\frac{5}{n+2}\)
48. \(a_{n}=\frac{2}{n!}\)
49. \(a_{n}=(-1)^{n}\left(\frac{n}{n+1}\right)\)
50. \(a_{n}=1+(-1)^{n}\)
51. \(a_{n}=\frac{3 n^{2}-n+4}{2 n^{2}+1}\)
52. \(a_{n}=\frac{\sqrt[3]{n}}{\sqrt[3]{n}+1}\)
53. \(a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 n)^{n}}\)
54. \(a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{n!}\)
55. \(a_{n}=\frac{1+(-1)^{n}}{n}\)
56. \(a_{n}=\frac{1+(-1)^{n}}{n^{2}}\)
57. \(a_{n}=\frac{\ln \left(n^{3}\right)}{2 n}\)
58. \(a_{n}=\frac{\ln \sqrt{n}}{n}\)
59. \(a_{n}=\frac{3^{n}}{4^{n}}\)
60. \(a_{n}=(0.5)^{n}\)
61. \(a_{n}=\frac{(n+1)!}{n!}\)
62. \(a_{n}=\frac{(n-2)!}{n!}\)
63. \(a_{n}=\frac{n-1}{n}-\frac{n}{n-1}, \quad n \geq 2\)
64. \(a_{n}=\frac{n^{2}}{2 n+1}-\frac{n^{2}}{2 n-1}\)
65. \(a_{n}=\frac{n^{p}}{e^{n}}, p>0\)
66. \(a_{n}=n \sin \frac{1}{n}\)
67. \(a_{n}=2^{1 / n}\)
68. \(a_{n}=-3^{-n}\)
69. \(a_{n}=\left(1+\frac{k}{n}\right)^{n}\)
70. \(a_{n}=\left(1+\frac{1}{n^{2}}\right)^{n}\)
71. \(a_{n}=\frac{\sin n}{n}\)
72. \(a_{n}=\frac{\cos \pi n}{n^{2}}\)

In Exercises 73-86, write an expression for the \(\boldsymbol{n}\) th term of the sequence. (There is more than one correct answer.)
73. \(1,4,7,10, \ldots\)
74. \(3,7,11,15, \ldots\)
75. \(-1,2,7,14,23, \ldots\).
76. \(1,-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \ldots\)
77. \(\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}\), . .
78. \(2,-1, \frac{1}{2},-\frac{1}{4}, \frac{1}{8}\), . .
79. \(2,1+\frac{1}{2}, 1+\frac{1}{3}, 1+\frac{1}{4}, 1+\frac{1}{5}, \ldots\)
80. \(1+\frac{1}{2}, 1+\frac{3}{4}, 1+\frac{7}{8}, 1+\frac{15}{16}, 1+\frac{31}{32}, \ldots\)
81. \(\frac{1}{2 \cdot 3}, \frac{2}{3 \cdot 4}, \frac{3}{4 \cdot 5}, \frac{4}{5 \cdot 6}\),
82. \(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\).
83. \(1,-\frac{1}{1 \cdot 3}, \frac{1}{1 \cdot 3 \cdot 5},-\frac{1}{1 \cdot 3 \cdot 5 \cdot 7}, \ldots\)
84. \(1, x, \frac{x^{2}}{2}, \frac{x^{3}}{6}, \frac{x^{4}}{24}, \frac{x^{5}}{120}, \ldots\)
85. \(2,24,720,40,320,3,628,800\),
86. \(1,6,120,5040,362,880\), . .

In Exercises 87-98, determine whether the sequence with the given \(n\)th term is monotonic and whether it is bounded. Use a graphing utility to confirm your results.
87. \(a_{n}=4-\frac{1}{n}\)
88. \(a_{n}=\frac{3 n}{n+2}\)
89. \(a_{n}=\frac{n}{2^{n+2}}\)
90. \(a_{n}=n e^{-n / 2}\)
91. \(a_{n}=(-1)^{n}\left(\frac{1}{n}\right)\)
92. \(a_{n}=\left(-\frac{2}{3}\right)^{n}\)
93. \(a_{n}=\left(\frac{2}{3}\right)^{n}\)
94. \(a_{n}=\left(\frac{3}{2}\right)^{n}\)
95. \(a_{n}=\sin \frac{n \pi}{6}\)
97. \(a_{n}=\frac{\cos n}{n}\)
96. \(a_{n}=\cos \frac{n \pi}{2}\)
98. \(a_{n}=\frac{\sin \sqrt{n}}{n}\)

In Exercises 99-102, (a) use Theorem 9.5 to show that the sequence with the given \(n\)th term converges and (b) use a graphing utility to graph the first \(\mathbf{1 0}\) terms of the sequence and find its limit.
99. \(a_{n}=5+\frac{1}{n}\)
100. \(a_{n}=4-\frac{3}{n}\)
101. \(a_{n}=\frac{1}{3}\left(1-\frac{1}{3^{n}}\right)\)
102. \(a_{n}=4+\frac{1}{2^{n}}\)
103. Let \(\left\{a_{n}\right\}\) be an increasing sequence such that \(2 \leq a_{n} \leq 4\). Explain why \(\left\{a_{n}\right\}\) has a limit. What can you conclude about the limit?
104. Let \(\left\{a_{n}\right\}\) be a monotonic sequence such that \(a_{n} \leq 1\). Discuss the convergence of \(\left\{a_{n}\right\}\). If \(\left\{a_{n}\right\}\) converges, what can you conclude about its limit?
105. Compound Interest Consider the sequence \(\left\{A_{n}\right\}\) whose \(n\)th term is given by
\(A_{n}=P\left(1+\frac{r}{12}\right)^{n}\)
where \(P\) is the principal, \(A_{n}\) is the account balance after \(n\) months, and \(r\) is the interest rate compounded annually.
(a) Is \(\left\{A_{n}\right\}\) a convergent sequence? Explain.
(b) Find the first 10 terms of the sequence if \(P=\$ 10,000\) and \(r=0.055\).
106. Compound Interest A deposit of \(\$ 100\) is made at the beginning of each month in an account at an annual interest rate of \(3 \%\) compounded monthly. The balance in the account after \(n\) months is \(A_{n}=100(401)\left(1.0025^{n}-1\right)\).
(a) Compute the first six terms of the sequence \(\left\{A_{n}\right\}\).
(b) Find the balance in the account after 5 years by computing the 60th term of the sequence.
(c) Find the balance in the account after 20 years by computing the 240th term of the sequence.

\section*{WRITING ABOUT CONCEPTS}
107. Is it possible for a sequence to converge to two different numbers? If so, give an example. If not, explain why not.
108. In your own words, define each of the following.
(a) Sequence
(b) Convergence of a sequence
(c) Monotonic sequence
(d) Bounded sequence
109. The graphs of two sequences are shown in the figures. Which graph represents the sequence with alternating signs? Explain.



\section*{CAPSTONE}
110. Give an example of a sequence satisfying the condition or explain why no such sequence exists. (Examples are not unique.)
(a) A monotonically increasing sequence that converges to 10
(b) A monotonically increasing bounded sequence that does not converge
(c) A sequence that converges to \(\frac{3}{4}\)
(d) An unbounded sequence that converges to 100
111. Government Expenditures A government program that currently costs taxpayers \(\$ 4.5\) billion per year is cut back by 20 percent per year.
(a) Write an expression for the amount budgeted for this program after \(n\) years.
(b) Compute the budgets for the first 4 years.
(c) Determine the convergence or divergence of the sequence of reduced budgets. If the sequence converges, find its limit.
112. Inflation If the rate of inflation is \(4 \frac{1}{2} \%\) per year and the average price of a car is currently \(\$ 25,000\), the average price after \(n\) years is
\(P_{n}=\$ 25,000(1.045)^{n}\).
Compute the average prices for the next 5 years.
113. Modeling Data The federal debts \(a_{n}\) (in billions of dollars) of the United States from 2002 through 2006 are shown in the table, where \(n\) represents the year, with \(n=2\) corresponding to 2002. (Source: U.S. Office of Management and Budget)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 2 & 3 & 4 & 5 & 6 \\
\hline\(a_{n}\) & 6198.4 & 6760.0 & 7354.7 & 7905.3 & 8451.4 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form
\[
a_{n}=b n^{2}+c n+d, \quad n=2,3,4,5,6
\]
for the data. Use the graphing utility to plot the points and graph the model.
(b) Use the model to predict the amount of the federal debt in the year 2012.
114. Modeling Data The per capita personal incomes \(a_{n}\) in the United States from 1996 through 2006 are given below as ordered pairs of the form \(\left(n, a_{n}\right)\), where \(n\) represents the year, with \(n=6\) corresponding to 1996. (Source: U.S. Bureau of Economic Analysis)
\((6,24,176),(7,25,334),(8,26,880),(9,27,933)\),
\((10,29,855),(11,30,572),(12,30,805),(13,31,469)\),
\((14,33,102),(15,34,493),(16,36,313)\)
(a) Use the regression capabilities of a graphing utility to find a model of the form
\[
a_{n}=b n+c, \quad n=6,7, \ldots, 16
\]
for the data. Graphically compare the points and the model.
(b) Use the model to predict per capita personal income in the year 2012.
115. Comparing Exponential and Factorial Growth Consider the sequence \(a_{n}=10^{n} / n\) !.
(a) Find two consecutive terms that are equal in magnitude.
(b) Are the terms following those found in part (a) increasing or decreasing?
(c) In Section 8.7, Exercises 73-78, it was shown that for "large" values of the independent variable an exponential function increases more rapidly than a polynomial function. From the result in part (b), what inference can you make about the rate of growth of an exponential function versus a factorial function for "large" integer values of \(n\) ?
116. Compute the first six terms of the sequence
\[
\left\{a_{n}\right\}=\left\{\left(1+\frac{1}{n}\right)^{n}\right\} .
\]

If the sequence converges, find its limit.
117. Compute the first six terms of the sequence \(\left\{a_{n}\right\}=\{\sqrt[n]{n}\}\). If the sequence converges, find its limit.
118. Prove that if \(\left\{s_{n}\right\}\) converges to \(L\) and \(L>0\), then there exists a number \(N\) such that \(s_{n}>0\) for \(n>N\).

True or False? In Exercises 119-124, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
119. If \(\left\{a_{n}\right\}\) converges to 3 and \(\left\{b_{n}\right\}\) converges to 2 , then \(\left\{a_{n}+b_{n}\right\}\) converges to 5 .
120. If \(\left\{a_{n}\right\}\) converges, then \(\lim _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right)=0\).
121. If \(n>1\), then \(n!=n(n-1)\) !.
122. If \(\left\{a_{n}\right\}\) converges, then \(\left\{a_{n} / n\right\}\) converges to 0 .
123. If \(\left\{a_{n}\right\}\) converges to 0 and \(\left\{b_{n}\right\}\) is bounded, then \(\left\{a_{n} b_{n}\right\}\) converges to 0 .
124. If \(\left\{a_{n}\right\}\) diverges and \(\left\{b_{n}\right\}\) diverges, then \(\left\{a_{n}+b_{n}\right\}\) diverges.
125. Fibonacci Sequence In a study of the progeny of rabbits, Fibonacci (ca. 1170-ca. 1240) encountered the sequence now bearing his name. The sequence is defined recursively as \(a_{n+2}=a_{n}+a_{n+1}\), where \(a_{1}=1\) and \(a_{2}=1\).
(a) Write the first 12 terms of the sequence.
(b) Write the first 10 terms of the sequence defined by
\[
b_{n}=\frac{a_{n+1}}{a_{n}}, \quad n \geq 1
\]
(c) Using the definition in part (b), show that
\[
b_{n}=1+\frac{1}{b_{n-1}}
\]
(d) The golden ratio \(\rho\) can be defined by \(\lim _{n \rightarrow \infty} b_{n}=\rho\). Show that \(\rho=1+1 / \rho\) and solve this equation for \(\rho\).
126. Conjecture Let \(x_{0}=1\) and consider the sequence \(x_{n}\) given by the formula
\(x_{n}=\frac{1}{2} x_{n-1}+\frac{1}{x_{n-1}}, \quad n=1,2, \ldots\).
Use a graphing utility to compute the first 10 terms of the sequence and make a conjecture about the limit of the sequence.
127. Consider the sequence
\(\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots\)
(a) Compute the first five terms of this sequence.
(b) Write a recursion formula for \(a_{n}\), for \(n \geq 2\).
(c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
128. Consider the sequence
\(\sqrt{6}, \sqrt{6+\sqrt{6}}, \sqrt{6+\sqrt{6+\sqrt{6}}}, \ldots\)
(a) Compute the first five terms of this sequence.
(b) Write a recursion formula for \(a_{n}\), for \(n \geq 2\).
(c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
129. Consider the sequence \(\left\{a_{n}\right\}\) where \(a_{1}=\sqrt{k}, a_{n+1}=\sqrt{k+a_{n}}\), and \(k>0\).
(a) Show that \(\left\{a_{n}\right\}\) is increasing and bounded.
(b) Prove that \(\lim _{n \rightarrow \infty} a_{n}\) exists.
(c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
130. Arithmetic-Geometric Mean Let \(a_{0}>b_{0}>0\). Let \(a_{1}\) be the arithmetic mean of \(a_{0}\) and \(b_{0}\) and let \(b_{1}\) be the geometric mean of \(a_{0}\) and \(b_{0}\).
\(a_{1}=\frac{a_{0}+b_{0}}{2} \quad\) Arithmetic mean
\(b_{1}=\sqrt{a_{0} b_{0}} \quad\) Geometric mean
Now define the sequences \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\) as follows. \(a_{n}=\frac{a_{n-1}+b_{n-1}}{2} \quad b_{n}=\sqrt{a_{n-1} b_{n-1}}\)
(a) Let \(a_{0}=10\) and \(b_{0}=3\). Write out the first five terms of \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\). Compare the terms of \(\left\{b_{n}\right\}\). Compare \(a_{n}\) and \(b_{n}\). What do you notice?
(b) Use induction to show that \(a_{n}>a_{n+1}>b_{n+1}>b_{n}\), for \(a_{0}>b_{0}>0\).
(c) Explain why \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\) are both convergent.
(d) Show that \(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}\).
131. (a) Let \(f(x)=\stackrel{n \rightarrow \infty}{=} \sin x\) and \(a_{n}=n \sin 1 / n\). Show that \(\lim _{n \rightarrow \infty} a_{n}=f^{\prime}(0)=1\).
(b) Let \(f(x)\) be differentiable on the interval \([0,1]\) and \(f(0)=0\). Consider the sequence \(\left\{a_{n}\right\}\), where \(a_{n}=n f(1 / n)\). Show that \(\lim _{n \rightarrow \infty} a_{n}=f^{\prime}(0)\).
132. Consider the sequence \(\left\{a_{n}\right\}=\left\{n r^{n}\right\}\). Decide whether \(\left\{a_{n}\right\}\) converges for each value of \(r\).
(a) \(r=\frac{1}{2}\)
(b) \(r=1\)
(c) \(r=\frac{3}{2}\)
(d) For what values of \(r\) does the sequence \(\left\{n r^{n}\right\}\) converge?
133. (a) Show that \(\int_{1}^{n} \ln x d x<\ln (n!)\) for \(n \geq 2\).

(b) Draw a graph similar to the one above that shows \(\ln (n!)<\int_{1}^{n+1} \ln x d x\).
(c) Use the results of parts (a) and (b) to show that \(\frac{n^{n}}{e^{n-1}}<n!<\frac{(n+1)^{n+1}}{e^{n}}\), for \(n>1\).
(d) Use the Squeeze Theorem for Sequences and the result of part (c) to show that \(\lim _{n \rightarrow \infty}(\sqrt[n]{n!/ n})=1 / e\).
(e) Test the result of part (d) for \(n=20,50\), and 100 .
134. Consider the sequence \(\left\{a_{n}\right\}=\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+(k / n)}\right\}\).
(a) Write the first five terms of \(\left\{a_{n}\right\}\).
(b) Show that \(\lim _{n \rightarrow \infty} a_{n}=\ln 2\) by interpreting \(a_{n}\) as a Riemann sum of a definite integral.
135. Prove, using the definition of the limit of a sequence, that \(\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=0\).
136. Prove, using the definition of the limit of a sequence, that \(\lim _{n \rightarrow \infty} r^{n}=0\) for \(-1<r<1\).
137. Find a divergent sequence \(\left\{a_{n}\right\}\) such that \(\left\{a_{2 n}\right\}\) converges.
138. Show that the converse of Theorem 9.1 is not true. [Hint: Find a function \(f(x)\) such that \(f(n)=a_{n}\) converges but \(\lim _{x \rightarrow \infty} f(x)\) does not exist.]
139. Prove Theorem 9.5 for a nonincreasing sequence.

\section*{PUTNAM EXAM CHALLENGE}
140. Let \(\left\{x_{n}\right\}, n \geq 0\), be a sequence of nonzero real numbers such that \(x_{n}^{2}-x_{n-1} x_{n+1}=1\) for \(n=1,2,3, \ldots\) Prove that there exists a real number \(a\) such that \(x_{n+1}=a x_{n}-x_{n-1}\), for all \(n \geq 1\).
141. Let \(T_{0}=2, T_{1}=3, T_{2}=6\), and, for \(n \geq 3\), \(T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3}\).
The first 10 terms of the sequence are
\(2,3,6,14,40,152,784,5168,40,576,363,392\).
Find, with proof, a formula for \(T_{n}\) of the form \(T_{n}=A_{n}+B_{n}\), where \(\left\{A_{n}\right\}\) and \(\left\{B_{n}\right\}\) are well-known sequences.

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{9.2 Series and Convergence}

\section*{INFINITE SERIES}

The study of infinite series was considered a novelty in the fourteenth century. Logician Richard Suiseth, whose nickname was Calculator, solved this problem.

If throughout the first half of a given time interval a variation continues at a certain intensity, throughout the next quarter of the interval at double the intensity, throughout the following eighth at triple the intensity and so ad infinitum; then the average intensity for the whole interval will be the intensity of the variation during the second subinterval (or double the intensity). This is the same as saying that the sum of the infinite series
\[
\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\cdots+\frac{n}{2^{n}}+\cdots
\]
is 2.

■ Understand the definition of a convergent infinite series.
- Use properties of infinite geometric series.
- Use the nth-Term Test for Divergence of an infinite series.

\section*{Infinite Series}

One important application of infinite sequences is in representing "infinite summations." Informally, if \(\left\{a_{n}\right\}\) is an infinite sequence, then
\[
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
\]

Infinite series
is an infinite series (or simply a series). The numbers \(a_{1}, a_{2}, a_{3}\), are the terms of the series. For some series it is convenient to begin the index at \(n=0\) (or some other integer). As a typesetting convention, it is common to represent an infinite series as simply \(\sum a_{n}\). In such cases, the starting value for the index must be taken from the context of the statement.

To find the sum of an infinite series, consider the following sequence of partial sums.
\[
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \quad \vdots \\
& S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
\end{aligned}
\]

If this sequence of partial sums converges, the series is said to converge and has the sum indicated in the following definition.

\section*{DEFINITIONS OF CONVERGENT AND DIVERGENT SERIES}

For the infinite series \(\sum_{n=1}^{\infty} a_{n}\), the \(\boldsymbol{n}\) th partial sum is given by
\[
S_{n}=a_{1}+a_{2}+\cdots+a_{n} .
\]

If the sequence of partial sums \(\left\{S_{n}\right\}\) converges to \(S\), then the series \(\sum_{n=1}^{\infty} a_{n}\) converges. The limit \(S\) is called the sum of the series.
\[
S=a_{1}+a_{2}+\cdots+a_{n}+\cdots \quad S=\sum_{n=1}^{\infty} a_{n}
\]

If \(\left\{S_{n}\right\}\) diverges, then the series diverges.

\section*{EXPLORATION}

Finding the Sum of an Infinite Series Find the sum of each infinite series. Explain your reasoning.
a. \(0.1+0.01+0.001+0.0001+\cdots \cdot\)
b. \(\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10,000}+\cdots\).
c. \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots\).
d. \(\frac{15}{100}+\frac{15}{10,000}+\frac{15}{1,000,000}+\cdots\).

STUDY TIP As you study this chapter, you will see that there are two basic questions involving infinite series. Does a series converge or does it diverge? If a series converges, what is its sum? These questions are not always easy to answer, especially the second one.

TECHNOLOGY Figure 9.5 shows the first 15 partial sums of the infinite series in Example 1(a). Notice how the values appear to approach the line \(y=1\).


Figure 9.5

NOTE You can geometrically determine the partial sums of the series in Example 1(a) using Figure 9.6.


Figure 9.6

\section*{FOR FURTHER INFORMATION To}
learn more about the partial sums of infinite series, see the article "Six Ways to Sum a Series" by Dan Kalman in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\section*{EXAMPLE 1 Convergent and Divergent Series}
a. The series
\[
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
\]
has the following partial sums.
\[
\begin{aligned}
S_{1} & =\frac{1}{2} \\
S_{2} & =\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
S_{3} & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8} \\
& \vdots \\
S_{n} & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}
\end{aligned}
\]

Because
\[
\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n}}=1
\]
it follows that the series converges and its sum is 1 .
b. The \(n\)th partial sum of the series
\[
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots
\]
is given by
\[
S_{n}=1-\frac{1}{n+1}
\]

Because the limit of \(S_{n}\) is 1 , the series converges and its sum is 1 .
c. The series
\[
\sum_{n=1}^{\infty} 1=1+1+1+1+\cdots
\]
diverges because \(S_{n}=n\) and the sequence of partial sums diverges.

The series in Example 1(b) is a telescoping series of the form
\[
\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\left(b_{4}-b_{5}\right)+\cdots
\]

Telescoping series

Note that \(b_{2}\) is canceled by the second term, \(b_{3}\) is canceled by the third term, and so on. Because the \(n\)th partial sum of this series is
\[
S_{n}=b_{1}-b_{n+1}
\]
it follows that a telescoping series will converge if and only if \(b_{n}\) approaches a finite number as \(n \rightarrow \infty\). Moreover, if the series converges, its sum is
\[
S=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}
\]

\section*{E X P L ORATION}

In "Proof Without Words," by Benjamin G. Klein and Irl C. Bivens, the authors present the following diagram. Explain why the final statement below the diagram is valid. How is this result related to Theorem 9.6?

\[
\Delta P Q R \approx \Delta T S P
\]
\[
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}
\]

Exercise taken from "Proof Without Words" by Benjamin G. Klein and Irl C. Bivens, Mathematics Magazine, 61, No. 4, October 1988, p. 219, by permission of the authors.

\section*{EXAMPLE 2 Writing a Series in Telescoping Form}

Find the sum of the series \(\sum_{n=1}^{\infty} \frac{2}{4 n^{2}-1}\).

\section*{Solution}

Using partial fractions, you can write
\[
a_{n}=\frac{2}{4 n^{2}-1}=\frac{2}{(2 n-1)(2 n+1)}=\frac{1}{2 n-1}-\frac{1}{2 n+1} .
\]

From this telescoping form, you can see that the \(n\)th partial sum is
\[
S_{n}=\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)=1-\frac{1}{2 n+1} .
\]

So, the series converges and its sum is 1 . That is,
\[
\sum_{n=1}^{\infty} \frac{2}{4 n^{2}-1}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2 n+1}\right)=1
\]

\section*{Geometric Series}

The series given in Example 1(a) is a geometric series. In general, the series given by
\[
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots, \quad a \neq 0
\]
is a geometric series with ratio \(r\).

\section*{THEOREM 9.6 CONVERGENCE OF A GEOMETRIC SERIES}

A geometric series with ratio \(r\) diverges if \(|r| \geq 1\). If \(0<|r|<1\), then the series converges to the sum
\[
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad 0<|r|<1
\]

PROOF It is easy to see that the series diverges if \(r= \pm 1\). If \(r \neq \pm 1\), then \(S_{n}=\) \(a+a r+a r^{2}+\cdots+a r^{n-1}\). Multiplication by \(r\) yields
\[
r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}
\]

Subtracting the second equation from the first produces \(S_{n}-r S_{n}=a-a r^{n}\). Therefore, \(S_{n}(1-r)=a\left(1-r^{n}\right)\), and the \(n\)th partial sum is
\[
S_{n}=\frac{a}{1-r}\left(1-r^{n}\right)
\]

If \(0<|r|<1\), it follows that \(r^{n} \rightarrow 0\) as \(n \rightarrow \infty\), and you obtain
\[
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[\frac{a}{1-r}\left(1-r^{n}\right)\right]=\frac{a}{1-r}\left[\lim _{n \rightarrow \infty}\left(1-r^{n}\right)\right]=\frac{a}{1-r}
\]
which means that the series converges and its sum is \(a /(1-r)\). It is left to you to show that the series diverges if \(|r|>1\).

TECHNOLOGY Try using a graphing utility or writing a computer program to compute the sum of the first 20 terms of the sequence in Example 3(a). You should obtain a sum of about 5.999994 .

\section*{EXAMPLE 3 Convergent and Divergent Geometric Series}
a. The geometric series
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{3}{2^{n}} & =\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n} \\
& =3(1)+3\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+\cdots
\end{aligned}
\]
has a ratio of \(r=\frac{1}{2}\) with \(a=3\). Because \(0<|r|<1\), the series converges and its sum is
\[
S=\frac{a}{1-r}=\frac{3}{1-(1 / 2)}=6
\]
b. The geometric series
\[
\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}=1+\frac{3}{2}+\frac{9}{4}+\frac{27}{8}+\cdots
\]
has a ratio of \(r=\frac{3}{2}\). Because \(|r| \geq 1\), the series diverges.

The formula for the sum of a geometric series can be used to write a repeating decimal as the ratio of two integers, as demonstrated in the next example.

\section*{Cexample 4 a Geometric Series for a Repeating Decimal}

Use a geometric series to write \(0 . \overline{08}\) as the ratio of two integers.
Solution For the repeating decimal \(0 . \overline{08}\), you can write
\[
\begin{aligned}
0.080808 \ldots & =\frac{8}{10^{2}}+\frac{8}{10^{4}}+\frac{8}{10^{6}}+\frac{8}{10^{8}}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\frac{8}{10^{2}}\right)\left(\frac{1}{10^{2}}\right)^{n}
\end{aligned}
\]

For this series, you have \(a=8 / 10^{2}\) and \(r=1 / 10^{2}\). So,
\[
0.080808 \ldots=\frac{a}{1-r}=\frac{8 / 10^{2}}{1-\left(1 / 10^{2}\right)}=\frac{8}{99}
\]

Try dividing 8 by 99 on a calculator to see that it produces \(0 . \overline{08}\).

The convergence of a series is not affected by removal of a finite number of terms from the beginning of the series. For instance, the geometric series
\[
\sum_{n=4}^{\infty}\left(\frac{1}{2}\right)^{n} \quad \text { and } \quad \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
\]
both converge. Furthermore, because the sum of the second series is \(a /(1-r)=2\), you can conclude that the sum of the first series is
\[
\begin{aligned}
S & =2-\left[\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}\right] \\
& =2-\frac{15}{8}=\frac{1}{8}
\end{aligned}
\]

STUDY TIP As you study this chapter, it is important to distinguish between an infinite series and a sequence. A sequence is an ordered collection of numbers
\[
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
\]
whereas a series is an infinite sum of terms from a sequence
\[
a_{1}+a_{2}+\cdots+a_{n}+\cdots .
\]

The following properties are direct consequences of the corresponding properties of limits of sequences.

\section*{THEOREM 9.7 PROPERTIES OF INFINITE SERIES}

Let \(\sum a_{n}\) and \(\sum b_{n}\) be convergent series, and let \(A, B\), and \(c\) be real numbers. If \(\sum a_{n}=A\) and \(\sum b_{n}=B\), then the following series converge to the indicated sums.
1. \(\sum_{n=1}^{\infty} c a_{n}=c A\)
2. \(\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B\)
3. \(\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=A-B\)

\section*{nth-Term Test for Divergence}

The following theorem states that if a series converges, the limit of its \(n\)th term must be 0 .

\section*{THEOREM 9.8 LIMIT OF THE \(n\) TH TERM OF A CONVERGENT SERIES}

If \(\sum_{n=1}^{\infty} a_{n}\) converges, then \(\lim _{n \rightarrow \infty} a_{n}=0\).

PROOF Assume that
\[
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=L
\]

Then, because \(S_{n}=S_{n-1}+a_{n}\) and
\[
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n-1}=L
\]
it follows that
\[
\begin{aligned}
L=\lim _{n \rightarrow \infty} S_{n} & =\lim _{n \rightarrow \infty}\left(S_{n-1}+a_{n}\right) \\
& =\lim _{n \rightarrow \infty} S_{n-1}+\lim _{n \rightarrow \infty} a_{n} \\
& =L+\lim _{n \rightarrow \infty} a_{n}
\end{aligned}
\]
which implies that \(\left\{a_{n}\right\}\) converges to 0 .

The contrapositive of Theorem 9.8 provides a useful test for divergence. This \(\boldsymbol{n}\) th-Term Test for Divergence states that if the limit of the \(n\)th term of a series does not converge to 0 , the series must diverge.

\section*{THEOREM \(9.9 n\) TH-TERM TEST FOR DIVERGENCE}

If \(\lim _{n \rightarrow \infty} a_{n} \neq 0\), then \(\sum_{n=1}^{\infty} a_{n}\) diverges.

STUDY TIP The series in Example 5(c) will play an important role in this chapter.
\[
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
\]

You will see that this series diverges even though the \(n\)th term approaches 0 as \(n\) approaches \(\infty\).


The height of each bounce is three-fourths the height of the preceding bounce.
Figure 9.7

\section*{EXAMPLE 5 Using the nth-Term Test for Divergence}
a. For the series \(\sum_{n=0}^{\infty} 2^{n}\), you have
\[
\lim _{n \rightarrow \infty} 2^{n}=\infty
\]

So, the limit of the \(n\)th term is not 0 , and the series diverges.
b. For the series \(\sum_{n=1}^{\infty} \frac{n!}{2 n!+1}\), you have
\[
\lim _{n \rightarrow \infty} \frac{n!}{2 n!+1}=\frac{1}{2}
\]

So, the limit of the \(n\)th term is not 0 , and the series diverges.
c. For the series \(\sum_{n=1}^{\infty} \frac{1}{n}\), you have
\[
\lim _{n \rightarrow \infty} \frac{1}{n}=0
\]

Because the limit of the \(n\)th term is 0 , the \(n\) th-Term Test for Divergence does not apply and you can draw no conclusions about convergence or divergence. (In the next section, you will see that this particular series diverges.)

\section*{EXAMPLE 6 Bouncing Ball Problem}

A ball is dropped from a height of 6 feet and begins bouncing, as shown in Figure 9.7. The height of each bounce is three-fourths the height of the previous bounce. Find the total vertical distance traveled by the ball.
Solution When the ball hits the ground for the first time, it has traveled a distance of \(D_{1}=6\) feet. For subsequent bounces, let \(D_{i}\) be the distance traveled up and down. For example, \(D_{2}\) and \(D_{3}\) are as follows.
\[
\begin{aligned}
& D_{2}=\underbrace{6\left(\frac{3}{4}\right)}_{\text {Up }}+\underbrace{6\left(\frac{3}{4}\right)}_{\text {Down }}=12\left(\frac{3}{4}\right) \\
& D_{3}=\underbrace{6\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)}_{\text {Up }}+\underbrace{6\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)}_{\text {Down }}=12\left(\frac{3}{4}\right)^{2}
\end{aligned}
\]

By continuing this process, it can be determined that the total vertical distance is
\[
\begin{aligned}
D & =6+12\left(\frac{3}{4}\right)+12\left(\frac{3}{4}\right)^{2}+12\left(\frac{3}{4}\right)^{3}+\cdots \\
& =6+12 \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n+1} \\
& =6+12\left(\frac{3}{4}\right) \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \\
& =6+9\left(\frac{1}{1-\frac{3}{4}}\right) \\
& =6+9(4) \\
& =42 \text { feet. }
\end{aligned}
\]

\subsection*{9.2 Exercises}

In Exercises 1-6, find the sequence of partial sums \(S_{1}, S_{2}, S_{3}, S_{4}\), and \(S_{5}\).
1. \(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots\).
2. \(\frac{1}{2 \cdot 3}+\frac{2}{3 \cdot 4}+\frac{3}{4 \cdot 5}+\frac{4}{5 \cdot 6}+\frac{5}{6 \cdot 7}+\cdots\)
3. \(3-\frac{9}{2}+\frac{27}{4}-\frac{81}{8}+\frac{243}{16}-\cdots\)
4. \(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\cdots\).
5. \(\sum_{n=1}^{\infty} \frac{3}{2^{n-1}}\)
6. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}\)

In Exercises 7 and 8, determine whether \(\left\{a_{n}\right\}\) and \(\sum a_{n}\) are convergent.
7. \(a_{n}=\frac{n+1}{n}\)
8. \(a_{n}=3\left(\frac{4}{5}\right)^{n}\)

In Exercises 9-18, verify that the infinite series diverges.
9. \(\sum_{n=0}^{\infty}\left(\frac{7}{6}\right)^{n}\)
10. \(\sum_{n=0}^{\infty} 5\left(\frac{11}{10}\right)^{n}\)
11. \(\sum_{n=0}^{\infty} 1000(1.055)^{n}\)
12. \(\sum_{n=0}^{\infty} 2(-1.03)^{n}\)
13. \(\sum_{n=1}^{\infty} \frac{n}{n+1}\)
14. \(\sum_{n=1}^{\infty} \frac{n}{2 n+3}\)
15. \(\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1}\)
16. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}\)
17. \(\sum_{n=1}^{\infty} \frac{2^{n}+1}{2^{n+1}}\)
18. \(\sum_{n=1}^{\infty} \frac{n!}{2^{n}}\)

In Exercises 19-24, match the series with the graph of its sequence of partial sums. [The graphs are labeled (a), (b), (c), (d), (e), and (f).] Use the graph to estimate the sum of the series. Confirm your answer analytically.
(a)

(b)

(c)

(d)

(e)

(f)

19. \(\sum_{n=0}^{\infty} \frac{9}{4}\left(\frac{1}{4}\right)^{n}\)
20. \(\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}\)
21. \(\sum_{n=0}^{\infty} \frac{15}{4}\left(-\frac{1}{4}\right)^{n}\)
22. \(\sum_{n=0}^{\infty} \frac{17}{3}\left(-\frac{8}{9}\right)^{n}\)
23. \(\sum_{n=0}^{\infty} \frac{17}{3}\left(-\frac{1}{2}\right)^{n}\)
24. \(\sum_{n=0}^{\infty}\left(\frac{2}{5}\right)^{n}\)

In Exercises 25-30, verify that the infinite series converges.
25. \(\sum_{n=0}^{\infty}\left(\frac{5}{6}\right)^{n}\)
26. \(\sum_{n=1}^{\infty} 2\left(-\frac{1}{2}\right)^{n}\)
27. \(\sum_{n=0}^{\infty}(0.9)^{n}=1+0.9+0.81+0.729+\cdots\).
28. \(\sum_{n=0}^{\infty}(-0.6)^{n}=1-0.6+0.36-0.216+\cdots\).
29. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) (Use partial fractions.)
30. \(\sum_{n=1}^{\infty} \frac{1}{n(n+2)}\) (Use partial fractions.)

Numerical, Graphical, and Analytic Analysis In Exercises 31-36, (a) find the sum of the series, (b) use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table, (c) use a graphing utility to graph the first 10 terms of the sequence of partial sums and a horizontal line representing the sum, and (d) explain the relationship between the magnitudes of the terms of the series and the rate at which the sequence of partial sums approaches the sum of the series.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 20 & 50 & 100 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
31. \(\sum_{n=1}^{\infty} \frac{6}{n(n+3)}\)
32. \(\sum_{n=1}^{\infty} \frac{4}{n(n+4)}\)
33. \(\sum_{n=1}^{\infty} 2(0.9)^{n-1}\)
34. \(\sum_{n=1}^{\infty} 3(0.85)^{n-1}\)
35. \(\sum_{n=1}^{\infty} 10(0.25)^{n-1}\)
36. \(\sum_{n=1}^{\infty} 5\left(-\frac{1}{3}\right)^{n-1}\)

In Exercises 37-52, find the sum of the convergent series.
37. \(\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}\)
38. \(\sum_{n=0}^{\infty} 6\left(\frac{4}{5}\right)^{n}\)
39. \(\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n}\)
40. \(\sum_{n=0}^{\infty} 3\left(-\frac{6}{7}\right)^{n}\)
41. \(\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}\)
42. \(\sum_{n=1}^{\infty} \frac{4}{n(n+2)}\)
43. \(\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+2)}\)
44. \(\sum_{n=1}^{\infty} \frac{1}{(2 n+1)(2 n+3)}\)
45. \(1+0.1+0.01+0.001+\cdots \cdot\)
46. \(8+6+\frac{9}{2}+\frac{27}{8}+\cdots\).
47. \(3-1+\frac{1}{3}-\frac{1}{9}+\cdots\).
48. \(4-2+1-\frac{1}{2}+\cdots\).
49. \(\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}-\frac{1}{3^{n}}\right)\)
50. \(\sum_{n=1}^{\infty}\left[(0.7)^{n}+(0.9)^{n}\right]\)
51. \(\sum_{n=1}^{\infty}(\sin 1)^{n}\)
52. \(\sum_{n=1}^{\infty} \frac{1}{9 n^{2}+3 n-2}\)

In Exercises 53-58, (a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers.
53. \(0 . \overline{4}\)
54. \(0 . \overline{9}\)
55. \(0 . \overline{81}\)
56. \(0 . \overline{01}\)
57. \(0.0 \overline{75}\)
58. \(0.2 \overline{15}\)

In Exercises 59-76, determine the convergence or divergence of the series.
59. \(\sum_{n=0}^{\infty}(1.075)^{n}\)
60. \(\sum_{n=0}^{\infty} \frac{3^{n}}{1000}\)
61. \(\sum_{n=1}^{\infty} \frac{n+10}{10 n+1}\)
62. \(\sum_{n=1}^{\infty} \frac{4 n+1}{3 n-1}\)
63. \(\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)
64. \(\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)
65. \(\sum_{n=1}^{\infty} \frac{1}{n(n+3)}\)
66. \(\sum_{n=1}^{\infty}\left(\frac{1}{2 n(n+1)}\right)\)
67. \(\sum_{n=1}^{\infty} \frac{3 n-1}{2 n+1}\)
68. \(\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}\)
69. \(\sum_{n=0}^{\infty} \frac{4}{2^{n}}\)
70. \(\sum_{n=0}^{\infty} \frac{3}{5^{n}}\)
71. \(\sum_{n=2}^{\infty} \frac{n}{\ln n}\)
72. \(\sum_{n=1}^{\infty} \ln \frac{1}{n}\)
73. \(\sum_{n=1}^{\infty}\left(1+\frac{k}{n}\right)^{n}\)
74. \(\sum_{n=1}^{\infty} e^{-n}\)
75. \(\sum_{n=1}^{\infty} \arctan n\)
76. \(\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)\)

\section*{WRITING ABOUT CONCEPTS}
77. State the definitions of convergent and divergent series.
78. Describe the difference between \(\lim _{n \rightarrow \infty} a_{n}=5\) and
\[
\sum_{n=1}^{\infty} a_{n}=5 .
\]
79. Define a geometric series, state when it converges, and give the formula for the sum of a convergent geometric series.
80. State the \(n\) th-Term Test for Divergence.

\section*{WRITING ABOUT CONCEPTS (continued)}
81. Explain any differences among the following series.
(a) \(\sum_{n=1}^{\infty} a_{n}\)
(b) \(\sum_{k=1}^{\infty} a_{k}\)
(c) \(\sum_{n=1}^{\infty} a_{k}\)
82. (a) You delete a finite number of terms from a divergent series. Will the new series still diverge? Explain your reasoning.
(b) You add a finite number of terms to a convergent series. Will the new series still converge? Explain your reasoning.

In Exercises 83-90, find all values of \(x\) for which the series converges. For these values of \(x\), write the sum of the series as a function of \(x\).
83. \(\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}\)
84. \(\sum_{n=1}^{\infty}(3 x)^{n}\)
85. \(\sum_{n=1}^{\infty}(x-1)^{n}\)
86. \(\sum_{n=0}^{\infty} 4\left(\frac{x-3}{4}\right)^{n}\)
87. \(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\)
88. \(\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}\)
89. \(\sum_{n=0}^{\infty}\left(\frac{1}{x}\right)^{n}\)
90. \(\sum_{n=1}^{\infty}\left(\frac{x^{2}}{x^{2}+4}\right)^{n}\)

In Exercises 91 and 92, find the value of \(\boldsymbol{c}\) for which the series equals the indicated sum.
91. \(\sum_{n=2}^{\infty}(1+c)^{-n}=2\)
92. \(\sum_{n=0}^{\infty} e^{c n}=5\)
93. Think About It Consider the formula
\(\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \cdot\)
Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning.
(a) \(\frac{1}{2}=1-1+1-1+\cdots\).
(b) \(-1=1+2+4+8+\cdots \cdot\)

\section*{CAPSTONE}
94. Think About It Are the following statements true? Why or why not?
(a) Because \(\frac{1}{n^{4}}\) approaches 0 as \(n\) approaches \(\infty\),
\[
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=0
\]
(b) Because \(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[4]{n}}=0\), the series \(\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}\) converges.

In Exercises 95 and 96, (a) find the common ratio of the geometric series, (b) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5}\). What do you notice?
95. \(1+x+x^{2}+x^{3}+\cdots \quad 96.1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots\).

In Exercises 97 and 98, use a graphing utility to graph the function. Identify the horizontal asymptote of the graph and determine its relationship to the sum of the series.
\(\begin{array}{cc}\frac{\text { Function }}{} & \text { Series } \\ \text { 97. } f(x)=3\left[\frac{1-(0.5)^{x}}{1-0.5}\right] & \sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n} \\ \text { 98. } f(x)=2\left[\frac{1-(0.8)^{x}}{1-0.8}\right] & \sum_{n=0}^{\infty} 2\left(\frac{4}{5}\right)^{n}\end{array}\)
Writing In Exercises 99 and 100, use a graphing utility to determine the first term that is less than 0.0001 in each of the convergent series. Note that the answers are very different. Explain how this will affect the rate at which the series converges.
99. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}, \quad \sum_{n=1}^{\infty}\left(\frac{1}{8}\right)^{n}\)
100. \(\sum_{n=1}^{\infty} \frac{1}{2^{n}}, \quad \sum_{n=1}^{\infty}(0.01)^{n}\)
101. Marketing An electronic games manufacturer producing a new product estimates the annual sales to be 8000 units. Each year \(5 \%\) of the units that have been sold will become inoperative. So, 8000 units will be in use after 1 year, \([8000+0.95(8000)]\) units will be in use after 2 years, and so on. How many units will be in use after \(n\) years?
102. Depreciation A company buys a machine for \(\$ 475,000\) that depreciates at a rate of \(30 \%\) per year. Find a formula for the value of the machine after \(n\) years. What is its value after 5 years?
103. Multiplier Effect The total annual spending by tourists in a resort city is \(\$ 200\) million. Approximately \(75 \%\) of that revenue is again spent in the resort city, and of that amount approximately \(75 \%\) is again spent in the same city, and so on. Write the geometric series that gives the total amount of spending generated by the \(\$ 200\) million and find the sum of the series.
104. Multiplier Effect Repeat Exercise 103 if the percent of the revenue that is spent again in the city decreases to \(60 \%\).
105. Distance A ball is dropped from a height of 16 feet. Each time it drops \(h\) feet, it rebounds \(0.81 h\) feet. Find the total distance traveled by the ball.
106. Time The ball in Exercise 105 takes the following times for each fall.
\[
\begin{aligned}
s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\
s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\
s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\
s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \\
\vdots & \vdots \\
s_{n}=-16 t^{2}+16(0.81)^{n-1}, & s_{n}=0 \text { if } t=(0.9)^{n-1}
\end{aligned}
\]

Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\). Find this total time.

Probability In Exercises 107 and 108, the random variable \(n\) represents the number of units of a product sold per day in a store. The probability distribution of \(n\) is given by \(P(n)\). Find the probability that two units are sold in a given day \([P(2)]\) and show that \(P(0)+P(1)+P(2)+P(3)+\cdots=1\).
107. \(P(n)=\frac{1}{2}\left(\frac{1}{2}\right)^{n}\)
108. \(P(n)=\frac{1}{3}\left(\frac{2}{3}\right)^{n}\)
109. Probability A fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\)th toss is given by \(P(n)=\left(\frac{1}{2}\right)^{n}\), where \(n \geq 1\).
(a) Show that \(\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1\).
(b) The expected number of tosses required until the first head occurs in the experiment is given by \(\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}\). Is this series geometric?
CAS (c) Use a computer algebra system to find the sum in part (b).
110. Probability In an experiment, three people toss a fair coin one at a time until one of them tosses a head. Determine, for each person, the probability that he or she tosses the first head. Verify that the sum of the three probabilities is 1.
111. Area The sides of a square are 16 inches in length. A new square is formed by connecting the midpoints of the sides of the original square, and two of the triangles outside the second square are shaded (see figure). Determine the area of the shaded regions (a) if this process is continued five more times and (b) if this pattern of shading is continued infinitely.


Figure for 111


Figure for 112
112. Length A right triangle \(X Y Z\) is shown above where \(|X Y|=z\) and \(\angle X=\theta\). Line segments are continually drawn to be perpendicular to the triangle, as shown in the figure.
(a) Find the total length of the perpendicular line segments \(\left|Y y_{1}\right|+\left|x_{1} y_{1}\right|+\left|x_{1} y_{2}\right|+\cdots\) in terms of \(z\) and \(\theta\).
(b) If \(z=1\) and \(\theta=\pi / 6\), find the total length of the perpendicular line segments.

In Exercises 113-116, use the formula for the \(\boldsymbol{n}\) th partial sum of a geometric series
\(\sum_{i=0}^{n-1} a r^{i}=\frac{a\left(1-r^{n}\right)}{1-r}\).
113. Present Value The winner of a \(\$ 2,000,000\) sweepstakes will be paid \(\$ 100,000\) per year for 20 years. The money earns \(6 \%\) interest per year. The present value of the winnings is \(\sum_{n=1}^{20} 100,000\left(\frac{1}{1.06}\right)^{n}\). Compute the present value and interpret its meaning.
114. Sphereflake The sphereflake shown below is a computergenerated fractal that was created by Eric Haines. The radius of the large sphere is 1 . To the large sphere, nine spheres of radius \(\frac{1}{3}\) are attached. To each of these, nine spheres of radius \(\frac{1}{9}\) are attached. This process is continued infinitely. Prove that the sphereflake has an infinite surface area.

115. Salary You go to work at a company that pays \(\$ 0.01\) for the first day, \(\$ 0.02\) for the second day, \(\$ 0.04\) for the third day, and so on. If the daily wage keeps doubling, what would your total income be for working (a) 29 days, (b) 30 days, and (c) 31 days?
116. Annuities When an employee receives a paycheck at the end of each month, \(P\) dollars is invested in a retirement account. These deposits are made each month for \(t\) years and the account earns interest at the annual percentage rate \(r\). If the interest is compounded monthly, the amount \(A\) in the account at the end of \(t\) years is
\[
\begin{aligned}
A & =P+P\left(1+\frac{r}{12}\right)+\cdots+P\left(1+\frac{r}{12}\right)^{12 t-1} \\
& =P\left(\frac{12}{r}\right)\left[\left(1+\frac{r}{12}\right)^{12 t}-1\right]
\end{aligned}
\]

If the interest is compounded continuously, the amount \(A\) in the account after \(t\) years is
\[
\begin{aligned}
A & =P+P e^{r / 12}+P e^{2 r / 12}+P e^{(12 t-1) r / 12} \\
& =\frac{P\left(e^{r t}-1\right)}{e^{r / 12}-1}
\end{aligned}
\]

Verify the formulas for the sums given above.
Annuities In Exercises 117-120, consider making monthly deposits of \(P\) dollars in a savings account at an annual interest rate \(r\). Use the results of Exercise 116 to find the balance \(A\) after \(t\) years if the interest is compounded (a) monthly and (b) continuously.
117. \(P=\$ 45, \quad r=3 \%, \quad t=20\) years
118. \(P=\$ 75, \quad r=5.5 \%, \quad t=25\) years
119. \(P=\$ 100, r=4 \%, \quad t=35\) years
120. \(P=\$ 30, \quad r=6 \%, t=50\) years
121. Salary You accept a job that pays a salary of \(\$ 50,000\) for the first year. During the next 39 years you receive a \(4 \%\) raise each year. What would be your total compensation over the 40-year period?
122. Salary Repeat Exercise 121 if the raise you receive each year is \(4.5 \%\). Compare the results.

True or False? In Exercises 123-128, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
123. If \(\lim _{n \rightarrow \infty} a_{n}=0\), then \(\sum_{n=1}^{\infty} a_{n}\) converges.
124. If \(\sum_{n=1}^{\infty} a_{n}=L\), then \(\sum_{n=0}^{\infty} a_{n}=L+a_{0}\).
125. If \(|r|<1\), then \(\sum_{n=1}^{\infty} a r^{n}=\frac{a}{(1-r)}\).
126. The series \(\sum_{n=1}^{\infty} \frac{n}{1000(n+1)}\) diverges.
127. \(0.75=0.749999\). . .
128. Every decimal with a repeating pattern of digits is a rational number.
129. Show that the series \(\sum_{n=1}^{\infty} a_{n}\) can be written in the telescoping form
\(\sum_{n=1}^{\infty}\left[\left(c-S_{n-1}\right)-\left(c-S_{n}\right)\right]\)
where \(S_{0}=0\) and \(S_{n}\) is the \(n\)th partial sum.
130. Let \(\sum a_{n}\) be a convergent series, and let
\(R_{N}=a_{N+1}+a_{N+2}+\cdots\).
be the remainder of the series after the first \(N\) terms. Prove that \(\lim _{N \rightarrow \infty} R_{N}=0\).
131. Find two divergent series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\Sigma\left(a_{n}+b_{n}\right)\) converges.
132. Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\Sigma b_{n}\) diverges, prove that \(\Sigma\left(a_{n}+b_{n}\right)\) diverges.
133. Suppose that \(\sum a_{n}\) diverges and \(c\) is a nonzero constant. Prove that \(\sum c a_{n}\) diverges.
134. If \(\sum_{n=1}^{\infty} a_{n}\) converges where \(a_{n}\) is nonzero, show that \(\sum_{n=1}^{\infty} \frac{1}{a_{n}}\) diverges.
135. The Fibonacci sequence is defined recursively by \(a_{n+2}=a_{n}+a_{n+1}\), where \(a_{1}=1\) and \(a_{2}=1\).
(a) Show that \(\frac{1}{a_{n+1} a_{n+3}}=\frac{1}{a_{n+1} a_{n+2}}-\frac{1}{a_{n+2} a_{n+3}}\).
(b) Show that \(\sum_{n=0}^{\infty} \frac{1}{a_{n+1} a_{n+3}}=1\).
136. Find the values of \(x\) for which the infinite series
\(1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}+\cdots \cdot\)
converges. What is the sum when the series converges?
137. Prove that \(\frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\cdots=\frac{1}{r-1}\), for \(|r|>1\).
138. Find the sum of the series \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}\).

Hint: Find the constants \(A, B\), and \(C\) such that \(\frac{1}{n(n+1)(n+2)}=\frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+2}\).
139. (a) The integrand of each definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral.
\[
\int_{0}^{1}(1-x) d x \quad \int_{0}^{1}\left(x-x^{2}\right) d x \quad \int_{0}^{1}\left(x^{2}-x^{3}\right) d x
\]
(b) Find the area of each region in part (a).
(c) Let \(a_{n}=\int_{0}^{1}\left(x^{n-1}-x^{n}\right) d x\). Evaluate \(a_{n}\) and \(\sum_{n=1}^{\infty} a_{n}\). What do you observe?
140. Writing The figure below represents an informal way of showing that \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}<2\). Explain how the figure implies this conclusion.


FOR FURTHER INFORMATION For more on this exercise, see the article "Convergence with Pictures" by P.J. Rippon in American Mathematical Monthly.
141. Writing Read the article "The Exponential-Decay Law Applied to Medical Dosages" by Gerald M. Armstrong and Calvin P. Midgley in Mathematics Teacher. (To view this article, go to the website \(w w w\).matharticles.com.) Then write a paragraph on how a geometric sequence can be used to find the total amount of a drug that remains in a patient's system after \(n\) equal doses have been administered (at equal time intervals).

\section*{PUTNAM EXAM CHALLENGE}
142. Write \(\sum_{k=1}^{\infty} \frac{6^{k}}{\left(3^{k+1}-2^{k+1}\right)\left(3^{k}-2^{k}\right)}\) as a rational number.
143. Let \(f(n)\) be the sum of the first \(n\) terms of the sequence 0 , \(1,1,2,2,3,3,4, \ldots\), where the \(n\)th term is given by \(a_{n}=\left\{\begin{array}{cc}n / 2, & \text { if } n \text { is even } \\ (n-1) / 2, & \text { if } n \text { is odd }\end{array}\right.\).
Show that if \(x\) and \(y\) are positive integers and \(x>y\) then \(x y=f(x+y)-f(x-y)\).
These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{Cantor's Disappearing Table}

The following procedure shows how to make a table disappear by removing only half of the table!
(a) Original table has a length of \(L\).

(b) Remove \(\frac{1}{4}\) of the table centered at the midpoint. Each remaining piece has a length that is less than \(\frac{1}{2} L\).

(c) Remove \(\frac{1}{8}\) of the table by taking sections of length \(\frac{1}{16} L\) from the centers of each of the two remaining pieces. Now, you have removed \(\frac{1}{4}+\frac{1}{8}\) of the table. Each remaining piece has a length that is less than \(\frac{1}{4} L\).

(d) Remove \(\frac{1}{16}\) of the table by taking sections of length \(\frac{1}{64} L\) from the centers of each of the four remaining pieces. Now, you have removed \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\) of the table. Each remaining piece has a length that is less than \(\frac{1}{8} L\).


Will continuing this process cause the table to disappear, even though you have only removed half of the table? Why?

FOR FURTHER INFORMATION Read the article "Cantor's Disappearing Table" by Larry E. Knop in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\subsection*{9.3 The Integral Test and \(p\)-Series}
- Use the Integral Test to determine whether an infinite series converges or diverges.
- Use properties of \(p\)-series and harmonic series.

\section*{The Integral Test}

In this and the following section, you will study several convergence tests that apply to series with positive terms.

\section*{THEOREM 9.10 THE INTEGRAL TEST}

If \(f\) is positive, continuous, and decreasing for \(x \geq 1\) and \(a_{n}=f(n)\), then
\[
\sum_{n=1}^{\infty} a_{n} \text { and } \int_{1}^{\infty} f(x) d x
\]
either both converge or both diverge.

PROOF Begin by partitioning the interval \([1, n]\) into \(n-1\) unit intervals, as shown in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed rectangles are as follows.
\[
\begin{array}{ll}
\sum_{i=2}^{n} f(i)=f(2)+f(3)+\cdots+f(n) & \text { Inscribed area } \\
\sum_{i=1}^{n-1} f(i)=f(1)+f(2)+\cdots+f(n-1) & \text { Circumscribed area }
\end{array}
\]

The exact area under the graph of \(f\) from \(x=1\) to \(x=n\) lies between the inscribed and circumscribed areas.
\[
\sum_{i=2}^{n} f(i) \leq \int_{1}^{n} f(x) d x \leq \sum_{i=1}^{n-1} f(i)
\]

Using the \(n\)th partial sum, \(S_{n}=f(1)+f(2)+\cdots+f(n)\), you can write this inequality as
\[
S_{n}-f(1) \leq \int_{1}^{n} f(x) d x \leq S_{n-1}
\]

Now, assuming that \(\int_{1}^{\infty} f(x) d x\) converges to \(L\), it follows that for \(n \geq 1\)
\[
S_{n}-f(1) \leq L \quad \square \quad S_{n} \leq L+f(1)
\]

Consequently, \(\left\{S_{n}\right\}\) is bounded and monotonic, and by Theorem 9.5 it converges. So, \(\sum a_{n}\) converges. For the other direction of the proof, assume that the improper integral diverges. Then \(\int_{1}^{n} f(x) d x\) approaches infinity as \(n \rightarrow \infty\), and the inequality \(S_{n-1} \geq \int_{1}^{n} f(x) d x\) implies that \(\left\{S_{n}\right\}\) diverges. So, \(\sum a_{n}\) diverges.

NOTE Remember that the convergence or divergence of \(\sum a_{n}\) is not affected by deleting the first \(N\) terms. Similarly, if the conditions for the Integral Test are satisfied for all \(x \geq N>1\), you can simply use the integral \(\int_{N}^{\infty} f(x) d x\) to test for convergence or divergence. (This is illustrated in Example 4.)

\section*{EXAMPLE 1 Using the Integral Test}

Apply the Integral Test to the series \(\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}\).
Solution The function \(f(x)=x /\left(x^{2}+1\right)\) is positive and continuous for \(x \geq 1\). To determine whether \(f\) is decreasing, find the derivative.
\[
f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}
\]

So, \(f^{\prime}(x)<0\) for \(x>1\) and it follows that \(f\) satisfies the conditions for the Integral Test. You can integrate to obtain
\[
\begin{aligned}
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int_{1}^{\infty} \frac{2 x}{x^{2}+1} d x \\
& =\frac{1}{2} \lim _{b \rightarrow \infty} \int_{1}^{b} \frac{2 x}{x^{2}+1} d x \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left[\ln \left(x^{2}+1\right)\right]_{1}^{b} \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left[\ln \left(b^{2}+1\right)-\ln 2\right] \\
& =\infty
\end{aligned}
\]

So, the series diverges.


Because the improper integral converges, the infinite series also converges.
Figure 9.9

\section*{EXAMPLE 2 Using the Integral Test}

Apply the Integral Test to the series \(\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}\).
Solution Because \(f(x)=1 /\left(x^{2}+1\right)\) satisfies the conditions for the Integral Test (check this), you can integrate to obtain
\[
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}+1} d x \\
& =\lim _{b \rightarrow \infty}[\arctan x]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}(\arctan b-\arctan 1) \\
& =\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
\]

So, the series converges (see Figure 9.9).

TECHNOLOGY In Example 2, the fact that the improper integral converges to \(\pi / 4\) does not imply that the infinite series converges to \(\pi / 4\). To approximate the sum of the series, you can use the inequality
\[
\sum_{n=1}^{N} \frac{1}{n^{2}+1} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \leq \sum_{n=1}^{N} \frac{1}{n^{2}+1}+\int_{N}^{\infty} \frac{1}{x^{2}+1} d x
\]
(See Exercise 68.) The larger the value of \(N\), the better the approximation. For instance, using \(N=200\) produces \(1.072 \leq \Sigma 1 /\left(n^{2}+1\right) \leq 1.077\).

\section*{HARMONIC SERIES}

Pythagoras and his students paid close attention to the development of music as an abstract science. This led to the discovery of the relationship between the tone and the length of the vibrating string. It was observed that the most beautiful musical harmonies corresponded to the simplest ratios of whole numbers. Later mathematicians developed this idea into the harmonic series, where the terms in the harmonic series correspond to the nodes on a vibrating string that produce multiples of the fundamental frequency. For example, \(\frac{1}{2}\) is twice the fundamental frequency, \(\frac{1}{3}\) is three times the fundamental frequency, and so on.

NOTE The sum of the series in Example 3(b) can be shown to be \(\pi^{2} / 6\). (This was proved by Leonhard Euler, but the proof is too difficult to present here.) Be sure you see that the Integral Test does not tell you that the sum of the series is equal to the value of the integral. For instance, the sum of the series in Example 3(b) is
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \approx 1.645
\]
but the value of the corresponding improper integral is
\[
\int_{1}^{\infty} \frac{1}{x^{2}} d x=1
\]

\section*{\(p\)-Series and Harmonic Series}

In the remainder of this section, you will investigate a second type of series that has a simple arithmetic test for convergence or divergence. A series of the form
\[
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots \quad \quad p \text {-series }
\]
is a \(\boldsymbol{p}\)-series, where \(p\) is a positive constant. For \(p=1\), the series
\[
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots
\]

Harmonic series
is the harmonic series. A general harmonic series is of the form \(\Sigma 1 /(a n+b)\). In music, strings of the same material, diameter, and tension, whose lengths form a harmonic series, produce harmonic tones.

The Integral Test is convenient for establishing the convergence or divergence of \(p\)-series. This is shown in the proof of Theorem 9.11.

\section*{THEOREM 9.11 CONVERGENCE OF \(\boldsymbol{p}\)-SERIES}

The \(p\)-series
\[
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots
\]
1. converges if \(p>1\), and
2. diverges if \(0<p \leq 1\).

PR00F The proof follows from the Integral Test and from Theorem 8.5, which states that
\[
\int_{1}^{\infty} \frac{1}{x^{p}} d x
\]
converges if \(p>1\) and diverges if \(0<p \leq 1\).

\section*{EXAMPLE 3 Convergent and Divergent \(p\)-Series}

Discuss the convergence or divergence of (a) the harmonic series and (b) the \(p\)-series with \(p=2\).

\section*{Solution}
a. From Theorem 9.11, it follows that the harmonic series
\[
\sum_{n=1}^{\infty} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots \quad p=1
\]
diverges.
b. From Theorem 9.11, it follows that the \(p\)-series
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \quad p=2
\]
converges.

\section*{EXAMPLE 4 Testing a Series for Convergence}

Determine whether the following series converges or diverges.
\[
\sum_{n=2}^{\infty} \frac{1}{n \ln n}
\]

Solution This series is similar to the divergent harmonic series. If its terms were larger than those of the harmonic series, you would expect it to diverge. However, because its terms are smaller, you are not sure what to expect. The function \(f(x)=1 /(x \ln x)\) is positive and continuous for \(x \geq 2\). To determine whether \(f\) is decreasing, first rewrite \(f\) as \(f(x)=(x \ln x)^{-1}\) and then find its derivative.
\[
f^{\prime}(x)=(-1)(x \ln x)^{-2}(1+\ln x)=-\frac{1+\ln x}{x^{2}(\ln x)^{2}}
\]

So, \(f^{\prime}(x)<0\) for \(x>2\) and it follows that \(f\) satisfies the conditions for the Integral Test.
\[
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \ln x} d x & =\int_{2}^{\infty} \frac{1 / x}{\ln x} d x \\
& =\lim _{b \rightarrow \infty}[\ln (\ln x)]_{2}^{b} \\
& =\lim _{b \rightarrow \infty}[\ln (\ln b)-\ln (\ln 2)]=\infty
\end{aligned}
\]

The series diverges.

NOTE The infinite series in Example 4 diverges very slowly. For instance, the sum of the first 10 terms is approximately 1.6878196 , whereas the sum of the first 100 terms is just slightly larger: 2.3250871. In fact, the sum of the first 10,000 terms is approximately 3.015021704.You can see that although the infinite series "adds up to infinity," it does so very slowly.

\subsection*{9.3 Exercises}

In Exercises 1-24, confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.
1. \(\sum_{n=1}^{\infty} \frac{1}{n+3}\)
2. \(\sum_{n=1}^{\infty} \frac{2}{3 n+5}\)
3. \(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\)
4. \(\sum_{n=1}^{\infty} 3^{-n}\)
5. \(\sum_{n=1}^{\infty} e^{-n}\)
6. \(\sum_{n=1}^{\infty} n e^{-n / 2}\)
7. \(\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\frac{1}{26}+\cdots\).
8. \(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\cdots\).
9. \(\frac{\ln 2}{2}+\frac{\ln 3}{3}+\frac{\ln 4}{4}+\frac{\ln 5}{5}+\frac{\ln 6}{6}+\cdots\).
10. \(\frac{\ln 2}{\sqrt{2}}+\frac{\ln 3}{\sqrt{3}}+\frac{\ln 4}{\sqrt{4}}+\frac{\ln 5}{\sqrt{5}}+\frac{\ln 6}{\sqrt{6}}+\cdots\)
11. \(\frac{1}{\sqrt{1}(\sqrt{1}+1)}+\frac{1}{\sqrt{2}(\sqrt{2}+1)}+\frac{1}{\sqrt{3}(\sqrt{3}+1)}\)
\(+\cdots+\frac{1}{\sqrt{n}(\sqrt{n}+1)}+\cdots\)
12. \(\frac{1}{4}+\frac{2}{7}+\frac{3}{12}+\cdots+\frac{n}{n^{2}+3}+\cdots\).
13. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}\)
14. \(\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}\)
15. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}\)
16. \(\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}\)
17. \(\sum_{n=1}^{\infty} \frac{\arctan n}{n^{2}+1}\)
18. \(\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln (\ln n)}\)
19. \(\sum_{n=1}^{\infty} \frac{1}{(2 n+3)^{3}}\)
20. \(\sum_{n=1}^{\infty} \frac{n+2}{n+1}\)
21. \(\sum_{n=1}^{\infty} \frac{4 n}{2 n^{2}+1}\)
22. \(\sum_{n=1}^{\infty} \frac{n}{n^{4}+1}\)
23. \(\sum_{n=1}^{\infty} \frac{n}{(4 n+5)^{3 / 2}}\)
24. \(\sum_{n=1}^{\infty} \frac{n}{n^{4}+2 n^{2}+1}\)

In Exercises 25 and 26, use the Integral Test to determine the convergence or divergence of the series, where \(k\) is a positive integer.
25. \(\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^{k}+c}\)
26. \(\sum_{n=1}^{\infty} n^{k} e^{-n}\)

In Exercises 27-30, explain why the Integral Test does not apply to the series.
27. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\)
28. \(\sum_{n=1}^{\infty} e^{-n} \cos n\)
29. \(\sum_{n=1}^{\infty} \frac{2+\sin n}{n}\)
30. \(\sum_{n=1}^{\infty}\left(\frac{\sin n}{n}\right)^{2}\)

In Exercises 31-34, use the Integral Test to determine the convergence or divergence of the \(\boldsymbol{p}\)-series.
31. \(\sum_{n=1}^{\infty} \frac{1}{n^{3}}\)
32. \(\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}}\)
33. \(\sum_{n=1}^{\infty} \frac{1}{n^{1 / 4}}\)
34. \(\sum_{n=1}^{\infty} \frac{1}{n^{4}}\)

In Exercises 35-42, use Theorem 9.11 to determine the convergence or divergence of the \(p\)-series.
35. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}\)
36. \(\sum_{n=1}^{\infty} \frac{3}{n^{5 / 3}}\)
37. \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots\)
38. \(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots\).
39. \(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{1}{4 \sqrt{4}}+\frac{1}{5 \sqrt{5}}+\cdots\)
40. \(1+\frac{1}{\sqrt[3]{4}}+\frac{1}{\sqrt[3]{9}}+\frac{1}{\sqrt[3]{16}}+\frac{1}{\sqrt[3]{25}}+\cdots\)
41. \(\sum_{n=1}^{\infty} \frac{1}{n^{1.04}}\)
42. \(\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}\)

In Exercises 43-48, match the series with the graph of its sequence of partial sums. [The graphs are labeled (a), (b), (c), (d), (e), and (f).] Determine the convergence or divergence of the series.
(a)

(b)

(c)

(e)

43. \(\sum_{n=1}^{\infty} \frac{2}{\sqrt[4]{n^{3}}}\)
45. \(\sum_{n=1}^{\infty} \frac{2}{\sqrt{n^{\pi}}}\)
47. \(\sum_{n=1}^{\infty} \frac{2}{n \sqrt{n}}\)
44. \(\sum_{n=1}^{\infty} \frac{2}{n}\)
46. \(\sum_{n=1}^{\infty} \frac{2}{\sqrt[5]{n^{2}}}\)
(d)

(f)

48. \(\sum_{n=1}^{\infty} \frac{2}{n^{2}}\)
49. Numerical and Graphical Analysis Use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table. Then use a graphing utility to graph the first 10 terms of the sequence of partial sums. For each series, compare the rate at which the sequence of partial sums approaches the sum of the series.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 20 & 50 & 100 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
(a) \(\sum_{n=1}^{\infty} 3\left(\frac{1}{5}\right)^{n-1}=\frac{15}{4}\)
(b) \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\)
50. Numerical Reasoning Because the harmonic series diverges, it follows that for any positive real number \(M\) there exists a positive integer \(N\) such that the partial sum
\(\sum_{n=1}^{N} \frac{1}{n}>M\).
(a) Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(M\) & 2 & 4 & 6 & 8 \\
\hline\(N\) & & & & \\
\hline
\end{tabular}
(b) As the real number \(M\) increases in equal increments, does the number \(N\) increase in equal increments? Explain.

\section*{WRITING ABOUT CONCEPTS}
51. State the Integral Test and give an example of its use.
52. Define a \(p\)-series and state the requirements for its convergence.
53. A friend in your calculus class tells you that the following series converges because the terms are very small and approach 0 rapidly. Is your friend correct? Explain.
\(\frac{1}{10,000}+\frac{1}{10,001}+\frac{1}{10,002}+\cdots\)
54. In Exercises 43-48, \(\lim _{n \rightarrow \infty} a_{n}=0\) for each series, but they do not all converge. Is this a contradiction of Theorem 9.9? Why do you think some converge and others diverge? Explain.
55. Let \(f\) be a positive, continuous, and decreasing function for \(x \geq 1\), such that \(a_{n}=f(n)\). Use a graph to rank the following quantities in decreasing order. Explain your reasoning.
(a) \(\sum_{n=2}^{7} a_{n}\)
(b) \(\int_{1}^{7} f(x) d x\)
(c) \(\sum_{n=1}^{6} a_{n}\)

\section*{CAPSTONE}
56. Use a graph to show that the inequality is true. What can you conclude about the convergence or divergence of the series? Explain.
(a) \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}>\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x\)
(b) \(\sum_{n=2}^{\infty} \frac{1}{n^{2}}<\int_{1}^{\infty} \frac{1}{x^{2}} d x\)

In Exercises 57-62, find the positive values of \(p\) for which the series converges.
57. \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}\)
58. \(\sum_{n=2}^{\infty} \frac{\ln n}{n^{p}}\)
59. \(\sum_{n=1}^{\infty} \frac{n}{\left(1+n^{2}\right)^{p}}\)
60. \(\sum_{n=1}^{\infty} n\left(1+n^{2}\right)^{p}\)
61. \(\sum_{n=1}^{\infty} \frac{1}{p^{n}}\)
62. \(\sum_{n=3}^{\infty} \frac{1}{n \ln n[\ln (\ln n)]^{p}}\)

In Exercises 63-66, use the result of Exercise 57 to determine the convergence or divergence of the series.
63. \(\sum_{n=2}^{\infty} \frac{1}{n \ln n}\)
64. \(\sum_{n=2}^{\infty} \frac{1}{n \sqrt[3]{(\ln n)^{2}}}\)
65. \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}\)
66. \(\sum_{n=2}^{\infty} \frac{1}{n \ln \left(n^{2}\right)}\)
67. Let \(f\) be a positive, continuous, and decreasing function for \(x \geq 1\), such that \(a_{n}=f(n)\). Prove that if the series \(\sum_{n=1}^{\infty} a_{n}\)
converges to \(S\), then the remainder \(R_{N}=S-S_{N}\) is bounded by
\[
0 \leq R_{N} \leq \int_{N}^{\infty} f(x) d x
\]
68. Show that the result of Exercise 67 can be written as
\[
\sum_{n=1}^{N} a_{n} \leq \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{N} a_{n}+\int_{N}^{\infty} f(x) d x .
\]

In Exercises 69-74, use the result of Exercise 67 to approximate the sum of the convergent series using the indicated number of terms. Include an estimate of the maximum error for your approximation.
69. \(\sum_{n=1}^{\infty} \frac{1}{n^{4}}\), six terms
70. \(\sum_{n=1}^{\infty} \frac{1}{n^{5}}\), four terms
71. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}\), ten terms
72. \(\sum_{n=1}^{\infty} \frac{1}{(n+1)[\ln (n+1)]^{3}}\), ten terms
73. \(\sum_{n=1}^{\infty} n e^{-n^{2}}\), four terms
74. \(\sum_{n=1}^{\infty} e^{-n}\), four terms

In Exercises 75-80, use the result of Exercise 67 to find \(N\) such that \(\boldsymbol{R}_{N} \leq \mathbf{0 . 0 0 1}\) for the convergent series.
75. \(\sum_{n=1}^{\infty} \frac{1}{n^{4}}\)
76. \(\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}\)
77. \(\sum_{n=1}^{\infty} e^{-5 n}\)
78. \(\sum_{n=1}^{\infty} e^{-n / 2}\)
79. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}\)
80. \(\sum_{n=1}^{\infty} \frac{2}{n^{2}+5}\)
81. (a) Show that \(\sum_{n=2}^{\infty} \frac{1}{n^{1.1}}\) converges and \(\sum_{n=2}^{\infty} \frac{1}{n \ln n}\) diverges.
(b) Compare the first five terms of each series in part (a).
(c) Find \(n>3\) such that
\[
\frac{1}{n^{1.1}}<\frac{1}{n \ln n}
\]
82. Ten terms are used to approximate a convergent \(p\)-series. Therefore, the remainder is a function of \(p\) and is
\(0 \leq R_{10}(p) \leq \int_{10}^{\infty} \frac{1}{x^{p}} d x, \quad p>1\).
(a) Perform the integration in the inequality.
(b) Use a graphing utility to represent the inequality graphically.
(c) Identify any asymptotes of the error function and interpret their meaning.
83. Euler's Constant Let
\(S_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}\).
(a) Show that \(\ln (n+1) \leq S_{n} \leq 1+\ln n\).
(b) Show that the sequence \(\left\{a_{n}\right\}=\left\{S_{n}-\ln n\right\}\) is bounded.
(c) Show that the sequence \(\left\{a_{n}\right\}\) is decreasing.
(d) Show that \(a_{n}\) converges to a limit \(\gamma\) (called Euler's constant).
(e) Approximate \(\gamma\) using \(a_{100}\).
84. Find the sum of the series \(\sum_{n=2}^{\infty} \ln \left(1-\frac{1}{n^{2}}\right)\).
85. Consider the series
\[
\sum_{n=2}^{\infty} x^{\ln n}
\]
(a) Determine the convergence or divergence of the series for \(x=1\).
(b) Determine the convergence or divergence of the series for \(x=1 / e\).
(c) Find the positive values of \(x\) for which the series converges.
86. The Riemann zeta function for real numbers is defined for all \(x\) for which the series
\(\zeta(x)=\sum_{n=1}^{\infty} n^{-x}\)
converges. Find the domain of the function.
Review In Exercises 87-98, determine the convergence or divergence of the series.
87. \(\sum_{n=1}^{\infty} \frac{1}{3 n-2}\)
88. \(\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}\)
89. \(\sum_{n=1}^{\infty} \frac{1}{n \sqrt[4]{n}}\)
90. \(3 \sum_{n=1}^{\infty} \frac{1}{n^{0.95}}\)
91. \(\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}\)
92. \(\sum_{n=0}^{\infty}(1.042)^{n}\)
93. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}\)
94. \(\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{n^{3}}\right)\)
95. \(\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}\)
96. \(\sum_{n=2}^{\infty} \ln n\)
97. \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}\)
98. \(\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}\)

\section*{SECTION PROJECT}

\section*{The Harmonic Series}

The harmonic series
\(\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots\).
is one of the most important series in this chapter. Even though its terms tend to zero as \(n\) increases,
\(\lim _{n \rightarrow \infty} \frac{1}{n}=0\)
the harmonic series diverges. In other words, even though the terms are getting smaller and smaller, the sum "adds up to infinity."
(a) One way to show that the harmonic series diverges is attributed to Jakob Bernoulli. He grouped the terms of the harmonic series as follows:
\[
\begin{aligned}
& \underbrace{1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}_{>\frac{1}{2}}+\underbrace{\frac{1}{5}+\cdots+\frac{1}{8}}_{>\frac{1}{2}}+\underbrace{\frac{1}{9}+\cdots+\frac{1}{16}}_{>\frac{1}{2}}+}_{>\frac{1}{2}} \begin{array}{l}
\underbrace{\frac{1}{17}+\cdots+\frac{1}{32}}+\cdots \cdot
\end{array}+
\end{aligned}
\]

Write a short paragraph explaining how you can use this grouping to show that the harmonic series diverges.
(b) Use the proof of the Integral Test, Theorem 9.10, to show that \(\ln (n+1) \leq 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \leq 1+\ln n\).
(c) Use part (b) to determine how many terms \(M\) you would need so that
\(\sum_{n=1}^{M} \frac{1}{n}>50\).
(d) Show that the sum of the first million terms of the harmonic series is less than 15 .
(e) Show that the following inequalities are valid.
\(\ln \frac{21}{10} \leq \frac{1}{10}+\frac{1}{11}+\cdots+\frac{1}{20} \leq \ln \frac{20}{9}\)
\(\ln \frac{201}{100} \leq \frac{1}{100}+\frac{1}{101}+\cdots+\frac{1}{200} \leq \ln \frac{200}{99}\)
(f) Use the inequalities in part (e) to find the limit
\(\lim _{m \rightarrow \infty} \sum_{n=m}^{2 m} \frac{1}{n}\).

\subsection*{9.4 Comparisons of Series}
- Use the Direct Comparison Test to determine whether a series converges or diverges.
- Use the Limit Comparison Test to determine whether a series converges or diverges.

\section*{Direct Comparison Test}

For the convergence tests developed so far, the terms of the series have to be fairly simple and the series must have special characteristics in order for the convergence tests to be applied. A slight deviation from these special characteristics can make a test nonapplicable. For example, in the following pairs, the second series cannot be tested by the same convergence test as the first series even though it is similar to the first.
1. \(\sum_{n=0}^{\infty} \frac{1}{2^{n}}\) is geometric, but \(\sum_{n=0}^{\infty} \frac{n}{2^{n}}\) is not.
2. \(\sum_{n=1}^{\infty} \frac{1}{n^{3}}\) is a \(p\)-series, but \(\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}\) is not.
3. \(a_{n}=\frac{n}{\left(n^{2}+3\right)^{2}}\) is easily integrated, but \(b_{n}=\frac{n^{2}}{\left(n^{2}+3\right)^{2}}\) is not.

In this section you will study two additional tests for positive-term series. These two tests greatly expand the variety of series you are able to test for convergence or divergence. They allow you to compare a series having complicated terms with a simpler series whose convergence or divergence is known.

\section*{THEOREM 9.12 DIRECT COMPARISON TEST}

Let \(0<a_{n} \leq b_{n}\) for all \(n\).
1. If \(\sum_{n=1}^{\infty} b_{n}\) converges, then \(\sum_{n=1}^{\infty} a_{n}\) converges.
2. If \(\sum_{n=1}^{\infty} a_{n}\) diverges, then \(\sum_{n=1}^{\infty} b_{n}\) diverges.

PROOF To prove the first property, let \(L=\sum_{n=1}^{\infty} b_{n}\) and let
\[
S_{n}=a_{1}+a_{2}+\cdots+a_{n}
\]

Because \(0<a_{n} \leq b_{n}\), the sequence \(S_{1}, S_{2}, S_{3}, \ldots\) is nondecreasing and bounded above by \(L\); so, it must converge. Because
\[
\lim _{n \rightarrow \infty} S_{n}=\sum_{n=1}^{\infty} a_{n}
\]
it follows that \(\sum a_{n}\) converges. The second property is logically equivalent to the first.

NOTE As stated, the Direct Comparison Test requires that \(0<a_{n} \leq b_{n}\) for all \(n\). Because the convergence of a series is not dependent on its first several terms, you could modify the test to require only that \(0<a_{n} \leq b_{n}\) for all \(n\) greater than some integer \(N\).

\section*{EXAMPLE 1 Using the Direct Comparison Test}

Determine the convergence or divergence of
\[
\sum_{n=1}^{\infty} \frac{1}{2+3^{n}}
\]

Solution This series resembles
\[
\sum_{n=1}^{\infty} \frac{1}{3^{n}} . \quad \text { Convergent geometric series }
\]

Term-by-term comparison yields
\[
a_{n}=\frac{1}{2+3^{n}}<\frac{1}{3^{n}}=b_{n}, \quad n \geq 1 .
\]

So, by the Direct Comparison Test, the series converges.

\section*{U}

\section*{EXAMPLE 2 Using the Direct Comparison Test}

Determine the convergence or divergence of
\[
\sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}}
\]

Solution This series resembles
\[
\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}} . \quad \text { Divergent } p \text {-series }
\]

Term-by-term comparison yields
\[
\frac{1}{2+\sqrt{n}} \leq \frac{1}{\sqrt{n}}, \quad n \geq 1
\]
which does not meet the requirements for divergence. (Remember that if term-by-term comparison reveals a series that is smaller than a divergent series, the Direct Comparison Test tells you nothing.) Still expecting the series to diverge, you can compare the given series with
\[
\sum_{n=1}^{\infty} \frac{1}{n} \quad \quad \text { Divergent harmonic series }
\]

In this case, term-by-term comparison yields
\[
a_{n}=\frac{1}{n} \leq \frac{1}{2+\sqrt{n}}=b_{n}, \quad n \geq 4
\]
and, by the Direct Comparison Test, the given series diverges.

Remember that both parts of the Direct Comparison Test require that \(0<a_{n} \leq b_{n}\). Informally, the test says the following about the two series with nonnegative terms.
1. If the "larger" series converges, the "smaller" series must also converge.
2. If the "smaller" series diverges, the "larger" series must also diverge.

NOTE As with the Direct Comparison Test, the Limit Comparison Test could be modified to require only that \(a_{n}\) and \(b_{n}\) be positive for all \(n\) greater than some integer \(N\).

\section*{Limit Comparison Test}

Often a given series closely resembles a \(p\)-series or a geometric series, yet you cannot establish the term-by-term comparison necessary to apply the Direct Comparison Test. Under these circumstances you may be able to apply a second comparison test, called the Limit Comparison Test.

\section*{THEOREM 9.13 LIMIT COMPARISON TEST}

Suppose that \(a_{n}>0, b_{n}>0\), and
\[
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=L
\]
where \(L\) is finite and positive. Then the two series \(\sum a_{n}\) and \(\sum b_{n}\) either both converge or both diverge.
(PROOF Because \(a_{n}>0, b_{n}>0\), and
\[
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=L
\]
there exists \(N>0\) such that
\[
0<\frac{a_{n}}{b_{n}}<L+1, \quad \text { for } n \geq N
\]

This implies that
\[
0<a_{n}<(L+1) b_{n}
\]

So, by the Direct Comparison Test, the convergence of \(\sum b_{n}\) implies the convergence of \(\sum a_{n}\). Similarly, the fact that
\[
\lim _{n \rightarrow \infty}\left(\frac{b_{n}}{a_{n}}\right)=\frac{1}{L}
\]
can be used to show that the convergence of \(\sum a_{n}\) implies the convergence of \(\sum b_{n}\).

\section*{EXAMPLE 3 Using the Limit Comparison Test}

Show that the following general harmonic series diverges.
\[
\sum_{n=1}^{\infty} \frac{1}{a n+b}, \quad a>0, \quad b>0
\]

Solution By comparison with
\[
\sum_{n=1}^{\infty} \frac{1}{n} \quad \text { Divergent harmonic series }
\]
you have
\[
\lim _{n \rightarrow \infty} \frac{1 /(a n+b)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n}{a n+b}=\frac{1}{a} .
\]

Because this limit is greater than 0 , you can conclude from the Limit Comparison Test that the given series diverges.

The Limit Comparison Test works well for comparing a "messy" algebraic series with a \(p\)-series. In choosing an appropriate \(p\)-series, you must choose one with an \(n\)th term of the same magnitude as the \(n\)th term of the given series.
\[

\]

In other words, when choosing a series for comparison, you can disregard all but the highest powers of \(n\) in both the numerator and the denominator.

\section*{EXAMPLE 4 Using the Limit Comparison Test}

Determine the convergence or divergence of
\[
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}
\]

Solution Disregarding all but the highest powers of \(n\) in the numerator and the denominator, you can compare the series with
\[
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} . \quad \text { Convergent } p \text {-series }
\]

Because
\[
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n}}{n^{2}+1}\right)\left(\frac{n^{3 / 2}}{1}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1
\end{aligned}
\]
you can conclude by the Limit Comparison Test that the given series converges.

\section*{EXAMPLE 5 Using the Limit Comparison Test}

Determine the convergence or divergence of
\[
\sum_{n=1}^{\infty} \frac{n 2^{n}}{4 n^{3}+1}
\]

Solution A reasonable comparison would be with the series
\[
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} \quad \quad \text { Divergent series }
\]

Note that this series diverges by the \(n\) th-Term Test. From the limit
\[
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{n 2^{n}}{4 n^{3}+1}\right)\left(\frac{n^{2}}{2^{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{4+\left(1 / n^{3}\right)}=\frac{1}{4}
\end{aligned}
\]
you can conclude that the given series diverges.

\subsection*{9.4 Exercises}
1. Graphical Analysis The figures show the graphs of the first 10 terms, and the graphs of the first 10 terms of the sequence of partial sums, of each series.
\(\sum_{n=1}^{\infty} \frac{6}{n^{3 / 2}}, \quad \sum_{n=1}^{\infty} \frac{6}{n^{3 / 2}+3}, \quad\) and \(\quad \sum_{n=1}^{\infty} \frac{6}{n \sqrt{n^{2}+0.5}}\)
(a) Identify the series in each figure.
(b) Which series is a \(p\)-series? Does it converge or diverge?
(c) For the series that are not \(p\)-series, how do the magnitudes of the terms compare with the magnitudes of the terms of the p-series? What conclusion can you draw about the convergence or divergence of the series?
(d) Explain the relationship between the magnitudes of the terms of the series and the magnitudes of the terms of the partial sums.


Graphs of terms


Graphs of partial sums
2. Graphical Analysis The figures show the graphs of the first 10 terms, and the graphs of the first 10 terms of the sequence of partial sums, of each series.
\(\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}, \quad \sum_{n=1}^{\infty} \frac{2}{\sqrt{n}-0.5}, \quad\) and \(\quad \sum_{n=1}^{\infty} \frac{4}{\sqrt{n+0.5}}\)
(a) Identify the series in each figure.
(b) Which series is a \(p\)-series? Does it converge or diverge?
(c) For the series that are not \(p\)-series, how do the magnitudes of the terms compare with the magnitudes of the terms of the p-series? What conclusion can you draw about the convergence or divergence of the series?
(d) Explain the relationship between the magnitudes of the terms of the series and the magnitudes of the terms of the partial sums.


Graphs of terms


Graphs of partial sums

In Exercises 3-14, use the Direct Comparison Test to determine the convergence or divergence of the series.
3. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}\)
4. \(\sum_{n=1}^{\infty} \frac{1}{3 n^{2}+2}\)
5. \(\sum_{n=1}^{\infty} \frac{1}{2 n-1}\)
6. \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}\)
7. \(\sum_{n=0}^{\infty} \frac{1}{4^{n}+1}\)
8. \(\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}+3}\)
9. \(\sum_{n=2}^{\infty} \frac{\ln n}{n+1}\)
10. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}\)
11. \(\sum_{n=0}^{\infty} \frac{1}{n!}\)
12. \(\sum_{n=1}^{\infty} \frac{1}{4 \sqrt[3]{n}-1}\)
13. \(\sum_{n=0}^{\infty} e^{-n^{2}}\)
14. \(\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}-1}\)

In Exercises 15-28, use the Limit Comparison Test to determine the convergence or divergence of the series.
15. \(\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}\)
16. \(\sum_{n=1}^{\infty} \frac{5}{4^{n}+1}\)
17. \(\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{2}+1}}\)
18. \(\sum_{n=1}^{\infty} \frac{2^{n}+1}{5^{n}+1}\)
19. \(\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{5}+2 n+1}\)
20. \(\sum_{n=1}^{\infty} \frac{n+5}{n^{3}-2 n+3}\)
21. \(\sum_{n=1}^{\infty} \frac{n+3}{n\left(n^{2}+4\right)}\)
22. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}(n+3)}\)
23. \(\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}\)
24. \(\sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n-1}}\)
25. \(\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^{k}+1}, k>2\)
26. \(\sum_{n=1}^{\infty} \frac{5}{n+\sqrt{n^{2}+4}}\)
27. \(\sum_{n=1}^{\infty} \sin \frac{1}{n}\)
28. \(\sum_{n=1}^{\infty} \tan \frac{1}{n}\)

In Exercises 29-36, test for convergence or divergence, using each test at least once. Identify which test was used.
(a) \(n\) th-Term Test
(b) Geometric Series Test
(c) \(p\)-Series Test
(d) Telescoping Series Test
(e) Integral Test
(f) Direct Comparison Test
(g) Limit Comparison Test
29. \(\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n}\)
30. \(\sum_{n=0}^{\infty} 7\left(-\frac{1}{7}\right)^{n}\)
31. \(\sum_{n=1}^{\infty} \frac{1}{5^{n}+1}\)
32. \(\sum_{n=2}^{\infty} \frac{1}{n^{3}-8}\)
33. \(\sum_{n=1}^{\infty} \frac{2 n}{3 n-2}\)
34. \(\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)
35. \(\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}}\)
36. \(\sum_{n=1}^{\infty} \frac{3}{n(n+3)}\)
37. Use the Limit Comparison Test with the harmonic series to show that the series \(\sum a_{n}\) (where \(0<a_{n}<a_{n-1}\) ) diverges if \(\lim _{n \rightarrow \infty} n a_{n}\) is finite and nonzero.
38. Prove that, if \(P(n)\) and \(Q(n)\) are polynomials of degree \(j\) and \(k\), respectively, then the series
\[
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)}
\]
converges if \(j<k-1\) and diverges if \(j \geq k-1\).
In Exercises 39-42, use the polynomial test given in Exercise 38 to determine whether the series converges or diverges.
39. \(\frac{1}{2}+\frac{2}{5}+\frac{3}{10}+\frac{4}{17}+\frac{5}{26}+\cdots\).
40. \(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\cdots\).
41. \(\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}\)
42. \(\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}\)

In Exercises 43 and 44, use the divergence test given in Exercise 37 to show that the series diverges.
43. \(\sum_{n=1}^{\infty} \frac{n^{3}}{5 n^{4}+3}\)
44. \(\sum_{n=1}^{\infty} \frac{3 n^{2}+1}{4 n^{3}+2}\)

In Exercises 45-48, determine the convergence or divergence of the series.
45. \(\frac{1}{200}+\frac{1}{400}+\frac{1}{600}+\frac{1}{800}+\cdots\)
46. \(\frac{1}{200}+\frac{1}{210}+\frac{1}{220}+\frac{1}{230}+\cdots\)
47. \(\frac{1}{201}+\frac{1}{204}+\frac{1}{209}+\frac{1}{216}+\cdots \cdot\)
48. \(\frac{1}{201}+\frac{1}{208}+\frac{1}{227}+\frac{1}{264}+\cdots\).

\section*{WRITING ABOUT CONCEPTS}
49. Review the results of Exercises 45-48. Explain why careful analysis is required to determine the convergence or divergence of a series and why only considering the magnitudes of the terms of a series could be misleading.
50. State the Direct Comparison Test and give an example of its use.
51. State the Limit Comparison Test and give an example of its use.
52. The figure shows the first 20 terms of the convergent series \(\sum_{n=1}^{\infty} a_{n}\) and the first 20 terms of the series \(\sum_{n=1}^{\infty} a_{n}^{2}\). Identify the two series and explain your reasoning in making the selection.

53. Consider the series \(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}\).
(a) Verify that the series converges.
(b) Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 20 & 50 & 100 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
(c) The sum of the series is \(\pi^{2} / 8\). Find the sum of the series
\[
\sum_{n=3}^{\infty} \frac{1}{(2 n-1)^{2}}
\]
(d) Use a graphing utility to find the sum of the series
\[
\sum_{n=10}^{\infty} \frac{1}{(2 n-1)^{2}}
\]

\section*{CAPSTONE}
54. It appears that the terms of the series
\(\frac{1}{1000}+\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\cdots\)
are less than the corresponding terms of the convergent series
\[
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots .
\]

If the statement above is correct, the first series converges. Is this correct? Why or why not? Make a statement about how the divergence or convergence of a series is affected by inclusion or exclusion of the first finite number of terms.

True or False? In Exercises 55-60, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
55. If \(0<a_{n} \leq b_{n}\) and \(\sum_{n=1}^{\infty} a_{n}\) converges, then \(\sum_{n=1}^{\infty} b_{n}\) diverges.
56. If \(0<a_{n+10} \leq b_{n}\) and \(\sum_{n=1}^{\infty} b_{n}\) converges, then \(\sum_{n=1}^{\infty} a_{n}\) converges.
57. If \(a_{n}+b_{n} \leq c_{n}\) and \(\sum_{n=1}^{\infty} c_{n}\) converges, then the series \(\sum_{n=1}^{\infty} a_{n}\) and \(\sum_{n=1}^{\infty} b_{n}\) both converge. (Assume that the terms of all three series are positive.)
58. If \(a_{n} \leq b_{n}+c_{n}\) and \(\sum_{n=1}^{\infty} a_{n}\) diverges, then the series \(\sum_{n=1}^{\infty} b_{n}\) and \(\sum_{n=1}^{\infty} c_{n}\) both diverge. (Assume that the terms of all three series are positive.)
59. If \(0<a_{n} \leq b_{n}\) and \(\sum_{n=1}^{\infty} a_{n}\) diverges, then \(\sum_{n=1}^{\infty} b_{n}\) diverges.
60. If \(0<a_{n} \leq b_{n}\) and \(\sum_{n=1}^{\infty} b_{n}\) diverges, then \(\sum_{n=1}^{\infty} a_{n}\) diverges.
61. Prove that if the nonnegative series
\(\sum_{n=1}^{\infty} a_{n} \quad\) and \(\quad \sum_{n=1}^{\infty} b_{n}\)
converge, then so does the series
\(\sum_{n=1}^{\infty} a_{n} b_{n}\).
62. Use the result of Exercise 61 to prove that if the nonnegative series \(\sum_{n=1}^{\infty} a_{n}\) converges, then so does the series \(\sum_{n=1}^{\infty} a_{n}{ }^{2}\).
63. Find two series that demonstrate the result of Exercise 61.
64. Find two series that demonstrate the result of Exercise 62.
65. Suppose that \(\sum a_{n}\) and \(\Sigma b_{n}\) are series with positive terms. Prove that if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0\) and \(\sum b_{n}\) converges, \(\Sigma a_{n}\) also converges.
66. Suppose that \(\sum a_{n}\) and \(\sum b_{n}\) are series with positive terms. Prove that if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty\) and \(\sum b_{n}\) diverges, \(\sum a_{n}\) also diverges.
67. Use the result of Exercise 65 to show that each series converges.
(a) \(\sum_{n=1}^{\infty} \frac{1}{(n+1)^{3}}\)
(b) \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \pi^{n}}\)
68. Use the result of Exercise 66 to show that each series diverges.
(a) \(\sum_{n=1}^{\infty} \frac{\ln n}{n}\)
(b) \(\sum_{n=2}^{\infty} \frac{1}{\ln n}\)
69. Suppose that \(\sum a_{n}\) is a series with positive terms. Prove that if \(\sum a_{n}\) converges, then \(\Sigma \sin a_{n}\) also converges.
70. Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}\) converges.
71. Show that \(\sum_{n=1}^{\infty} \frac{\ln n}{n \sqrt{n}}\) converges by comparison with \(\sum_{n=1}^{\infty} \frac{1}{n^{5 / 4}}\).

\section*{PUTNAM EXAM CHALLENGE}
72. Is the infinite series
\(\sum_{n=1}^{\infty} \frac{1}{n^{(n+1) / n}}\)
convergent? Prove your statement.
73. Prove that if \(\sum_{n=1}^{\infty} a_{n}\) is a convergent series of positive real numbers, then so is
\[
\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)} .
\]

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{SECTION PROJECT}

\section*{Solera Method}

Most wines are produced entirely from grapes grown in a single year. Sherry, however, is a complex mixture of older wines with new wines. This is done with a sequence of barrels (called a solera) stacked on top of each other, as shown in the photo.


The oldest wine is in the bottom tier of barrels, and the newest is in the top tier. Each year, half of each barrel in the bottom tier is bottled as sherry. The bottom barrels are then refilled with the wine from the barrels above. This process is repeated throughout the solera, with new wine being added to the top barrels. A mathematical
model for the amount of \(n\)-year-old wine that is removed from a solera (with \(k\) tiers) each year is
\(f(n, k)=\left(\frac{n-1}{k-1}\right)\left(\frac{1}{2}\right)^{n+1}, \quad k \leq n\).
(a) Consider a solera that has five tiers, numbered \(k=1,2,3,4\), and 5. In \(1990(n=0)\), half of each barrel in the top tier (tier 1) was refilled with new wine. How much of this wine was removed from the solera in 1991? In 1992? In 1993? . . . In 2005? During which year(s) was the greatest amount of the 1990 wine removed from the solera?
(b) In part (a), let \(a_{n}\) be the amount of 1990 wine that is removed from the solera in year \(n\). Evaluate
\[
\sum_{n=0}^{\infty} a_{n} .
\]

FOR FURTHER INFORMATION See the article "Finding Vintage Concentrations in a Sherry Solera" by Rhodes Peele and John T. MacQueen in the UMAP Modules.

\subsection*{9.5 Alternating Series}
- Use the Alternating Series Test to determine whether an infinite series converges.
- Use the Alternating Series Remainder to approximate the sum of an alternating series.
- Classify a convergent series as absolutely or conditionally convergent.
- Rearrange an infinite series to obtain a different sum.

\section*{Alternating Series}

So far, most series you have dealt with have had positive terms. In this section and the following section, you will study series that contain both positive and negative terms. The simplest such series is an alternating series, whose terms alternate in sign. For example, the geometric series
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{n}} \\
& =1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\cdots
\end{aligned}
\]
is an alternating geometric series with \(r=-\frac{1}{2}\). Alternating series occur in two ways: either the odd terms are negative or the even terms are negative.

\section*{THEOREM 9.14 ALTERNATING SERIES TEST}

Let \(a_{n}>0\). The alternating series
\[
\sum_{n=1}^{\infty}(-1)^{n} a_{n} \text { and } \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
\]
converge if the following two conditions are met.
1. \(\lim _{n \rightarrow \infty} a_{n}=0\)
2. \(a_{n+1} \leq a_{n}\), for all \(n\)

PROOF Consider the alternating series \(\Sigma(-1)^{n+1} a_{n}\). For this series, the partial sum (where \(2 n\) is even)
\[
S_{2 n}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right)+\cdots+\left(a_{2 n-1}-a_{2 n}\right)
\]
has all nonnegative terms, and therefore \(\left\{S_{2 n}\right\}\) is a nondecreasing sequence. But you can also write
\[
S_{2 n}=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(a_{2 n-2}-a_{2 n-1}\right)-a_{2 n}
\]
which implies that \(S_{2 n} \leq a_{1}\) for every integer \(n\). So, \(\left\{S_{2 n}\right\}\) is a bounded, nondecreasing sequence that converges to some value \(L\). Because \(S_{2 n-1}-a_{2 n}=S_{2 n}\) and \(a_{2 n} \rightarrow 0\), you have
\[
\begin{aligned}
\lim _{n \rightarrow \infty} S_{2 n-1} & =\lim _{n \rightarrow \infty} S_{2 n}+\lim _{n \rightarrow \infty} a_{2 n} \\
& =L+\lim _{n \rightarrow \infty} a_{2 n}=L .
\end{aligned}
\]

Because both \(S_{2 n}\) and \(S_{2 n-1}\) converge to the same limit \(L\), it follows that \(\left\{S_{n}\right\}\) also converges to \(L\). Consequently, the given alternating series converges.

NOTE The second condition in the Alternating Series Test can be modified to require only that \(0<a_{n+1} \leq a_{n}\) for all \(n\) greater than some integer \(N\).

NOTE The series in Example 1 is called the alternating harmonic series. More is said about this series in Example 7.

NOTE In Example 3(a), remember that whenever a series does not pass the first condition of the Alternating Series Test, you can use the \(n\) th-Term Test for Divergence to conclude that the series diverges.

\section*{EXAMPLE 1 Using the Alternating Series Test}

Determine the convergence or divergence of \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}\).
Solution Note that \(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0\). So, the first condition of Theorem 9.14 is satisfied. Also note that the second condition of Theorem 9.14 is satisfied because
\[
a_{n+1}=\frac{1}{n+1} \leq \frac{1}{n}=a_{n}
\]
for all \(n\). So, applying the Alternating Series Test, you can conclude that the series converges.

\section*{EXAMPLE 2 Using the Alternating Series Test}

Determine the convergence or divergence of \(\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}\).
Solution To apply the Alternating Series Test, note that, for \(n \geq 1\),
\[
\begin{aligned}
& \frac{1}{2} \leq \frac{n}{n+1} \\
& \frac{2^{n-1}}{2^{n}} \leq \frac{n}{n+1} \\
&(n+1) 2^{n-1} \leq n 2^{n} \\
& \frac{n+1}{2^{n}} \leq \frac{n}{2^{n-1}} . \\
& \text { So, } a_{n+1}=(n+1) / 2^{n} \leq n / 2^{n-1}=a_{n} \text { for all } n . \text { Furthermore, by L'Hôpital's Rule, } \\
& \lim _{x \rightarrow \infty} \frac{x}{2^{x-1}}=\lim _{x \rightarrow \infty} \frac{1}{2^{x-1}(\ln 2)}=0 \quad \square \lim _{n \rightarrow \infty} \frac{n}{2^{n-1}}=0 .
\end{aligned}
\]

Therefore, by the Alternating Series Test, the series converges.

\section*{EXAMPLE 3 When the Alternating Series Test Does Not Apply}
a. The alternating series
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n}=\frac{2}{1}-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\frac{6}{5}-\cdots
\]
passes the second condition of the Alternating Series Test because \(a_{n+1} \leq a_{n}\) for all \(n\). You cannot apply the Alternating Series Test, however, because the series does not pass the first condition. In fact, the series diverges.
b. The alternating series
\[
\frac{2}{1}-\frac{1}{1}+\frac{2}{2}-\frac{1}{2}+\frac{2}{3}-\frac{1}{3}+\frac{2}{4}-\frac{1}{4}+\cdots
\]
passes the first condition because \(a_{n}\) approaches 0 as \(n \rightarrow \infty\). You cannot apply the Alternating Series Test, however, because the series does not pass the second condition. To conclude that the series diverges, you can argue that \(S_{2 N}\) equals the \(N\) th partial sum of the divergent harmonic series. This implies that the sequence of partial sums diverges. So, the series diverges.

\section*{Alternating Series Remainder}

For a convergent alternating series, the partial sum \(S_{N}\) can be a useful approximation for the sum \(S\) of the series. The error involved in using \(S \approx S_{N}\) is the remainder \(R_{N}=S-S_{N}\).

\section*{THEOREM 9.15 ALTERNATING SERIES REMAINDER}

If a convergent alternating series satisfies the condition \(a_{n+1} \leq a_{n}\), then the absolute value of the remainder \(R_{N}\) involved in approximating the sum \(S\) by \(S_{N}\) is less than (or equal to) the first neglected term. That is,
\[
\left|S-S_{N}\right|=\left|R_{N}\right| \leq a_{N+1} .
\]

PROOF The series obtained by deleting the first \(N\) terms of the given series satisfies the conditions of the Alternating Series Test and has a sum of \(R_{N}\).
\[
\begin{aligned}
R_{N}=S-S_{N} & =\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}-\sum_{n=1}^{N}(-1)^{n+1} a_{n} \\
& =(-1)^{N} a_{N+1}+(-1)^{N+1} a_{N+2}+(-1)^{N+2} a_{N+3}+\cdots \\
& =(-1)^{N}\left(a_{N+1}-a_{N+2}+a_{N+3}-\cdots\right) \\
\left|R_{N}\right| & =a_{N+1}-a_{N+2}+a_{N+3}-a_{N+4}+a_{N+5}-\cdots \\
& =a_{N+1}-\left(a_{N+2}-a_{N+3}\right)-\left(a_{N+4}-a_{N+5}\right)-\cdots \leq a_{N+1}
\end{aligned}
\]

Consequently, \(\left|S-S_{N}\right|=\left|R_{N}\right| \leq a_{N+1}\), which establishes the theorem.

TECHNOLOGY Later, in Section 9.10, you will be able to show that the series in Example 4 converges to
\[
\frac{e-1}{e} \approx 0.63212
\]

For now, try using a computer to obtain an approximation of the sum of the series. How many terms do you need to obtain an approximation that is within 0.00001 unit of the actual sum?

\section*{CeXAMPLE 4 Approximating the Sum of an Alternating Series}

Approximate the sum of the following series by its first six terms.
\[
\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{n!}\right)=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}-\frac{1}{6!}+\cdots
\]

Solution The series converges by the Alternating Series Test because
\[
\frac{1}{(n+1)!} \leq \frac{1}{n!} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n!}=0
\]

The sum of the first six terms is
\[
S_{6}=1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+\frac{1}{120}-\frac{1}{720}=\frac{91}{144} \approx 0.63194
\]
and, by the Alternating Series Remainder, you have
\[
\left|S-S_{6}\right|=\left|R_{6}\right| \leq a_{7}=\frac{1}{5040} \approx 0.0002
\]

So, the sum \(S\) lies between \(0.63194-0.0002\) and \(0.63194+0.0002\), and you have
\[
0.63174 \leq S \leq 0.63214
\]

\section*{Absolute and Conditional Convergence}

Occasionally, a series may have both positive and negative terms and not be an alternating series. For instance, the series
\[
\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}=\frac{\sin 1}{1}+\frac{\sin 2}{4}+\frac{\sin 3}{9}+\cdots
\]
has both positive and negative terms, yet it is not an alternating series. One way to obtain some information about the convergence of this series is to investigate the convergence of the series
\[
\sum_{n=1}^{\infty}\left|\frac{\sin n}{n^{2}}\right|
\]

By direct comparison, you have \(|\sin n| \leq 1\) for all \(n\), so
\[
\left|\frac{\sin n}{n^{2}}\right| \leq \frac{1}{n^{2}}, \quad n \geq 1
\]

Therefore, by the Direct Comparison Test, the series \(\sum\left|\frac{\sin n}{n^{2}}\right|\) converges. The next theorem tells you that the original series also converges.

\section*{THEOREM 9.16 ABSOLUTE CONVERGENCE}

If the series \(\Sigma\left|a_{n}\right|\) converges, then the series \(\sum a_{n}\) also converges.

PRO0F) Because \(0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|\) for all \(n\), the series
\[
\sum_{n=1}^{\infty}\left(a_{n}+\left|a_{n}\right|\right)
\]
converges by comparison with the convergent series
\[
\sum_{n=1}^{\infty} 2\left|a_{n}\right| .
\]

Furthermore, because \(a_{n}=\left(a_{n}+\left|a_{n}\right|\right)-\left|a_{n}\right|\), you can write
\[
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(a_{n}+\left|a_{n}\right|\right)-\sum_{n=1}^{\infty}\left|a_{n}\right|
\]
where both series on the right converge. So, it follows that \(\sum a_{n}\) converges.

The converse of Theorem 9.16 is not true. For instance, the alternating harmonic series
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
\]
converges by the Alternating Series Test. Yet the harmonic series diverges. This type of convergence is called conditional.

\section*{DEFINITIONS OF ABSOLUTE AND CONDITIONAL CONVERGENCE}
1. \(\sum a_{n}\) is absolutely convergent if \(\sum\left|a_{n}\right|\) converges.
2. \(\sum a_{n}\) is conditionally convergent if \(\sum a_{n}\) converges but \(\sum\left|a_{n}\right|\) diverges.

\section*{EXAMPLE 5 Absolute and Conditional Convergence}

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.
a. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}}=\frac{0!}{2^{0}}-\frac{1!}{2^{1}}+\frac{2!}{2^{2}}-\frac{3!}{2^{3}}+\cdots\)
b. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}=-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}-\cdots\)

\section*{Solution}
a. By the \(n\) th-Term Test for Divergence, you can conclude that this series diverges.
b. The given series can be shown to be convergent by the Alternating Series Test. Moreover, because the \(p\)-series
\[
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n}}\right|=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots
\]
diverges, the given series is conditionally convergent.

\section*{EXAMPLE 6 Absolute and Conditional Convergence}

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.
a. \(\sum_{n=1}^{\infty} \frac{(-1)^{n(n+1) / 2}}{3^{n}}=-\frac{1}{3}-\frac{1}{9}+\frac{1}{27}+\frac{1}{81}-\cdots\)
b. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}=-\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{1}{\ln 4}+\frac{1}{\ln 5}-\cdots\).

\section*{Solution}
a. This is not an alternating series. However, because
\[
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n(n+1) / 2}}{3^{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{3^{n}}
\]
is a convergent geometric series, you can apply Theorem 9.16 to conclude that the given series is absolutely convergent (and therefore convergent).
b. In this case, the Alternating Series Test indicates that the given series converges. However, the series
\[
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\ln (n+1)}\right|=\frac{1}{\ln 2}+\frac{1}{\ln 3}+\frac{1}{\ln 4}+\cdots
\]
diverges by direct comparison with the terms of the harmonic series. Therefore, the given series is conditionally convergent.

\section*{Rearrangement of Series}

A finite sum such as \((1+3-2+5-4)\) can be rearranged without changing the value of the sum. This is not necessarily true of an infinite series-it depends on whether the series is absolutely convergent (every rearrangement has the same sum) or conditionally convergent.

\section*{1 FOR FURTHER INFORMATION}

Georg Friedrich Bernhard Riemann (1826-1866) proved that if \(\sum a_{n}\) is conditionally convergent and \(S\) is any real number, the terms of the series can be rearranged to converge to \(S\). For more on this topic, see the article "Riemann's Rearrangement Theorem" by Stewart Galanor in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{EXAMPLE 7 Rearrangement of a Series}

The alternating harmonic series converges to \(\ln 2\). That is,
\[
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln 2 . \quad(\text { See Exercise } 59, \text { Section } 9.10 .)
\]

Rearrange the series to produce a different sum.
Solution Consider the following rearrangement.
\[
\begin{aligned}
1 & -\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\frac{1}{7}-\frac{1}{14}-\cdots \\
& =\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\left(\frac{1}{7}-\frac{1}{14}\right)-\cdots \\
& =\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\frac{1}{14}-\cdots \\
& =\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\cdots\right)=\frac{1}{2}(\ln 2)
\end{aligned}
\]

By rearranging the terms, you obtain a sum that is half the original sum.

\subsection*{9.5 Exercises}

In Exercises 1-6, match the series with the graph of its sequence of partial sums. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]
(a) \(S_{n}\)

(b)

(c)

(d)

(e)

(f)

1. \(\sum_{n=1}^{\infty} \frac{6}{n^{2}}\)
2. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 6}{n^{2}}\)
3. \(\sum_{n=1}^{\infty} \frac{3}{n!}\)
5. \(\sum_{n=1}^{\infty} \frac{10}{n 2^{n}}\)
6. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 10}{n 2^{n}}\)

Numerical and Graphical Analysis In Exercises 7-10, explore the Alternating Series Remainder.
(a) Use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(n\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(S_{n}\) & & & & & & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph the first 10 terms of the sequence of partial sums and a horizontal line representing the sum.
(c) What pattern exists between the plot of the successive points in part (b) relative to the horizontal line representing the sum of the series? Do the distances between the successive points and the horizontal line increase or decrease?
(d) Discuss the relationship between the answers in part (c) and the Alternating Series Remainder as given in Theorem 9.15.
7. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}=\frac{\pi}{4}\)
8. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-1)!}=\frac{1}{e}\)
9. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}\)
10. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)!}=\sin 1\)

In Exercises 11-36, determine the convergence or divergence of the series.
11. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}\)
12. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3 n+2}\)
13. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}}\)
14. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{e^{n}}\)
15. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}(5 n-1)}{4 n+1}\)
16. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\ln (n+1)}\)
17. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3 n+2}\)
18. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}\)
19. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{2}+5}\)
20. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n^{2}+5}\)
21. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}\)
22. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{n^{2}+4}\)
23. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{\ln (n+1)}\)
24. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln (n+1)}{n+1}\)
25. \(\sum_{n=1}^{\infty} \sin \frac{(2 n-1) \pi}{2}\)
26. \(\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{(2 n-1) \pi}{2}\)
27. \(\sum_{n=1}^{\infty} \cos n \pi\)
28. \(\sum_{n=1}^{\infty} \frac{1}{n} \cos n \pi\)
29. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\)
30. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\)
31. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n+2}\)
32. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{\sqrt[3]{n}}\)
33. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n!}{1 \cdot 3 \cdot 5 \cdot \cdot(2 n-1)}\)
34. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{1 \cdot 4 \cdot 7 \cdots(3 n-2)}\)
35. \(\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{e^{n}-e^{-n}}=\sum_{n=1}^{\infty}(-1)^{n+1} \operatorname{csch} n\)
36. \(\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{e^{n}+e^{-n}}=\sum_{n=1}^{\infty}(-1)^{n+1} \operatorname{sech} n\)

In Exercises 37-40, approximate the sum of the series by using the first six terms. (See Example 4.)
37. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 2}{n!}\)
38. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4}{\ln (n+1)}\)
39. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3}{n^{2}}\)
40. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2^{n}}\)

In Exercises 41-46, (a) use Theorem 9.15 to determine the number of terms required to approximate the sum of the convergent series with an error of less than 0.001 , and (b) use a graphing utility to approximate the sum of the series with an error of less than \(\mathbf{0 . 0 0 1}\).
41. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{e}\)
42. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!}=\frac{1}{\sqrt{e}}\)
43. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}=\sin 1\)
44. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}=\cos 1\)
45. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2\)
46. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^{n}}=\ln \frac{5}{4}\)

In Exercises 47-50, use Theorem 9.15 to determine the number of terms required to approximate the sum of the series with an error of less than \(\mathbf{0 . 0 0 1}\).
47. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}\)
48. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}\)
49. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n^{3}-1}\)
50. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}\)

In Exercises 51-70, determine whether the series converges conditionally or absolutely, or diverges.
51. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}\)
52. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}\)
53. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}\)
54. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n^{3}}\)
55. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+3)^{2}}\)
56. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+3}\)
57. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}\)
58. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \sqrt{n}}\)
59. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{(n+1)^{2}}\)
60. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 n+3)}{n+10}\)
61. \(\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}\)
62. \(\sum_{n=0}^{\infty}(-1)^{n} e^{-n^{2}}\)
63. \(\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{n^{3}-5}\)
64. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4 / 3}}\)
65. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\)
66. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+4}}\)
67. \(\sum_{n=0}^{\infty} \frac{\cos n \pi}{n+1}\)
68. \(\sum_{n=1}^{\infty}(-1)^{n+1} \arctan n\)
69. \(\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}}\)
70. \(\sum_{n=1}^{\infty} \frac{\sin [(2 n-1) \pi / 2]}{n}\)

\section*{WRITING ABOUT CONCEPTS}
71. Define an alternating series.
72. State the Alternating Series Test.
73. Give the remainder after \(N\) terms of a convergent alternating series.
74. In your own words, state the difference between absolute and conditional convergence of an alternating series.
75. The graphs of the sequences of partial sums of two series are shown in the figures. Which graph represents the partial sums of an alternating series? Explain.
(a)

(b)


\section*{CAPSTONE}
76. Do you agree with the following statements? Why or why not?
(a) If both \(\Sigma a_{n}\) and \(\Sigma\left(-a_{n}\right)\) converge, then \(\Sigma\left|a_{n}\right|\) converges.
(b) If \(\Sigma a_{n}\) diverges, then \(\Sigma\left|a_{n}\right|\) diverges.

True or False? In Exercises 77 and 78, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
77. For the alternating series \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\), the partial sum \(S_{100}\) is an overestimate of the sum of the series.
78. If \(\sum a_{n}\) and \(\sum b_{n}\) both converge, then \(\sum a_{n} b_{n}\) converges.

In Exercises 79 and 80, find the values of \(\boldsymbol{p}\) for which the series converges.
79. \(\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{n^{p}}\right)\)
80. \(\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{n+p}\right)\)
81. Prove that if \(\Sigma\left|a_{n}\right|\) converges, then \(\sum a_{n}^{2}\) converges. Is the converse true? If not, give an example that shows it is false.
82. Use the result of Exercise 79 to give an example of an alternating \(p\)-series that converges, but whose corresponding \(p\)-series diverges.
83. Give an example of a series that demonstrates the statement you proved in Exercise 81.
84. Find all values of \(x\) for which the series \(\Sigma\left(x^{n} / n\right)\) (a) converges absolutely and (b) converges conditionally.
85. Consider the following series.
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{9}+\frac{1}{8}-\frac{1}{27}+\cdots+\frac{1}{2^{n}}-\frac{1}{3^{n}}+\cdots\)
(a) Does the series meet the conditions of Theorem 9.14? Explain why or why not.
(b) Does the series converge? If so, what is the sum?
86. Consider the following series.
\[
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}, a_{n}= \begin{cases}\frac{1}{\sqrt{n}}, & \text { if } n \text { is odd } \\ \frac{1}{n^{3}}, & \text { if } n \text { is even }\end{cases}
\]
(a) Does the series meet the conditions of Theorem 9.14? Explain why or why not.
(b) Does the series converge? If so, what is the sum?

Review In Exercises 87-96, test for convergence or divergence and identify the test used.
87. \(\sum_{n=1}^{\infty} \frac{10}{n^{3 / 2}}\)
88. \(\sum_{n=1}^{\infty} \frac{3}{n^{2}+5}\)
89. \(\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2}}\)
90. \(\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}\)
91. \(\sum_{n=0}^{\infty} 5\left(\frac{7}{8}\right)^{n}\)
92. \(\sum_{n=1}^{\infty} \frac{3 n^{2}}{2 n^{2}+1}\)
93. \(\sum_{n=1}^{\infty} 100 e^{-n / 2}\)
94. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+4}\)
95. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4}{3 n^{2}-1}\)
96. \(\sum_{n=2}^{\infty} \frac{\ln n}{n}\)
97. The following argument, that \(0=1\), is incorrect. Describe the error.
\[
\begin{aligned}
0 & =0+0+0+\cdots \\
& =(1-1)+(1-1)+(1-1)+\cdots \\
& =1+(-1+1)+(-1+1)+\cdots \\
& =1+0+0+\cdots \\
& =1
\end{aligned}
\]
98. The following argument, \(2=1\), is incorrect. Describe the error. Multiply each side of the alternating harmonic series
\[
S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\cdots .
\]
by 2 to get
\[
2 S=\underbrace{2-1+\frac{2}{3}-\frac{1}{2}+\frac{2}{5}-\frac{1}{3}+\frac{2}{7}-\frac{1}{4}+\frac{2}{9}-\frac{1}{5}+\cdots . . . . ~}
\]

Now collect terms with like denominators (as indicated by the arrows) to get
\(2 S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\cdots\).
The resulting series is the same one that you started with. So, \(2 S=S\) and divide each side by \(S\) to get \(2=1\).
\(\square\) FOR FURTHER INFORMATION For more on this exercise, see the article "Riemann's Rearrangement Theorem" by Stewart Galanor in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{PUTNAM EXAM CHALLENGE}
99. Assume as known the (true) fact that the alternating harmonic series
(1) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots\)
is convergent, and denote its sum by \(s\). Rearrange the series (1) as follows:
(2) \(1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots\)

Assume as known the (true) fact that the series (2) is also convergent, and denote its sum by \(S\). Denote by \(s_{k}, S_{k}\) the \(k\) th partial sum of the series (1) and (2), respectively. Prove each statement.
(i) \(S_{3 n}=s_{4 n}+\frac{1}{2} s_{2 n}\),
(ii) \(S \neq s\)

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{9.6 The Ratio and Root Tests}

■ Use the Ratio Test to determine whether a series converges or diverges.
- Use the Root Test to determine whether a series converges or diverges.
- Review the tests for convergence and divergence of an infinite series.

\section*{The Ratio Test}

This section begins with a test for absolute convergence-the Ratio Test.

\section*{THEOREM 9.17 RATIO TEST}

Let \(\sum a_{n}\) be a series with nonzero terms.
1. \(\sum a_{n}\) converges absolutely if \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1\).
2. \(\sum a_{n}\) diverges if \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1\) or \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty\).
3. The Ratio Test is inconclusive if \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1\).

PROOF To prove Property 1, assume that
\[
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=r<1
\]
and choose \(R\) such that \(0 \leq r<R<1\). By the definition of the limit of a sequence, there exists some \(N>0\) such that \(\left|a_{n+1} / a_{n}\right|<R\) for all \(n>N\). Therefore, you can write the following inequalities.
\[
\begin{aligned}
& \left|a_{N+1}\right|<\left|a_{N}\right| R \\
& \left|a_{N+2}\right|<\left|a_{N+1}\right| R<\left|a_{N}\right| R^{2} \\
& \left|a_{N+3}\right|<\left|a_{N+2}\right| R<\left|a_{N+1}\right| R^{2}<\left|a_{N}\right| R^{3}
\end{aligned}
\]
\[
\vdots
\]

The geometric series \(\quad \sum\left|a_{N}\right| R^{n}=\left|a_{N}\right| R+\left|a_{N}\right| R^{2}+\cdots+\left|a_{N}\right| R^{n}+\cdots\) converges, and so, by the Direct Comparison Test, the series
\[
\sum_{n=1}^{\infty}\left|a_{N+n}\right|=\left|a_{N+1}\right|+\left|a_{N+2}\right|+\cdots+\left|a_{N+n}\right|+\cdots
\]
also converges. This in turn implies that the series \(\Sigma\left|a_{n}\right|\) converges, because discarding a finite number of terms \((n=N-1)\) does not affect convergence. Consequently, by Theorem 9.16, the series \(\sum a_{n}\) converges absolutely. The proof of Property 2 is similar and is left as an exercise (see Exercise 99).

NOTE The fact that the Ratio Test is inconclusive when \(\left|a_{n+1} / a_{n}\right| \rightarrow 1\) can be seen by comparing the two series \(\Sigma(1 / n)\) and \(\Sigma\left(1 / n^{2}\right)\). The first series diverges and the second one converges, but in both cases
\[
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1 .
\]

STUDY TIP A step frequently used in applications of the Ratio Test involves simplifying quotients of factorials. In Example 1, for instance, notice that
\(\frac{n!}{(n+1)!}=\frac{n!}{(n+1) n!}=\frac{1}{n+1}\).

Although the Ratio Test is not a cure for all ills related to testing for convergence, it is particularly useful for series that converge rapidly. Series involving factorials or exponentials are frequently of this type.

\section*{EXAMPLE 1 Using the Ratio Test}

Determine the convergence or divergence of
\[
\sum_{n=0}^{\infty} \frac{2^{n}}{n!}
\]

Solution Because \(a_{n}=2^{n} / n!\), you can write the following.
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left[\frac{2^{n+1}}{(n+1)!} \div \frac{2^{n}}{n!}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n+1} \\
& =0<1
\end{aligned}
\]

This series converges because the limit of \(\left|a_{n+1} / a_{n}\right|\) is less than 1 .

\section*{EXAMPLE 2 Using the Ratio Test}

Determine whether each series converges or diverges.
a. \(\sum_{n=0}^{\infty} \frac{n^{2} 2^{n+1}}{3^{n}}\)
b. \(\sum_{n=1}^{\infty} \frac{n^{n}}{n!}\)

Solution
a. This series converges because the limit of \(\left|a_{n+1} / a_{n}\right|\) is less than 1 .
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left[(n+1)^{2}\left(\frac{2^{n+2}}{3^{n+1}}\right)\left(\frac{3^{n}}{n^{2} 2^{n+1}}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{2(n+1)^{2}}{3 n^{2}} \\
& =\frac{2}{3}<1
\end{aligned}
\]
b. This series diverges because the limit of \(\left|a_{n+1} / a_{n}\right|\) is greater than 1 .
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{n+1}}{(n+1)!}\left(\frac{n!}{n^{n}}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{n+1}}{(n+1)}\left(\frac{1}{n^{n}}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& =e>1
\end{aligned}
\]

\section*{〕example 3 a Failure of the Ratio Test}

Determine the convergence or divergence of \(\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+1}\).
Solution The limit of \(\left|a_{n+1} / a_{n}\right|\) is equal to 1 .
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left[\left(\frac{\sqrt{n+1}}{n+2}\right)\left(\frac{n+1}{\sqrt{n}}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\sqrt{\frac{n+1}{n}}\left(\frac{n+1}{n+2}\right)\right] \\
& =\sqrt{1}(1) \\
& =1
\end{aligned}
\]

NOTE The Ratio Test is also inconclusive for any \(p\)-series.

So, the Ratio Test is inconclusive. To determine whether the series converges, you need to try a different test. In this case, you can apply the Alternating Series Test. To show that \(a_{n+1} \leq a_{n}\), let
\[
f(x)=\frac{\sqrt{x}}{x+1}
\]

Then the derivative is
\[
f^{\prime}(x)=\frac{-x+1}{2 \sqrt{x}(x+1)^{2}}
\]

Because the derivative is negative for \(x>1\), you know that \(f\) is a decreasing function. Also, by L'H \(\hat{p} i t a l\) 's Rule,
\[
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{x+1} & =\lim _{x \rightarrow \infty} \frac{1 /(2 \sqrt{x})}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x}} \\
& =0
\end{aligned}
\]

Therefore, by the Alternating Series Test, the series converges.

The series in Example 3 is conditionally convergent. This follows from the fact that the series
\[
\sum_{n=1}^{\infty}\left|a_{n}\right|
\]
diverges (by the Limit Comparison Test with \(\Sigma 1 / \sqrt{n}\) ), but the series
\(\sum_{n=1}^{\infty} a_{n}\)
converges.

TECHNOLOGY A computer or programmable calculator can reinforce the conclusion that the series in Example 3 converges conditionally. By adding the first 100 terms of the series, you obtain a sum of about -0.2 . (The sum of the first 100 terms of the series \(\Sigma\left|a_{n}\right|\) is about 17.)

FOR FURTHER INFORMATION For more information on the usefulness of the Root Test, see the article " \(N\) ! and the Root Test" by Charles C. Mumma II in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

\section*{The Root Test}

The next test for convergence or divergence of series works especially well for series involving \(n\)th powers. The proof of this theorem is similar to the proof given for the Ratio Test, and is left as an exercise (see Exercise 100).

\section*{THEOREM 9.18 ROOT TEST}

Let \(\sum a_{n}\) be a series.
1. \(\sum a_{n}\) converges absolutely if \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1\).
2. \(\sum a_{n}\) diverges if \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1\) or \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty\).
3. The Root Test is inconclusive if \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1\).

NOTE The Root Test is always inconclusive for any \(p\)-series.

\section*{EXAMPLE 4 Using the Root Test}

Determine the convergence or divergence of
\[
\sum_{n=1}^{\infty} \frac{e^{2 n}}{n^{n}}
\]

Solution You can apply the Root Test as follows.
\[
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \sqrt[n]{\frac{e^{2 n}}{n^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{e^{2 n / n}}{n^{n / n}} \\
& =\lim _{n \rightarrow \infty} \frac{e^{2}}{n} \\
& =0<1
\end{aligned}
\]

Because this limit is less than 1 , you can conclude that the series converges absolutely (and therefore converges).

To see the usefulness of the Root Test for the series in Example 4, try applying the Ratio Test to that series. When you do this, you obtain the following.
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left[\frac{e^{2(n+1)}}{(n+1)^{n+1}} \div \frac{e^{2 n}}{n^{n}}\right] \\
& =\lim _{n \rightarrow \infty} e^{2} \frac{n^{n}}{(n+1)^{n+1}} \\
& =\lim _{n \rightarrow \infty} e^{2}\left(\frac{n}{n+1}\right)^{n}\left(\frac{1}{n+1}\right) \\
& =0
\end{aligned}
\]

Note that this limit is not as easily evaluated as the limit obtained by the Root Test in Example 4.

\section*{Strategies for Testing Series}

You have now studied 10 tests for determining the convergence or divergence of an infinite series. (See the summary in the table on page 646.) Skill in choosing and applying the various tests will come only with practice. Below is a set of guidelines for choosing an appropriate test.

\section*{GUIDELINES FOR TESTING A SERIES FOR CONVERGENCE OR DIVERGENCE}
1. Does the \(n\)th term approach 0 ? If not, the series diverges.
2. Is the series one of the special types-geometric, \(p\)-series, telescoping, or alternating?
3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
4. Can the series be compared favorably to one of the special types?

In some instances, more than one test is applicable. However, your objective should be to learn to choose the most efficient test.

\section*{EXAMPLE 5 Applying the Strategies for Testing Series}

Determine the convergence or divergence of each series.
a. \(\sum_{n=1}^{\infty} \frac{n+1}{3 n+1}\)
b. \(\sum_{n=1}^{\infty}\left(\frac{\pi}{6}\right)^{n}\)
c. \(\sum_{n=1}^{\infty} n e^{-n^{2}}\)
d. \(\sum_{n=1}^{\infty} \frac{1}{3 n+1}\)
e. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{3}{4 n+1}\)
f. \(\sum_{n=1}^{\infty} \frac{n!}{10^{n}}\)
g. \(\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}\)

\section*{Solution}
a. For this series, the limit of the \(n\)th term is not \(0\left(a_{n} \rightarrow \frac{1}{3}\right.\) as \(\left.n \rightarrow \infty\right)\). So, by the \(n\) th-Term Test, the series diverges.
b. This series is geometric. Moreover, because the ratio \(r=\pi / 6\) of the terms is less than 1 in absolute value, you can conclude that the series converges.
c. Because the function \(f(x)=x e^{-x^{2}}\) is easily integrated, you can use the Integral Test to conclude that the series converges.
d. The \(n\)th term of this series can be compared to the \(n\)th term of the harmonic series. After using the Limit Comparison Test, you can conclude that the series diverges.
e. This is an alternating series whose \(n\)th term approaches 0 . Because \(a_{n+1} \leq a_{n}\), you can use the Alternating Series Test to conclude that the series converges.
f. The \(n\)th term of this series involves a factorial, which indicates that the Ratio Test may work well. After applying the Ratio Test, you can conclude that the series diverges.
g. The \(n\)th term of this series involves a variable that is raised to the \(n\)th power, which indicates that the Root Test may work well. After applying the Root Test, you can conclude that the series converges.

\section*{SUMMARY OF TESTS FOR SERIES}
\begin{tabular}{|l|l|l|l|l|}
\hline Test & Series & \begin{tabular}{l} 
Condition(s) \\
of Convergence
\end{tabular} & \begin{tabular}{l} 
Condition(s) \\
of Divergence
\end{tabular} & Comment \\
\hline nth-Term & \(\sum_{n=1}^{\infty} a_{n}\) & \(|r|<1\) & \begin{tabular}{l}
\(\lim _{n \rightarrow \infty} a_{n} \neq 0\)
\end{tabular} & \begin{tabular}{l} 
This test cannot be used \\
to show convergence.
\end{tabular} \\
\hline Geometric Series & \(\sum_{n=0}^{\infty} a^{n}\) & \(|r| \geq 1\) & Sum: \(S=\frac{a}{1-r}\) \\
\hline Telescoping Series & \(\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)\) & \(\lim _{n \rightarrow \infty} b_{n}=L\) & \(0<p \leq 1\) & Sum: \(S=b_{1}-L\)
\end{tabular}

\subsection*{9.6 Exercises}

In Exercises 1-4, verify the formula.
1. \(\frac{(n+1)!}{(n-2)!}=(n+1)(n)(n-1)\)
2. \(\frac{(2 k-2)!}{(2 k)!}=\frac{1}{(2 k)(2 k-1)}\)
3. \(1 \cdot 3 \cdot 5 \cdots(2 k-1)=\frac{(2 k)!}{2^{k} k!}\)
4. \(\frac{1}{1 \cdot 3 \cdot 5 \cdots(2 k-5)}=\frac{2^{k} k!(2 k-3)(2 k-1)}{(2 k)!}, \quad k \geq 3\)

In Exercises 5-10, match the series with the graph of its sequence of partial sums. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]
(a)

(b)

(c)

(d)

(e)

(f)

5. \(\sum_{n=1}^{\infty} n\left(\frac{3}{4}\right)^{n}\)
6. \(\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}\left(\frac{1}{n!}\right)\)
7. \(\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n!}\)
8. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 4}{(2 n)!}\)
9. \(\sum_{n=1}^{\infty}\left(\frac{4 n}{5 n-3}\right)^{n}\)
10. \(\sum_{n=0}^{\infty} 4 e^{-n}\)

Numerical, Graphical, and Analytic Analysis In Exercises 11 and 12, (a) verify that the series converges. (b) Use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table. (c) Use a graphing utility to graph the first 10 terms of the sequence of partial sums. (d) Use the table to estimate the sum of the series. (e) Explain the relationship between the magnitudes of the terms of the series and the rate at which the sequence of partial sums approaches the sum of the series.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 15 & 20 & 25 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
11. \(\sum_{n=1}^{\infty} n^{2}\left(\frac{5}{8}\right)^{n}\)
12. \(\sum_{n=1}^{\infty} \frac{n^{2}+1}{n!}\)

In Exercises 13-34, use the Ratio Test to determine the convergence or divergence of the series.
13. \(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\)
14. \(\sum_{n=1}^{\infty} \frac{1}{n!}\)
15. \(\sum_{n=0}^{\infty} \frac{n!}{3^{n}}\)
16. \(\sum_{n=0}^{\infty} \frac{3^{n}}{n!}\)
17. \(\sum_{n=1}^{\infty} n\left(\frac{6}{5}\right)^{n}\)
18. \(\sum_{n=1}^{\infty} n\left(\frac{10}{9}\right)^{n}\)
19. \(\sum_{n=1}^{\infty} \frac{n}{4^{n}}\)
20. \(\sum_{n=1}^{\infty} \frac{n^{3}}{4^{n}}\)
21. \(\sum_{n=1}^{\infty} \frac{4^{n}}{n^{2}}\)
22. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}\)
23. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n!}\)
24. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(3 / 2)^{n}}{n^{2}}\)
25. \(\sum_{n=1}^{\infty} \frac{n!}{n 3^{n}}\)
26. \(\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{5}}\)
27. \(\sum_{n=0}^{\infty} \frac{e^{n}}{n!}\)
28. \(\sum_{n=1}^{\infty} \frac{n!}{n^{n}}\)
29. \(\sum_{n=0}^{\infty} \frac{6^{n}}{(n+1)^{n}}\)
30. \(\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(3 n)!}\)
31. \(\sum_{n=0}^{\infty} \frac{5^{n}}{2^{n}+1}\)
32. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{4 n}}{(2 n+1)!}\)
33. \(\sum_{n=0}^{\infty} \frac{(-1)^{n+1} n!}{1 \cdot 3 \cdot 5 \cdot \cdot(2 n+1)}\)
34. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}[2 \cdot 4 \cdot 6 \cdots(2 n)]}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}\)

In Exercises 35-50, use the Root Test to determine the convergence or divergence of the series.
35. \(\sum_{n=1}^{\infty} \frac{1}{5^{n}}\)
36. \(\sum_{n=1}^{\infty} \frac{1}{n^{n}}\)
37. \(\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}\)
38. \(\sum_{n=1}^{\infty}\left(\frac{2 n}{n+1}\right)^{n}\)
39. \(\sum_{n=2}^{\infty}\left(\frac{2 n+1}{n-1}\right)^{n}\)
40. \(\sum_{n=1}^{\infty}\left(\frac{4 n+3}{2 n-1}\right)^{n}\)
41. \(\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{n}}\)
42. \(\sum_{n=1}^{\infty}\left(\frac{-3 n}{2 n+1}\right)^{3 n}\)
43. \(\sum_{n=1}^{\infty}(2 \sqrt[n]{n}+1)^{n}\)
44. \(\sum_{n=0}^{\infty} e^{-3 n}\)
45. \(\sum_{n=1}^{\infty} \frac{n}{3^{n}}\)
46. \(\sum_{n=1}^{\infty}\left(\frac{n}{500}\right)^{n}\)
47. \(\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)^{n}\)
48. \(\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{n}\)
49. \(\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{n}}\)
50. \(\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}\)

In Exercises 51-68, determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.
51. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 5}{n}\)
52. \(\sum_{n=1}^{\infty} \frac{100}{n}\)
53. \(\sum_{n=1}^{\infty} \frac{3}{n \sqrt{n}}\)
54. \(\sum_{n=1}^{\infty}\left(\frac{2 \pi}{3}\right)^{n}\)
55. \(\sum_{n=1}^{\infty} \frac{5 n}{2 n-1}\)
56. \(\sum_{n=1}^{\infty} \frac{n}{2 n^{2}+1}\)
57. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n-2}}{2^{n}}\)
58. \(\sum_{n=1}^{\infty} \frac{10}{3 \sqrt{n^{3}}}\)
59. \(\sum_{n=1}^{\infty} \frac{10 n+3}{n 2^{n}}\)
60. \(\sum_{n=1}^{\infty} \frac{2^{n}}{4 n^{2}-1}\)
61. \(\sum_{n=1}^{\infty} \frac{\cos n}{3^{n}}\)
62. \(\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}\)
63. \(\sum_{n=1}^{\infty} \frac{n 7^{n}}{n!}\)
64. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}\)
65. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n-1}}{n!}\)
66. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{n 2^{n}}\)
67. \(\sum_{n=1}^{\infty} \frac{(-3)^{n}}{3 \cdot 5 \cdot 7 \cdot \cdot(2 n+1)}\)
68. \(\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdot \cdots(2 n+1)}{18^{n}(2 n-1) n!}\)

In Exercises 69-72, identify the two series that are the same.
69. (a
(a) \(\sum_{n=1}^{\infty} \frac{n 5^{n}}{n!}\)
70. (a) \(\sum_{n=4}^{\infty} n\left(\frac{3}{4}\right)^{n}\)
(b) \(\sum_{n=0}^{\infty} \frac{n 5^{n}}{(n+1)!}\)
(b) \(\sum_{n=0}^{\infty}(n+1)\left(\frac{3}{4}\right)^{n}\)
(c) \(\sum_{n=0}^{\infty} \frac{(n+1) 5^{n+1}}{(n+1)!}\)
(c) \(\sum_{n=1}^{\infty} n\left(\frac{3}{4}\right)^{n-1}\)
71. (a) \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\)
72. (a)
\(\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-1) 2^{n-1}}\)
(b) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)!}\)
(b) \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 2^{n}}\)
(c) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n+1)!}\)
(c) \(\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1) 2^{n}}\)

In Exercises 73 and 74, write an equivalent series with the index of summation beginning at \(\boldsymbol{n}=0\).
73. \(\sum_{n=1}^{\infty} \frac{n}{7^{n}}\)
74. \(\sum_{n=2}^{\infty} \frac{9^{n}}{(n-2)!}\)

In Exercises 75 and 76, (a) determine the number of terms required to approximate the sum of the series with an error less than 0.0001 , and (b) use a graphing utility to approximate the sum of the series with an error less than 0.0001 .
75. \(\sum_{k=1}^{\infty} \frac{(-3)^{k}}{2^{k} k!}\)
76. \(\sum_{k=0}^{\infty} \frac{(-3)^{k}}{1 \cdot 3 \cdot 5 \cdot \cdot(2 k+1)}\)

In Exercises 77-82, the terms of a series \(\sum_{n=1}^{\infty} a_{n}\) are defined recursively. Determine the convergence or divergence of the series. Explain your reasoning.
77. \(a_{1}=\frac{1}{2}, a_{n+1}=\frac{4 n-1}{3 n+2} a_{n}\)
78. \(a_{1}=2, a_{n+1}=\frac{2 n+1}{5 n-4} a_{n}\)
79. \(a_{1}=1, a_{n+1}=\frac{\sin n+1}{\sqrt{n}} a_{n}\)
80. \(a_{1}=\frac{1}{5}, a_{n+1}=\frac{\cos n+1}{n} a_{n}\)
81. \(a_{1}=\frac{1}{3}, a_{n+1}=\left(1+\frac{1}{n}\right) a_{n}\)
82. \(a_{1}=\frac{1}{4}, a_{n+1}=\sqrt[n]{a_{n}}\)

In Exercises 83-86, use the Ratio Test or the Root Test to determine the convergence or divergence of the series.
83. \(1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\cdots\)
84. \(1+\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\frac{5}{3^{4}}+\frac{6}{3^{5}}+\cdots\).
85. \(\frac{1}{(\ln 3)^{3}}+\frac{1}{(\ln 4)^{4}}+\frac{1}{(\ln 5)^{5}}+\frac{1}{(\ln 6)^{6}}+\cdots\)
86. \(1+\frac{1 \cdot 3}{1 \cdot 2 \cdot 3}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}\)
\[
+\frac{1 \cdot 3 \cdot 5 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}+\cdots
\]

In Exercises 87-92, find the values of \(\boldsymbol{x}\) for which the series converges.
87. \(\sum_{n=0}^{\infty} 2\left(\frac{x}{3}\right)^{n}\)
88. \(\sum_{n=0}^{\infty}\left(\frac{x+1}{4}\right)^{n}\)
89. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{n}\)
90. \(\sum_{n=0}^{\infty} 2(x-1)^{n}\)
91. \(\sum_{n=0}^{\infty} n!\left(\frac{x}{2}\right)^{n}\)
92. \(\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}\)

\section*{WRITING ABOUT CONCEPTS}
93. State the Ratio Test.
94. State the Root Test.
95. You are told that the terms of a positive series appear to approach zero rapidly as \(n\) approaches infinity. In fact, \(a_{7} \leq 0.0001\). Given no other information, does this imply that the series converges? Support your conclusion with examples.
96. The graph shows the first 10 terms of the sequence of partial sums of the convergent series
\(\sum_{n=1}^{\infty}\left(\frac{2 n}{3 n+2}\right)^{n}\).
Find a series such that the terms of its sequence of partial sums are less than the corresponding terms of the sequence in the figure, but such that the series diverges. Explain your reasoning.

97. Using the Ratio Test, it is determined that an alternating series converges. Does the series converge conditionally or absolutely? Explain.

\section*{CAPSTONE}
98. What can you conclude about the convergence or divergence of \(\sum a_{n}\) for each of the following conditions? Explain your reasoning.
(a) \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0\)
(b) \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1\)
(c) \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3}{2}\)
(d) \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=2\)
(e) \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1\)
(f) \(\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=e\)
99. Prove Property 2 of Theorem 9.17.
100. Prove Theorem 9.18. (Hint for Property 1: If the limit equals \(r<1\), choose a real number \(R\) such that \(r<R<1\). By the definitions of the limit, there exists some \(N>0\) such that \(\sqrt[n]{\left|a_{n}\right|}<R\) for \(n>N\).)

In Exercises 101-104, verify that the Ratio Test is inconclusive for the \(p\)-series.
101. \(\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}\)
102. \(\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}\)
103. \(\sum_{n=1}^{\infty} \frac{1}{n^{4}}\)
104. \(\sum_{n=1}^{\infty} \frac{1}{n^{p}}\)
105. Show that the Root Test is inconclusive for the \(p\)-series \(\sum_{n=1}^{\infty} \frac{1}{n^{p}}\).
106. Show that the Ratio Test and the Root Test are both inconclusive for the logarithmic \(p\)-series
\(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}\).
107. Determine the convergence or divergence of the series
\(\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(x n)!}\)
when (a) \(x=1\), (b) \(x=2\), (c) \(x=3\), and (d) \(x\) is a positive integer.
108. Show that if \(\sum_{n=1}^{\infty} a_{n}\) is absolutely convergent, then
\[
\left|\sum_{n=1}^{\infty} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right| .
\]
109. Writing Read the article "A Differentiation Test for Absolute Convergence" by Yaser S. Abu-Mostafa in Mathematics Magazine. Then write a paragraph that describes the test. Include examples of series that converge and examples of series that diverge.

\section*{PUTNAM EXAM CHALLENGE}
110. Is the following series convergent or divergent?
\(1+\frac{1}{2} \cdot \frac{19}{7}+\frac{2!}{3^{2}}\left(\frac{19}{7}\right)^{2}+\frac{3!}{4^{3}}\left(\frac{19}{7}\right)^{3}+\frac{4!}{5^{4}}\left(\frac{19}{7}\right)^{4}+\cdots \cdot\)
111. Show that if the series
\(a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots\)
converges, then the series
\(a_{1}+\frac{a_{2}}{2}+\frac{a_{3}}{3}+\cdots+\frac{a_{n}}{n}+\cdots\).
converges also.
These problems were composed by the Committee on the Putnam Prize Competition. ©he Mathematical Association of America. All rights reserved.

\subsection*{9.7 Taylor Polynomials and Approximations}


Near \((c, f(c))\), the graph of \(P\) can be used to approximate the graph of \(f\).
Figure 9.10

\(P_{1}\) is the first-degree polynomial approximation of \(f(x)=e^{x}\).
Figure 9.11
- Find polynomial approximations of elementary functions and compare them with the elementary functions.
- Find Taylor and Maclaurin polynomial approximations of elementary functions.
- Use the remainder of a Taylor polynomial.

\section*{Polynomial Approximations of Elementary Functions}

The goal of this section is to show how polynomial functions can be used as approximations for other elementary functions. To find a polynomial function \(P\) that approximates another function \(f\), begin by choosing a number \(c\) in the domain of \(f\) at which \(f\) and \(P\) have the same value. That is,
\[
P(c)=f(c) . \quad \text { Graphs of } f \text { and } P \text { pass through }(c, f(c))
\]

The approximating polynomial is said to be expanded about \(\boldsymbol{c}\) or centered at \(\boldsymbol{c}\). Geometrically, the requirement that \(P(c)=f(c)\) means that the graph of \(P\) passes through the point \((c, f(c))\). Of course, there are many polynomials whose graphs pass through the point \((c, f(c))\). Your task is to find a polynomial whose graph resembles the graph of \(f\) near this point. One way to do this is to impose the additional requirement that the slope of the polynomial function be the same as the slope of the graph of \(f\) at the point \((c, f(c))\).
\[
P^{\prime}(c)=f^{\prime}(c) \quad \text { Graphs of } f \text { and } P \text { have the same slope at }(c, f(c)) .
\]

With these two requirements, you can obtain a simple linear approximation of \(f\), as shown in Figure 9.10.

\section*{EXAMPLE 1 First-Degree Polynomial Approximation of \(f(x)=e^{x}\)}

For the function \(f(x)=e^{x}\), find a first-degree polynomial function
\[
P_{1}(x)=a_{0}+a_{1} x
\]
whose value and slope agree with the value and slope of \(f\) at \(x=0\).
Solution Because \(f(x)=e^{x}\) and \(f^{\prime}(x)=e^{x}\), the value and the slope of \(f\), at \(x=0\), are given by
\[
f(0)=e^{0}=1
\]
and
\[
f^{\prime}(0)=e^{0}=1
\]

Because \(P_{1}(x)=a_{0}+a_{1} x\), you can use the condition that \(P_{1}(0)=f(0)\) to conclude that \(a_{0}=1\). Moreover, because \(P_{1}{ }^{\prime}(x)=a_{1}\), you can use the condition that \(P_{1}{ }^{\prime}(0)=\) \(f^{\prime}(0)\) to conclude that \(a_{1}=1\). Therefore,
\[
P_{1}(x)=1+x
\]

Figure 9.11 shows the graphs of \(P_{1}(x)=1+x\) and \(f(x)=e^{x}\).

NOTE Example 1 isn't the first time you have used a linear function to approximate another function. The same procedure was used as the basis for Newton's Method.

\(P_{2}\) is the second-degree polynomial approximation of \(f(x)=e^{x}\).
Figure 9.12

In Figure 9.12 you can see that, at points near \((0,1)\), the graph of
\[
P_{1}(x)=1+x
\]

1st-degree approximation
is reasonably close to the graph of \(f(x)=e^{x}\). However, as you move away from \((0,1)\), the graphs move farther and farther from each other and the accuracy of the approximation decreases. To improve the approximation, you can impose yet another requirement- that the values of the second derivatives of \(P\) and \(f\) agree when \(x=0\). The polynomial, \(P_{2}\), of least degree that satisfies all three requirements \(P_{2}(0)=f(0)\), \(P_{2}{ }^{\prime}(0)=f^{\prime}(0)\), and \(P_{2}{ }^{\prime \prime}(0)=f^{\prime \prime}(0)\) can be shown to be
\[
P_{2}(x)=1+x+\frac{1}{2} x^{2} .
\]

2nd-degree approximation

Moreover, in Figure 9.12, you can see that \(P_{2}\) is a better approximation of \(f\) than \(P_{1}\). If you continue this pattern, requiring that the values of \(P_{n}(x)\) and its first \(n\) derivatives match those of \(f(x)=e^{x}\) at \(x=0\), you obtain the following.
\[
\begin{aligned}
P_{n}(x) & =1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n} \quad \text { nth-degree approximation } \\
& \approx e^{x}
\end{aligned}
\]

\section*{EXAMPLE 2 Third-Degree Polynomial Approximation of \(f(x)=e^{x}\)}

Construct a table comparing the values of the polynomial
\[
P_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}
\]

3rd-degree approximation
with \(f(x)=e^{x}\) for several values of \(x\) near 0 .
Solution Using a calculator or a computer, you can obtain the results shown in the table. Note that for \(x=0\), the two functions have the same value, but that as \(x\) moves farther away from 0 , the accuracy of the approximating polynomial \(P_{3}(x)\) decreases.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(x\) & -1.0 & -0.2 & -0.1 & 0 & 0.1 & 0.2 & 1.0 \\
\hline\(e^{x}\) & 0.3679 & 0.81873 & 0.904837 & 1 & 1.105171 & 1.22140 & 2.7183 \\
\hline\(P_{3}(x)\) & 0.3333 & 0.81867 & 0.904833 & 1 & 1.105167 & 1.22133 & 2.6667 \\
\hline
\end{tabular}

TECHNOLOGY A graphing utility can be used to compare the graph of the approximating polynomial with the graph of the function \(f\). For instance, in Figure 9.13, the graph of
\[
P_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
\]

3rd-degree approximation
is compared with the graph of \(f(x)=e^{x}\). If you have access to a graphing utility, try comparing the graphs of
\[
\begin{array}{ll}
P_{4}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4} & \text { 4th-degree approximation } \\
P_{5}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5} & \text { 5th-degree approximation } \\
P_{6}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6} & \text { 6th-degree approximation }
\end{array}
\]
with the graph of \(f\). What do you notice?


NOTE Maclaurin polynomials are special types of Taylor polynomials for which \(c=0\).

FOR FURTHER INFORMATION To
see how to use series to obtain other approximations to \(e\), see the article "Novel Series-based Approximations to \(e\) " by John Knox and Harlan J. Brothers in The College Mathematics Journal. To view this article, go to the website www.matharticles.com.

\section*{Taylor and Maclaurin Polynomials}

The polynomial approximation of \(f(x)=e^{x}\) given in Example 2 is expanded about \(c=0\). For expansions about an arbitrary value of \(c\), it is convenient to write the polynomial in the form
\[
P_{n}(x)=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n} .
\]

In this form, repeated differentiation produces
\[
\begin{aligned}
P_{n}^{\prime}(x) & =a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots+n a_{n}(x-c)^{n-1} \\
P_{n}^{\prime \prime}(x) & =2 a_{2}+2\left(3 a_{3}\right)(x-c)+\cdots+n(n-1) a_{n}(x-c)^{n-2} \\
P_{n}^{\prime \prime \prime}(x) & =2\left(3 a_{3}\right)+\cdots+n(n-1)(n-2) a_{n}(x-c)^{n-3} \\
& \vdots \\
P_{n}^{(n)}(x) & =n(n-1)(n-2) \cdots(2)(1) a_{n} .
\end{aligned}
\]

Letting \(x=c\), you then obtain
\[
P_{n}(c)=a_{0}, \quad P_{n}^{\prime}(c)=a_{1}, \quad P_{n}^{\prime \prime}(c)=2 a_{2}, \ldots, \quad P_{n}^{(n)}(c)=n!a_{n}
\]
and because the values of \(f\) and its first \(n\) derivatives must agree with the values of \(P_{n}\) and its first \(n\) derivatives at \(x=c\), it follows that
\[
f(c)=a_{0}, \quad f^{\prime}(c)=a_{1}, \quad \frac{f^{\prime \prime}(c)}{2!}=a_{2}, \quad \ldots, \quad \frac{f^{(n)}(c)}{n!}=a_{n}
\]

With these coefficients, you can obtain the following definition of Taylor polynomials, named after the English mathematician Brook Taylor, and Maclaurin polynomials, named after the English mathematician Colin Maclaurin (1698-1746).

\section*{DEFINITIONS OF \(n\) TH TAYLOR POLYNOMIAL AND \(n\) TH MACLAURIN POLYNOMIAL}

If \(f\) has \(n\) derivatives at \(c\), then the polynomial
\[
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
\]
is called the \(\boldsymbol{n}\) th Taylor polynomial for \(\boldsymbol{f}\) at \(\boldsymbol{c}\). If \(c=0\), then
\[
P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}
\]
is also called the \(\boldsymbol{n}\) th Maclaurin polynomial for \(\boldsymbol{f}\).

\section*{EXAMPLE 3 A Maclaurin Polynomial for \(f(x)=e^{x}\)}

Find the \(n\)th Maclaurin polynomial for \(f(x)=e^{x}\).
Solution From the discussion on page 651, the \(n\)th Maclaurin polynomial for
\[
f(x)=e^{x}
\]
is given by
\[
P_{n}(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}
\]

\section*{EXAMPLE 4 Finding Taylor Polynomials for \(\ln \boldsymbol{x}\)}

Find the Taylor polynomials \(P_{0}, P_{1}, P_{2}, P_{3}\), and \(P_{4}\) for \(f(x)=\ln x\) centered at \(c=1\).
Solution Expanding about \(c=1\) yields the following.
\[
\begin{array}{rlrl}
f(x) & =\ln x & f(1) & =\ln 1=0 \\
f^{\prime}(x) & =\frac{1}{x} & f^{\prime}(1)=\frac{1}{1}=1 \\
f^{\prime \prime}(x) & =-\frac{1}{x^{2}} & f^{\prime \prime}(1)=-\frac{1}{1^{2}}=-1 \\
f^{\prime \prime \prime}(x) & =\frac{2!}{x^{3}} & f^{\prime \prime \prime}(1)=\frac{2!}{1^{3}}=2 \\
f^{(4)}(x) & =-\frac{3!}{x^{4}} & f^{(4)}(1)=-\frac{3!}{1^{4}}=-6
\end{array}
\]

Therefore, the Taylor polynomials are as follows.
\[
\begin{aligned}
P_{0}(x)= & f(1)=0 \\
P_{1}(x)= & f(1)+f^{\prime}(1)(x-1)=(x-1) \\
P_{2}(x)= & f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2} \\
= & (x-1)-\frac{1}{2}(x-1)^{2} \\
P_{3}(x)= & f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3} \\
= & (x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3} \\
P_{4}(x)= & f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3} \\
& +\frac{f^{(4)}(1)}{4!}(x-1)^{4} \\
= & (x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}
\end{aligned}
\]

Figure 9.14 compares the graphs of \(P_{1}, P_{2}, P_{3}\), and \(P_{4}\) with the graph of \(f(x)=\ln x\). Note that near \(x=1\) the graphs are nearly indistinguishable. For instance, \(P_{4}(0.9) \approx\) -0.105358 and \(\ln (0.9) \approx-0.105361\).





As \(n\) increases, the graph of \(P_{n}\) becomes a better and better approximation of the graph of \(f(x)=\ln x\) near \(x=1\).
Figure 9.14


Near \((0,1)\), the graph of \(P_{6}\) can be used to approximate the graph of \(f(x)=\cos x\). Figure 9.15


Near \((\pi / 6,1 / 2)\), the graph of \(P_{3}\) can be used to approximate the graph of \(f(x)=\sin x\).
Figure 9.16

\section*{EXAMPLE 5 Finding Maclaurin Polynomials for \(\cos \boldsymbol{x}\)}

Find the Maclaurin polynomials \(P_{0}, P_{2}, P_{4}\), and \(P_{6}\) for \(f(x)=\cos x\). Use \(P_{6}(x)\) to approximate the value of \(\cos (0.1)\).

Solution Expanding about \(c=0\) yields the following.
\[
\begin{array}{rlrl}
f(x) & =\cos x & f(0) & =\cos 0=1 \\
f^{\prime}(x) & =-\sin x & f^{\prime}(0) & =-\sin 0=0 \\
f^{\prime \prime}(x) & =-\cos x & f^{\prime \prime}(0) & =-\cos 0=-1 \\
f^{\prime \prime \prime}(x) & =\sin x & f^{\prime \prime \prime}(0) & =\sin 0=0
\end{array}
\]

Through repeated differentiation, you can see that the pattern \(1,0,-1,0\) continues, and you obtain the following Maclaurin polynomials.
\[
\begin{aligned}
& P_{0}(x)=1, \quad P_{2}(x)=1-\frac{1}{2!} x^{2} \\
& P_{4}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}, \quad P_{6}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}
\end{aligned}
\]

Using \(P_{6}(x)\), you obtain the approximation \(\cos (0.1) \approx 0.995004165\), which coincides with the calculator value to nine decimal places. Figure 9.15 compares the graphs of \(f(x)=\cos x\) and \(P_{6}\).

Note in Example 5 that the Maclaurin polynomials for \(\cos x\) have only even powers of \(x\). Similarly, the Maclaurin polynomials for \(\sin x\) have only odd powers of \(x\) (see Exercise 17). This is not generally true of the Taylor polynomials for \(\sin x\) and \(\cos x\) expanded about \(c \neq 0\), as you can see in the next example.

\section*{EXAMPLE 6 Finding a Taylor Polynomial for \(\sin x\)}

Find the third Taylor polynomial for \(f(x)=\sin x\), expanded about \(c=\pi / 6\).
Solution Expanding about \(c=\pi / 6\) yields the following.
\[
\begin{array}{rlrl}
f(x) & =\sin x & f\left(\frac{\pi}{6}\right) & =\sin \frac{\pi}{6}=\frac{1}{2} \\
f^{\prime}(x)=\cos x & f^{\prime}\left(\frac{\pi}{6}\right) & =\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}\left(\frac{\pi}{6}\right) & =-\sin \frac{\pi}{6}=-\frac{1}{2} \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}\left(\frac{\pi}{6}\right) & =-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2}
\end{array}
\]

So, the third Taylor polynomial for \(f(x)=\sin x\), expanded about \(c=\pi / 6\), is
\[
\begin{aligned}
P_{3}(x) & =f\left(\frac{\pi}{6}\right)+f^{\prime}\left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{6}\right)}{2!}\left(x-\frac{\pi}{6}\right)^{2}+\frac{f^{\prime \prime \prime}\left(\frac{\pi}{6}\right)}{3!}\left(x-\frac{\pi}{6}\right)^{3} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)-\frac{1}{2(2!)}\left(x-\frac{\pi}{6}\right)^{2}-\frac{\sqrt{3}}{2(3!)}\left(x-\frac{\pi}{6}\right)^{3}
\end{aligned}
\]

Figure 9.16 compares the graphs of \(f(x)=\sin x\) and \(P_{3}\).

Taylor polynomials and Maclaurin polynomials can be used to approximate the value of a function at a specific point. For instance, to approximate the value of \(\ln (1.1)\), you can use Taylor polynomials for \(f(x)=\ln x\) expanded about \(c=1\), as shown in Example 4, or you can use Maclaurin polynomials, as shown in Example 7.

\section*{EXAMPLE 7 Approximation Using Maclaurin Polynomials}

Use a fourth Maclaurin polynomial to approximate the value of \(\ln (1.1)\).
Solution Because 1.1 is closer to 1 than to 0 , you should consider Maclaurin polynomials for the function \(g(x)=\ln (1+x)\).
\[
\begin{aligned}
g(x) & =\ln (1+x) & g(0) & =\ln (1+0)=0 \\
g^{\prime}(x) & =(1+x)^{-1} & g^{\prime}(0) & =(1+0)^{-1}=1 \\
g^{\prime \prime}(x) & =-(1+x)^{-2} & g^{\prime \prime}(0) & =-(1+0)^{-2}=-1 \\
g^{\prime \prime \prime}(x) & =2(1+x)^{-3} & g^{\prime \prime \prime}(0) & =2(1+0)^{-3}=2 \\
g^{(4)}(x) & =-6(1+x)^{-4} & g^{(4)}(0) & =-6(1+0)^{-4}=-6
\end{aligned}
\]

Note that you obtain the same coefficients as in Example 4. Therefore, the fourth Maclaurin polynomial for \(g(x)=\ln (1+x)\) is
\[
\begin{aligned}
P_{4}(x) & =g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2!} x^{2}+\frac{g^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{g^{(4)}(0)}{4!} x^{4} \\
& =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4} .
\end{aligned}
\]

Consequently,
\[
\ln (1.1)=\ln (1+0.1) \approx P_{4}(0.1) \approx 0.0953083
\]

Check to see that the fourth Taylor polynomial (from Example 4), evaluated at \(x=1.1\), yields the same result.

The table at the left illustrates the accuracy of the Taylor polynomial approximation of the calculator value of \(\ln (1.1)\). You can see that as \(n\) becomes larger, \(P_{n}(0.1)\) approaches the calculator value of 0.0953102 .

On the other hand, the table below illustrates that as you move away from the expansion point \(c=1\), the accuracy of the approximation decreases.

\section*{Fourth Taylor Polynomial Approximation of \(\ln (1+x)\)}
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 0.1 & 0.5 & 0.75 & 1.0 \\
\hline \(\ln (1+x)\) & 0 & 0.0953102 & 0.4054651 & 0.5596158 & 0.6931472 \\
\hline\(P_{4}(x)\) & 0 & 0.0953083 & 0.4010417 & 0.5302734 & 0.5833333 \\
\hline
\end{tabular}

These two tables illustrate two very important points about the accuracy of Taylor (or Maclaurin) polynomials for use in approximations.
1. The approximation is usually better at \(x\)-values close to \(c\) than at \(x\)-values far from \(c\).
2. The approximation is usually better for higher-degree Taylor (or Maclaurin) polynomials than for those of lower degree.

\section*{Remainder of a Taylor Polynomial}

An approximation technique is of little value without some idea of its accuracy. To measure the accuracy of approximating a function value \(f(x)\) by the Taylor polynomial \(P_{n}(x)\), you can use the concept of a remainder \(R_{n}(x)\), defined as follows.


So, \(R_{n}(x)=f(x)-P_{n}(x)\). The absolute value of \(R_{n}(x)\) is called the error associated with the approximation. That is,
\[
\text { Error }=\left|R_{n}(x)\right|=\left|f(x)-P_{n}(x)\right|
\]

The next theorem gives a general procedure for estimating the remainder associated with a Taylor polynomial. This important theorem is called Taylor's Theorem, and the remainder given in the theorem is called the Lagrange form of the remainder. (The proof of the theorem is lengthy, and is given in Appendix A.)

\section*{THEOREM 9.19 TAYLOR'S THEOREM}

If a function \(f\) is differentiable through order \(n+1\) in an interval \(I\) containing \(c\), then, for each \(x\) in \(I\), there exists \(z\) between \(x\) and \(c\) such that
\[
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)
\]
where
\[
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}
\]

NOTE One useful consequence of Taylor's Theorem is that
\(\left|R_{n}(x)\right| \leq \frac{|x-c|^{n+1}}{(n+1)!} \max \left|f^{(n+1)}(z)\right|\)
where \(\max \left|f^{(n+1)}(z)\right|\) is the maximum value of \(f^{(n+1)}(z)\) between \(x\) and \(c\).

For \(n=0\), Taylor's Theorem states that if \(f\) is differentiable in an interval \(I\) containing \(c\), then, for each \(x\) in \(I\), there exists \(z\) between \(x\) and \(c\) such that
\[
f(x)=f(c)+f^{\prime}(z)(x-c) \quad \text { or } \quad f^{\prime}(z)=\frac{f(x)-f(c)}{x-c} .
\]

Do you recognize this special case of Taylor's Theorem? (It is the Mean Value Theorem.)

When applying Taylor's Theorem, you should not expect to be able to find the exact value of \(z\). (If you could do this, an approximation would not be necessary.) Rather, you try to find bounds for \(f^{(n+1)}(z)\) from which you are able to tell how large the remainder \(R_{n}(x)\) is.

NOTE Try using a calculator to verify the results obtained in Examples 8 and 9.
For Example 8, you obtain
\[
\sin (0.1) \approx 0.0998334
\]

For Example 9, you obtain
\[
P_{3}(1.2) \approx 0.1827
\]
and
\(\ln (1.2) \approx 0.1823\).

\section*{EXAMPLE 8 Determining the Accuracy of an Approximation}

The third Maclaurin polynomial for \(\sin x\) is given by
\[
P_{3}(x)=x-\frac{x^{3}}{3!}
\]

Use Taylor's Theorem to approximate \(\sin (0.1)\) by \(P_{3}(0.1)\) and determine the accuracy of the approximation.
Solution Using Taylor's Theorem, you have
\[
\sin x=x-\frac{x^{3}}{3!}+R_{3}(x)=x-\frac{x^{3}}{3!}+\frac{f^{(4)}(z)}{4!} x^{4}
\]
where \(0<z<0.1\). Therefore,
\[
\sin (0.1) \approx 0.1-\frac{(0.1)^{3}}{3!} \approx 0.1-0.000167=0.099833
\]

Because \(f^{(4)}(z)=\sin z\), it follows that the error \(\left|R_{3}(0.1)\right|\) can be bounded as follows.
\[
0<R_{3}(0.1)=\frac{\sin z}{4!}(0.1)^{4}<\frac{0.0001}{4!} \approx 0.000004
\]

This implies that
\[
\begin{aligned}
& 0.099833<\sin (0.1)=0.099833+R_{3}(x)<0.099833+0.000004 \\
& 0.099833<\sin (0.1)<0.099837
\end{aligned}
\]

\section*{EXAMPLE 9 Approximating a Value to a Desired Accuracy}

Determine the degree of the Taylor polynomial \(P_{n}(x)\) expanded about \(c=1\) that should be used to approximate \(\ln (1.2)\) so that the error is less than 0.001 .

Solution Following the pattern of Example 4, you can see that the \((n+1)\) st derivative of \(f(x)=\ln x\) is given by
\[
f^{(n+1)}(x)=(-1)^{n} \frac{n!}{x^{n+1}} .
\]

Using Taylor's Theorem, you know that the error \(\left|R_{n}(1.2)\right|\) is given by
\[
\begin{aligned}
\left|R_{n}(1.2)\right|=\left|\frac{f^{(n+1)}(z)}{(n+1)!}(1.2-1)^{n+1}\right| & =\frac{n!}{z^{n+1}}\left[\frac{1}{(n+1)!}\right](0.2)^{n+1} \\
& =\frac{(0.2)^{n+1}}{z^{n+1}(n+1)}
\end{aligned}
\]
where \(1<z<1.2\). In this interval, \((0.2)^{n+1} /\left[z^{n+1}(n+1)\right]\) is less than \((0.2)^{n+1} /(n+1)\). So, you are seeking a value of \(n\) such that
\[
\frac{(0.2)^{n+1}}{(n+1)}<0.001 \quad \square \quad 1000<(n+1) 5^{n+1}
\]

By trial and error, you can determine that the smallest value of \(n\) that satisfies this inequality is \(n=3\). So, you would need the third Taylor polynomial to achieve the desired accuracy in approximating \(\ln (1.2)\).

\subsection*{9.7 Exercises}

In Exercises 1-4, match the Taylor polynomial approximation of the function \(f(x)=e^{-x^{2} / 2}\) with the corresponding graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

1. \(g(x)=-\frac{1}{2} x^{2}+1\)
2. \(g(x)=\frac{1}{8} x^{4}-\frac{1}{2} x^{2}+1\)
3. \(g(x)=e^{-1 / 2}[(x+1)+1]\)
4. \(g(x)=e^{-1 / 2}\left[\frac{1}{3}(x-1)^{3}-(x-1)+1\right]\)

In Exercises 5-8, find a first-degree polynomial function \(\boldsymbol{P}_{\mathbf{1}}\) whose value and slope agree with the value and slope of \(f\) at \(x=c\). Use a graphing utility to graph \(f\) and \(P_{1}\). What is \(P_{1}\) called?
5. \(f(x)=\frac{8}{\sqrt{x}}, \quad c=4\)
6. \(f(x)=\frac{6}{\sqrt[3]{x}}, \quad c=8\)
7. \(f(x)=\sec x, \quad c=\frac{\pi}{4}\)
8. \(f(x)=\tan x, \quad c=\frac{\pi}{4}\)

Graphical and Numerical Analysis In Exercises 9 and 10, use a graphing utility to graph \(f\) and its second-degree polynomial approximation \(P_{2}\) at \(x=c\). Complete the table comparing the values of \(f\) and \(P_{2}\).
9. \(f(x)=\frac{4}{\sqrt{x}}, \quad c=1\)
\[
P_{2}(x)=4-2(x-1)+\frac{3}{2}(x-1)^{2}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & 0.8 & 0.9 & 1 & 1.1 & 1.2 & 2 \\
\hline\(f(x)\) & & & & & & & \\
\hline\(P_{2}(x)\) & & & & & & & \\
\hline
\end{tabular}
10. \(f(x)=\sec x, \quad c=\frac{\pi}{4}\)
\[
P_{2}(x)=\sqrt{2}+\sqrt{2}\left(x-\frac{\pi}{4}\right)+\frac{3}{2} \sqrt{2}\left(x-\frac{\pi}{4}\right)^{2}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & -2.15 & 0.585 & 0.685 & \(\frac{\pi}{4}\) & 0.885 & 0.985 & 1.785 \\
\hline\(f(x)\) & & & & & & & \\
\hline\(P_{2}(x)\) & & & & & & & \\
\hline
\end{tabular}
11. Conjecture Consider the function \(f(x)=\cos x\) and its Maclaurin polynomials \(P_{2}, P_{4}\), and \(P_{6}\) (see Example 5).
(a) Use a graphing utility to graph \(f\) and the indicated polynomial approximations.
(b) Evaluate and compare the values of \(f^{(n)}(0)\) and \(P_{n}^{(n)}(0)\) for \(n=2,4\), and 6 .
(c) Use the results in part (b) to make a conjecture about \(f^{(n)}(0)\) and \(P_{n}^{(n)}(0)\).
12. Conjecture Consider the function \(f(x)=x^{2} e^{x}\).
(a) Find the Maclaurin polynomials \(P_{2}, P_{3}\), and \(P_{4}\) for \(f\).
(b) Use a graphing utility to graph \(f, P_{2}, P_{3}\), and \(P_{4}\).
(c) Evaluate and compare the values of \(f^{(n)}(0)\) and \(P_{n}^{(n)}(0)\) for \(n=2,3\), and 4.
(d) Use the results in part (c) to make a conjecture about \(f^{(n)}(0)\) and \(P_{n}^{(n)}(0)\).

In Exercises 13-24, find the Maclaurin polynomial of degree \(n\) for the function.
13. \(f(x)=e^{3 x}, \quad n=4\)
14. \(f(x)=e^{-x}, \quad n=5\)
15. \(f(x)=e^{-x / 2}, \quad n=4\)
16. \(f(x)=e^{x / 3}, \quad n=4\)
17. \(f(x)=\sin x, \quad n=5\)
18. \(f(x)=\sin \pi x, \quad n=3\)
19. \(f(x)=x e^{x}, \quad n=4\)
20. \(f(x)=x^{2} e^{-x}, \quad n=4\)
21. \(f(x)=\frac{1}{x+1}, \quad n=5\)
22. \(f(x)=\frac{x}{x+1}, \quad n=4\)
23. \(f(x)=\sec x, \quad n=2\)
24. \(f(x)=\tan x, \quad n=3\)

In Exercises 25-30, find the \(\boldsymbol{n}\) th Taylor polynomial centered at \(c\).
25. \(f(x)=\frac{2}{x}, \quad n=3, \quad c=1\)
26. \(f(x)=\frac{1}{x^{2}}, \quad n=4, \quad c=2\)
27. \(f(x)=\sqrt{x}, \quad n=3, \quad c=4\)
28. \(f(x)=\sqrt[3]{x}, \quad n=3, \quad c=8\)
29. \(f(x)=\ln x, \quad n=4, \quad c=2\)
30. \(f(x)=x^{2} \cos x, \quad n=2, \quad c=\pi\)

CAS In Exercises 31 and 32, use a computer algebra system to find the indicated Taylor polynomials for the function \(f\). Graph the function and the Taylor polynomials.
31. \(f(x)=\tan \pi x\)
32. \(f(x)=1 /\left(x^{2}+1\right)\)
(a) \(n=3, \quad c=0\)
(a) \(n=4, \quad c=0\)
(b) \(n=3, \quad c=1 / 4\)
(b) \(n=4, \quad c=1\)
33. Numerical and Graphical Approximations
(a) Use the Maclaurin polynomials \(P_{1}(x), P_{3}(x)\), and \(P_{5}(x)\) for \(f(x)=\sin x\) to complete the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
\hline \(\sin x\) & 0 & 0.2474 & 0.4794 & 0.6816 & 0.8415 \\
\hline\(P_{1}(x)\) & & & & & \\
\hline\(P_{3}(x)\) & & & & & \\
\hline\(P_{5}(x)\) & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph \(f(x)=\sin x\) and the Maclaurin polynomials in part (a).
(c) Describe the change in accuracy of a polynomial approximation as the distance from the point where the polynomial is centered increases.

\section*{CAPSTONE}
34. Numerical and Graphical Approximations
(a) Use the Taylor polynomials \(P_{1}(x), P_{2}(x)\), and \(P_{4}(x)\) for \(f(x)=e^{x}\) centered at \(c=1\) to complete the table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(x\) & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 \\
\hline\(e^{x}\) & \(e\) & 3.4903 & 4.4817 & 5.7546 & 7.3891 \\
\hline\(P_{1}(x)\) & & & & & \\
\hline\(P_{2}(x)\) & & & & & \\
\hline\(P_{4}(x)\) & & & & & \\
\hline
\end{tabular}
(b) Use a graphing utility to graph \(f(x)=e^{x}\) and the Taylor polynomials in part (a).
(c) Describe the change in accuracy of polynomial approximations as the degree increases.

Numerical and Graphical Approximations In Exercises 35 and 36, (a) find the Maclaurin polynomial \(P_{3}(x)\) for \(f(x)\), (b) complete the table for \(f(x)\) and \(P_{3}(x)\), and (c) sketch the graphs of \(f(x)\) and \(P_{3}(x)\) on the same set of coordinate axes.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(x\) & -0.75 & -0.50 & -0.25 & 0 & 0.25 & 0.50 & 0.75 \\
\hline\(f(x)\) & & & & & & & \\
\hline\(P_{3}(x)\) & & & & & & & \\
\hline
\end{tabular}
35. \(f(x)=\arcsin x\)
36. \(f(x)=\arctan x\)

In Exercises 37-40, the graph of \(y=f(x)\) is shown with four of its Maclaurin polynomials. Identify the Maclaurin polynomials and use a graphing utility to confirm your results.
37.

38.

39.

40.


In Exercises 41-44, approximate the function at the given value of \(x\), using the polynomial found in the indicated exercise.
41. \(f(x)=e^{3 x}, \quad f\left(\frac{1}{2}\right), \quad\) Exercise 13
42. \(f(x)=x^{2} e^{-x}, \quad f\left(\frac{1}{5}\right), \quad\) Exercise 20
43. \(f(x)=\ln x, \quad f(2.1)\), Exercise 29
44. \(f(x)=x^{2} \cos x, f\left(\frac{7 \pi}{8}\right), \quad\) Exercise 30

In Exercises 45-48, use Taylor's Theorem to obtain an upper bound for the error of the approximation. Then calculate the exact value of the error.
45. \(\cos (0.3) \approx 1-\frac{(0.3)^{2}}{2!}+\frac{(0.3)^{4}}{4!}\)
46. \(e \approx 1+1+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\frac{1^{4}}{4!}+\frac{1^{5}}{5!}\)
47. \(\arcsin (0.4) \approx 0.4+\frac{(0.4)^{3}}{2 \cdot 3}\)
48. \(\arctan (0.4) \approx 0.4-\frac{(0.4)^{3}}{3}\)

In Exercises 49-52, determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of \(\boldsymbol{x}\) to be less than 0.001 .
49. \(\sin (0.3)\)
50. \(\cos (0.1)\)
51. \(e^{0.6}\)
52. \(\ln (1.25)\)

CAS In Exercises 53-56, determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of \(\boldsymbol{x}\) to be less than \(\mathbf{0 . 0 0 0 1}\). Use a computer algebra system to obtain and evaluate the required derivative.
53. \(f(x)=\ln (x+1)\), approximate \(f(0.5)\).
54. \(f(x)=\cos \left(\pi x^{2}\right)\), approximate \(f(0.6)\).
55. \(f(x)=e^{-\pi x}\), approximate \(f(1.3)\).
56. \(f(x)=e^{-x}\), approximate \(f(1)\).

In Exercises 57-60, determine the values of \(x\) for which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001 .
57. \(f(x)=e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}, \quad x<0\)
58. \(f(x)=\sin x \approx x-\frac{x^{3}}{3!}\)
59. \(f(x)=\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\)
60. \(f(x)=e^{-2 x} \approx 1-2 x+2 x^{2}-\frac{4}{3} x^{3}\)

\section*{WRITING ABOUT CONCEPTS}
61. An elementary function is approximated by a polynomial. In your own words, describe what is meant by saying that the polynomial is expanded about \(c\) or centered at \(c\).
62. When an elementary function \(f\) is approximated by a second-degree polynomial \(P_{2}\) centered at \(c\), what is known about \(f\) and \(P_{2}\) at \(c\) ? Explain your reasoning.
63. State the definition of an \(n\) th-degree Taylor polynomial of \(f\) centered at \(c\).
64. Describe the accuracy of the \(n\) th-degree Taylor polynomial of \(f\) centered at \(c\) as the distance between \(c\) and \(x\) increases.
65. In general, how does the accuracy of a Taylor polynomial change as the degree of the polynomial increases? Explain your reasoning.
66. The graphs show first-, second-, and third-degree polynomial approximations \(P_{1}, P_{2}\), and \(P_{3}\) of a function \(f\). Label the graphs of \(P_{1}, P_{2}\), and \(P_{3}\). To print an enlarged copy of the graph, go to the website www.mathgraphs.com.


\section*{67. Comparing Maclaurin Polynomials}
(a) Compare the Maclaurin polynomials of degree 4 and degree 5, respectively, for the functions \(f(x)=e^{x}\) and \(g(x)=x e^{x}\). What is the relationship between them?
(b) Use the result in part (a) and the Maclaurin polynomial of degree 5 for \(f(x)=\sin x\) to find a Maclaurin polynomial of degree 6 for the function \(g(x)=x \sin x\).
(c) Use the result in part (a) and the Maclaurin polynomial of degree 5 for \(f(x)=\sin x\) to find a Maclaurin polynomial of degree 4 for the function \(g(x)=(\sin x) / x\).
68. Differentiating Maclaurin Polynomials
(a) Differentiate the Maclaurin polynomial of degree 5 for \(f(x)=\sin x\) and compare the result with the Maclaurin polynomial of degree 4 for \(g(x)=\cos x\).
(b) Differentiate the Maclaurin polynomial of degree 6 for \(f(x)=\cos x\) and compare the result with the Maclaurin polynomial of degree 5 for \(g(x)=\sin x\).
(c) Differentiate the Maclaurin polynomial of degree 4 for \(f(x)=e^{x}\). Describe the relationship between the two series.
69. Graphical Reasoning The figure shows the graphs of the function \(f(x)=\sin (\pi x / 4)\) and the second-degree Taylor polynomial \(P_{2}(x)=1-\left(\pi^{2} / 32\right)(x-2)^{2}\) centered at \(x=2\).

(a) Use the symmetry of the graph of \(f\) to write the seconddegree Taylor polynomial \(Q_{2}(x)\) for \(f\) centered at \(x=-2\).
(b) Use a horizontal translation of the result in part (a) to find the second-degree Taylor polynomial \(R_{2}(x)\) for \(f\) centered at \(x=6\).
(c) Is it possible to use a horizontal translation of the result in part (a) to write a second-degree Taylor polynomial for \(f\) centered at \(x=4\) ? Explain.
70. Prove that if \(f\) is an odd function, then its \(n\)th Maclaurin polynomial contains only terms with odd powers of \(x\).
71. Prove that if \(f\) is an even function, then its \(n\)th Maclaurin polynomial contains only terms with even powers of \(x\).
72. Let \(P_{n}(x)\) be the \(n\)th Taylor polynomial for \(f\) at \(c\). Prove that \(P_{n}(c)=f(c)\) and \(P^{(k)}(c)=f^{(k)}(c)\) for \(\quad 1 \leq k \leq n\). (See Exercises 9 and 10.)
73. Writing The proof in Exercise 72 guarantees that the Taylor polynomial and its derivatives agree with the function and its derivatives at \(x=c\). Use the graphs and tables in Exercises 33-36 to discuss what happens to the accuracy of the Taylor polynomial as you move away from \(x=c\).

\subsection*{9.8 Power Series}

\section*{EXPLORATION}

Graphical Reasoning Use a graphing utility to approximate the graph of each power series near \(x=0\). (Use the first several terms of each series.) Each series represents a well-known function. What is the function?
a. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}\)
b. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\)
c. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\)
d. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\)
e. \(\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}\)
- Understand the definition of a power series.

Find the radius and interval of convergence of a power series.
Determine the endpoint convergence of a power series.
Differentiate and integrate a power series.

\section*{Power Series}

In Section 9.7, you were introduced to the concept of approximating functions by Taylor polynomials. For instance, the function \(f(x)=e^{x}\) can be approximated by its Maclaurin polynomials as follows.
\[
\begin{array}{lrl}
e^{x} \approx 1+x & \text { 1st-degree polynomial } \\
e^{x} \approx 1+x+\frac{x^{2}}{2!} & \text { 2nd-degree polynomial } \\
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} & \text { 3rd-degree polynomial } \\
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} & \text { 4th-degree polynomial } \\
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!} & \text { 5th-degree polynomial }
\end{array}
\]

In that section, you saw that the higher the degree of the approximating polynomial, the better the approximation becomes.

In this and the next two sections, you will see that several important types of functions, including
\[
f(x)=e^{x}
\]
can be represented exactly by an infinite series called a power series. For example, the power series representation for \(e^{x}\) is
\[
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \cdot
\]

For each real number \(x\), it can be shown that the infinite series on the right converges to the number \(e^{x}\). Before doing this, however, some preliminary results dealing with power series will be discussed-beginning with the following definition.

\section*{DEFINITION OF POWER SERIES}

If \(x\) is a variable, then an infinite series of the form
\[
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
\]
is called a power series. More generally, an infinite series of the form
\[
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots+a_{n}(x-c)^{n}+\cdots
\]
is called a power series centered at \(c\), where \(c\) is a constant.


The domain of a power series has only three basic forms: a single point, an interval centered at \(c\), or the entire real line.
Figure 9.17

\section*{EXAMPLE 1 Power Series}
a. The following power series is centered at 0 .
\[
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots
\]
b. The following power series is centered at -1 .
\[
\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}=1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots
\]
c. The following power series is centered at 1 .
\[
\sum_{n=1}^{\infty} \frac{1}{n}(x-1)^{n}=(x-1)+\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\cdots
\]

\section*{Radius and Interval of Convergence}

A power series in \(x\) can be viewed as a function of \(x\)
\[
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
\]
where the domain of \(f\) is the set of all \(x\) for which the power series converges. Determination of the domain of a power series is the primary concern in this section. Of course, every power series converges at its center \(c\) because
\[
\begin{aligned}
f(c) & =\sum_{n=0}^{\infty} a_{n}(c-c)^{n} \\
& =a_{0}(1)+0+0+\cdots+0+\cdots \\
& =a_{0}
\end{aligned}
\]

So, \(c\) always lies in the domain of \(f\). The following important theorem states that the domain of a power series can take three basic forms: a single point, an interval centered at \(c\), or the entire real line, as shown in Figure 9.17. A proof is given in Appendix A.

\section*{THEOREM 9.20 CONVERGENCE OF A POWER SERIES}

For a power series centered at \(c\), precisely one of the following is true.
1. The series converges only at \(c\).
2. There exists a real number \(R>0\) such that the series converges absolutely for \(|x-c|<R\), and diverges for \(|x-c|>R\).
3. The series converges absolutely for all \(x\).

The number \(R\) is the radius of convergence of the power series. If the series converges only at \(c\), the radius of convergence is \(R=0\), and if the series converges for all \(x\), the radius of convergence is \(R=\infty\). The set of all values of \(x\) for which the power series converges is the interval of convergence of the power series.

STUDY TIP To determine the radius of convergence of a power series, use the Ratio Test, as demonstrated in Examples 2,3 , and 4 .

\section*{EXAMPLE 2 Finding the Radius of Convergence}

Find the radius of convergence of \(\sum_{n=0}^{\infty} n!x^{n}\).
Solution For \(x=0\), you obtain
\[
f(0)=\sum_{n=0}^{\infty} n!0^{n}=1+0+0+\cdots=1
\]

For any fixed value of \(x\) such that \(|x|>0\), let \(u_{n}=n!x^{n}\). Then
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right| \\
& =|x| \lim _{n \rightarrow \infty}(n+1) \\
& =\infty
\end{aligned}
\]

Therefore, by the Ratio Test, the series diverges for \(|x|>0\) and converges only at its center, 0 . So, the radius of convergence is \(R=0\).

\section*{EXAMPLE 3 Finding the Radius of Convergence}

Find the radius of convergence of
\[
\sum_{n=0}^{\infty} 3(x-2)^{n}
\]

Solution For \(x \neq 2\), let \(u_{n}=3(x-2)^{n}\). Then
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{3(x-2)^{n+1}}{3(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|x-2| \\
& =|x-2|
\end{aligned}
\]

By the Ratio Test, the series converges if \(|x-2|<1\) and diverges if \(|x-2|>1\). Therefore, the radius of convergence of the series is \(R=1\).

\section*{EXAMPLE 4 Finding the Radius of Convergence}

Find the radius of convergence of
\[
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\]

Solution Let \(u_{n}=(-1)^{n} x^{2 n+1} /(2 n+1)\) !. Then
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} x^{2 n+3}}{(2 n+3)!}}{\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+3)(2 n+2)}
\end{aligned}
\]

For any fixed value of \(x\), this limit is 0 . So, by the Ratio Test, the series converges for all \(x\). Therefore, the radius of convergence is \(R=\infty\).

\section*{Endpoint Convergence}

Note that for a power series whose radius of convergence is a finite number \(R\), Theorem 9.20 says nothing about the convergence at the endpoints of the interval of convergence. Each endpoint must be tested separately for convergence or divergence. As a result, the interval of convergence of a power series can take any one of the six forms shown in Figure 9.18.

Radius: 0


Radius: \(\infty\)


Radius: \(R\)


Intervals of convergence
Figure 9.18

\section*{EXAMPLE 5 Finding the Interval of Convergence}

Find the interval of convergence of \(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\).
Solution Letting \(u_{n}=x^{n} / n\) produces
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)}}{\frac{x^{n}}{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n x}{n+1}\right| \\
& =|x| .
\end{aligned}
\]

So, by the Ratio Test, the radius of convergence is \(R=1\). Moreover, because the series is centered at 0 , it converges in the interval \((-1,1)\). This interval, however, is not necessarily the interval of convergence. To determine this, you must test for convergence at each endpoint. When \(x=1\), you obtain the divergent harmonic series
\[
\sum_{n=1}^{\infty} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots
\]

Diverges when \(x=1\)

When \(x=-1\), you obtain the convergent alternating harmonic series
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots \cdot \quad \text { Converges when } x=-1
\]

So, the interval of convergence for the series is \([-1,1)\), as shown in Figure 9.19.

Interval: \([-1,1)\)
Radius: \(R=1\)


Figure 9.19

Interval: \((-3,1)\)
Radius: \(R=2\)


Figure 9.20

\section*{EXAMPLE 6 Finding the Interval of Convergence}

Solution Letting \(u_{n}=(-1)^{n}(x+1)^{n} / 2^{n}\) produces
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}(x+1)^{n+1}}{2^{n+1}}}{\frac{(-1)^{n}(x+1)^{n}}{2^{n}}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2^{n}(x+1)}{2^{n+1}}\right| \\
& =\left|\frac{x+1}{2}\right| .
\end{aligned}
\]

By the Ratio Test, the series converges if \(|(x+1) / 2|<1\) or \(|x+1|<2\). So, the radius of convergence is \(R=2\). Because the series is centered at \(x=-1\), it will converge in the interval \((-3,1)\). Furthermore, at the endpoints you have
\[
\sum_{n=0}^{\infty} \frac{(-1)^{n}(-2)^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=\sum_{n=0}^{\infty} 1 \quad \quad \text { Diverges when } x=-3
\]
and
\[
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n} \quad \text { Diverges when } x=1
\]
both of which diverge. So, the interval of convergence is \((-3,1)\), as shown in Figure 9.20 .

\section*{EXAMPLE 7 Finding the Interval of Convergence}

Find the interval of convergence of
\(\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}\).
Solution Letting \(u_{n}=x^{n} / n^{2}\) produces
\[
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} /(n+1)^{2}}{x^{n} / n^{2}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n^{2} x}{(n+1)^{2}}\right|=|x| .
\end{aligned}
\]

So, the radius of convergence is \(R=1\). Because the series is centered at \(x=0\), it converges in the interval \((-1,1)\). When \(x=1\), you obtain the convergent \(p\)-series
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots . \quad \text { Converges when } x=1
\]

When \(x=-1\), you obtain the convergent alternating series
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{1}{1^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-\cdots . \quad \text { Converges when } x=-1
\]

Therefore, the interval of convergence for the given series is \([-1,1]\).


\section*{Differentiation and Integration of Power Series}

Power series representation of functions has played an important role in the development of calculus. In fact, much of Newton's work with differentiation and integration was done in the context of power series-especially his work with complicated algebraic functions and transcendental functions. Euler, Lagrange, Leibniz, and the Bernoullis all used power series extensively in calculus.

Once you have defined a function with a power series, it is natural to wonder how you can determine the characteristics of the function. Is it continuous? Differentiable? Theorem 9.21, which is stated without proof, answers these questions.

\section*{THEOREM 9.21 PROPERTIES OF FUNCTIONS DEFINED BY POWER SERIES}

If the function given by
\[
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \\
& =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
\end{aligned}
\]
has a radius of convergence of \(R>0\), then, on the interval \((c-R, c+R)\), \(f\) is differentiable (and therefore continuous). Moreover, the derivative and antiderivative of \(f\) are as follows.
1. \(f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}\)
\[
=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots
\]
2. \(\int f(x) d x=C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}\)
\[
=C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots
\]

The radius of convergence of the series obtained by differentiating or integrating a power series is the same as that of the original power series. The interval of convergence, however, may differ as a result of the behavior at the endpoints.

Theorem 9.21 states that, in many ways, a function defined by a power series behaves like a polynomial. It is continuous in its interval of convergence, and both its derivative and its antiderivative can be determined by differentiating and integrating each term of the given power series. For instance, the derivative of the power series
\[
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]
is
\[
\begin{aligned}
f^{\prime}(x) & =1+(2) \frac{x}{2}+(3) \frac{x^{2}}{3!}+(4) \frac{x^{3}}{4!}+\cdots \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& =f(x)
\end{aligned}
\]

Notice that \(f^{\prime}(x)=f(x)\). Do you recognize this function?

\section*{EXAMPLE 8 Intervals of Convergence for \(f(x), f^{\prime}(x)\), and \(\int f(x) d x\)}

Consider the function given by
\[
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots .
\]

Find the interval of convergence for each of the following.
a. \(\int f(x) d x\)
b. \(f(x)\)
c. \(f^{\prime}(x)\)

Solution By Theorem 9.21, you have
\[
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} x^{n-1} \\
& =1+x+x^{2}+x^{3}+\cdots
\end{aligned}
\]
and
\[
\begin{aligned}
\int f(x) d x & =C+\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \\
& =C+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{2 \cdot 3}+\frac{x^{4}}{3 \cdot 4}+\cdots .
\end{aligned}
\]

By the Ratio Test, you can show that each series has a radius of convergence of \(R=1\). Considering the interval \((-1,1)\), you have the following.
a. For \(\int f(x) d x\), the series
\[
\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \quad \text { Interval of convergence: }[-1,1]
\]
converges for \(x= \pm 1\), and its interval of convergence is \([-1,1]\). See Figure 9.21(a).
b. For \(f(x)\), the series
\[
\sum_{n=1}^{\infty} \frac{x^{n}}{n} \quad \text { Interval of convergence: }[-1,1)
\]
converges for \(x=-1\) and diverges for \(x=1\). So, its interval of convergence is \([-1,1)\). See Figure 9.21(b).
c. For \(f^{\prime}(x)\), the series
\[
\sum_{n=1}^{\infty} x^{n-1} \quad \text { Interval of convergence: }(-1,1)
\]
diverges for \(x= \pm 1\), and its interval of convergence is \((-1,1)\). See Figure 9.21(c).

(a)

Figure 9.21

(b)

(c)

From Example 8, it appears that of the three series, the one for the derivative, \(f^{\prime}(x)\), is the least likely to converge at the endpoints. In fact, it can be shown that if the series for \(f^{\prime}(x)\) converges at the endpoints \(x=c \pm R\), the series for \(f(x)\) will also converge there.

\subsection*{9.8 Exercises}

In Exercises 1-4, state where the power series is centered.
1. \(\sum_{n=0}^{\infty} n x^{n}\)
2. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} x^{n}\)
3. \(\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{3}}\)
4. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi)^{2 n}}{(2 n)!}\)

In Exercises 5-10, find the radius of convergence of the power series.
5. \(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n+1}\)
6. \(\sum_{n=0}^{\infty}(4 x)^{n}\)
7. \(\sum_{n=1}^{\infty} \frac{(4 x)^{n}}{n^{2}}\)
8. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{5^{n}}\)
9. \(\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}\)
10. \(\sum_{n=0}^{\infty} \frac{(2 n)!x^{2 n}}{n!}\)

In Exercises 11-34, find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)
11. \(\sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n}\)
12. \(\sum_{n=0}^{\infty}\left(\frac{x}{7}\right)^{n}\)
13. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}\)
14. \(\sum_{n=0}^{\infty}(-1)^{n+1}(n+1) x^{n}\)
15. \(\sum_{n=0}^{\infty} \frac{x^{5 n}}{n!}\)
16. \(\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(2 n)!}\)
17. \(\sum_{n=0}^{\infty}(2 n)!\left(\frac{x}{3}\right)^{n}\)
18. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(n+1)(n+2)}\)
19. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{4^{n}}\)
20. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} n!(x-5)^{n}}{3^{n}}\)
21. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-4)^{n}}{n 9^{n}}\)
22. \(\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1) 4^{n+1}}\)
23. \(\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{n+1}\)
24. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n 2^{n}}\)
25. \(\sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}}\)
26. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\)
27. \(\sum_{n=1}^{\infty} \frac{n}{n+1}(-2 x)^{n-1}\)
28. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}\)
29. \(\sum_{n=0}^{\infty} \frac{x^{3 n+1}}{(3 n+1)!}\)
30. \(\sum_{n=1}^{\infty} \frac{n!x^{n}}{(2 n)!}\)
31. \(\sum_{n=1}^{\infty} \frac{2 \cdot 3 \cdot 4 \cdots(n+1) x^{n}}{n!}\)
32. \(\sum_{n=1}^{\infty}\left[\frac{2 \cdot 4 \cdot 6 \cdot \cdot 2 n}{3 \cdot 5 \cdot 7 \cdots(2 n+1)}\right] x^{2 n+1}\)
33. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3 \cdot 7 \cdot 11 \cdots(4 n-1)(x-3)^{n}}{4^{n}}\)
34. \(\sum_{n=1}^{\infty} \frac{n!(x+1)^{n}}{1 \cdot 3 \cdot 5 \cdot \cdot(2 n-1)}\)

In Exercises 35 and 36, find the radius of convergence of the power series, where \(c>0\) and \(k\) is a positive integer.
35. \(\sum_{n=1}^{\infty} \frac{(x-c)^{n-1}}{c^{n-1}}\)
36. \(\sum_{n=0}^{\infty} \frac{(n!)^{k} x^{n}}{(k n)!}\)

In Exercises 37-40, find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)
37. \(\sum_{n=0}^{\infty}\left(\frac{x}{k}\right)^{n}, \quad k>0\)
38. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-c)^{n}}{n c^{n}}\)
39. \(\sum_{n=1}^{\infty} \frac{k(k+1)(k+2) \cdots(k+n-1) x^{n}}{n!}, \quad k \geq 1\)
40. \(\sum_{n=1}^{\infty} \frac{n!(x-c)^{n}}{1 \cdot 3 \cdot 5 \cdot \cdot(2 n-1)}\)

In Exercises 41-44, write an equivalent series with the index of summation beginning at \(n=1\).
41. \(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\)
42. \(\sum_{n=0}^{\infty}(-1)^{n+1}(n+1) x^{n}\)
43. \(\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}\)
44. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\)

In Exercises 45-48, find the intervals of convergence of (a) \(f(x)\), (b) \(f^{\prime}(x)\), (c) \(f^{\prime \prime}(x)\), and (d) \(\int f(x) d x\). Include a check for convergence at the endpoints of the interval.
45. \(f(x)=\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}\)
46. \(f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}\)
47. \(f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{n+1}\)
48. \(f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n}\)

Writing In Exercises 49-52, match the graph of the first 10 terms of the sequence of partial sums of the series
\(g(x)=\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}\)
with the indicated value of the function. [The graphs are labeled (a), (b), (c), and (d).] Explain how you made your choice.
(a)

(b)

(c)

(d)

49. \(g(1)\)
50. \(g(2)\)
51. \(g(3.1)\)
52. \(g(-2)\)

Writing In Exercises 53-56, match the graph of the first 10 terms of the sequence of partial sums of the series
\(g(x)=\sum_{n=0}^{\infty}(2 x)^{n}\)
with the indicated value of the function. [The graphs are labeled (a), (b), (c), and (d).] Explain how you made your choice.
(a)

(b)

(c)

(d)

53. \(g\left(\frac{1}{8}\right)\)
54. \(g\left(-\frac{1}{8}\right)\)
55. \(g\left(\frac{9}{16}\right)\)
56. \(g\left(\frac{3}{8}\right)\)

\section*{WRITING ABOUT CONCEPTS}
57. Define a power series centered at \(c\).
58. Describe the radius of convergence of a power series. Describe the interval of convergence of a power series.
59. Describe the three basic forms of the domain of a power series.
60. Describe how to differentiate and integrate a power series with a radius of convergence \(R\). Will the series resulting from the operations of differentiation and integration have a different radius of convergence? Explain.

\section*{WRITING ABOUT CONCEPTS (continued)}
61. Give examples that show that the convergence of a power series at an endpoint of its interval of convergence may be either conditional or absolute. Explain your reasoning.

\section*{CAPSTONE}
62. Write a power series that has the indicated interval of convergence. Explain your reasoning.
(a) \((-2,2)\)
(b) \((-1,1]\)
(c) \((-1,0)\)
(d) \([-2,6)\)
63. Let \(f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \quad\) and \(\quad g(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\).
(a) Find the intervals of convergence of \(f\) and \(g\).
(b) Show that \(f^{\prime}(x)=g(x)\).
(c) Show that \(g^{\prime}(x)=-f(x)\).
(d) Identify the functions \(f\) and \(g\).
64. Let \(f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\).
(a) Find the interval of convergence of \(f\).
(b) Show that \(f^{\prime}(x)=f(x)\).
(c) Show that \(f(0)=1\).
(d) Identify the function \(f\).

In Exercises 65-70, show that the function represented by the power series is a solution of the differential equation.
65. \(y=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad y^{\prime \prime}+y=0\)
66. \(y=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad y^{\prime \prime}+y=0\)
67. \(y=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}, \quad y^{\prime \prime}-y=0\)
68. \(y=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}, \quad y^{\prime \prime}-y=0\)
69. \(y=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}, \quad y^{\prime \prime}-x y^{\prime}-y=0\)
70. \(y=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{4 n}}{2^{2 n} n!\cdot 3 \cdot 7 \cdot 11 \cdot \cdot(4 n-1)}, y^{\prime \prime}+x^{2} y=0\)
71. Bessel Function The Bessel function of order 0 is
\(J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k!)^{2}}\).
(a) Show that the series converges for all \(x\).
(b) Show that the series is a solution of the differential equation \(x^{2} J_{0}{ }^{\prime \prime}+x J_{0}{ }^{\prime}+x^{2} J_{0}=0\).
(c) Use a graphing utility to graph the polynomial composed of the first four terms of \(J_{0}\).
(d) Approximate \(\int_{0}^{1} J_{0} d x\) accurate to two decimal places.
72. Bessel Function The Bessel function of order 1 is
\(J_{1}(x)=x \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k+1} k!(k+1)!}\).
(a) Show that the series converges for all \(x\).
(b) Show that the series is a solution of the differential equation \(x^{2} J_{1}{ }^{\prime \prime}+x J_{1}{ }^{\prime}+\left(x^{2}-1\right) J_{1}=0\).
(c) Use a graphing utility to graph the polynomial composed of the first four terms of \(J_{1}\).
(d) Show that \(J_{0}{ }^{\prime}(x)=-J_{1}(x)\).

CAS In Exercises 73-76, the series represents a well-known function. Use a computer algebra system to graph the partial sum \(S_{10}\) and identify the function from the graph.
73. \(f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}\)
74. \(f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\)
75. \(f(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad-1<x<1\)
76. \(f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad-1 \leq x \leq 1\)
77. Investigation The interval of convergence of the geometric series \(\sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n}\) is \((-4,4)\).
(a) Find the sum of the series when \(x=\frac{5}{2}\). Use a graphing utility to graph the first six terms of the sequence of partial sums and the horizontal line representing the sum of the series.
(b) Repeat part (a) for \(x=-\frac{5}{2}\).
(c) Write a short paragraph comparing the rates of convergence of the partial sums with the sums of the series in parts (a) and (b). How do the plots of the partial sums differ as they converge toward the sum of the series?
(d) Given any positive real number \(M\), there exists a positive integer \(N\) such that the partial sum
\[
\sum_{n=0}^{N}\left(\frac{5}{4}\right)^{n}>M
\]

Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(M\) & 10 & 100 & 1000 & 10,000 \\
\hline\(N\) & & & & \\
\hline
\end{tabular}
78. Investigation The interval of convergence of the series \(\sum_{n=0}^{\infty}(3 x)^{n}\) is \(\left(-\frac{1}{3}, \frac{1}{3}\right)\).
(a) Find the sum of the series when \(x=\frac{1}{6}\). Use a graphing utility to graph the first six terms of the sequence of partial sums and the horizontal line representing the sum of the series.
(b) Repeat part (a) for \(x=-\frac{1}{6}\).
(c) Write a short paragraph comparing the rates of convergence of the partial sums with the sums of the series in parts (a) and (b). How do the plots of the partial sums differ as they converge toward the sum of the series?
(d) Given any positive real number \(M\), there exists a positive integer \(N\) such that the partial sum
\(\sum_{n=0}^{N}\left(3 \cdot \frac{2}{3}\right)^{n}>M\).
Use a graphing utility to complete the table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(M\) & 10 & 100 & 1000 & 10,000 \\
\hline\(N\) & & & & \\
\hline
\end{tabular}

True or False? In Exercises 79-82, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
79. If the power series \(\sum_{n=1}^{\infty} a_{n} x^{n}\) converges for \(x=2\), then it also converges for \(x=-2\).
80. It is possible to find a power series whose interval of convergence is \([0, \infty)\).
81. If the interval of convergence for \(\sum_{n=0}^{\infty} a_{n} x^{n}\) is \((-1,1)\), then the interval of convergence for \(\sum_{n=0}^{\infty} a_{n}(x-1)^{n}\) is \((0,2)\).
82. If \(f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}\) converges for \(|x|<2\), then \(\int_{0}^{1} f(x) d x=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\).
83. Prove that the power series
\(\sum_{n=0}^{\infty} \frac{(n+p)!}{n!(n+q)!} x^{n}\)
has a radius of convergence of \(R=\infty\) if \(p\) and \(q\) are positive integers.
84. Let \(g(x)=1+2 x+x^{2}+2 x^{3}+x^{4}+\cdots\), where the coefficients are \(c_{2 n}=1\) and \(c_{2 n+1}=2\) for \(n \geq 0\).
(a) Find the interval of convergence of the series.
(b) Find an explicit formula for \(g(x)\).
85. Let \(f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}\), where \(c_{n+3}=c_{n}\) for \(n \geq 0\).
(a) Find the interval of convergence of the series.
(b) Find an explicit formula for \(f(x)\).
86. Prove that if the power series \(\sum_{n=0}^{\infty} c_{n} x^{n}\) has a radius of convergence of \(R\), then \(\sum_{n=0}^{\infty} c_{n} x^{2 n}\) has a radius of convergence of \(\sqrt{R}\).
87. For \(n>0\), let \(R>0\) and \(c_{n}>0\). Prove that if the interval of convergence of the series \(\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}\) is \(\left[x_{0}-R, x_{0}+R\right]\), then the series converges conditionally at \(x_{0}-R\).

\subsection*{9.9 Representation of Functions by Power Series}

\section*{- Find a geometric power series that represents a function.}
- Construct a power series using series operations.

\section*{Geometric Power Series}


Some of the early work in representing functions by power series was done by the French mathematician Joseph Fourier. Fourier's work is important in the history of calculus, partly because it forced eighteenth century mathematicians to question the then-prevailing narrow concept of a function. Both Cauchy and Dirichlet were motivated by Fourier's work with series, and in 1837 Dirichlet published the general definition of a function that is used today.

In this section and the next, you will study several techniques for finding a power series that represents a given function.

Consider the function given by \(f(x)=1 /(1-x)\). The form of \(f\) closely resembles the sum of a geometric series
\[
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad|r|<1
\]

In other words, if you let \(a=1\) and \(r=x\), a power series representation for \(1 /(1-x)\), centered at 0 , is
\[
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \\
& =1+x+x^{2}+x^{3}+\cdots, \quad|x|<1
\end{aligned}
\]

Of course, this series represents \(f(x)=1 /(1-x)\) only on the interval \((-1,1)\), whereas \(f\) is defined for all \(x \neq 1\), as shown in Figure 9.22. To represent \(f\) in another interval, you must develop a different series. For instance, to obtain the power series centered at -1 , you could write
\[
\frac{1}{1-x}=\frac{1}{2-(x+1)}=\frac{1 / 2}{1-[(x+1) / 2]}=\frac{a}{1-r}
\]
which implies that \(a=\frac{1}{2}\) and \(r=(x+1) / 2\). So, for \(|x+1|<2\), you have
\[
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)\left(\frac{x+1}{2}\right)^{n} \\
& =\frac{1}{2}\left[1+\frac{(x+1)}{2}+\frac{(x+1)^{2}}{4}+\frac{(x+1)^{3}}{8}+\cdots\right], \quad|x+1|<2
\end{aligned}
\]
which converges on the interval \((-3,1)\).



Figure 9.22

Long Division
\[
2-x+\frac{1}{2} x^{2}-\frac{1}{4} x^{3}+\cdots
\]
\(2 + x \longdiv { 4 }\)
\[
\begin{aligned}
& \frac{4+2 x}{-2 x} \\
& -2 x-x^{2} \\
& x^{2}
\end{aligned}
\]

\section*{EXAMPLE 1 Finding a Geometric Power Series Centered at 0}

Find a power series for \(f(x)=\frac{4}{x+2}\), centered at 0 .
Solution Writing \(f(x)\) in the form \(a /(1-r)\) produces
\[
\frac{4}{2+x}=\frac{2}{1-(-x / 2)}=\frac{a}{1-r}
\]
which implies that \(a=2\) and \(r=-x / 2\). So, the power series for \(f(x)\) is
\[
\begin{aligned}
\frac{4}{x+2} & =\sum_{n=0}^{\infty} a r^{n} \\
& =\sum_{n=0}^{\infty} 2\left(-\frac{x}{2}\right)^{n} \\
& =2\left(1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots\right) .
\end{aligned}
\]

This power series converges when
\[
\left|-\frac{x}{2}\right|<1
\]
which implies that the interval of convergence is \((-2,2)\).

Another way to determine a power series for a rational function such as the one in Example 1 is to use long division. For instance, by dividing \(2+x\) into 4 , you obtain the result shown at the left.

\section*{EXAMPLE 2 Finding a Geometric Power Series Centered at 1}

Find a power series for \(f(x)=\frac{1}{x}\), centered at 1 .
Solution Writing \(f(x)\) in the form \(a /(1-r)\) produces
\[
\frac{1}{x}=\frac{1}{1-(-x+1)}=\frac{a}{1-r}
\]
which implies that \(a=1\) and \(r=1-x=-(x-1)\). So, the power series for \(f(x)\) is
\[
\begin{aligned}
\frac{1}{x} & =\sum_{n=0}^{\infty} a r^{n} \\
& =\sum_{n=0}^{\infty}[-(x-1)]^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots
\end{aligned}
\]

This power series converges when
\[
|x-1|<1
\]
which implies that the interval of convergence is \((0,2)\).

\section*{Operations with Power Series}

The versatility of geometric power series will be shown later in this section, following a discussion of power series operations. These operations, used with differentiation and integration, provide a means of developing power series for a variety of elementary functions. (For simplicity, the following properties are stated for a series centered at 0 .)

\section*{OPERATIONS WITH POWER SERIES}

Let \(f(x)=\sum a_{n} x^{n}\) and \(g(x)=\sum b_{n} x^{n}\).
1. \(f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}\)
2. \(f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{n N}\)
3. \(f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{n}\)

The operations described above can change the interval of convergence for the resulting series. For example, in the following addition, the interval of convergence for the sum is the intersection of the intervals of convergence of the two original series.
\[
\underbrace{\sum_{n=0}^{\infty} x^{n}}_{(-1,1)}+\underbrace{\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}}_{(-2,2)}=\underbrace{\sum_{n=0}^{\infty}\left(1+\frac{1}{2^{n}}\right) x^{n}}_{(-1,1)}
\]

\section*{EXAMPLE 3 Adding Two Power Series}

Find a power series, centered at 0 , for \(f(x)=\frac{3 x-1}{x^{2}-1}\).
Solution Using partial fractions, you can write \(f(x)\) as
\[
\frac{3 x-1}{x^{2}-1}=\frac{2}{x+1}+\frac{1}{x-1}
\]

By adding the two geometric power series
\[
\frac{2}{x+1}=\frac{2}{1-(-x)}=\sum_{n=0}^{\infty} 2(-1)^{n} x^{n}, \quad|x|<1
\]
and
\[
\frac{1}{x-1}=\frac{-1}{1-x}=-\sum_{n=0}^{\infty} x^{n}, \quad|x|<1
\]
you obtain the following power series.
\[
\frac{3 x-1}{x^{2}-1}=\sum_{n=0}^{\infty}\left[2(-1)^{n}-1\right] x^{n}=1-3 x+x^{2}-3 x^{3}+x^{4}-\cdots
\]

The interval of convergence for this power series is \((-1,1)\).

\section*{EXAMPLE 4 Finding a Power Series by Integration}

Find a power series for \(f(x)=\ln x\), centered at 1 .
Solution From Example 2, you know that
\[
\frac{1}{x}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
\]

Interval of convergence: \((0,2)\)
Integrating this series produces
\[
\begin{aligned}
\ln x & =\int \frac{1}{x} d x+C \\
& =C+\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n+1}}{n+1} .
\end{aligned}
\]

By letting \(x=1\), you can conclude that \(C=0\). Therefore,
\[
\begin{aligned}
\ln x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n+1}}{n+1} \\
& =\frac{(x-1)}{1}-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots .
\end{aligned}
\]

Note that the series converges at \(x=2\). This is consistent with the observation in the preceding section that integration of a power series may alter the convergence at the endpoints of the interval of convergence.

TECHNOLOGY In Section 9.7, the fourth-degree Taylor polynomial for the natural logarithmic function
\[
\ln x \approx(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}
\]
was used to approximate \(\ln (1.1)\).
\[
\begin{aligned}
\ln (1.1) & \approx(0.1)-\frac{1}{2}(0.1)^{2}+\frac{1}{3}(0.1)^{3}-\frac{1}{4}(0.1)^{4} \\
& \approx 0.0953083
\end{aligned}
\]

You now know from Example 4 that this polynomial represents the first four terms of the power series for \(\ln x\). Moreover, using the Alternating Series Remainder, you can determine that the error in this approximation is less than
\[
\begin{aligned}
\left|R_{4}\right| & \leq\left|a_{5}\right| \\
& =\frac{1}{5}(0.1)^{5} \\
& =0.000002
\end{aligned}
\]

During the seventeenth and eighteenth centuries, mathematical tables for logarithms and values of other transcendental functions were computed in this manner. Such numerical techniques are far from outdated, because it is precisely by such means that many modern calculating devices are programmed to evaluate transcendental functions.

\section*{CeXAMPLE 5 Finding a Power Series by Integration}


Series that can be used to approximate \(\pi\) have interested mathematicians for the past 300 years. An amazing series for approximating \(1 / \pi\) was discovered by the Indian mathematician Srinivasa Ramanujan in 1914 (see Exercise 67). Each successive term of Ramanujan's series adds roughly eight more correct digits to the value of \(1 / \pi\). For more information about Ramanujan's work, see the article "Ramanujan and Pi" by Jonathan M. Borwein and Peter B. Borwein in Scientific American.

Find a power series for \(g(x)=\arctan x\), centered at 0 .
Solution Because \(D_{x}[\arctan x]=1 /\left(1+x^{2}\right)\), you can use the series
\[
f(x)=\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} . \quad \quad \text { Interval of convergence: }(-1,1)
\]

Substituting \(x^{2}\) for \(x\) produces
\[
f\left(x^{2}\right)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\]

Finally, by integrating, you obtain
\[
\begin{array}{rlr}
\arctan x & =\int \frac{1}{1+x^{2}} d x+C & \\
& =C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & \text { Let } x=0, \text { then } C=0 \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \cdot & \text { Interval of convergence: }(-1,1)
\end{array}
\]

It can be shown that the power series developed for \(\arctan x\) in Example 5 also converges \((\operatorname{to} \arctan x\) ) for \(x= \pm 1\). For instance, when \(x=1\), you can write
\[
\begin{aligned}
\arctan 1 & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
& =\frac{\pi}{4}
\end{aligned}
\]

However, this series (developed by Jmes ©gory in 1671) does not give us a practical way of approximating \(\pi\) because it converges so slowly that hundreds of terms would have to be used to obtain reasonable accuracy. Example 6 shows how to use two different arctangent series to obtain a very good approximation of \(\pi\) using only a few terms. This approximation was developed by 历hn Machin in 1706.

\section*{EXAMPLE 6 Approximating \(\pi\) with a Series}

Use the trigonometric identity
\[
4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}
\]
to approximate the number \(\pi\) [see Exercise 50(b)].
Solution By using only five terms from each of the series for \(\arctan (1 / 5)\) and \(\arctan (1 / 239)\), you obtain
\[
4\left(4 \arctan \frac{1}{5}-\arctan \frac{1}{239}\right) \approx 3.1415926
\]
which agrees with the exact value of \(\pi\) with an error of less than 0.0000001 .

\subsection*{9.9 Exercises}

In Exercises 1-4, find a geometric power series for the function, centered at 0, (a) by the technique shown in Examples 1 and 2 and (b) by long division.
1. \(f(x)=\frac{1}{4-x}\)
2. \(f(x)=\frac{1}{2+x}\)
3. \(f(x)=\frac{3}{4+x}\)
4. \(f(x)=\frac{2}{5-x}\)

In Exercises 5-16, find a power series for the function, centered at \(c\), and determine the interval of convergence.
5. \(f(x)=\frac{1}{3-x}, \quad c=1\)
6. \(f(x)=\frac{4}{5-x}, \quad c=-3\)
7. \(f(x)=\frac{1}{1-3 x}, \quad c=0\)
8. \(h(x)=\frac{1}{1-5 x}, \quad c=0\)
9. \(g(x)=\frac{5}{2 x-3}, \quad c=-3\)
10. \(f(x)=\frac{3}{2 x-1}, \quad c=2\)
11. \(f(x)=\frac{2}{2 x+3}, \quad c=0\)
12. \(f(x)=\frac{4}{3 x+2}, \quad c=3\)
13. \(g(x)=\frac{4 x}{x^{2}+2 x-3}, \quad c=0\)
14. \(g(x)=\frac{3 x-8}{3 x^{2}+5 x-2}, \quad c=0\)
15. \(f(x)=\frac{2}{1-x^{2}}, \quad c=0\)
16. \(f(x)=\frac{5}{5+x^{2}}, \quad c=0\)

In Exercises 17-26, use the power series
\(\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}\)
to determine a power series, centered at 0 , for the function. Identify the interval of convergence.
17. \(h(x)=\frac{-2}{x^{2}-1}=\frac{1}{1+x}+\frac{1}{1-x}\)
18. \(h(x)=\frac{x}{x^{2}-1}=\frac{1}{2(1+x)}-\frac{1}{2(1-x)}\)
19. \(f(x)=-\frac{1}{(x+1)^{2}}=\frac{d}{d x}\left[\frac{1}{x+1}\right]\)
20. \(f(x)=\frac{2}{(x+1)^{3}}=\frac{d^{2}}{d x^{2}}\left[\frac{1}{x+1}\right]\)
21. \(f(x)=\ln (x+1)=\int \frac{1}{x+1} d x\)
22. \(f(x)=\ln \left(1-x^{2}\right)=\int \frac{1}{1+x} d x-\int \frac{1}{1-x} d x\)
23. \(g(x)=\frac{1}{x^{2}+1}\)
24. \(f(x)=\ln \left(x^{2}+1\right)\)
25. \(h(x)=\frac{1}{4 x^{2}+1}\)
26. \(f(x)=\arctan 2 x\)

Graphical and Numerical Analysis In Exercises 27 and 28, let \(S_{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \pm \frac{x^{n}}{n}\).

Use a graphing utility to confirm the inequality graphically. Then complete the table to confirm the inequality numerically.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\hline\(S_{n}\) & & & & & & \\
\hline \(\ln (x+1)\) & & & & & & \\
\hline\(S_{n+1}\) & & & & & & \\
\hline
\end{tabular}
27. \(S_{2} \leq \ln (x+1) \leq S_{3}\)
28. \(S_{4} \leq \ln (x+1) \leq S_{5}\)

In Exercises 29 and 30, (a) graph several partial sums of the series, (b) find the sum of the series and its radius of convergence, (c) use 50 terms of the series to approximate the sum when \(x=0.5\), and (d) determine what the approximation represents and how good the approximation is.
29. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}\)
30. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\)

In Exercises 31-34, match the polynomial approximation of the function \(f(x)=\arctan x\) with the correct graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(c)

31. \(g(x)=x\)
33. \(g(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}\)
(b)

(d)

32. \(g(x)=x-\frac{x^{3}}{3}\)
34. \(g(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}\)

In Exercises 35-38, use the series for \(f(x)=\arctan x\) to approximate the value, using \(R_{N} \leq 0.001\).
35. \(\arctan \frac{1}{4}\)
36. \(\int_{0}^{3 / 4} \arctan x^{2} d x\)
37. \(\int_{0}^{1 / 2} \frac{\arctan x^{2}}{x} d x\)
38. \(\int_{0}^{1 / 2} x^{2} \arctan x d x\)

In Exercises 39-42, use the power series
\(\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1\).
Find the series representation of the function and determine its interval of convergence.
39. \(f(x)=\frac{1}{(1-x)^{2}}\)
40. \(f(x)=\frac{x}{(1-x)^{2}}\)
41. \(f(x)=\frac{1+x}{(1-x)^{2}}\)
42. \(f(x)=\frac{x(1+x)}{(1-x)^{2}}\)
43. Probability A fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\)th toss is \(P(n)=\left(\frac{1}{2}\right)^{n}\). When this game is repeated many times, the average number of tosses required until the first head occurs is
\(E(n)=\sum_{n=1}^{\infty} n P(n)\).
(This value is called the expected value of \(n\).) Use the results of Exercises 39.42 to find \(E(n)\) Is the answer what you expected? Why or why not?
44. Use the results of Exercises 3942 to find the sum of each series.
(a) \(\frac{1}{3} \sum_{n=1}^{\infty} n\left(\frac{2}{3}\right)^{n}\)
(b) \(\frac{1}{10} \sum_{n=1}^{\infty} n\left(\frac{9}{10}\right)^{n}\)

Writing In Exercises 45-48, explain how to use the geometric series
\(g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1\)
to find the series for the function. Do not find the series.
45. \(f(x)=\frac{1}{1+x}\)
46. \(f(x)=\frac{1}{1-x^{2}}\)
47. \(f(x)=\frac{5}{1+x}\)
48. \(f(x)=\ln (1-x)\)
49. Prove that \(\arctan x+\arctan y=\arctan \frac{x+y}{1-x y}\) for \(x y \neq 1\) provided the value of the left side of the equation is between \(-\pi / 2\) and \(\pi / 2\).
50. Use the result of Exercise 49 to verify each identity.
(a) \(\arctan \frac{120}{119}-\arctan \frac{1}{239}=\frac{\pi}{4}\)
(b) \(4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}\)
[Hint: Use Exercise 49 twice to find \(4 \arctan \frac{1}{5}\). Then use part (a).]

In Exercises 51 and 52, (a) verify the given equation and (b) use the equation and the series for the arctangent to approximate \(\pi\) to two-decimal-place accuracy.
51. \(2 \arctan \frac{1}{2}-\arctan \frac{1}{7}=\frac{\pi}{4} \quad\) 52. \(\arctan \frac{1}{2}+\arctan \frac{1}{3}=\frac{\pi}{4}\)

In Exercises 53-58, find the sum of the convergent series by using a well-known function. Identify the function and explain how you obtained the sum.
53. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2^{n} n}\)
54. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{3^{n} n}\)
55. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{5^{n} n}\)
56. \(\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}\)
57. \(\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n+1}(2 n+1)}\)
58. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{3^{2 n-1}(2 n-1)}\)

\section*{WRITING ABOUT CONCEPTS}
59. Use the results of Exercises 3134 to make a geometric argument for why the series approximations of \(f(x)=\arctan x\) have only odd powers of \(x\).
60. Use the results of Exercises 3134 to make a conjecture about the degrees of series approximations of \(f(x)=\arctan x\) that have relative extrema.
61. One of the series in Exercises 5358 converges to its sum at E a much lower rate than the other five series. Which is it? Explain why this series converges so slowly. Use a graphing utility to illustrate the rate of convergence.
62. The radius of convergence of the power series \(\sum_{n=0}^{\infty} a_{n} x^{n}\) is 3 . What is the radius of convergence of the series \(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\) ? Explain.
63. The power series \(\sum_{n=0}^{\infty} a_{n} x^{n}\) converges for \(|x+1|<4\).

What can you conclude about the series \(\sum_{n=0}^{\infty} a_{n} \frac{x^{n+1}}{n+1}\) ? Explain.

\section*{CAPSTONE}
64. Find the Error Describe why the statement is incorrect.


In Exercises 65 and 66, find the sum of the series.
65. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}(2 n+1)}\)
66. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{3^{2 n+1}(2 n+1)!}\)
67. Ramanujan and Pi Use a graphing utility to show that
\[
\frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4 n)!(1103+26,390 n)}{(n!) 396^{4 n}}=\frac{1}{\pi} .
\]

\subsection*{9.10 Taylor and Maclaurin Series}


COLIN MACLAURIN (1698-1746)
The development of power series to represent functions is credited to the combined work of many seventeenth and eighteenth century mathematicians. Gregory, Newton, John and James Bernoulli, Leibniz, Euler, Lagrange, Wallis, and Fourier all contributed to this work. However, the two names that are most commonly associated with power series are Brook Taylor (1685-1731) and Colin Maclaurin.

NOTE Be sure you understand Theorem 9.22. The theorem says that if a power series converges to \(f(x)\), the series must be a Taylor series. The theorem does not say that every series formed with the Taylor coefficients \(a_{n}=f^{(n)}(c) / n\) ! will converge to \(f(x)\).
- Find a Taylor or Maclaurin series for a function.
- Find a binomial series.
- Use a basic list of Taylor series to find other Taylor series.

\section*{Taylor Series and Maclaurin Series}

In Section 9.9, you derived power series for several functions using geometric series with term-by-term differentiation or integration. In this section you will study a general procedure for deriving the power series for a function that has derivatives of all orders. The following theorem gives the form that every convergent power series must take.

\section*{THEOREM 9.22 THE FORM OF A CONVERGENT POWER SERIES}

If \(f\) is represented by a power series \(f(x)=\sum a_{n}(x-c)^{n}\) for all \(x\) in an open interval \(I\) containing \(c\), then \(a_{n}=f^{(n)}(c) / n\) ! and
\[
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots
\]

PROOF Suppose the power series \(\sum a_{n}(x-c)^{n}\) has a radius of convergence \(R\). Then, by Theorem 9.21, you know that the \(n\)th derivative of \(f\) exists for \(|x-c|<R\), and by successive differentiation you obtain the following.
\[
\begin{aligned}
f^{(0)}(x) & =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+a_{4}(x-c)^{4}+\cdots \\
f^{(1)}(x) & =a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+4 a_{4}(x-c)^{3}+\cdots \\
f^{(2)}(x) & =2 a_{2}+3!a_{3}(x-c)+4 \cdot 3 a_{4}(x-c)^{2}+\cdots \\
f^{(3)}(x) & =3!a_{3}+4!a_{4}(x-c)+\cdots \\
& \vdots \\
f^{(n)}(x) & =n!a_{n}+(n+1)!a_{n+1}(x-c)+\cdots
\end{aligned}
\]

Evaluating each of these derivatives at \(x=c\) yields
\[
\begin{aligned}
& f^{(0)}(c)=0!a_{0} \\
& f^{(1)}(c)=1!a_{1} \\
& f^{(2)}(c)=2!a_{2} \\
& f^{(3)}(c)=3!a_{3}
\end{aligned}
\]
and, in general, \(f^{(n)}(c)=n!a_{n}\). By solving for \(a_{n}\), you find that the coefficients of the power series representation of \(f(x)\) are
\[
a_{n}=\frac{f^{(n)}(c)}{n!}
\]

Notice that the coefficients of the power series in Theorem 9.22 are precisely the coefficients of the Taylor polynomials for \(f(x)\) at \(c\) as defined in Section 9.7. For this reason, the series is called the Taylor series for \(f(x)\) at \(c\).

\section*{DEFINITION OF TAYLOR AND MACLAURIN SERIES}

If a function \(f\) has derivatives of all orders at \(x=c\), then the series
\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+f^{\prime}(c)(x-c)+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots
\]
is called the Taylor series for \(f(x)\) at \(c\). Moreover, if \(c=0\), then the series is the Maclaurin series for \(f\).

If you know the pattern for the coefficients of the Taylor polynomials for a function, you can extend the pattern easily to form the corresponding Taylor series. For instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for \(\ln x\), centered at 1 , to be
\[
P_{4}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4} .
\]

From this pattern, you can obtain the Taylor series for \(\ln x\) centered at \(c=1\),
\[
(x-1)-\frac{1}{2}(x-1)^{2}+\cdots+\frac{(-1)^{n+1}}{n}(x-1)^{n}+\cdots
\]

\section*{EXAMPLE 1 Forming a Power Series}

Use the function \(f(x)=\sin x\) to form the Maclaurin series
\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots
\]
and determine the interval of convergence.
Solution Successive differentiation of \(f(x)\) yields
\[
\begin{array}{rlrl}
f(x) & =\sin x & f(0) & =\sin 0=0 \\
f^{\prime}(x) & =\cos x & f^{\prime}(0) & =\cos 0=1 \\
f^{\prime \prime}(x) & =-\sin x & f^{\prime \prime}(0) & =-\sin 0=0 \\
f^{(3)}(x) & =-\cos x & f^{(3)}(0) & =-\cos 0=-1 \\
f^{(4)}(x) & =\sin x & f^{(4)}(0) & =\sin 0=0 \\
f^{(5)}(x) & =\cos x & f^{(5)}(0) & =\cos 0=1
\end{array}
\]
and so on. The pattern repeats after the third derivative. So, the power series is as follows.
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}= & f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots \\
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}= & 0+(1) x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5}+\frac{0}{6!} x^{6} \\
& +\frac{(-1)}{7!} x^{7}+\cdots \\
= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{aligned}
\]

By the Ratio Test, you can conclude that this series converges for all \(x\).


Figure 9.23

Notice that in Example 1 you cannot conclude that the power series converges to \(\sin x\) for all \(x\). You can simply conclude that the power series converges to some function, but you are not sure what function it is. This is a subtle, but important, point in dealing with Taylor or Maclaurin series. To persuade yourself that the series
\[
f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots
\]
might converge to a function other than \(f\), remember that the derivatives are being evaluated at a single point. It can easily happen that another function will agree with the values of \(f^{(n)}(x)\) when \(x=c\) and disagree at other \(x\)-values. For instance, if you formed the power series (centered at 0 ) for the function shown in Figure 9.23, you would obtain the same series as in Example 1. You know that the series converges for all \(x\), and yet it obviously cannot converge to both \(f(x)\) and \(\sin x\) for all \(x\).

Let \(f\) have derivatives of all orders in an open interval \(I\) centered at \(c\). The Taylor series for \(f\) may fail to converge for some \(x\) in \(I\). Or, even if it is convergent, it may fail to have \(f(x)\) as its sum. Nevertheless, Theorem 9.19 tells us that for each \(n\),
\[
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x),
\]
where
\[
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}
\]

Note that in this remainder formula the particular value of \(z\) that makes the remainder formula true depends on the values of \(x\) and \(n\). If \(R_{n} \rightarrow 0\), then the following theorem tells us that the Taylor series for \(f\) actually converges to \(f(x)\) for all \(x\) in \(I\).

\section*{THEOREM 9.23 CONVERGENCE OF TAYLOR SERIES}

If \(\lim _{n \rightarrow \infty} R_{n}=0\) for all \(x\) in the interval \(I\), then the Taylor series for \(f\) converges and equals \(f(x)\),
\[
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
\]

PROOF For a Taylor series, the \(n\)th partial sum coincides with the \(n\)th Taylor polynomial. That is, \(S_{n}(x)=P_{n}(x)\). Moreover, because
\[
P_{n}(x)=f(x)-R_{n}(x)
\]
it follows that
\[
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n}(x) & =\lim _{n \rightarrow \infty} P_{n}(x) \\
& =\lim _{n \rightarrow \infty}\left[f(x)-R_{n}(x)\right] \\
& =f(x)-\lim _{n \rightarrow \infty} R_{n}(x)
\end{aligned}
\]

So, for a given \(x\), the Taylor series (the sequence of partial sums) converges to \(f(x)\) if and only if \(R_{n}(x) \rightarrow 0\) as \(n \rightarrow \infty\).

NOTE Stated another way, Theorem 9.23 says that a power series formed with Taylor coefficients \(a_{n}=f^{(n)}(c) / n!\) converges to the function from which it was derived at precisely those values for which the remainder approaches 0 as \(n \rightarrow \infty\).

In Example 1, you derived the power series from the sine function and you also concluded that the series converges to some function on the entire real line. In Example 2, you will see that the series actually converges to \(\sin x\). The key observation is that although the value of \(z\) is not known, it is possible to obtain an upper bound for \(\left|f^{(n+1)}(z)\right|\).

\section*{EXAMPLE 2 A Convergent Maclaurin Series}

Show that the Maclaurin series for \(f(x)=\sin x\) converges to \(\sin x\) for all \(x\).
Solution Using the result in Example 1, you need to show that
\[
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots
\]
is true for all \(x\). Because
\[
f^{(n+1)}(x)= \pm \sin x
\]
or
\[
f^{(n+1)}(x)= \pm \cos x
\]
you know that \(\left|f^{(n+1)}(z)\right| \leq 1\) for every real number \(z\). Therefore, for any fixed \(x\), you can apply Taylor's Theorem (Theorem 9.19) to conclude that
\[
0 \leq\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(z)}{(n+1)!} x^{n+1}\right| \leq \frac{|x|^{n+1}}{(n+1)!}
\]

From the discussion in Section 9.1 regarding the relative rates of convergence of exponential and factorial sequences, it follows that for a fixed \(x\)
\[
\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=0
\]

Finally, by the Squeeze Theorem, it follows that for all \(x, R_{n}(x) \rightarrow 0\) as \(n \rightarrow \infty\). So, by Theorem 9.23, the Maclaurin series for \(\sin x\) converges to \(\sin x\) for all \(x\).

Figure 9.24 visually illustrates the convergence of the Maclaurin series for \(\sin x\) by comparing the graphs of the Maclaurin polynomials \(P_{1}(x), P_{3}(x), P_{5}(x)\), and \(P_{7}(x)\) with the graph of the sine function. Notice that as the degree of the polynomial increases, its graph more closely resembles that of the sine function.





As \(n\) increases, the graph of \(P_{n}\) more closely resembles the sine function.
Figure 9.24

The guidelines for finding a Taylor series for \(f(x)\) at \(c\) are summarized below.

\section*{GUIDELINES FOR FINDING A TAYLOR SERIES}
1. Differentiate \(f(x)\) several times and evaluate each derivative at \(c\).
\[
f(c), f^{\prime}(c), f^{\prime \prime}(c), f^{\prime \prime \prime}(c), \cdots, f^{(n)}(c), \cdots
\]

Try to recognize a pattern in these numbers.
2. Use the sequence developed in the first step to form the Taylor coefficients \(a_{n}=f^{(n)}(c) / n!\), and determine the interval of convergence for the resulting power series
\[
f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots \cdot
\]
3. Within this interval of convergence, determine whether or not the series converges to \(f(x)\).

The direct determination of Taylor or Maclaurin coefficients using successive differentiation can be difficult, and the next example illustrates a shortcut for finding the coefficients indirectly-using the coefficients of a known Taylor or Maclaurin series.

\section*{EXAMPLE 3 Maclaurin Series for a Composite Function}

Find the Maclaurin series for \(f(x)=\sin x^{2}\).
Solution To find the coefficients for this Maclaurin series directly, you must calculate successive derivatives of \(f(x)=\sin x^{2}\). By calculating just the first two,
\[
f^{\prime}(x)=2 x \cos x^{2} \quad \text { and } \quad f^{\prime \prime}(x)=-4 x^{2} \sin x^{2}+2 \cos x^{2}
\]
you can see that this task would be quite cumbersome. Fortunately, there is an alternative. First consider the Maclaurin series for \(\sin x\) found in Example 1.
\[
\begin{aligned}
g(x) & =\sin x \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{aligned}
\]

Now, because \(\sin x^{2}=g\left(x^{2}\right)\), you can substitute \(x^{2}\) for \(x\) in the series for \(\sin x\) to obtain
\[
\begin{aligned}
\sin x^{2} & =g\left(x^{2}\right) \\
& =x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\cdots
\end{aligned}
\]

Be sure to understand the point illustrated in Example 3. Because direct computation of Taylor or Maclaurin coefficients can be tedious, the most practical way to find a Taylor or Maclaurin series is to develop power series for a basic list of elementary functions. From this list, you can determine power series for other functions by the operations of addition, subtraction, multiplication, division, differentiation, integration, and composition with known power series.

\section*{Binomial Series}

Before presenting the basic list for elementary functions, you will develop one more series-for a function of the form \(f(x)=(1+x)^{k}\). This produces the binomial series.

\section*{EXAMPLE 4 Binomial Series}

Find the Maclaurin series for \(f(x)=(1+x)^{k}\) and determine its radius of convergence. Assume that \(k\) is not a positive integer.

Solution By successive differentiation, you have
\[
\begin{array}{rlrl}
f(x) & =(1+x)^{k} & f(0) & =1 \\
f^{\prime}(x) & =k(1+x)^{k-1} & f^{\prime}(0) & =k \\
f^{\prime \prime}(x) & =k(k-1)(1+x)^{k-2} & f^{\prime \prime}(0) & =k(k-1) \\
f^{\prime \prime \prime}(x) & =k(k-1)(k-2)(1+x)^{k-3} & f^{\prime \prime \prime}(0) & =k(k-1)(k-2) \\
& \vdots & & \vdots \\
f^{(n)}(x) & =k \cdots(k-n+1)(1+x)^{k-n} & f^{(n)}(0) & =k(k-1) \cdots(k-n+1)
\end{array}
\]
which produces the series
\[
1+k x+\frac{k(k-1) x^{2}}{2}+\cdots+\frac{k(k-1) \cdots(k-n+1) x^{n}}{n!}+\cdots
\]

Because \(a_{n+1} / a_{n} \rightarrow 1\), you can apply the Ratio Test to conclude that the radius of convergence is \(R=1\). So, the series converges to some function in the interval \((-1,1)\).

Note that Example 4 shows that the Taylor series for \((1+x)^{k}\) converges to some function in the interval \((-1,1)\). However, the example does not show that the series actually converges to \((1+x)^{k}\). To do this, you could show that the remainder \(R_{n}(x)\) converges to 0, as illustrated in Example 2.

\section*{EXAMPLE 5 Finding a Binomial Series}

Find the power series for \(f(x)=\sqrt[3]{1+x}\).
Solution Using the binomial series
\[
(1+x)^{k}=1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\cdots
\]
let \(k=\frac{1}{3}\) and write
\[
(1+x)^{1 / 3}=1+\frac{x}{3}-\frac{2 x^{2}}{3^{2} 2!}+\frac{2 \cdot 5 x^{3}}{3^{3} 3!}-\frac{2 \cdot 5 \cdot 8 x^{4}}{3^{4} 4!}+\cdots
\]
which converges for \(-1 \leq x \leq 1\).

TECHNOLOGY Use a graphing utility to confirm the result in Example 5. When you graph the functions
\[
f(x)=(1+x)^{1 / 3} \quad \text { and } \quad P_{4}(x)=1+\frac{x}{3}-\frac{x^{2}}{9}+\frac{5 x^{3}}{81}-\frac{10 x^{4}}{243}
\]
in the same viewing window, you should obtain the result shown in Figure 9.25.

\section*{Deriving Taylor Series from a Basic List}

The following list provides the power series for several elementary functions with the corresponding intervals of convergence.

\section*{POWER SERIES FOR ELEMENTARY FUNCTIONS}

Function
Interval of
\[
\begin{array}{rlrl}
\hline \frac{1}{x} & =1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}-\cdots+(-1)^{n}(x-1)^{n}+\cdots & & 0<x<2 \\
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots+(-1)^{n} x^{n}+\cdots & & -1<x<1 \\
\ln x & =(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\cdots & & 0<x \leq 2 \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\cdots \cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots & & -\infty<x<\infty \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots & & -\infty<x<\infty \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots \infty \\
\arctan x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\cdots & -1 \leq x \leq 1 \\
\arcsin x & =x+\frac{x^{3}}{2 \cdot 3}+\frac{1 \cdot 3 x^{5}}{2 \cdot 4 \cdot 5}+\frac{1 \cdot 3 \cdot 5 x^{7}}{2 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{(2 n)!x^{2 n+1}}{\left(2^{n} n!\right)^{2}(2 n+1)}+\cdots & & -1 \leq x \leq 1 \\
(1+x)^{k} & =1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\frac{k(k-1)(k-2)(k-3) x^{4}}{4!}+\cdots & & -1<x<1^{*}
\end{array}
\]
*The convergence at \(x= \pm 1\) depends on the value of \(k\).

NOTE The binomial series is valid for noninteger values of \(k\). Moreover, if \(k\) happens to be a positive integer, the binomial series reduces to a simple binomial expansion.

\section*{EXAMPLE 6 Deriving a Power Series from a Basic List}

Find the power series for \(f(x)=\cos \sqrt{x}\).
Solution Using the power series
\[
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots
\]
you can replace \(x\) by \(\sqrt{x}\) to obtain the series
\[
\cos \sqrt{x}=1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\frac{x^{4}}{8!}-\cdots
\]

This series converges for all \(x\) in the domain of \(\cos \sqrt{x}\)-that is, for \(x \geq 0\).

Power series can be multiplied and divided like polynomials. After finding the first few terms of the product (or quotient), you may be able to recognize a pattern.

\section*{EXAMPLE 7 Multiplication and Division of Power Series}

Find the first three nonzero terms in each Maclaurin series.
a. \(e^{x} \arctan x\)
b. \(\tan x\)

\section*{Solution}
a. Using the Maclaurin series for \(e^{x}\) and \(\arctan x\) in the table, you have
\[
e^{x} \arctan x=\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots\right) .
\]

Multiply these expressions and collect like terms as you would in multiplying polynomials.
\[
\begin{array}{r}
\begin{array}{r}
1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\cdots \\
x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\cdots \\
-\frac{1}{3} x^{3}-\frac{1}{3} x^{4}-\frac{1}{6} x^{5}-\cdots \\
+\frac{1}{5} x^{5}+\cdots
\end{array} \\
\begin{array}{r}
\text { So, } e^{x} \arctan x=x+x^{2}+\frac{1}{6} x^{3}+\frac{1}{6} x^{4}+\frac{3}{40} x^{5}+\cdots
\end{array}
\end{array}
\]
b. Using the Maclaurin series for \(\sin x\) and \(\cos x\) in the table, you have
\[
\tan x=\frac{\sin x}{\cos x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots}
\]

Divide using long division.
\[
\begin{array}{r}
\begin{array}{r}
x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots \\
x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5} \cdots \\
\frac{x-\frac{1}{2} x^{3}+\frac{1}{24} x^{5}-\cdots}{4} x^{4} \cdots \\
\frac{\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+\cdots}{\frac{1}{3} x^{3}-\frac{1}{6} x^{5}+\cdots} \\
\frac{2}{15} x^{5}+\cdots
\end{array}
\end{array}
\]

So, \(\tan x=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots\).

\section*{EXAMPLE 8 A Power Series for \(\sin ^{2} \boldsymbol{x}\)}

Find the power series for \(f(x)=\sin ^{2} x\).
Solution Consider rewriting \(\sin ^{2} x\) as follows.
\[
\sin ^{2} x=\frac{1-\cos 2 x}{2}=\frac{1}{2}-\frac{\cos 2 x}{2}
\]

Now, use the series for \(\cos x\).
\[
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots \\
\cos 2 x & =1-\frac{2^{2}}{2!} x^{2}+\frac{2^{4}}{4!} x^{4}-\frac{2^{6}}{6!} x^{6}+\frac{2^{8}}{8!} x^{8}-\cdots \\
-\frac{1}{2} \cos 2 x & =-\frac{1}{2}+\frac{2}{2!} x^{2}-\frac{2^{3}}{4!} x^{4}+\frac{2^{5}}{6!} x^{6}-\frac{2^{7}}{8!} x^{8}+\cdots \\
\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x & =\frac{1}{2}-\frac{1}{2}+\frac{2}{2!} x^{2}-\frac{2^{3}}{4!} x^{4}+\frac{2^{5}}{6!} x^{6}-\frac{2^{7}}{8!} x^{8}+\cdots \\
& =\frac{2}{2!} x^{2}-\frac{2^{3}}{4!} x^{4}+\frac{2^{5}}{6!} x^{6}-\frac{2^{7}}{8!} x^{8}+\cdots
\end{aligned}
\]

This series converges for \(-\infty<x<\infty\).

As mentioned in the preceding section, power series can be used to obtain tables of values of transcendental functions. They are also useful for estimating the values of definite integrals for which antiderivatives cannot be found. The next example demonstrates this use.

\section*{Cexample 9 Power Series Approximation of a Definite Integral}

Use a power series to approximate
\[
\int_{0}^{1} e^{-x^{2}} d x
\]
with an error of less than 0.01.
Solution Replacing \(x\) with \(-x^{2}\) in the series for \(e^{x}\) produces the following.
\[
\begin{aligned}
e^{-x^{2}} & =1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\cdots \\
\int_{0}^{1} e^{-x^{2}} d x & =\left[x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{9}}{9 \cdot 4!}-\cdots\right]_{0}^{1} \\
& =1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216}-\cdots
\end{aligned}
\]

Summing the first four terms, you have
\[
\int_{0}^{1} e^{-x^{2}} d x \approx 0.74
\]
which, by the Alternating Series Test, has an error of less than \(\frac{1}{216} \approx 0.005\).

\subsection*{9.10 Exercises}

In Exercises 1-12, use the definition of Taylor series to find the Taylor series (centered at \(c\) ) for the function.
1. \(f(x)=e^{2 x}, \quad c=0\)
2. \(f(x)=e^{3 x}, \quad c=0\)
3. \(f(x)=\cos x, \quad c=\frac{\pi}{4}\)
4. \(f(x)=\sin x, \quad c=\frac{\pi}{4}\)
5. \(f(x)=\frac{1}{x}, \quad c=1\)
6. \(f(x)=\frac{1}{1-x}, \quad c=2\)
7. \(f(x)=\ln x, \quad c=1\)
8. \(f(x)=e^{x}, \quad c=1\)
9. \(f(x)=\sin 3 x, \quad c=0\)
10. \(f(x)=\ln \left(x^{2}+1\right), \quad c=0\)
11. \(f(x)=\sec x, \quad c=0\) (first three nonzero terms)
12. \(f(x)=\tan x, \quad c=0\) (first three nonzero terms)

In Exercises 13-16, prove that the Maclaurin series for the function converges to the function for all \(x\).
13. \(f(x)=\cos x\)
14. \(f(x)=e^{-2 x}\)
15. \(f(x)=\sinh x\)
16. \(f(x)=\cosh x\)

In Exercises 17-26, use the binomial series to find the Maclaurin series for the function.
17. \(f(x)=\frac{1}{(1+x)^{2}}\)
18. \(f(x)=\frac{1}{(1+x)^{4}}\)
19. \(f(x)=\frac{1}{\sqrt{1-x}}\)
20. \(f(x)=\frac{1}{\sqrt{1-x^{2}}}\)
21. \(f(x)=\frac{1}{\sqrt{4+x^{2}}}\)
22. \(f(x)=\frac{1}{(2+x)^{3}}\)
23. \(f(x)=\sqrt{1+x}\)
24. \(f(x)=\sqrt[4]{1+x}\)
25. \(f(x)=\sqrt{1+x^{2}}\)
26. \(f(x)=\sqrt{1+x^{3}}\)

In Exercises 27-40, find the Maclaurin series for the function. (Use the table of power series for elementary functions.)
27. \(f(x)=e^{x^{2} / 2}\)
28. \(g(x)=e^{-3 x}\)
29. \(f(x)=\ln (1+x)\)
30. \(f(x)=\ln \left(1+x^{2}\right)\)
31. \(g(x)=\sin 3 x\)
32. \(f(x)=\sin \pi x\)
33. \(f(x)=\cos 4 x\)
34. \(f(x)=\cos \pi x\)
35. \(f(x)=\cos x^{3 / 2}\)
36. \(g(x)=2 \sin x^{3}\)
37. \(f(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)=\sinh x\)
38. \(f(x)=e^{x}+e^{-x}=2 \cosh x\)
39. \(f(x)=\cos ^{2} x\)
40. \(f(x)=\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)\)
(Hint: Integrate the series for \(\frac{1}{\sqrt{x^{2}+1}}\).)

In Exercises 41-44, find the Maclaurin series for the function. (See Example 7.)
41. \(f(x)=x \sin x\)
42. \(h(x)=x \cos x\)
43. \(g(x)= \begin{cases}\frac{\sin x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}\)
44. \(f(x)= \begin{cases}\frac{\arcsin x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}\)

In Exercises 45 and 46, use a power series and the fact that \(i^{2}=-1\) to verify the formula.
45. \(g(x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)=\sin x\)
46. \(g(x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)=\cos x\)

In Exercises 47-52, find the first four nonzero terms of the Maclaurin series for the function by multiplying or dividing the appropriate power series. Use the table of power series for elementary functions on page 684. Use a graphing utility to graph the function and its corresponding polynomial approximation.
47. \(f(x)=e^{x} \sin x\)
48. \(g(x)=e^{x} \cos x\)
49. \(h(x)=\cos x \ln (1+x)\)
50. \(f(x)=e^{x} \ln (1+x)\)
51. \(g(x)=\frac{\sin x}{1+x}\)
52. \(f(x)=\frac{e^{x}}{1+x}\)

In Exercises 53-56, match the polynomial with its graph. [The graphs are labeled (a), (b), (c), and (d).] Factor a common factor from each polynomial and identify the function approximated by the remaining Taylor polynomial.
(a)

(c)

53. \(y=x^{2}-\frac{x^{4}}{3!}\)
55. \(y=x+x^{2}+\frac{x^{3}}{2!}\)
54. \(y=x-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}\)
56. \(y=x^{2}-x^{3}+x^{4}\)
(b)

(d)


In Exercises 57 and 58, find a Maclaurin series for \(f(x)\).
57. \(f(x)=\int_{0}^{x}\left(e^{-t^{2}}-1\right) d t\)
58. \(f(x)=\int_{0}^{x} \sqrt{1+t^{3}} d t\)

In Exercises 59-62, verify the sum. Then use a graphing utility to approximate the sum with an error of less than 0.0001 .
59. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\ln 2\)
60. \(\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{1}{(2 n+1)!}\right]=\sin 1\)
61. \(\sum_{n=0}^{\infty} \frac{2^{n}}{n!}=e^{2}\)
62. \(\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{1}{n!}\right)=\frac{e-1}{e}\)

In Exercises 63-66, use the series representation of the function \(f\) to find \(\lim _{x \rightarrow 0} f(x)\) (if it exists).
63. \(f(x)=\frac{1-\cos x}{x}\)
64. \(f(x)=\frac{\sin x}{x}\)
65. \(f(x)=\frac{e^{x}-1}{x}\)
66. \(f(x)=\frac{\ln (x+1)}{x}\)

In Exercises 67-74, use a power series to approximate the value of the integral with an error of less than 0.0001. (In Exercises 69 and 71, assume that the integrand is defined as 1 when \(x=0\).)
67. \(\int_{0}^{1} e^{-x^{3}} d x\)
68. \(\int_{0}^{1 / 4} x \ln (x+1) d x\)
69. \(\int_{0}^{1} \frac{\sin x}{x} d x\)
70. \(\int_{0}^{1} \cos x^{2} d x\)
71. \(\int_{0}^{1 / 2} \frac{\arctan x}{x} d x\)
72. \(\int_{0}^{1 / 2} \arctan x^{2} d x\)
73. \(\int_{0.1}^{0.3} \sqrt{1+x^{3}} d x\)
74. \(\int_{0}^{0.2} \sqrt{1+x^{2}} d x\)

Area In Exercises 75 and 76, use a power series to approximate the area of the region. Use a graphing utility to verify the result.
75. \(\int_{0}^{\pi / 2} \sqrt{x} \cos x d x\)
76. \(\int_{0.5}^{1} \cos \sqrt{x} d x\)



Probability In Exercises 77 and 78, approximate the normal probability with an error of less than 0.0001 , where the probability is given by
\(P(a<x<b)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x\).

77. \(P(0<x<1)\)
78. \(P(1<x<2)\)

CAS In Exercises 79-82, use a computer algebra system to find the fifth-degree Taylor polynomial (centered at \(c\) ) for the function. Graph the function and the polynomial. Use the graph to determine the largest interval on which the polynomial is a reasonable approximation of the function.
79. \(f(x)=x \cos 2 x, \quad c=0\)
80. \(f(x)=\sin \frac{x}{2} \ln (1+x), \quad c=0\)
81. \(g(x)=\sqrt{x} \ln x, \quad c=1\)
82. \(h(x)=\sqrt[3]{x} \arctan x, \quad c=1\)

\section*{WRITING ABOUT CONCEPTS}
83. State the guidelines for finding a Taylor series.
84. If \(f\) is an even function, what must be true about the coefficients \(a_{n}\) in the Maclaurin series
\(f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}\) ?
Explain your reasoning.
85. Define the binomial series. What is its radius of convergence?

\section*{CAPSTONE}
86. Explain how to use the series
\[
g(x)=e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\]
to find the series for each function. Do not find the series.
(a) \(f(x)=e^{-x}\)
(b) \(f(x)=e^{3 x}\)
(c) \(f(x)=x e^{x}\)
(d) \(f(x)=e^{2 x}+e^{-2 x}\)
87. Projectile Motion A projectile fired from the ground follows the trajectory given by
\(y=\left(\tan \theta-\frac{g}{k v_{0} \cos \theta}\right) x-\frac{g}{k^{2}} \ln \left(1-\frac{k x}{v_{0} \cos \theta}\right)\)
where \(v_{0}\) is the initial speed, \(\theta\) is the angle of projection, \(g\) is the acceleration due to gravity, and \(k\) is the drag factor caused by air resistance. Using the power series representation
\(\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots, \quad-1<x<1\)
verify that the trajectory can be rewritten as
\(y=(\tan \theta) x+\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \theta}+\frac{k g x^{3}}{3 v_{0}^{3} \cos ^{3} \theta}+\frac{k^{2} g x^{4}}{4 v_{0}^{4} \cos ^{4} \theta}+\cdots\).
88. Projectile Motion Use the result of Exercise 87 to determine the series for the path of a projectile launched from ground level at an angle of \(\theta=60^{\circ}\), with an initial speed of \(v_{0}=64\) feet per second and a drag factor of \(k=\frac{1}{16}\).
89. Investigation Consider the function \(f\) defined by
\(f(x)= \begin{cases}e^{-1 / x^{2}}, & x \neq 0 \\ 0, & x=0 .\end{cases}\)
(a) Sketch a graph of the function.
(b) Use the alternative form of the definition of the derivative (Section 2.1) and L'Hôpital's Rule to show that \(f^{\prime}(0)=0\). [By continuing this process, it can be shown that \(f^{(n)}(0)=\) 0 for \(n>1\).]
(c) Using the result in part (b), find the Maclaurin series for \(f\). Does the series converge to \(f\) ?
90. Investigation
(a) Find the power series centered at 0 for the function
\[
f(x)=\frac{\ln \left(x^{2}+1\right)}{x^{2}}
\]
(b) Use a graphing utility to graph \(f\) and the eighth-degree Taylor polynomial \(P_{8}(x)\) for \(f\).
(c) Complete the table, where
\(F(x)=\int_{0}^{x} \frac{\ln \left(t^{2}+1\right)}{t^{2}} d t\) and \(G(x)=\int_{0}^{x} P_{8}(t) d t\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0.25 & 0.50 & 0.75 & 1.00 & 1.50 & 2.00 \\
\hline\(F(x)\) & & & & & & \\
\hline\(G(x)\) & & & & & & \\
\hline
\end{tabular}
(d) Describe the relationship between the graphs of \(f\) and \(P_{8}\) and the results given in the table in part (c).
91. Prove that \(\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0\) for any real \(x\).
92. Find the Maclaurin series for
\(f(x)=\ln \frac{1+x}{1-x}\)
and determine its radius of convergence. Use the first four terms of the series to approximate \(\ln 3\).

In Exercises 93-96, evaluate the binomial coefficient using the formula
\(\binom{k}{n}=\frac{k(k-1)(k-2)(k-3) \cdots(k-n+1)}{n!}\)
where \(k\) is a real number, \(n\) is a positive integer, and
\(\binom{k}{0}=1\).
93. \(\binom{5}{3}\)
94. \(\binom{-2}{2}\)
95. \(\binom{0.5}{4}\)
96. \(\binom{-1 / 3}{5}\)
97. Write the power series for \((1+x)^{k}\) in terms of binomial coefficients.
98. Prove that \(e\) is irrational. [Hint: Assume that \(e=p / q\) is rational ( \(p\) and \(q\) are integers) and consider
\(\left.e=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots \cdot\right]\)
99. Show that the Maclaurin series for the function
\(g(x)=\frac{x}{1-x-x^{2}}\)
is
\(\sum_{n=1}^{\infty} F_{n} x^{n}\)
where \(F_{n}\) is the \(n\)th Fibonacci number with \(F_{1}=F_{2}=1\) and \(F_{n}=F_{n-2}+F_{n-1}\), for \(n \geq 3\).
(Hint: Write
\(\frac{x}{1-x-x^{2}}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdot\)
and multiply each side of this equation by \(1-x-x^{2}\).)

\section*{PUTNAM EXAM CHALLENGE}
100. Assume that \(|f(x)| \leq 1\) and \(\left|f^{\prime \prime}(x)\right| \leq 1\) for all \(x\) on an interval of length at least 2 . Show that \(\left|f^{\prime}(x)\right| \leq 2\) on the interval.

This problem was composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\section*{9 REVIEW EXERCISES}

In Exercises 1 and 2, write an expression for the \(\boldsymbol{n}\) th term of the sequence.
1. \(\frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \frac{1}{25}, \frac{1}{121}, \cdots\)
2. \(\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \cdots\)

In Exercises 3-6, match the sequence with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

3. \(a_{n}=4+\frac{2}{n}\)
5. \(a_{n}=10(0.3)^{n-1}\)
4. \(a_{n}=4-\frac{1}{2} n\)
6. \(a_{n}=6\left(-\frac{2}{3}\right)^{n-1}\)

In Exercises 7 and 8, use a graphing utility to graph the first 10 terms of the sequence. Use the graph to make an inference about the convergence or divergence of the sequence. Verify your inference analytically and, if the sequence converges, find its limit.
7. \(a_{n}=\frac{5 n+2}{n}\)
8. \(a_{n}=\sin \frac{n \pi}{2}\)

In Exercises 9-18, determine the convergence or divergence of the sequence with the given \(n\)th term. If the sequence converges, find its limit. ( \(b\) and \(c\) are positive real numbers.)
9. \(a_{n}=\left(\frac{7}{8}\right)^{n}+3\)
10. \(a_{n}=1+\frac{5}{n+1}\)
11. \(a_{n}=\frac{n^{3}+1}{n^{2}}\)
12. \(a_{n}=\frac{1}{\sqrt{n}}\)
13. \(a_{n}=\frac{n}{n^{2}+1}\)
14. \(a_{n}=\frac{n}{\ln n}\)
15. \(a_{n}=\sqrt{n+1}-\sqrt{n}\)
16. \(a_{n}=\left(1+\frac{1}{2 n}\right)^{n}\)
17. \(a_{n}=\frac{\sin \sqrt{n}}{\sqrt{n}}\)
18. \(a_{n}=\left(b^{n}+c^{n}\right)^{1 / n}\)
19. Compound Interest A deposit of \(\$ 8000\) is made in an account that earns 5\% interest compounded quarterly. The balance in the account after \(n\) quarters is
\(A_{n}=8000\left(1+\frac{0.05}{4}\right)^{n}, \quad n=1,2,3, \cdots\).
(a) Compute the first eight terms of the sequence \(\left\{A_{n}\right\}\).
(b) Find the balance in the account after 10 years by computing the 40th term of the sequence.
20. Depreciation A company buys a machine for \(\$ 175,000\). During the next 5 years the machine will depreciate at a rate of \(30 \%\) per year. (That is, at the end of each year, the depreciated value will be \(70 \%\) of what it was at the beginning of the year.)
(a) Find a formula for the \(n\)th term of the sequence that gives the value \(V\) of the machine \(t\) full years after it was purchased.
(b) Find the depreciated value of the machine at the end of 5 full years.

Numerical, Graphical, and Analytic Analysis In Exercises 21-24, (a) use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table, and (b) use a graphing utility to graph the first 10 terms of the sequence of partial sums.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 15 & 20 & 25 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
21. \(\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n-1}\)
22. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n}\)
23. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n)!}\)
24. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\)

In Exercises 25-28, find the sum of the convergent series.
25. \(\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}\)
26. \(\sum_{n=0}^{\infty} \frac{2^{n+2}}{3^{n}}\)
27. \(\sum_{n=1}^{\infty}\left[(0.6)^{n}+(0.8)^{n}\right]\)
28. \(\sum_{n=0}^{\infty}\left[\left(\frac{2}{3}\right)^{n}-\frac{1}{(n+1)(n+2)}\right]\)

In Exercises 29 and 30, (a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers.
29. \(0 . \overline{09}\)
30. \(0 . \overline{64}\)

In Exercises 31-34, determine the convergence or divergence of the series.
31. \(\sum_{n=0}^{\infty}(1.67)^{n}\)
32. \(\sum_{n=0}^{\infty}(0.67)^{n}\)
33. \(\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\ln n}\)
34. \(\sum_{n=0}^{\infty} \frac{2 n+1}{3 n+2}\)
35. Distance A ball is dropped from a height of 8 meters. Each time it drops \(h\) meters, it rebounds \(0.7 h\) meters. Find the total distance traveled by the ball.
36. Salary You accept a job that pays a salary of \(\$ 42,000\) the first year. During the next 39 years, you will receive a \(5.5 \%\) raise each year. What would be your total compensation over the 40-year period?
37. Compound Interest A deposit of \(\$ 300\) is made at the end of each month for 2 years in an account that pays \(6 \%\) interest, compounded continuously. Determine the balance in the account at the end of 2 years.
38. Compound Interest A deposit of \(\$ 125\) is made at the end of each month for 10 years in an account that pays \(3.5 \%\) interest, compounded monthly. Determine the balance in the account at the end of 10 years.

In Exercises 39-42, determine the convergence or divergence of the series.
39. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^{4}}\)
40. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^{3}}}\)
41. \(\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)\)
42. \(\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{2^{n}}\right)\)

In Exercises 43-48, determine the convergence or divergence of the series.
43. \(\sum_{n=1}^{\infty} \frac{6}{5 n-1}\)
44. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+3 n}}\)
45. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2 n}}\)
46. \(\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}\)
47. \(\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot(2 n)}\)
48. \(\sum_{n=1}^{\infty} \frac{1}{3^{n}-5}\)

In Exercises 49-54, determine the convergence or divergence of the series.
49. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}\)
50. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)}{n^{2}+1}\)
51. \(\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{n^{2}-3}\)
52. \(\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n+1}\)
53. \(\sum_{n=4}^{\infty} \frac{(-1)^{n} n}{n-3}\)
54. \(\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln n^{3}}{n}\)

In Exercises 55-60, determine the convergence or divergence of the series.
55. \(\sum_{n=1}^{\infty}\left(\frac{3 n-1}{2 n+5}\right)^{n}\)
56. \(\sum_{n=1}^{\infty}\left(\frac{4 n}{7 n-1}\right)^{n}\)
57. \(\sum_{n=1}^{\infty} \frac{n}{e^{n^{2}}}\)
58. \(\sum_{n=1}^{\infty} \frac{n!}{e^{n}}\)
59. \(\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}}\)
60. \(\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}\)

Numerical, Graphical, and Analytic Analysis In Exercises 61 and 62, (a) verify that the series converges, (b) use a graphing utility to find the indicated partial sum \(S_{n}\) and complete the table, (c) use a graphing utility to graph the first 10 terms of the sequence of partial sums, and (d) use the table to estimate the sum of the series.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(n\) & 5 & 10 & 15 & 20 & 25 \\
\hline\(S_{n}\) & & & & & \\
\hline
\end{tabular}
61. \(\sum_{n=1}^{\infty} n\left(\frac{3}{5}\right)^{n}\)
62. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{3}+5}\)
63. Writing Use a graphing utility to complete the table for (a) \(p=2\) and (b) \(p=5\). Write a short paragraph describing and comparing the entries in the tables.
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(N\) & 5 & 10 & 20 & 30 & 40 \\
\hline\(\sum_{n=1}^{N} \frac{1}{n^{p}}\) & & & & & \\
\hline \(\int_{N}^{\infty} \frac{1}{x^{p}} d x\) & & & & & \\
\hline
\end{tabular}
64. Writing You are told that the terms of a positive series appear to approach zero very slowly as \(n\) approaches infinity. (In fact, \(a_{75}=0.7\).) If you are given no other information, can you conclude that the series diverges? Support your answer with an example.

In Exercises 65 and 66, find the third-degree Taylor polynomial centered at \(c\).
65. \(f(x)=e^{-3 x}, \quad c=0\)
66. \(f(x)=\tan x, \quad c=-\frac{\pi}{4}\)

In Exercises 67-70, use a Taylor polynomial to approximate the function with an error of less than 0.001 .
67. \(\sin 95^{\circ}\)
68. \(\cos (0.75)\)
69. \(\ln (1.75)\)
70. \(e^{-0.25}\)
71. A Taylor polynomial centered at 0 will be used to approximate the cosine function. Find the degree of the polynomial required to obtain the desired accuracy over each interval.
\begin{tabular}{lll} 
& \multicolumn{2}{l}{ Maximum Error } \\
& & \(\underline{\text { Interval }}\) \\
(a) 0.001 & & {\([-0.5,0.5]\)} \\
(b) 0.001 & {\([-1,1]\)} \\
(c) 0.0001 & {\([-0.5,0.5]\)} \\
(d) 0.0001 & {\([-2,2]\)}
\end{tabular}
72. Use a graphing utility to graph the cosine function and the Taylor polynomials in Exercise 71.

In Exercises 73-78, find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)
73. \(\sum_{n=0}^{\infty}\left(\frac{x}{10}\right)^{n}\)
74. \(\sum_{n=0}^{\infty}(2 x)^{n}\)
75. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{(n+1)^{2}}\)
76. \(\sum_{n=1}^{\infty} \frac{3^{n}(x-2)^{n}}{n}\)
77. \(\sum_{n=0}^{\infty} n!(x-2)^{n}\)
78. \(\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{2^{n}}\)

In Exercises 79 and 80, show that the function represented by the power series is a solution of the differential equation.
\[
\text { 79. } \begin{aligned}
& y= \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{4^{n}(n!)^{2}} \\
& x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
\end{aligned}
\]
80. \(y=\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{2 n}}{2^{n} n!}\)
\[
y^{\prime \prime}+3 x y^{\prime}+3 y=0
\]

In Exercises 81 and 82, find a geometric power series centered at 0 for the function.
81. \(g(x)=\frac{2}{3-x}\)
82. \(h(x)=\frac{3}{2+x}\)
83. Find a power series for the derivative of the function in Exercise 81.
84. Find a power series for the integral of the function in Exercise 82.

In Exercises 85 and 86, find a function represented by the series and give the domain of the function.
85. \(1+\frac{2}{3} x+\frac{4}{9} x^{2}+\frac{8}{27} x^{3}+\cdots\).
86. \(8-2(x-3)+\frac{1}{2}(x-3)^{2}-\frac{1}{8}(x-3)^{3}+\cdots\).

In Exercises 87-94, find a power series for the function centered at \(c\).
87. \(f(x)=\sin x, \quad c=\frac{3 \pi}{4}\)
88. \(f(x)=\cos x, \quad c=-\frac{\pi}{4}\)
89. \(f(x)=3^{x}, \quad c=0\)
90. \(f(x)=\csc x, \quad c=\frac{\pi}{2}\)
(first three terms)
91. \(f(x)=\frac{1}{x}, \quad c=-1\)
92. \(f(x)=\sqrt{x}, \quad c=4\)
93. \(g(x)=\sqrt[5]{1+x}, \quad c=0\)
94. \(h(x)=\frac{1}{(1+x)^{3}}, \quad c=0\)

In Exercises 95-100, find the sum of the convergent series by using a well-known function. Identify the function and explain how you obtained the sum.
95. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{4^{n} n}\)
96. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{5^{n} n}\)
97. \(\sum_{n=0}^{\infty} \frac{1}{2^{n} n!}\)
98. \(\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n} n!}\)
99. \(\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{2 n}(2 n)!}\)
100. \(\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{3^{2 n+1}(2 n+1)!}\)
101. Writing One of the series in Exercises 45 and 57 converges to its sum at a much lower rate than the other series. Which is it? Explain why this series converges so slowly. Use a graphing utility to illustrate the rate of convergence.
102. Use the binomial series to find the Maclaurin series for
\(f(x)=\frac{1}{\sqrt{1+x^{3}}}\).
103. Forming Maclaurin Series Determine the first four terms of the Maclaurin series for \(e^{2 x}\)
(a) by using the definition of the Maclaurin series and the formula for the coefficient of the \(n\)th term, \(a_{n}=f^{(n)}(0) / n!\).
(b) by replacing \(x\) by \(2 x\) in the series for \(e^{x}\).
(c) by multiplying the series for \(e^{x}\) by itself, because \(e^{2 x}=\) \(e^{x} \cdot e^{x}\).
104. Forming Maclaurin Series Follow the pattern of Exercise 103 to find the first four terms of the series for \(\sin 2 x\). (Hint: \(\sin 2 x=2 \sin x \cos x\).)

In Exercises 105-108, find the series representation of the function defined by the integral.
105. \(\int_{0}^{x} \frac{\sin t}{t} d t\)
106. \(\int_{0}^{x} \cos \frac{\sqrt{t}}{2} d t\)
107. \(\int_{0}^{x} \frac{\ln (t+1)}{t} d t\)
108. \(\int_{0}^{x} \frac{e^{t}-1}{t} d t\)

In Exercises 109 and 110, use a power series to find the limit (if it exists). Verify the result by using L'Hôpital's Rule.
109. \(\lim _{x \rightarrow 0^{+}} \frac{\arctan x}{\sqrt{x}}\)
110. \(\lim _{x \rightarrow 0} \frac{\arcsin x}{x}\)

\section*{P.S. PROBLEM SOLVING}
1. The Cantor set (Georg Cantor, 1845-1918) is a subset of the unit interval \([0,1]\). To construct the Cantor set, first remove the middle third \(\left(\frac{1}{3}, \frac{2}{3}\right)\) of the interval, leaving two line segments. For the second step, remove the middle third of each of the two remaining segments, leaving four line segments. Continue this procedure indefinitely, as shown in the figure. The Cantor set consists of all numbers in the unit interval \([0,1]\) that still remain.

(a) Find the total length of all the line segments that are removed.
(b) Write down three numbers that are in the Cantor set.
(c) Let \(C_{n}\) denote the total length of the remaining line segments after \(n\) steps. Find \(\lim _{n \rightarrow \infty} C_{n}\).
2. (a) Given that \(\lim _{x \rightarrow \infty} a_{2 n}=L\) and \(\lim _{x \rightarrow \infty} a_{2 n+1}=L\), show that \(\left\{a_{n}\right\}\) is convergent and \(\lim _{x \rightarrow \infty} a_{n}=L\).
(b) Let \(a_{1}=1\) and \(a_{n+1}=1+\frac{1}{1+a_{n}}\). Write out the first eight terms of \(\left\{a_{n}\right\}\). Use part (a) to show that \(\lim _{x \rightarrow \infty} a_{n}=\sqrt{2}\). This gives the continued fraction expansion
\[
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\cdots}}
\]
3. It can be shown that
\(\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\) [see Example 3(b), Section 9.3].
Use this fact to show that \(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}\).
4. Let \(T\) be an equilateral triangle with sides of length 1 . Let \(a_{n}\) be the number of circles that can be packed tightly in \(n\) rows inside the triangle. For example, \(a_{1}=1, a_{2}=3\), and \(a_{3}=6\), as shown in the figure. Let \(A_{n}\) be the combined area of the \(a_{n}\) circles. Find \(\lim _{n \rightarrow \infty} A_{n}\).

5. Identical blocks of unit length are stacked on top of each other at the edge of a table. The center of gravity of the top block must lie over the block below it, the center of gravity of the top two blocks must lie over the block below them, and so on (see figure).

(a) If there are three blocks, show that it is possible to stack them so that the left edge of the top block extends \(\frac{11}{12}\) unit beyond the edge of the table.
(b) Is it possible to stack the blocks so that the right edge of the top block extends beyond the edge of the table?
(c) How far beyond the table can the blocks be stacked?
6. (a) Consider the power series
\(\sum_{n=0}^{\infty} a_{n} x^{n}=1+2 x+3 x^{2}+x^{3}+2 x^{4}+3 x^{5}+x^{6}+\cdots\).
in which the coefficients \(a_{n}=1,2,3,1,2,3,1, \ldots\) are periodic of period \(p=3\). Find the radius of convergence and the sum of this power series.
(b) Consider a power series
\(\sum_{n=0}^{\infty} a_{n} x^{n}\)
in which the coefficients are periodic, \(\left(a_{n+p}=a_{p}\right)\) and \(a_{n}>0\). Find the radius of convergence and the sum of this power series.
7. For what values of the positive constants \(a\) and \(b\) does the following series converge absolutely? For what values does it converge conditionally?
\(a-\frac{b}{2}+\frac{a}{3}-\frac{b}{4}+\frac{a}{5}-\frac{b}{6}+\frac{a}{7}-\frac{b}{8}+\cdots\).
8. (a) Find a power series for the function
\(f(x)=x e^{x}\)
centered at 0 . Use this representation to find the sum of the infinite series
\[
\sum_{n=1}^{\infty} \frac{1}{n!(n+2)}
\]
(b) Differentiate the power series for \(f(x)=x e^{x}\). Use the result to find the sum of the infinite series
\[
\sum_{n=0}^{\infty} \frac{n+1}{n!}
\]
9. Find \(f^{(12)}(0)\) if \(f(x)=e^{x^{2}}\). (Hint: Do not calculate 12 derivatives.)
10. The graph of the function
\(f(x)= \begin{cases}1, & x=0 \\ \frac{\sin x}{x}, & x>0\end{cases}\)
is shown below. Use the Alternating Series Test to show that the improper integral \(\int_{1}^{\infty} f(x) d x\) converges.

11. (a) Prove that \(\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} d x\) converges if and only if \(p>1\).
(b) Determine the convergence or divergence of the series
\[
\sum_{n=4}^{\infty} \frac{1}{n \ln \left(n^{2}\right)}
\]
12. (a) Consider the following sequence of numbers defined recursively.
\[
\begin{aligned}
a_{1} & =3 \\
a_{2} & =\sqrt{3} \\
a_{3} & =\sqrt{3+\sqrt{3}} \\
& \vdots \\
a_{n+1} & =\sqrt{3+a_{n}}
\end{aligned}
\]

Write the decimal approximations for the first six terms of this sequence. Prove that the sequence converges, and find its limit.
(b) Consider the following sequence defined recursively by \(a_{1}=\sqrt{a}\) and \(a_{n+1}=\sqrt{a+a_{n}}\), where \(a>2\).
\(\sqrt{a}, \sqrt{a+\sqrt{a}}, \sqrt{a+\sqrt{a+\sqrt{a}}}, \ldots\)
Prove that this sequence converges, and find its limit.
13. Let \(\left\{a_{n}\right\}\) be a sequence of positive numbers satisfying \(\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=L<\frac{1}{r}, r>0\). Prove that the series \(\sum_{n=1}^{\infty} a_{n} r^{n}\) converges.
14. Consider the infinite series \(\sum_{n=1}^{\infty} \frac{1}{2^{n+(-1)^{n}}}\).
(a) Find the first five terms of the sequence of partial sums.
(b) Show that the Ratio Test is inconclusive for this series.
(c) Use the Root Test to test for the convergence or divergence of this series.
15. Derive each identity using the appropriate geometric series.
(a) \(\frac{1}{0.99}=1.01010101\).
(b) \(\frac{1}{0.98}=1.0204081632 \ldots\)
16. Consider an idealized population with the characteristic that each member of the population produces one offspring at the end of every time period. Each member has a life span of three time periods and the population begins with 10 newborn members. The following table shows the population during the first five time periods.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Age Bracket } & \multicolumn{5}{|c|}{ Time Period } \\
\cline { 2 - 6 } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & 4 & \(\mathbf{5}\) \\
\hline \(\mathbf{0 - 1}\) & 10 & 10 & 20 & 40 & 70 \\
\hline \(\mathbf{1 - 2}\) & & 10 & 10 & 20 & 40 \\
\hline \(\mathbf{2 - 3}\) & & & 10 & 10 & 20 \\
\hline Total & 10 & 20 & 40 & 70 & 130 \\
\hline
\end{tabular}

The sequence for the total population has the property that
\(S_{n}=S_{n-1}+S_{n-2}+S_{n-3}, \quad n>3\).
Find the total population during each of the next five time periods.
17. Imagine you are stacking an infinite number of spheres of decreasing radii on top of each other, as shown in the figure. The radii of the spheres are 1 meter, \(1 / \sqrt{2}\) meter, \(1 / \sqrt{3}\) meter, etc. The spheres are made of a material that weighs 1 newton per cubic meter.
(a) How high is this infinite stack of spheres?
(b) What is the total surface area of all the spheres in the stack?
(c) Show that the weight of the stack is finite.

18. (a) Determine the convergence or divergence of the series
\[
\sum_{n=1}^{\infty} \frac{1}{2 n} .
\]
(b) Determine the convergence or divergence of the series
\[
\sum_{n=1}^{\infty}\left(\sin \frac{1}{2 n}-\sin \frac{1}{2 n+1}\right) .
\]

\section*{10}

\section*{Conics, Parametric Equations, and Polar Coordinates}

In this chapter, you will analyze and write equations of conics using their properties. You will also learn how to write and graph parametric equations and polar equations, and see how calculus can be used to study these graphs. In addition to the rectangular equations of conics, you will also study polar equations of conics.

In this chapter, you should learn the following.
- How to analyze and write equations of a parabola, an ellipse, and a hyperbola. (10.1)
- How to sketch a curve represented by parametric equations. (10.2)
- How to use a set of parametric equations to find the slope of a tangent line to a curve and the arc length of a curve. (10.3)
- How to sketch the graph of an equation in polar form, find the slope of a tangent line to a polar graph, and identify special polar graphs. (10.4)
- How to find the area of a region bounded by a polar graph and find the arc length of a polar graph. (10.5)
- How to analyze and write a polar equation of a conic. (10.6)

© Chuck Savage/Corbis
The path of a baseball hit at a particular height at an angle with the horizontal can be modeled using parametric equations. How can a set of parametric equations be used to find the minimum angle at which the ball must leave the bat in order for the hit to be a home run? (See Section 10.2, Exercise 75.)


In the polar coordinate system, graphing an equation involves tracing a curve about a fixed point called the pole. Consider a region bounded by a curve and by the rays that contain the endpoints of an interval on the curve. You can use sectors of circles to approximate the area of such a region. In Section 10.5, you will see how the limit process can be used to find this area.

\subsection*{10.1 Conics and Calculus}
\begin{tabular}{l} 
Her| \\
HYPATIA (370-415 A.D.) \\
The Greeks discovered conic sections \\
sometime between 600 and 300 b.c. By the \\
beginning of the Alexandrian period, enough \\
was known about conics for Apollonius \\
(262-190 b.c.) to produce an eight-volume \\
work on the subject. Later, toward the end of \\
the Alexandrian period, Hypatia wrote a textbook \\
entitled On the Conics of Apollonius. Her \\
death marked the end of major mathematical \\
discoveries in Europe for several hundred years. \\
The early Greeks were largely concerned \\
with the geometric properties of conics. It \\
was not until 1900 years later, in the early \\
seventeenth century, that the broader appli- \\
cability of conics became apparent. Conics \\
then played a prominent role in the develop- \\
ment of calculus. \\
\hline Ther
\end{tabular}

FOR FURTHER INFORMATION To
learn more about the mathematical activities of Hypatia, see the article "Hypatia and Her Mathematics" by Michael A. B. Deakin in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.
- Understand the definition of a conic section.
- Analyze and write equations of parabolas using properties of parabolas.
- Analyze and write equations of ellipses using properties of ellipses.

Analyze and write equations of hyperbolas using properties of hyperbolas.

\section*{Conic Sections}

Each conic section (or simply conic) can be described as the intersection of a plane and a double-napped cone. Notice in Figure 10.1 that for the four basic conics, the intersecting plane does not pass through the vertex of the cone. When the plane passes through the vertex, the resulting figure is a degenerate conic, as shown in Figure 10.2.


Circle
Conic sections
Figure 10.1


Point


Parabola


Ellipse


Hyperbola

Degenerate conics

\section*{Figure 10.2}

There are several ways to study conics. You could begin as the Greeks did by defining the conics in terms of the intersections of planes and cones, or you could define them algebraically in terms of the general second-degree equation
\[
A x^{2}+B x y+C y^{2}+D x+E y+F=0
\]

General second-degree equation

However, a third approach, in which each of the conics is defined as a locus (collection) of points satisfying a certain geometric property, works best. For example, a circle can be defined as the collection of all points \((x, y)\) that are equidistant from a fixed point \((h, k)\). This locus definition easily produces the standard equation of a circle
\[
(x-h)^{2}+(y-k)^{2}=r^{2}
\]

Standard equation of a circle

For information about rotating second-degree equations in two variables, see Appendix D.


Directrix
Figure 10.3


Parabola with a vertical axis, \(p<0\)
Figure 10.4

\section*{Parabolas}

A parabola is the set of all points \((x, y)\) that are equidistant from a fixed line called the directrix and a fixed point called the focus not on the line. The midpoint between the focus and the directrix is the vertex, and the line passing through the focus and the vertex is the axis of the parabola. Note in Figure 10.3 that a parabola is symmetric with respect to its axis.

\section*{THEOREM 10.1 STANDARD EQUATION OF A PARABOLA}

The standard form of the equation of a parabola with vertex \((h, k)\) and directrix \(y=k-p\) is
\[
(x-h)^{2}=4 p(y-k) . \quad \text { Vertical axis }
\]

For directrix \(x=h-p\), the equation is
\[
(y-k)^{2}=4 p(x-h) . \quad \text { Horizontal axis }
\]

The focus lies on the axis \(p\) units (directed distance) from the vertex. The coordinates of the focus are as follows.
\[
\begin{array}{ll}
(h, k+p) & \text { Vertical axis } \\
(h+p, k) & \text { Horizontal axis }
\end{array}
\]

\section*{EXAMPLE 1 Finding the Focus of a Parabola}

Find the focus of the parabola given by \(y=\frac{1}{2}-x-\frac{1}{2} x^{2}\).
Solution To find the focus, convert to standard form by completing the square.
\[
\begin{aligned}
y & =\frac{1}{2}-x-\frac{1}{2} x^{2} & & \text { Write original equation. } \\
y & =\frac{1}{2}\left(1-2 x-x^{2}\right) & & \text { Factor out } \frac{1}{2} . \\
2 y & =1-2 x-x^{2} & & \text { Multiply each side by } 2 . \\
2 y & =1-\left(x^{2}+2 x\right) & & \text { Group terms. } \\
2 y & =2-\left(x^{2}+2 x+1\right) & & \text { Add and subtract } 1 \text { on right side. } \\
x^{2}+2 x+1 & =-2 y+2 & & \\
(x+1)^{2} & =-2(y-1) & & \text { Write in standard form. }
\end{aligned}
\]

Comparing this equation with \((x-h)^{2}=4 p(y-k)\), you can conclude that
\[
h=-1, \quad k=1, \quad \text { and } \quad p=-\frac{1}{2}
\]

Because \(p\) is negative, the parabola opens downward, as shown in Figure 10.4. So, the focus of the parabola is \(p\) units from the vertex, or
\[
(h, k+p)=\left(-1, \frac{1}{2}\right) . \quad \text { Focus }
\]

A line segment that passes through the focus of a parabola and has endpoints on the parabola is called a focal chord. The specific focal chord perpendicular to the axis of the parabola is the latus rectum. The next example shows how to determine the length of the latus rectum and the length of the corresponding intercepted arc.


Length of latus rectum: \(4 p\)
Figure 10.5


Parabolic reflector: light is reflected in parallel rays.
Figure 10.6

\section*{EXAMPLE 2 Focal Chord Length and Arc Length}

Find the length of the latus rectum of the parabola given by \(x^{2}=4 p y\). Then find the length of the parabolic arc intercepted by the latus rectum.

Solution Because the latus rectum passes through the focus \((0, p)\) and is perpendicular to the \(y\)-axis, the coordinates of its endpoints are \((-x, p)\) and \((x, p)\). Substituting \(p\) for \(y\) in the equation of the parabola produces
\[
x^{2}=4 p(p) \quad \square x= \pm 2 p
\]

So, the endpoints of the latus rectum are \((-2 p, p)\) and \((2 p, p)\), and you can conclude that its length is \(4 p\), as shown in Figure 10.5. In contrast, the length of the intercepted arc is
\[
\begin{array}{rlrl}
s & =\int_{-2 p}^{2 p} \sqrt{1+\left(y^{\prime}\right)^{2}} d x & & \text { Use arc length formula. } \\
& =2 \int_{0}^{2 p} \sqrt{1+\left(\frac{x}{2 p}\right)^{2}} d x & & y=\frac{x^{2}}{4 p} \longrightarrow y^{\prime}=\frac{x}{2 p} \\
& =\frac{1}{p} \int_{0}^{2 p} \sqrt{4 p^{2}+x^{2}} d x & & \text { Simplify. } \\
& =\frac{1}{2 p}\left[x \sqrt{4 p^{2}+x^{2}}+4 p^{2} \ln \left|x+\sqrt{4 p^{2}+x^{2}}\right|\right]_{0}^{2 p} & \text { Theorem } 8.2 \\
& =\frac{1}{2 p}\left[2 p \sqrt{8 p^{2}}+4 p^{2} \ln \left(2 p+\sqrt{8 p^{2}}\right)-4 p^{2} \ln (2 p)\right] & \\
& =2 p[\sqrt{2}+\ln (1+\sqrt{2})] & & \\
& \approx 4.59 p &
\end{array}
\]

One widely used property of a parabola is its reflective property. In physics, a surface is called reflective if the tangent line at any point on the surface makes equal angles with an incoming ray and the resulting outgoing ray. The angle corresponding to the incoming ray is the angle of incidence, and the angle corresponding to the outgoing ray is the angle of reflection. One example of a reflective surface is a flat mirror.

Another type of reflective surface is that formed by revolving a parabola about its axis. A special property of parabolic reflectors is that they allow us to direct all incoming rays parallel to the axis through the focus of the parabola-this is the principle behind the design of the parabolic mirrors used in reflecting telescopes. Conversely, all light rays emanating from the focus of a parabolic reflector used in a flashlight are parallel, as shown in Figure 10.6.

\section*{THEOREM 10.2 REFLECTIVE PROPERTY OF A PARABOLA}

Let \(P\) be a point on a parabola. The tangent line to the parabola at the point \(P\) makes equal angles with the following two lines.
1. The line passing through \(P\) and the focus
2. The line passing through \(P\) parallel to the axis of the parabola

\footnotetext{
The icon \(\circlearrowright\) indicates that you will find a CAS Investigation on the book's website. The CAS Investigation is a collaborative exploration of this example using the computer algebra systems Maple and Mathematica.
}


\section*{Ellipses}

More than a thousand years after the close of the Alexandrian period of Greek mathematics, Western civilization finally began a Renaissance of mathematical and scientific discovery. One of the principal figures in this rebirth was the Polish astronomer Nicolaus Copernicus. In his work On the Revolutions of the Heavenly Spheres, Copernicus claimed that all of the planets, including Earth, revolved about the sun in circular orbits. Although some of Copernicus's claims were invalid, the controversy set off by his heliocentric theory motivated astronomers to search for a mathematical model to explain the observed movements of the sun and planets. The first to find an accurate model was the German astronomer Johannes Kepler (1571-1630). Kepler discovered that the planets move about the sun in elliptical orbits, with the sun not as the center but as a focal point of the orbit.

The use of ellipses to explain the movements of the planets is only one of many practical and aesthetic uses. As with parabolas, you will begin your study of this second type of conic by defining it as a locus of points. Now, however, two focal points are used rather than one.

An ellipse is the set of all points \((x, y)\) the sum of whose distances from two distinct fixed points called foci is constant. (See Figure 10.7.) The line through the foci intersects the ellipse at two points, called the vertices. The chord joining the vertices is the major axis, and its midpoint is the center of the ellipse. The chord perpendicular to the major axis at the center is the minor axis of the ellipse. (See Figure 10.8.)


Figure 10.7


Figure 10.8

FOR FURTHER INFORMATION To learn about how an ellipse may be "exploded" into a parabola, see the article "Exploding the Ellipse" by Arnold Good in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{THEOREM 10.3 STANDARD EQUATION OF AN ELLIPSE}

The standard form of the equation of an ellipse with center \((h, k)\) and major and minor axes of lengths \(2 a\) and \(2 b\), where \(a>b\), is
\[
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { Major axis is horizontal. }
\]
or
\[
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 . \quad \text { Major axis is vertical. }
\]

The foci lie on the major axis, \(c\) units from the center, with \(c^{2}=a^{2}-b^{2}\).

You can visualize the definition of an ellipse by imagining two thumbtacks placed at the foci, as shown in Figure 10.9.


Ellipse with a vertical major axis
Figure 10.10

\section*{EXAMPLE 3 Analyzing an Ellipse}

Find the center, vertices, and foci of the ellipse given by
\[
4 x^{2}+y^{2}-8 x+4 y-8=0
\]

Solution By completing the square, you can write the original equation in standard form.
\[
\begin{aligned}
4 x^{2}+y^{2}-8 x+4 y-8 & =0 & & \text { Write original equation. } \\
4 x^{2}-8 x+y^{2}+4 y & =8 & & \\
4\left(x^{2}-2 x+1\right)+\left(y^{2}+4 y+4\right) & =8+4+4 & & \\
4(x-1)^{2}+(y+2)^{2} & =16 & & \\
\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16} & =1 & & \text { Write in standard form. }
\end{aligned}
\]

So, the major axis is parallel to the \(y\)-axis, where \(h=1, k=-2, a=4, b=2\), and \(c=\sqrt{16-4}=2 \sqrt{3}\). So, you obtain the following.
\begin{tabular}{lll} 
Center: & \((1,-2)\) & \((h, k)\) \\
Vertices: & \((1,-6)\) and \((1,2)\) & \((h, k \pm a)\) \\
Foci: & \((1,-2-2 \sqrt{3})\) and \((1,-2+2 \sqrt{3})\) & \((h, k \pm c)\)
\end{tabular}

The graph of the ellipse is shown in Figure 10.10.

NOTE If the constant term \(F=-8\) in the equation in Example 3 had been greater than or equal to 8 , you would have obtained one of the following degenerate cases.
1. \(F=8\), single point, \((1,-2): \frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=0\)
2. \(F>8\), no solution points: \(\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}<0\)

\section*{EXAMPLE 4 The Orbit of the Moon}

The moon orbits Earth in an elliptical path with the center of Earth at one focus, as shown in Figure 10.11. The major and minor axes of the orbit have lengths of 768,800 kilometers and 767,640 kilometers, respectively. Find the greatest and least distances (the apogee and perigee) from Earth's center to the moon's center.

Solution Begin by solving for \(a\) and \(b\).
\[
\begin{aligned}
2 a & =768,800 & & \text { Length of major axis } \\
a & =384,400 & & \text { Solve for } a . \\
2 b & =767,640 & & \text { Length of minor axis } \\
b & =383,820 & & \text { Solve for } b .
\end{aligned}
\]

Now, using these values, you can solve for \(c\) as follows.
\[
c=\sqrt{a^{2}-b^{2}} \approx 21,108
\]

The greatest distance between the center of Earth and the center of the moon is \(a+c \approx 405,508\) kilometers, and the least distance is \(a-c \approx 363,292\) kilometers.

Figure 10.11

\section*{FOR FURTHER INFORMATION}

For more information on some uses of the reflective properties of conics, see the article "Parabolic Mirrors, Elliptic and Hyperbolic Lenses" by Mohsen Maesumi in The American Mathematical Monthly. Also see the article "The Geometry of Microwave Antennas" by William R. Parzynski in Mathematics Teacher.

(a) \(\frac{c}{a}\) is small.

(b) \(\frac{c}{a}\) is close to 1 .

Eccentricity is the ratio \(\frac{c}{a}\).

Theorem 10.2 presented a reflective property of parabolas. Ellipses have a similar reflective property. You are asked to prove the following theorem in Exercise 112.

\section*{THEOREM 10.4 REFLECTIVE PROPERTY OF AN ELLIPSE}

Let \(P\) be a point on an ellipse. The tangent line to the ellipse at point \(P\) makes equal angles with the lines through \(P\) and the foci.

One of the reasons that astronomers had difficulty in detecting that the orbits of the planets are ellipses is that the foci of the planetary orbits are relatively close to the center of the sun, making the orbits nearly circular. To measure the ovalness of an ellipse, you can use the concept of eccentricity.

\section*{DEFINITION OF ECCENTRICITY OF AN ELLIPSE}

The eccentricity \(e\) of an ellipse is given by the ratio
\[
e=\frac{c}{a}
\]

To see how this ratio is used to describe the shape of an ellipse, note that because the foci of an ellipse are located along the major axis between the vertices and the center, it follows that
\[
0<c<a .
\]

For an ellipse that is nearly circular, the foci are close to the center and the ratio \(c / a\) is small, and for an elongated ellipse, the foci are close to the vertices and the ratio \(c / a\) is close to 1 , as shown in Figure 10.12. Note that \(0<e<1\) for every ellipse.

The orbit of the moon has an eccentricity of \(e=0.0549\), and the eccentricities of the eight planetary orbits are as follows.
\begin{tabular}{llll} 
Mercury: & \(e=0.2056\) & Jupiter: & \(e=0.0484\) \\
Venus: & \(e=0.0068\) & Saturn: & \(e=0.0542\) \\
Earth: & \(e=0.0167\) & Uranus: & \(e=0.0472\) \\
Mars: & \(e=0.0934\) & Neptune: & \(e=0.0086\)
\end{tabular}

You can use integration to show that the area of an ellipse is \(A=\pi a b\). For instance, the area of the ellipse
\[
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\]
is given by
\[
\begin{aligned}
A & =4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{4 b}{a} \int_{0}^{\pi / 2} a^{2} \cos ^{2} \theta d \theta . \quad \text { Trigonometric substitution } x=a \sin \theta
\end{aligned}
\]

However, it is not so simple to find the circumference of an ellipse. The next example shows how to use eccentricity to set up an "elliptic integral" for the circumference of an ellipse.

\section*{AREA AND CIRCUMFERENCE} OF AN ELLIPSE

In his work with elliptic orbits in the early 1600's, Johannes Kepler successfully developed a formula for the area of an ellipse, \(A=\pi a b\). He was less successful in developing a formula for the circumference of an ellipse, however; the best he could do was to give the approximate formula \(C=\pi(a+b)\).


Figure 10.13

\section*{EXAMPLE 5 Finding the Circumference of an Ellipse}

Show that the circumference of the ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is
\[
4 a \int_{0}^{\pi / 2} \sqrt{1-e^{2} \sin ^{2} \theta} d \theta . \quad e=\frac{c}{a}
\]

Solution Because the given ellipse is symmetric with respect to both the \(x\)-axis and the \(y\)-axis, you know that its circumference \(C\) is four times the arc length of \(y=(b / a) \sqrt{a^{2}-x^{2}}\) in the first quadrant. The function \(y\) is differentiable for all \(x\) in the interval \([0, a]\) except at \(x=a\). So, the circumference is given by the improper integral
\[
C=\lim _{d \rightarrow a} 4 \int_{0}^{d} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=4 \int_{0}^{a} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=4 \int_{0}^{a} \sqrt{1+\frac{b^{2} x^{2}}{a^{2}\left(a^{2}-x^{2}\right)}} d x
\]

Using the trigonometric substitution \(x=a \sin \theta\), you obtain
\[
\begin{aligned}
C & =4 \int_{0}^{\pi / 2} \sqrt{1+\frac{b^{2} \sin ^{2} \theta}{a^{2} \cos ^{2} \theta}}(a \cos \theta) d \theta \\
& =4 \int_{0}^{\pi / 2} \sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta \\
& =4 \int_{0}^{\pi / 2} \sqrt{a^{2}\left(1-\sin ^{2} \theta\right)+b^{2} \sin ^{2} \theta} d \theta \\
& =4 \int_{0}^{\pi / 2} \sqrt{a^{2}-\left(a^{2}-b^{2}\right) \sin ^{2} \theta} d \theta
\end{aligned}
\]

Because \(e^{2}=c^{2} / a^{2}=\left(a^{2}-b^{2}\right) / a^{2}\), you can rewrite this integral as
\[
C=4 a \int_{0}^{\pi / 2} \sqrt{1-e^{2} \sin ^{2} \theta} d \theta
\]

A great deal of time has been devoted to the study of elliptic integrals. Such integrals generally do not have elementary antiderivatives. To find the circumference of an ellipse, you must usually resort to an approximation technique.

\section*{EXAMPLE 6 Approximating the Value of an Elliptic Integral}

Use the elliptic integral in Example 5 to approximate the circumference of the ellipse
\[
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\]

Solution Because \(e^{2}=c^{2} / a^{2}=\left(a^{2}-b^{2}\right) / a^{2}=9 / 25\), you have
\[
C=(4)(5) \int_{0}^{\pi / 2} \sqrt{1-\frac{9 \sin ^{2} \theta}{25}} d \theta
\]

Applying Simpson's Rule with \(n=4\) produces
\[
\begin{aligned}
C & \approx 20\left(\frac{\pi}{6}\right)\left(\frac{1}{4}\right)[1+4(0.9733)+2(0.9055)+4(0.8323)+0.8] \\
& \approx 28.36 .
\end{aligned}
\]

So, the ellipse has a circumference of about 28.36 units, as shown in Figure 10.13.


Figure 10.14

\section*{Hyperbolas}

The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum of the distances between the foci and a point on the ellipse is fixed, whereas for a hyperbola, the absolute value of the difference between these distances is fixed.

A hyperbola is the set of all points \((x, y)\) for which the absolute value of the difference between the distances from two distinct fixed points called foci is constant. (See Figure 10.14.) The line through the two foci intersects a hyperbola at two points called the vertices. The line segment connecting the vertices is the transverse axis, and the midpoint of the transverse axis is the center of the hyperbola. One distinguishing feature of a hyperbola is that its graph has two separate branches.

\section*{THEOREM 10.5 STANDARD EQUATION OF A HYPERBOLA}

The standard form of the equation of a hyperbola with center at \((h, k)\) is
\[
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { Transverse axis is horizontal. }
\]
or
\[
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 . \quad \text { Transverse axis is vertical. }
\]

The vertices are \(a\) units from the center, and the foci are \(c\) units from the center, where, \(c^{2}=a^{2}+b^{2}\).

NOTE The constants \(a, b\), and \(c\) do not have the same relationship for hyperbolas as they do for ellipses. For hyperbolas, \(c^{2}=a^{2}+b^{2}\), but for ellipses, \(c^{2}=a^{2}-b^{2}\).

An important aid in sketching the graph of a hyperbola is the determination of its asymptotes, as shown in Figure 10.15. Each hyperbola has two asymptotes that intersect at the center of the hyperbola. The asymptotes pass through the vertices of a rectangle of dimensions \(2 a\) by \(2 b\), with its center at \((h, k)\). The line segment of length \(2 b\) joining \((h, k+b)\) and \((h, k-b)\) is referred to as the conjugate axis of the hyperbola.

\section*{THEOREM 10.6 ASYMPTOTES OF A HYPERBOLA}

For a horizontal transverse axis, the equations of the asymptotes are
\[
y=k+\frac{b}{a}(x-h) \quad \text { and } \quad y=k-\frac{b}{a}(x-h)
\]

For a vertical transverse axis, the equations of the asymptotes are
\[
y=k+\frac{a}{b}(x-h) \quad \text { and } \quad y=k-\frac{a}{b}(x-h)
\]

In Figure 10.15 you can see that the asymptotes coincide with the diagonals of the rectangle with dimensions \(2 a\) and \(2 b\), centered at \((h, k)\). This provides you with a quick means of sketching the asymptotes, which in turn aids in sketching the hyperbola.

TECHNOLOGY You can use a graphing utility to verify the graph obtained in Example 7 by solving the original equation for \(y\) and graphing the following equations.
\[
\begin{aligned}
& y_{1}=\sqrt{4 x^{2}-16} \\
& y_{2}=-\sqrt{4 x^{2}-16}
\end{aligned}
\]

\section*{EXAMPLE 7 Using Asymptotes to Sketch a Hyperbola}

Sketch the graph of the hyperbola whose equation is \(4 x^{2}-y^{2}=16\).
Solution Begin by rewriting the equation in standard form.
\[
\frac{x^{2}}{4}-\frac{y^{2}}{16}=1
\]

The transverse axis is horizontal and the vertices occur at \((-2,0)\) and \((2,0)\). The ends of the conjugate axis occur at \((0,-4)\) and \((0,4)\). Using these four points, you can sketch the rectangle shown in Figure 10.16(a). By drawing the asymptotes through the corners of this rectangle, you can complete the sketch as shown in Figure 10.16(b).

(a)

(b)

Figure 10.16

\section*{DEFINITION OF ECCENTRICITY OF A HYPERBOLA}

The eccentricity \(e\) of a hyperbola is given by the ratio
\[
e=\frac{c}{a} .
\]

As with an ellipse, the eccentricity of a hyperbola is \(e=c / a\). Because \(c>a\) for hyperbolas, it follows that \(e>1\) for hyperbolas. If the eccentricity is large, the branches of the hyperbola are nearly flat. If the eccentricity is close to 1 , the branches of the hyperbola are more pointed, as shown in Figure 10.17.



Figure 10.17

\(2 c=5280\)
\(d_{2}-d_{1}=2 a=2200\)
Figure 10.18


The following application was developed during World War II. It shows how the properties of hyperbolas can be used in radar and other detection systems.

\section*{EXAMPLE 8 A Hyperbolic Detection System}

Two microphones, 1 mile apart, record an explosion. Microphone \(A\) receives the sound 2 seconds before microphone \(B\). Where was the explosion?

Solution Assuming that sound travels at 1100 feet per second, you know that the explosion took place 2200 feet farther from \(B\) than from \(A\), as shown in Figure 10.18. The locus of all points that are 2200 feet closer to \(A\) than to \(B\) is one branch of the hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\), where
\[
c=\frac{1 \mathrm{mile}}{2}=\frac{5280 \mathrm{ft}}{2}=2640 \text { feet }
\]
and
\[
a=\frac{2200 \mathrm{ft}}{2}=1100 \text { feet. }
\]

Because \(c^{2}=a^{2}+b^{2}\), it follows that
\[
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
& =5,759,600
\end{aligned}
\]
and you can conclude that the explosion occurred somewhere on the right branch of the hyperbola given by
\[
\frac{x^{2}}{1,210,000}-\frac{y^{2}}{5,759,600}=1
\]

In Example 8, you were able to determine only the hyperbola on which the explosion occurred, but not the exact location of the explosion. If, however, you had received the sound at a third position \(C\), then two other hyperbolas would be determined. The exact location of the explosion would be the point at which these three hyperbolas intersect.

Another interesting application of conics involves the orbits of comets in our solar system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits, 295 have parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a focus of each orbit, and each orbit has a vertex at the point at which the comet is closest to the sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have not been identified-such comets pass through our solar system only once. Only comets with elliptical orbits such as Halley's comet remain in our solar system.

The type of orbit for a comet can be determined as follows.
1. Ellipse: \(\quad v<\sqrt{2 G M / p}\)
2. Parabola: \(\quad v=\sqrt{2 G M / p}\)
3. Hyperbola: \(v>\sqrt{2 G M / p}\)

In these three formulas, \(p\) is the distance between one vertex and one focus of the comet's orbit (in meters), \(v\) is the velocity of the comet at the vertex (in meters per second), \(M \approx 1.989 \times 10^{30}\) kilograms is the mass of the sun, and \(G \approx 6.67 \times 10^{-8}\) cubic meters per kilogram-second squared is the gravitational constant.

\subsection*{10.1 Exercises}

In Exercises 1-8, match the equation with its graph. [The graphs are labeled (a), (b), (c), (d), (e), (f), (g), and (h).]

\section*{(a)}

(c)

(e)

(g)

(h)

1. \(y^{2}=4 x\)
2. \((x+4)^{2}=2(y+2)\)
3. \((x+4)^{2}=-2(y-2)\)
4. \(\frac{(x-2)^{2}}{16}+\frac{(y+1)^{2}}{4}=1\)
5. \(\frac{x^{2}}{4}+\frac{y^{2}}{9}=1\)
6. \(\frac{x^{2}}{16}+\frac{y^{2}}{16}=1\)
7. \(\frac{y^{2}}{16}-\frac{x^{2}}{1}=1\)
8. \(\frac{(x-2)^{2}}{9}-\frac{y^{2}}{4}=1\)

In Exercises 9-16, find the vertex, focus, and directrix of the parabola, and sketch its graph.
9. \(y^{2}=-8 x\)
10. \(x^{2}+6 y=0\)
11. \((x+5)+(y-3)^{2}=0\)
12. \((x-6)^{2}+8(y+7)=0\)
13. \(y^{2}-4 y-4 x=0\)
14. \(y^{2}+6 y+8 x+25=0\)
15. \(x^{2}+4 x+4 y-4=0\)
16. \(y^{2}+4 y+8 x-12=0\)

In Exercises 17-20, find the vertex, focus, and directrix of the parabola. Then use a graphing utility to graph the parabola.
17. \(y^{2}+x+y=0\)
18. \(y=-\frac{1}{6}\left(x^{2}-8 x+6\right)\)
19. \(y^{2}-4 x-4=0\)
20. \(x^{2}-2 x+8 y+9=0\)

In Exercises 21-28, find an equation of the parabola.
21. Vertex: \((5,4)\)

Focus: \((3,4)\)
23. Vertex: \((0,5)\)

Directrix: \(y=-3\)
25.

22. Vertex: \((-2,1)\)

Focus: \((-2,-1)\)
24. Focus: \((2,2)\)

Directrix: \(x=-2\)
26.

27. Axis is parallel to \(y\)-axis; graph passes through \((0,3),(3,4)\), and \((4,11)\).
28. Directrix: \(y=-2\); endpoints of latus rectum are \((0,2)\) and \((8,2)\).

In Exercises 29-34, find the center, foci, vertices, and eccentricity of the ellipse, and sketch its graph.
29. \(16 x^{2}+y^{2}=16\)
30. \(3 x^{2}+7 y^{2}=63\)
31. \(\frac{(x-3)^{2}}{16}+\frac{(y-1)^{2}}{25}=1\)
32. \((x+4)^{2}+\frac{(y+6)^{2}}{1 / 4}=1\)
33. \(9 x^{2}+4 y^{2}+36 x-24 y+36=0\)
34. \(16 x^{2}+25 y^{2}-64 x+150 y+279=0\)

In Exercises 35-38, find the center, foci, and vertices of the ellipse. Use a graphing utility to graph the ellipse.
35. \(12 x^{2}+20 y^{2}-12 x+40 y-37=0\)
36. \(36 x^{2}+9 y^{2}+48 x-36 y+43=0\)
37. \(x^{2}+2 y^{2}-3 x+4 y+0.25=0\)
38. \(2 x^{2}+y^{2}+4.8 x-6.4 y+3.12=0\)

In Exercises 39-44, find an equation of the ellipse.
39. Center: \((0,0)\)

Focus: \((5,0)\)
Vertex: \((6,0)\)
41. Vertices: \((3,1),(3,9)\)

Minor axis length: 6
43. Center: \((0,0)\)

Major axis: horizontal Points on the ellipse:
\((3,1),(4,0)\)
40. Vertices: \((0,3),(8,3)\) Eccentricity: \(\frac{3}{4}\)
42. Foci: \((0, \pm 9)\)

Major axis length: 22
44. Center: \((1,2)\)

Major axis: vertical Points on the ellipse: \((1,6),(3,2)\)

In Exercises 45-52, find the center, foci, and vertices of the hyperbola, and sketch its graph using asymptotes as an aid.
45. \(y^{2}-\frac{x^{2}}{9}=1\)
46. \(\frac{x^{2}}{25}-\frac{y^{2}}{16}=1\)
47. \(\frac{(x-1)^{2}}{4}-\frac{(y+2)^{2}}{1}=1\)
48. \(\frac{(y+3)^{2}}{225}-\frac{(x-5)^{2}}{64}=1\)
49. \(9 x^{2}-y^{2}-36 x-6 y+18=0\)
50. \(y^{2}-16 x^{2}+64 x-208=0\)
51. \(x^{2}-9 y^{2}+2 x-54 y-80=0\)
52. \(9 x^{2}-4 y^{2}+54 x+8 y+78=0\)

In Exercises 53-56, find the center, foci, and vertices of the hyperbola. Use a graphing utility to graph the hyperbola and its asymptotes.
53. \(9 y^{2}-x^{2}+2 x+54 y+62=0\)
54. \(9 x^{2}-y^{2}+54 x+10 y+55=0\)
55. \(3 x^{2}-2 y^{2}-6 x-12 y-27=0\)
56. \(3 y^{2}-x^{2}+6 x-12 y=0\)

In Exercises 57-64, find an equation of the hyperbola.
57. Vertices: \(( \pm 1,0)\)

Asymptotes: \(y= \pm 5 x\)
59. Vertices: \((2, \pm 3)\)

Point on graph: \((0,5)\)
61. Center: \((0,0)\)

Vertex: \((0,2)\)
Focus: \((0,4)\)
63. Vertices: \((0,2),(6,2)\)

Asymptotes: \(y=\frac{2}{3} x\)
\(y=4-\frac{2}{3} x\)
58. Vertices: \((0, \pm 4)\)

Asymptotes: \(y= \pm 2 x\)
60. Vertices: \((2, \pm 3)\)

Foci: \((2, \pm 5)\)
62. Center: \((0,0)\)

Vertex: \((6,0)\)
Focus: \((10,0)\)
64. Focus: \((20,0)\)

Asymptotes: \(y= \pm \frac{3}{4} x\)

In Exercises 65 and 66, find equations for (a) the tangent lines and (b) the normal lines to the hyperbola for the given value of \(x\).
65. \(\frac{x^{2}}{9}-y^{2}=1, \quad x=6\)
66. \(\frac{y^{2}}{4}-\frac{x^{2}}{2}=1, \quad x=4\)

In Exercises 67-76, classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.
67. \(x^{2}+4 y^{2}-6 x+16 y+21=0\)
68. \(4 x^{2}-y^{2}-4 x-3=0\)
69. \(y^{2}-8 y-8 x=0\)
70. \(25 x^{2}-10 x-200 y-119=0\)
71. \(4 x^{2}+4 y^{2}-16 y+15=0\)
72. \(y^{2}-4 y=x+5\)
73. \(9 x^{2}+9 y^{2}-36 x+6 y+34=0\)
74. \(2 x(x-y)=y(3-y-2 x)\)
75. \(3(x-1)^{2}=6+2(y+1)^{2}\)
76. \(9(x+3)^{2}=36-4(y-2)^{2}\)

\section*{WRITING ABOUT CONCEPTS}
77. (a) Give the definition of a parabola.
(b) Give the standard forms of a parabola with vertex at \((h, k)\).
(c) In your own words, state the reflective property of a parabola.
78. (a) Give the definition of an ellipse.
(b) Give the standard forms of an ellipse with center at \((h, k)\).
79. (a) Give the definition of a hyperbola.
(b) Give the standard forms of a hyperbola with center at \((h, k)\).
(c) Write equations for the asymptotes of a hyperbola.
80. Define the eccentricity of an ellipse. In your own words, describe how changes in the eccentricity affect the ellipse.
81. Solar Collector A solar collector for heating water is constructed with a sheet of stainless steel that is formed into the shape of a parabola (see figure). The water will flow through a pipe that is located at the focus of the parabola. At what distance from the vertex is the pipe?


Figure for 81


Figure for 82
82. Beam Deflection A simply supported beam that is 16 meters long has a load concentrated at the center (see figure). The deflection of the beam at its center is 3 centimeters. Assume that the shape of the deflected beam is parabolic.
(a) Find an equation of the parabola. (Assume that the origin is at the center of the beam.)
(b) How far from the center of the beam is the deflection 1 centimeter?
83. Find an equation of the tangent line to the parabola \(y=a x^{2}\) at \(x=x_{0}\). Prove that the \(x\)-intercept of this tangent line is \(\left(x_{0} / 2,0\right)\).
84. (a) Prove that any two distinct tangent lines to a parabola intersect.
(b) Demonstrate the result of part (a) by finding the point of intersection of the tangent lines to the parabola \(x^{2}-4 x-4 y=0\) at the points \((0,0)\) and \((6,3)\).
85. (a) Prove that if any two tangent lines to a parabola intersect at right angles, their point of intersection must lie on the directrix.
(b) Demonstrate the result of part (a) by proving that the tangent lines to the parabola \(x^{2}-4 x-4 y+8=0\) at the points \((-2,5)\) and \(\left(3, \frac{5}{4}\right)\) intersect at right angles, and that the point of intersection lies on the directrix.
86. Find the point on the graph of \(x^{2}=8 y\) that is closest to the focus of the parabola.
87. Radio and Television Reception In mountainous areas, reception of radio and television is sometimes poor. Consider an idealized case where a hill is represented by the graph of the parabola \(y=x-x^{2}\), a transmitter is located at the point \((-1,1)\), and a receiver is located on the other side of the hill at the point \(\left(x_{0}, 0\right)\). What is the closest the receiver can be to the hill while still maintaining unobstructed reception?
88. Modeling Data The table shows the average amounts of time \(A\) (in minutes) women spent watching television each day for the years 1999 through 2005. (Source: Nielsen Media Research)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Year & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 \\
\hline\(A\) & 280 & 286 & 291 & 298 & 305 & 307 & 317 \\
\hline
\end{tabular}
(a) Use the regression capabilities of a graphing utility to find a model of the form \(A=a t^{2}+b t+c\) for the data. Let \(t\) represent the year, with \(t=9\) corresponding to 1999 .
(b) Use a graphing utility to plot the data and graph the model.
(c) Find \(d A / d t\) and sketch its graph for \(9 \leq t \leq 15\). What information about the average amount of time women spent watching television is given by the graph of the derivative?
89. Architecture A church window is bounded above by a parabola and below by the arc of a circle (see figure). Find the surface area of the window.


Figure for 89


Figure for 91
90. Arc Length Find the arc length of the parabola \(4 x-y^{2}=0\) over the interval \(0 \leq y \leq 4\).
91. Bridge Design A cable of a suspension bridge is suspended (in the shape of a parabola) between two towers that are 120 meters apart and 20 meters above the roadway (see figure). The cables touch the roadway midway between the towers.
(a) Find an equation for the parabolic shape of each cable.
(b) Find the length of the parabolic supporting cable.
92. Surface Area A satellite signal receiving dish is formed by revolving the parabola given by \(x^{2}=20 y\) about the \(y\)-axis. The radius of the dish is \(r\) feet. Verify that the surface area of the dish is given by
\(2 \pi \int_{0}^{r} x \sqrt{1+\left(\frac{x}{10}\right)^{2}} d x=\frac{\pi}{15}\left[\left(100+r^{2}\right)^{3 / 2}-1000\right]\).
93. Investigation Sketch the graphs of \(x^{2}=4 p y\) for \(p=\frac{1}{4}, \frac{1}{2}, 1, \frac{3}{2}\), and 2 on the same coordinate axes. Discuss the change in the graphs as \(p\) increases.
94. Area Find a formula for the area of the shaded region in the figure.


Figure for 94


Figure for 96
95. Writing On page 699, it was noted that an ellipse can be drawn using two thumbtacks, a string of fixed length (greater than the distance between the tacks), and a pencil. If the ends of the string are fastened at the tacks and the string is drawn taut with a pencil, the path traced by the pencil will be an ellipse.
(a) What is the length of the string in terms of \(a\) ?
(b) Explain why the path is an ellipse.
96. Construction of a Semielliptical Arch A fireplace arch is to be constructed in the shape of a semiellipse. The opening is to have a height of 2 feet at the center and a width of 5 feet along the base (see figure). The contractor draws the outline of the ellipse by the method shown in Exercise 95. Where should the tacks be placed and what should be the length of the piece of string?
97. Sketch the ellipse that consists of all points \((x, y)\) such that the sum of the distances between \((x, y)\) and two fixed points is 16 units, and the foci are located at the centers of the two sets of concentric circles in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

98. Orbit of Earth Earth moves in an elliptical orbit with the sun at one of the foci. The length of half of the major axis is \(149,598,000\) kilometers, and the eccentricity is 0.0167 . Find the minimum distance (perihelion) and the maximum distance (aphelion) of Earth from the sun.
99. Satellite Orbit The apogee (the point in orbit farthest from Earth) and the perigee (the point in orbit closest to Earth) of an elliptical orbit of an Earth satellite are given by \(A\) and \(P\). Show that the eccentricity of the orbit is
\(e=\frac{A-P}{A+P}\).
100. Explorer 18 On November 27, 1963, the United States launched the research satellite Explorer 18. Its low and high points above the surface of Earth were 119 miles and 123,000 miles. Find the eccentricity of its elliptical orbit.
101. Explorer 55 On November 20, 1975, the United States launched the research satellite Explorer 55. Its low and high points above the surface of Earth were 96 miles and 1865 miles. Find the eccentricity of its elliptical orbit.

\section*{CAPSTONE}
102. Consider the equation
\(9 x^{2}+4 y^{2}-36 x-24 y-36=0\).
(a) Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.
(b) Change the \(4 y^{2}\)-term in the equation to \(-4 y^{2}\). Classify the graph of the new equation.
(c) Change the \(9 x^{2}\)-term in the original equation to \(4 x^{2}\). Classify the graph of the new equation.
(d) Describe one way you could change the original equation so that its graph is a parabola.
103. Halley's Comet Probably the most famous of all comets, Halley's comet, has an elliptical orbit with the sun at one focus. Its maximum distance from the sun is approximately 35.29 AU ( 1 astronomical unit \(\approx 92.956 \times 10^{6}\) miles), and its minimum distance is approximately 0.59 AU . Find the eccentricity of the orbit.
104. The equation of an ellipse with its center at the origin can be written as
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1\).
Show that as \(e \rightarrow 0\), with \(a\) remaining fixed, the ellipse approaches a circle.
105. Consider a particle traveling clockwise on the elliptical path \(\frac{x^{2}}{100}+\frac{y^{2}}{25}=1\).

The particle leaves the orbit at the point \((-8,3)\) and travels in a straight line tangent to the ellipse. At what point will the particle cross the \(y\)-axis?
106. Volume The water tank on a fire truck is 16 feet long, and its cross sections are ellipses. Find the volume of water in the partially filled tank as shown in the figure.


In Exercises 107 and 108, determine the points at which \(d y / d x\) is zero or does not exist to locate the endpoints of the major and minor axes of the ellipse.
107. \(16 x^{2}+9 y^{2}+96 x+36 y+36=0\)
108. \(9 x^{2}+4 y^{2}+36 x-24 y+36=0\)

Area and Volume In Exercises 109 and 110, find (a) the area of the region bounded by the ellipse, (b) the volume and surface area of the solid generated by revolving the region about its major axis (prolate spheroid), and (c) the volume and surface area of the solid generated by revolving the region about its minor axis (oblate spheroid).
109. \(\frac{x^{2}}{4}+\frac{y^{2}}{1}=1\)
110. \(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\)
111. Arc Length Use the integration capabilities of a graphing utility to approximate to two-decimal-place accuracy the elliptical integral representing the circumference of the ellipse \(\frac{x^{2}}{25}+\frac{y^{2}}{49}=1\).
112. Prove Theorem 10.4 by showing that the tangent line to an ellipse at a point \(P\) makes equal angles with lines through \(P\) and the foci (see figure). [Hint: (1) Find the slope of the tangent line at \(P\), (2) find the slopes of the lines through \(P\) and each focus, and (3) use the formula for the tangent of the angle between two lines.]


Figure for 112


Figure for 113
113. Geometry The area of the ellipse in the figure is twice the area of the circle. What is the length of the major axis?

\section*{114. Conjecture}
(a) Show that the equation of an ellipse can be written as
\[
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{a^{2}\left(1-e^{2}\right)}=1 .
\]
(b) Use a graphing utility to graph the ellipse
\[
\frac{(x-2)^{2}}{4}+\frac{(y-3)^{2}}{4\left(1-e^{2}\right)}=1
\]
\[
\text { for } e=0.95, e=0.75, e=0.5, e=0.25, \text { and } e=0
\]
(c) Use the results of part (b) to make a conjecture about the change in the shape of the ellipse as \(e\) approaches 0 .
115. Find an equation of the hyperbola such that for any point on the hyperbola, the difference between its distances from the points \((2,2)\) and \((10,2)\) is 6 .
116. Find an equation of the hyperbola such that for any point on the hyperbola, the difference between its distances from the points \((-3,0)\) and \((-3,3)\) is 2 .
117. Sketch the hyperbola that consists of all points \((x, y)\) such that the difference of the distances between \((x, y)\) and two fixed points is 10 units, and the foci are located at the centers of the two sets of concentric circles in the figure. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

118. Consider a hyperbola centered at the origin with a horizontal transverse axis. Use the definition of a hyperbola to derive its standard form:
\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\).
119. Sound Location A rifle positioned at point \((-c, 0)\) is fired at a target positioned at point \((c, 0)\). A person hears the sound of the rifle and the sound of the bullet hitting the target at the same time. Prove that the person is positioned on one branch of the hyperbola given by
\(\frac{x^{2}}{c^{2} v_{s}^{2} / v_{m}^{2}}-\frac{y^{2}}{c^{2}\left(v_{m}^{2}-v_{s}^{2}\right) / v_{m}^{2}}=1\)
where \(v_{m}\) is the muzzle velocity of the rifle and \(v_{s}\) is the speed of sound, which is about 1100 feet per second.
120. Navigation LORAN (long distance radio navigation) for aircraft and ships uses synchronized pulses transmitted by widely separated transmitting stations. These pulses travel at the speed of light ( 186,000 miles per second). The difference in the times of arrival of these pulses at an aircraft or ship is constant on a hyperbola having the transmitting stations as foci. Assume that two stations, 300 miles apart, are positioned on a rectangular coordinate system at \((-150,0)\) and \((150,0)\) and that a ship is traveling on a path with coordinates \((x, 75)\) (see figure). Find the \(x\)-coordinate of the position of the ship if the time difference between the pulses from the transmitting stations is 1000 microseconds ( 0.001 second).


Figure for 120


Figure for 121
121. Hyperbolic Mirror A hyperbolic mirror (used in some telescopes) has the property that a light ray directed at the focus will be reflected to the other focus. The mirror in the figure has the equation \(\left(x^{2} / 36\right)-\left(y^{2} / 64\right)=1\). At which point on the mirror will light from the point \((0,10)\) be reflected to the other focus?
122. Show that the equation of the tangent line to \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) at the point \(\left(x_{0}, y_{0}\right)\) is \(\left(x_{0} / a^{2}\right) x-\left(y_{0} / b^{2}\right) y=1\).
123. Show that the graphs of the equations intersect at right angles: \(\frac{x^{2}}{a^{2}}+\frac{2 y^{2}}{b^{2}}=1 \quad\) and \(\quad \frac{x^{2}}{a^{2}-b^{2}}-\frac{2 y^{2}}{b^{2}}=1\).
124. Prove that the graph of the equation
\(A x^{2}+C y^{2}+D x+E y+F=0\)
is one of the following (except in degenerate cases).
\begin{tabular}{|c|c|}
\hline Conic & Condition \\
\hline (a) Circle & \(A=C\) \\
\hline (b) Parabola & \(A=0\) or \(C=0\) (but not both) \\
\hline (c) Ellipse & \(A C>0\) \\
\hline (d) Hyperbola & \(A C<0\) \\
\hline
\end{tabular}

True or False? In Exercises 125-130, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
125. It is possible for a parabola to intersect its directrix.
126. The point on a parabola closest to its focus is its vertex.
127. If \(C\) is the circumference of the ellipse
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad b<a\)
then \(2 \pi b \leq C \leq 2 \pi a\).
128. If \(D \neq 0\) or \(E \neq 0\), then the graph of \(y^{2}-x^{2}+D x+E y=0\) is a hyperbola.
129. If the asymptotes of the hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) intersect at right angles, then \(a=b\).
130. Every tangent line to a hyperbola intersects the hyperbola only at the point of tangency.

\section*{PUTNAM EXAM CHALLENGE}
131. For a point \(P\) on an ellipse, let \(d\) be the distance from the center of the ellipse to the line tangent to the ellipse at \(P\). Prove that \(\left(P F_{1}\right)\left(P F_{2}\right) d^{2}\) is constant as \(P\) varies on the ellipse, where \(P F_{1}\) and \(P F_{2}\) are the distances from \(P\) to the foci \(F_{1}\) and \(F_{2}\) of the ellipse.
132. Find the minimum value of \((u-v)^{2}+\left(\sqrt{2-u^{2}}-\frac{9}{v}\right)^{2}\) for \(0<u<\sqrt{2}\) and \(v>0\).

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.

\subsection*{10.2 Plane Curves and Parametric Equations}


Curvilinear motion: two variables for position, one variable for time Figure 10.19
- Sketch the graph of a curve given by a set of parametric equations.
- Eliminate the parameter in a set of parametric equations.
- Find a set of parametric equations to represent a curve.
- Understand two classic calculus problems, the tautochrone and brachistochrone problems.

\section*{Plane Curves and Parametric Equations}

Until now, you have been representing a graph by a single equation involving two variables. In this section you will study situations in which three variables are used to represent a curve in the plane.

Consider the path followed by an object that is propelled into the air at an angle of \(45^{\circ}\). If the initial velocity of the object is 48 feet per second, the object travels the parabolic path given by
\[
y=-\frac{x^{2}}{72}+x
\]

\section*{Rectangular equation}
as shown in Figure 10.19. However, this equation does not tell the whole story. Although it does tell you where the object has been, it doesn't tell you when the object was at a given point \((x, y)\). To determine this time, you can introduce a third variable \(t\), called a parameter. By writing both \(x\) and \(y\) as functions of \(t\), you obtain the parametric equations
\[
x=24 \sqrt{2} t
\]

Parametric equation for \(x\)
and
\[
y=-16 t^{2}+24 \sqrt{2} t . \quad \text { Parametric equation for } y
\]

From this set of equations, you can determine that at time \(t=0\), the object is at the
point \((0,0)\). Similarly, at time \(t=1\), the object is at the point \((24 \sqrt{2}, 24 \sqrt{2}-16)\), and so on. (You will learn a method for determining this particular set of parametric equations-the equations of motion-later, in Section 12.3.)

For this particular motion problem, \(x\) and \(y\) are continuous functions of \(t\), and the resulting path is called a plane curve.

\section*{DEFINITION OF A PLANE CURVE}

If \(f\) and \(g\) are continuous functions of \(t\) on an interval \(I\), then the equations
\[
x=f(t) \quad \text { and } \quad y=g(t)
\]
are called parametric equations and \(t\) is called the parameter. The set of points \((x, y)\) obtained as \(t\) varies over the interval \(I\) is called the graph of the parametric equations. Taken together, the parametric equations and the graph are called a plane curve, denoted by \(C\).

NOTE At times it is important to distinguish between a graph (the set of points) and a curve (the points together with their defining parametric equations). When it is important, we will make the distinction explicit. When it is not important, we will use \(C\) to represent the graph or the curve.


Figure 10.20


Figure 10.21

When sketching (by hand) a curve represented by a set of parametric equations, you can plot points in the \(x y\)-plane. Each set of coordinates \((x, y)\) is determined from a value chosen for the parameter \(t\). By plotting the resulting points in order of increasing values of \(t\), the curve is traced out in a specific direction. This is called the orientation of the curve.

\section*{EXAMPLE 1 Sketching a Curve}

Sketch the curve described by the parametric equations
\[
x=t^{2}-4 \quad \text { and } \quad y=\frac{t}{2}, \quad-2 \leq t \leq 3
\]

Solution For values of \(t\) on the given interval, the parametric equations yield the points \((x, y)\) shown in the table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(t\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline\(x\) & 0 & -3 & -4 & -3 & 0 & 5 \\
\hline\(y\) & -1 & \(-\frac{1}{2}\) & 0 & \(\frac{1}{2}\) & 1 & \(\frac{3}{2}\) \\
\hline
\end{tabular}

By plotting these points in order of increasing \(t\) and using the continuity of \(f\) and \(g\), you obtain the curve \(C\) shown in Figure 10.20. Note that the arrows on the curve indicate its orientation as \(t\) increases from -2 to 3 .

NOTE From the Vertical Line Test, you can see that the graph shown in Figure 10.20 does not define \(y\) as a function of \(x\). This points out one benefit of parametric equations-they can be used to represent graphs that are more general than graphs of functions.

It often happens that two different sets of parametric equations have the same graph. For example, the set of parametric equations
\[
x=4 t^{2}-4 \quad \text { and } \quad y=t, \quad-1 \leq t \leq \frac{3}{2}
\]
has the same graph as the set given in Example 1. (See Figure 10.21.) However, comparing the values of \(t\) in Figures 10.20 and 10.21, you can see that the second graph is traced out more rapidly (considering \(t\) as time) than the first graph. So, in applications, different parametric representations can be used to represent various speeds at which objects travel along a given path.

TECHNOLOGY Most graphing utilities have a parametric graphing mode. If you have access to such a utility, use it to confirm the graphs shown in Figures 10.20 and 10.21 . Does the curve given by the parametric equations
\[
x=4 t^{2}-8 t \quad \text { and } \quad y=1-t, \quad-\frac{1}{2} \leq t \leq 2
\]
represent the same graph as that shown in Figures 10.20 and 10.21? What do you notice about the orientation of this curve?

\section*{Eliminating the Parameter}

Finding a rectangular equation that represents the graph of a set of parametric equations is called eliminating the parameter. For instance, you can eliminate the parameter from the set of parametric equations in Example 1 as follows.


Once you have eliminated the parameter, you can recognize that the equation \(x=4 y^{2}-4\) represents a parabola with a horizontal axis and vertex at \((-4,0)\), as shown in Figure 10.20.

The range of \(x\) and \(y\) implied by the parametric equations may be altered by the change to rectangular form. In such instances the domain of the rectangular equation must be adjusted so that its graph matches the graph of the parametric equations. Such a situation is demonstrated in the next example.

\section*{EXAMPLE 2 Adjusting the Domain After Eliminating the Parameter}

Sketch the curve represented by the equations
\[
x=\frac{1}{\sqrt{t+1}} \quad \text { and } \quad y=\frac{t}{t+1}, \quad t>-1
\]
by eliminating the parameter and adjusting the domain of the resulting rectangular equation.

Solution Begin by solving one of the parametric equations for \(t\). For instance, you can solve the first equation for \(t\) as follows.
\[
\begin{aligned}
x & =\frac{1}{\sqrt{t+1}} & & \text { Parametric equation for } x \\
x^{2} & =\frac{1}{t+1} & & \text { Square each side. } \\
t+1 & =\frac{1}{x^{2}} & & \\
t & =\frac{1}{x^{2}}-1=\frac{1-x^{2}}{x^{2}} & & \text { Solve for } t .
\end{aligned}
\]

Now, substituting into the parametric equation for \(y\) produces
\[
\begin{array}{ll}
y=\frac{t}{t+1} & \\
\text { Parametric equation for } y \\
y=\frac{\left(1-x^{2}\right) / x^{2}}{\left[\left(1-x^{2}\right) / x^{2}\right]+1} & \\
\text { Substitute }\left(1-x^{2}\right) / x^{2} \text { for } t . \\
y & =1-x^{2} .
\end{array}
\]

The rectangular equation, \(y=1-x^{2}\), is defined for all values of \(x\), but from the parametric equation for \(x\) you can see that the curve is defined only when \(t>-1\). This implies that you should restrict the domain of \(x\) to positive values, as shown in Figure 10.22.


Figure 10.23

It is not necessary for the parameter in a set of parametric equations to represent time. The next example uses an angle as the parameter.

\section*{CEXAMPLE 3 Using Trigonometry to Eliminate a Parameter}

Sketch the curve represented by
\[
x=3 \cos \theta \quad \text { and } \quad y=4 \sin \theta, \quad 0 \leq \theta \leq 2 \pi
\]
by eliminating the parameter and finding the corresponding rectangular equation.
Solution Begin by solving for \(\cos \theta\) and \(\sin \theta\) in the given equations.
\[
\cos \theta=\frac{x}{3} \quad \text { and } \quad \sin \theta=\frac{y}{4} \quad \text { Solve for } \cos \theta \text { and } \sin \theta
\]

Next, make use of the identity \(\sin ^{2} \theta+\cos ^{2} \theta=1\) to form an equation involving only \(x\) and \(y\).
\[
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 & & \text { Trigonometric identity } \\
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{4}\right)^{2} & =1 & & \text { Substitute. } \\
\frac{x^{2}}{9}+\frac{y^{2}}{16} & =1 & & \text { Rectangular equation }
\end{aligned}
\]

From this rectangular equation you can see that the graph is an ellipse centered at \((0,0)\), with vertices at \((0,4)\) and \((0,-4)\) and minor axis of length \(2 b=6\), as shown in Figure 10.23. Note that the ellipse is traced out counterclockwise as \(\theta\) varies from 0 to \(2 \pi\).

Using the technique shown in Example 3, you can conclude that the graph of the parametric equations
\[
x=h+a \cos \theta \quad \text { and } \quad y=k+b \sin \theta, \quad 0 \leq \theta \leq 2 \pi
\]
is the ellipse (traced counterclockwise) given by
\[
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 .
\]

The graph of the parametric equations
\[
x=h+a \sin \theta \quad \text { and } \quad y=k+b \cos \theta, \quad 0 \leq \theta \leq 2 \pi
\]
is also the ellipse (traced clockwise) given by
\[
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
\]

Use a graphing utility in parametric mode to graph several ellipses.
In Examples 2 and 3, it is important to realize that eliminating the parameter is primarily an aid to curve sketching. If the parametric equations represent the path of a moving object, the graph alone is not sufficient to describe the object's motion. You still need the parametric equations to tell you the position, direction, and speed at a given time.

\section*{Finding Parametric Equations}

The first three examples in this section illustrate techniques for sketching the graph represented by a set of parametric equations. You will now investigate the reverse problem. How can you determine a set of parametric equations for a given graph or a given physical description? From the discussion following Example 1, you know that such a representation is not unique. This is demonstrated further in the following example, which finds two different parametric representations for a given graph.

\section*{EXAMPLE 4 Finding Parametric Equations for a Given Graph}

Find a set of parametric equations that represents the graph of \(y=1-x^{2}\), using each of the following parameters.
a. \(t=x\)
b. The slope \(m=\frac{d y}{d x}\) at the point \((x, y)\)

\section*{Solution}
a. Letting \(x=t\) produces the parametric equations
\[
x=t \quad \text { and } \quad y=1-x^{2}=1-t^{2}
\]
b. To write \(x\) and \(y\) in terms of the parameter \(m\), you can proceed as follows.
\[
\begin{array}{ll}
m=\frac{d y}{d x}=-2 x & \text { Differentiate } y=1-x^{2} . \\
x=-\frac{m}{2} & \text { Solve for } x .
\end{array}
\]

This produces a parametric equation for \(x\). To obtain a parametric equation for \(y\), substitute \(-m / 2\) for \(x\) in the original equation.
\[
\begin{array}{ll}
y=1-x^{2} & \text { Write original rectangular equation. } \\
y=1-\left(-\frac{m}{2}\right)^{2} & \\
\text { Substitute }-m / 2 \text { for } x \\
y=1-\frac{m^{2}}{4} &
\end{array}
\]

So, the parametric equations are
\[
x=-\frac{m}{2} \quad \text { and } \quad y=1-\frac{m^{2}}{4}
\]

In Figure 10.24, note that the resulting curve has a right-to-left orientation as determined by the direction of increasing values of slope \(m\). For part (a), the curve would have the opposite orientation.

TECHNOLOGY To be efficient at using a graphing utility, it is important that you develop skill in representing a graph by a set of parametric equations. The reason for this is that many graphing utilities have only three graphing modes-(1) functions, (2) parametric equations, and (3) polar equations. Most graphing utilities are not programmed to graph a general equation. For instance, suppose you want to graph the hyperbola \(x^{2}-y^{2}=1\). To graph the hyperbola in function mode, you need two equations: \(y=\sqrt{x^{2}-1}\) and \(y=-\sqrt{x^{2}-1}\). In parametric mode, you can represent the graph by \(x=\sec t\) and \(y=\tan t\).

\section*{CYCLOIDS}

Galileo first called attention to the cycloid, once recommending that it be used for the arches of bridges. Pascal once spent 8 days attempting to solve many of the problems of cycloids, such as finding the area under one arch, and the volume of the solid of revolution formed by revolving the curve about a line. The cycloid has so many interesting properties and has caused so many quarrels among mathematicians that it has been called "the Helen of geometry" and "the apple of discord."

FOR FURTHER INFORMATION For
more information on cycloids, see the article "The Geometry of Rolling Curves" by John Bloom and Lee Whitt in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

\section*{EXAMPLE 5 Parametric Equations for a Cycloid}

Determine the curve traced by a point \(P\) on the circumference of a circle of radius \(a\) rolling along a straight line in a plane. Such a curve is called a cycloid.

Solution Let the parameter \(\theta\) be the measure of the circle's rotation, and let the point \(P=(x, y)\) begin at the origin. When \(\theta=0, P\) is at the origin. When \(\theta=\pi, P\) is at a maximum point \((\pi a, 2 a)\). When \(\theta=2 \pi, P\) is back on the \(x\)-axis at \((2 \pi a, 0)\). From Figure 10.25 , you can see that \(\angle A P C=180^{\circ}-\theta\). So,
\[
\begin{aligned}
& \sin \theta=\sin \left(180^{\circ}-\theta\right)=\sin (\angle A P C)=\frac{A C}{a}=\frac{B D}{a} \\
& \cos \theta=-\cos \left(180^{\circ}-\theta\right)=-\cos (\angle A P C)=\frac{A P}{-a}
\end{aligned}
\]
which implies that \(A P=-a \cos \theta\) and \(B D=a \sin \theta\).
Because the circle rolls along the \(x\)-axis, you know that \(O D=\widehat{P D}=a \theta\). Furthermore, because \(B A=D C=a\), you have
\[
\begin{aligned}
& x=O D-B D=a \theta-a \sin \theta \\
& y=B A+A P=a-a \cos \theta
\end{aligned}
\]

So, the parametric equations are \(x=a(\theta-\sin \theta)\) and \(y=a(1-\cos \theta)\).


Figure 10.25

TECHNOLOGY Some graphing utilities allow you to simulate the motion of an object that is moving in the plane or in space. If you have access to such a utility, use it to trace out the path of the cycloid shown in Figure 10.25.

The cycloid in Figure 10.25 has sharp corners at the values \(x=2 n \pi a\). Notice that the derivatives \(x^{\prime}(\theta)\) and \(y^{\prime}(\theta)\) are both zero at the points for which \(\theta=2 n \pi\).
\[
\begin{array}{ll}
x(\theta)=a(\theta-\sin \theta) & y(\theta)=a(1-\cos \theta) \\
x^{\prime}(\theta)=a-a \cos \theta & y^{\prime}(\theta)=a \sin \theta \\
x^{\prime}(2 n \pi)=0 & y^{\prime}(2 n \pi)=0
\end{array}
\]

Between these points, the cycloid is called smooth.

\section*{DEFINITION OF A SMOOTH CURVE}

A curve \(C\) represented by \(x=f(t)\) and \(y=g(t)\) on an interval \(I\) is called smooth if \(f^{\prime}\) and \(g^{\prime}\) are continuous on \(I\) and not simultaneously 0 , except possibly at the endpoints of \(I\). The curve \(C\) is called piecewise smooth if it is smooth on each subinterval of some partition of \(I\).


The time required to complete a full swing of the pendulum when starting from point \(C\) is only approximately the same as when starting from point \(A\).
Figure 10.26


\section*{The Tautochrone and Brachistochrone Problems}

The type of curve described in Example 5 is related to one of the most famous pairs of problems in the history of calculus. The first problem (called the tautochrone problem) began with Galileo's discovery that the time required to complete a full swing of a given pendulum is approximately the same whether it makes a large movement at high speed or a small movement at lower speed (see Figure 10.26). Late in his life, Galileo (1564-1642) realized that he could use this principle to construct a clock. However, he was not able to conquer the mechanics of actual construction. Christian Huygens (1629-1695) was the first to design and construct a working model. In his work with pendulums, Huygens realized that a pendulum does not take exactly the same time to complete swings of varying lengths. (This doesn't affect a pendulum clock, because the length of the circular arc is kept constant by giving the pendulum a slight boost each time it passes its lowest point.) But, in studying the problem, Huygens discovered that a ball rolling back and forth on an inverted cycloid does complete each cycle in exactly the same time.


An inverted cycloid is the path down which a ball will roll in the shortest time.
Figure 10.27

The second problem, which was posed by John Bernoulli in 1696, is called the brachistochrone problem-in Greek, brachys means short and chronos means time. The problem was to determine the path down which a particle will slide from point \(A\) to point \(B\) in the shortest time. Several mathematicians took up the challenge, and the following year the problem was solved by Newton, Leibniz, L'Hôpital, John Bernoulli, and James Bernoulli. As it turns out, the solution is not a straight line from \(A\) to \(B\), but an inverted cycloid passing through the points \(A\) and \(B\), as shown in Figure 10.27. The amazing part of the solution is that a particle starting at rest at any other point \(C\) of the cycloid between \(A\) and \(B\) will take exactly the same time to reach \(B\), as shown in Figure 10.28.


A ball starting at point \(C\) takes the same time to reach point \(B\) as one that starts at point \(A\).
Figure 10.28
- FOR FURTHER INFORMATION To see a proof of the famous brachistochrone problem, see the article "A New Minimization Proof for the Brachistochrone" by Gary Lawlor in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

\subsection*{10.2 Exercises}

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1. Consider the parametric equations \(x=\sqrt{t}\) and \(y=3-t\).
(a) Construct a table of values for \(t=0,1,2,3\), and 4.
(b) Plot the points \((x, y)\) generated in the table, and sketch a graph of the parametric equations. Indicate the orientation of the graph.
(c) Use a graphing utility to confirm your graph in part (b).
(d) Find the rectangular equation by eliminating the parameter, and sketch its graph. Compare the graph in part (b) with the graph of the rectangular equation.
2. Consider the parametric equations \(x=4 \cos ^{2} \theta\) and \(y=2 \sin \theta\).
(a) Construct a table of values for \(\theta=-\frac{\pi}{2},-\frac{\pi}{4}, 0, \frac{\pi}{4}\), and \(\frac{\pi}{2}\).
(b) Plot the points \((x, y)\) generated in the table, and sketch a graph of the parametric equations. Indicate the orientation of the graph.
(c) Use a graphing utility to confirm your graph in part (b).
(d) Find the rectangular equation by eliminating the parameter, and sketch its graph. Compare the graph in part (b) with the graph of the rectangular equation.
(e) If values of \(\theta\) were selected from the interval \([\pi / 2,3 \pi / 2]\) for the table in part (a), would the graph in part (b) be different? Explain.

In Exercises 3-20, sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter.
3. \(x=2 t-3, \quad y=3 t+1\)
4. \(x=5-4 t, \quad y=2+5 t\)
5. \(x=t+1, \quad y=t^{2}\)
6. \(x=2 t^{2}, \quad y=t^{4}+1\)
7. \(x=t^{3}, \quad y=\frac{t^{2}}{2}\)
8. \(x=t^{2}+t, \quad y=t^{2}-t\)
9. \(x=\sqrt{t}, \quad y=t-5\)
10. \(x=\sqrt[4]{t}, \quad y=8-t\)
11. \(x=t-3, \quad y=\frac{t}{t-3}\)
12. \(x=1+\frac{1}{t}, \quad y=t-1\)
13. \(x=2 t, \quad y=|t-2|\)
14. \(x=|t-1|, \quad y=t+2\)
15. \(x=e^{t}, \quad y=e^{3 t}+1\)
16. \(x=e^{-t}, \quad y=e^{2 t}-1\)
17. \(x=\sec \theta, \quad y=\cos \theta, \quad 0 \leq \theta<\pi / 2, \quad \pi / 2<\theta \leq \pi\)
18. \(x=\tan ^{2} \theta, \quad y=\sec ^{2} \theta\)
19. \(x=8 \cos \theta, \quad y=8 \sin \theta\)
20. \(x=3 \cos \theta, \quad y=7 \sin \theta\)

In Exercises 21-32, use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation.
21. \(x=6 \sin 2 \theta, y=4 \cos 2 \theta\)
22. \(x=\cos \theta, y=2 \sin 2 \theta\)
23. \(x=4+2 \cos \theta\)
\(y=-1+\sin \theta\)
24. \(x=-2+3 \cos \theta\)
\(y=-5+3 \sin \theta\)
25. \(x=-3+4 \cos \theta\) \(y=2+5 \sin \theta\)
26. \(x=\sec \theta\)
\[
y=\tan \theta
\]
27. \(x=4 \sec \theta, \quad y=3 \tan \theta\)
28. \(x=\cos ^{3} \theta, \quad y=\sin ^{3} \theta\)
29. \(x=t^{3}, \quad y=3 \ln t\)
30. \(x=\ln 2 t, \quad y=t^{2}\)
31. \(x=e^{-t}, \quad y=e^{3 t}\)

Comparing Plane Curves In Exercises 33-36, determine any differences between the curves of the parametric equations. Are the graphs the same?Are the orientations the same?Are the curves smooth Explain.
33. (a) \(x=t\)
\(y=2 t+1\)
(c) \(x=e^{-t}\)
\(y=2 e^{-t}+1\)
34. (a) \(x=2 \cos \theta\)
\(y=2 \sin \theta\)
(c) \(x=\sqrt{t}\) \(y=\sqrt{4-t}\)
35. (a) \(x=\cos \theta\)
\(y=2 \sin ^{2} \theta\)
\(0<\theta<\pi\)
36. (a) \(x=t+1, y=t^{3}\)
(b) \(x=\cos \theta\)
\(y=2 \cos \theta+1\)
(d) \(x=e^{t}\)
\(y=2 e^{t}+1\)
(b) \(x=\sqrt{4 t^{2}-1} /|t|\)
\(y=1 / t\)
(d) \(x=-\sqrt{4-e^{2 t}}\)
\(y=e^{t}\)
) \(x=\cos (-\theta)\)
\(y=2 \sin ^{2}(-\theta)\)
\(0<\theta<\pi\)
(b) \(x=-t+1, y=(-t)^{3}\)

\section*{37. Conjecture}
(a) Use a graphing utility to graph the curves represented by the two sets of parametric equations.
\[
\begin{array}{ll}
x=4 \cos t & x=4 \cos (-t) \\
y=3 \sin t & y=3 \sin (-t)
\end{array}
\]
(b) Describe the change in the graph when the sign of the parameter is changed.
(c) Make a conjecture about the change in the graph of parametric equations when the sign of the parameter is changed.
(d) Test your conjecture with another set of parametric equations.
38. Writing Review Exercises \(33-36\) and write a short paragraph describing how the graphs of curves represented by different sets of parametric equations can differ even though eliminating the parameter from each yields the same rectangular equation.

In Exercises 39-42, eliminate the parameter and obtain the standard form of the rectangular equation.
39. Line through \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) : \(x=x_{1}+t\left(x_{2}-x_{1}\right), \quad y=y_{1}+t\left(y_{2}-y_{1}\right)\)
40. Circle: \(x=h+r \cos \theta, \quad y=k+r \sin \theta\)
41. Ellipse: \(x=h+a \cos \theta, \quad y=k+b \sin \theta\)
42. Hyperbola: \(x=h+a \sec \theta, \quad y=k+b \tan \theta\)

In Exercises 43-50, use the results of Exercises 39-42 to find a set of parametric equations for the line or conic.
43. Line: passes through \((0,0)\) and \((4,-7)\)
44. Line: passes through \((1,4)\) and \((5,-2)\)
45. Circle: center: \((3,1)\); radius: 2
46. Circle: center: \((-6,2)\); radius: 4
47. Ellipse: vertices: \(( \pm 10,0)\); foci: \(( \pm 8,0)\)
48. Ellipse: vertices: \((4,7),(4,-3)\); foci: \((4,5),(4,-1)\)
49. Hyperbola: vertices: \(( \pm 4,0)\); foci: \(( \pm 5,0)\)
50. Hyperbola: vertices: \((0, \pm 1)\); foci: \((0, \pm 2)\)

In Exercises 51-54, find two different sets of parametric equations for the rectangular equation.
51. \(y=6 x-5\)
52. \(y=4 /(x-1)\)
53. \(y=x^{3}\)
54. \(y=x^{2}\)

In Exercises 55-58, find a set of parametric equations for the rectangular equation that satisfies the given condition.
55. \(y=2 x-5, t=0\) at the point \((3,1)\)
56. \(y=4 x+1, t=-1\) at the point \((-2,-7)\)
57. \(y=x^{2}, t=4\) at the point \((4,16)\)
58. \(y=4-x^{2}, t=1\) at the point \((1,3)\)

In Exercises 59-66, use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth.
59. Cycloid: \(x=2(\theta-\sin \theta), \quad y=2(1-\cos \theta)\)
60. Cycloid: \(x=\theta+\sin \theta, \quad y=1-\cos \theta\)
61. Prolate cycloid: \(x=\theta-\frac{3}{2} \sin \theta, \quad y=1-\frac{3}{2} \cos \theta\)
62. Prolate cycloid: \(x=2 \theta-4 \sin \theta, \quad y=2-4 \cos \theta\)
63. Hypocycloid: \(x=3 \cos ^{3} \theta, \quad y=3 \sin ^{3} \theta\)
64. Curtate cycloid: \(x=2 \theta-\sin \theta, \quad y=2-\cos \theta\)
65. Witch of Agnesi: \(x=2 \cot \theta, \quad y=2 \sin ^{2} \theta\)
66. Folium of Descartes: \(x=3 t /\left(1+t^{3}\right), \quad y=3 t^{2} /\left(1+t^{3}\right)\)

\section*{WRITING ABOUT CONCEPTS}
67. Explain the process of sketching a plane curve given by parametric equations. What is meant by the orientation of the curve?
68. Match each set of parametric equations with the correct graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).] Explain your reasoning.
(a)

(b)


\section*{WRITING ABOUT CONCEPTS (continued)}
(c)

(d)

(e)

(f)

(i) \(x=t^{2}-1, \quad y=t+2\)
(ii) \(x=\sin ^{2} \theta-1, \quad y=\sin \theta+2\)
(iii) Lissajous curve: \(x=4 \cos \theta, \quad y=2 \sin 2 \theta\)
(iv) Evolute of ellipse: \(x=\cos ^{3} \theta, \quad y=2 \sin ^{3} \theta\)
(v) Involute of circle: \(x=\cos \theta+\theta \sin \theta\), \(y=\sin \theta-\theta \cos \theta\)
(vi) Serpentine curve: \(x=\cot \theta, \quad y=4 \sin \theta \cos \theta\)
69. Curtate Cycloid A wheel of radius \(a\) rolls along a line without slipping. The curve traced by a point \(P\) that is \(b\) units from the center \((b<a)\) is called a curtate cycloid (see figure). Use the angle \(\theta\) to find a set of parametric equations for this curve.


Figure for 69


Figure for 70
70. Epicycloid A circle of radius 1 rolls around the outside of a circle of radius 2 without slipping. The curve traced by a point on the circumference of the smaller circle is called an epicycloid (see figure). Use the angle \(\theta\) to find a set of parametric equations for this curve.

True or False? In Exercises 71-73, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
71. The graph of the parametric equations \(x=t^{2}\) and \(y=t^{2}\) is the line \(y=x\).
72. If \(y\) is a function of \(t\) and \(x\) is a function of \(t\), then \(y\) is a function of \(x\).
73. The curve represented by the parametric equations \(x=t\) and \(y=\cos t\) can be written as an equation of the form \(y=f(x)\).

\section*{CAPSTONE}
74. Consider the parametric equations \(x=8 \cos t\) and \(y=8 \sin t\).
(a) Describe the curve represented by the parametric equations.
(b) How does the curve represented by the parametric equations \(x=8 \cos t+3\) and \(y=8 \sin t+6\) compare to the curve described in part (a)?
(c) How does the original curve change when cosine and sine are interchanged?

Projectile Motion In Exercises 75 and 76, consider a projectile launched at a height \(\boldsymbol{h}\) feet above the ground and at an angle \(\theta\) with the horizontal. If the initial velocity is \(\boldsymbol{v}_{0}\) feet per second, the path of the progetile is modeled by the parametric equations \(x=\left(v_{0} \cos \theta\right) t\) and \(y=h+\left(v_{0} \sin \theta\right) t-16 t^{2}\).
75. The center field fence in a ballpark is 10 feet high and 400 feet from home plate. The ball is hit 3 feet above the ground. It leaves the bat at an angle of \(\theta\) degrees with the horizontal at a speed of 100 miles per hour (see figure).

(a) Write a set of parametric equations for the path of the ball.
(b) Use a graphing utility to graph the path of the ball when \(\theta=15^{\circ}\). Is the hit a home run?
(c) Use a graphing utility to graph the path of the ball when \(\theta=23^{\circ}\). Is the hit a home run?
(d) Find the minimum angle at which the ball must leave the bat in order for the hit to be a home run.
76. A rectangular equation for the path of a projectile is \(y=5+x-0.005 x^{2}\).
(a) Eliminate the parameter \(t\) from the position function for the motion of a projectile to show that the rectangular equation is
\[
y=-\frac{16 \sec ^{2} \theta}{v_{0}^{2}} x^{2}+(\tan \theta) x+h .
\]
(b) Use the result of part (a) to find \(h, v_{0}\), and \(\theta\). Find the parametric equations of the path.
(c) Use a graphing utility to graph the rectangular equation for the path of the projectile. Confirm your answer in part (b) by sketching the curve represented by the parametric equations.
(d) Use a graphing utility to approximate the maximum height of the projectile and its range.

\section*{SECTION PROJECT}

\section*{Cycloids}

In Greek, the word cycloid means wheel, the word hypocycloid means under the wheel, and the word epicycloid means upon the wheel. Match the hypocycloid or epicycloid with its graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

\section*{Hypocycloid, \(\boldsymbol{H}(A, B)\)}

The path traced by a fixed point on a circle of radius \(B\) as it rolls around the inside of a circle of radius \(A\)
\(x=(A-B) \cos t+B \cos \left(\frac{A-B}{B}\right) t\)
\(y=(A-B) \sin t-B \sin \left(\frac{A-B}{B}\right) t\)

\section*{Epicycloid, \(E(A, B)\)}

The path traced by a fixed point on a circle of radius \(B\) as it rolls around the outside of a circle of radius \(A\)
\(x=(A+B) \cos t-B \cos \left(\frac{A+B}{B}\right) t\)
\(y=(A+B) \sin t-B \sin \left(\frac{A+B}{B}\right) t\)
I. \(H(8,3)\)
II. \(E(8,3)\)
III. \(H(8,7)\)
IV. \(E(24,3)\)
V. \(H(24,7)\)
VI. \(E(24,7)\)
(a)

(b)

(c)

(e)

(f)


Exercises based on "Mathematical Discovery via Computer Graphics: Hypocycloids and Epicycloids" by Florence S. Gordon and Sheldon P. Gordon, College Mathematics Journal, November 1984, p.441. Used by permission of the authors.

\subsection*{10.3 Parametric Equations and Calculus}


At time \(t\), the angle of elevation of the projectile is \(\theta\), the slope of the tangent line at that point.
Figure 10.29


The slope of the secant line through the points \((f(t), g(t))\) and \((f(t+\Delta t)\), \(g(t+\Delta t))\) is \(\Delta y / \Delta x\).
Figure 10.30
- Find the slope of a tangent line to a curve given by a set of parametric equations.

■ Find the arc length of a curve given by a set of parametric equations.
- Find the area of a surface of revolution (parametric form).

\section*{Slope and Tangent Lines}

Now that you can represent a graph in the plane by a set of parametric equations, it is natural to ask how to use calculus to study plane curves. To begin, let's take another look at the projectile represented by the parametric equations
\[
x=24 \sqrt{2} t \quad \text { and } \quad y=-16 t^{2}+24 \sqrt{2} t
\]
as shown in Figure 10.29. From the discussion at the beginning of Section 10.2, you know that these equations enable you to locate the position of the projectile at a given time. You also know that the object is initially projected at an angle of \(45^{\circ}\). But how can you find the angle \(\theta\) representing the object's direction at some other time \(t\) ? The following theorem answers this question by giving a formula for the slope of the tangent line as a function of \(t\).

\section*{THEOREM 10.7 PARAMETRIC FORM OF THE DERIVATIVE}

If a smooth curve \(C\) is given by the equations \(x=f(t)\) and \(y=g(t)\), then the slope of \(C\) at \((x, y)\) is
\[
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}, \quad \frac{d x}{d t} \neq 0
\]

PR00F In Figure 10.30, consider \(\Delta t>0\) and let
\[
\Delta y=g(t+\Delta t)-g(t) \quad \text { and } \quad \Delta x=f(t+\Delta t)-f(t)
\]

Because \(\Delta x \rightarrow 0\) as \(\Delta t \rightarrow 0\), you can write
\[
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta t \rightarrow 0} \frac{g(t+\Delta t)-g(t)}{f(t+\Delta t)-f(t)}
\end{aligned}
\]

Dividing both the numerator and denominator by \(\Delta t\), you can use the differentiability of \(f\) and \(g\) to conclude that
\[
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta t \rightarrow 0} \frac{[g(t+\Delta t)-g(t)] / \Delta t}{[f(t+\Delta t)-f(t)] / \Delta t} \\
& =\frac{\lim _{\Delta t \rightarrow 0} \frac{g(t+\Delta t)-g(t)}{\Delta t}}{\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}} \\
& =\frac{g^{\prime}(t)}{f^{\prime}(t)} \\
& =\frac{d y / d t}{d x / d t}
\end{aligned}
\]

STUDY TIP The curve traced out in Example 1 is a circle. Use the formula
\[
\frac{d y}{d x}=-\tan t
\]
to find the slopes at the points \((1,0)\) and \((0,1)\).


The graph is concave upward at \((2,3)\), when \(t=4\).
Figure 10.31

\section*{EXAMPLE 1 Differentiation and Parametric Form}

Find \(d y / d x\) for the curve given by \(x=\sin t\) and \(y=\cos t\).

\section*{Solution}
\[
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-\sin t}{\cos t}=-\tan t
\]

Because \(d y / d x\) is a function of \(t\), you can use Theorem 10.7 repeatedly to find higher-order derivatives. For instance,
\[
\begin{array}{ll}
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{d x / d t} & \text { Second derivative } \\
\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left[\frac{d^{2} y}{d x^{2}}\right]=\frac{\frac{d}{d t}\left[\frac{d^{2} y}{d x^{2}}\right]}{d x / d t} & \text { Third derivative }
\end{array}
\]

\section*{EXAMPLE 2 Finding Slope and Concavity}

For the curve given by
\(x=\sqrt{t} \quad\) and \(\quad y=\frac{1}{4}\left(t^{2}-4\right), \quad t \geq 0\)
find the slope and concavity at the point \((2,3)\).
Solution Because
\[
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{(1 / 2) t}{(1 / 2) t^{-1 / 2}}=t^{3 / 2}
\]

Parametric form of first derivative
you can find the second derivative to be
\[
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}[d y / d x]}{d x / d t}=\frac{\frac{d}{d t}\left[t^{3 / 2}\right]}{d x / d t}=\frac{(3 / 2) t^{1 / 2}}{(1 / 2) t^{-1 / 2}}=3 t . \quad \begin{aligned}
& \text { Parametric form of second } \\
& \text { derivative }
\end{aligned}
\]

At \((x, y)=(2,3)\), it follows that \(t=4\), and the slope is
\[
\frac{d y}{d x}=(4)^{3 / 2}=8
\]

Moreover, when \(t=4\), the second derivative is
\[
\frac{d^{2} y}{d x^{2}}=3(4)=12>0
\]
and you can conclude that the graph is concave upward at \((2,3)\), as shown in Figure 10.31.

Because the parametric equations \(x=f(t)\) and \(y=g(t)\) need not define \(y\) as a function of \(x\), it is possible for a plane curve to loop around and cross itself. At such points the curve may have more than one tangent line, as shown in the next example.


This prolate cycloid has two tangent lines at the point \((0,2)\).
Figure 10.32

\section*{example 3 A Curve with Two Tangent Lines at a Point}

The prolate cycloid given by
\[
x=2 t-\pi \sin t \quad \text { and } \quad y=2-\pi \cos t
\]
crosses itself at the point \((0,2)\), as shown in Figure 10.32. Find the equations of both tangent lines at this point.

Solution Because \(x=0\) and \(y=2\) when \(t= \pm \pi / 2\), and
\[
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\pi \sin t}{2-\pi \cos t}
\]
you have \(d y / d x=-\pi / 2\) when \(t=-\pi / 2\) and \(d y / d x=\pi / 2\) when \(t=\pi / 2\). So, the two tangent lines at \((0,2)\) are
\[
y-2=-\left(\frac{\pi}{2}\right) x \quad \text { Tangent line when } t=-\frac{\pi}{2}
\]
and
\[
y-2=\left(\frac{\pi}{2}\right) x . \quad \text { Tangent line when } t=\frac{\pi}{2}
\]

If \(d y / d t=0\) and \(d x / d t \neq 0\) when \(t=t_{0}\), the curve represented by \(x=f(t)\) and \(y=g(t)\) has a horizontal tangent at \(\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)\). For instance, in Example 3, the given curve has a horizontal tangent at the point \((0,2-\pi)\) (when \(t=0\) ). Similarly, if \(d x / d t=0\) and \(d y / d t \neq 0\) when \(t=t_{0}\), the curve represented by \(x=f(t)\) and \(y=g(t)\) has a vertical tangent at \(\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)\).

\section*{Arc Length}

You have seen how parametric equations can be used to describe the path of a particle moving in the plane. You will now develop a formula for determining the distance traveled by the particle along its path.

Recall from Section 7.4 that the formula for the arc length of a curve \(C\) given by \(y=h(x)\) over the interval \(\left[x_{0}, x_{1}\right]\) is
\[
\begin{aligned}
s & =\int_{x_{0}}^{x_{1}} \sqrt{1+\left[h^{\prime}(x)\right]^{2}} d x \\
& =\int_{x_{0}}^{x_{1}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .
\end{aligned}
\]

If \(C\) is represented by the parametric equations \(x=f(t)\) and \(y=g(t), a \leq t \leq b\), and if \(d x / d t=f^{\prime}(t)>0\), you can write
\[
\begin{aligned}
s=\int_{x_{0}}^{x_{1}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & =\int_{x_{0}}^{x_{1}} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} d x \\
& =\int_{a}^{b} \sqrt{\frac{(d x / d t)^{2}+(d y / d t)^{2}}{(d x / d t)^{2}}} \frac{d x}{d t} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t .
\end{aligned}
\]

\section*{ARCH OF A CYCLOID}

The arc length of an arch of a cycloid was first calculated in 1658 by British architect and mathematician Christopher Wren, famous for rebuilding many buildings and churches in London, including St. Paul's Cathedral.


An epicycloid is traced by a point on the smaller circle as it rolls around the larger circle.
Figure 10.33

\section*{THEOREM 10.8 ARC LENGTH IN PARAMETRIC FORM}

If a smooth curve \(C\) is given by \(x=f(t)\) and \(y=g(t)\) such that \(C\) does not intersect itself on the interval \(a \leq t \leq b\) (except possibly at the endpoints), then the arc length of \(C\) over the interval is given by
\[
s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t .
\]

NOTE When applying the arc length formula to a curve, be sure that the curve is traced out only once on the interval of integration. For instance, the circle given by \(x=\cos t\) and \(y=\sin t\) is traced out once on the interval \(0 \leq t \leq 2 \pi\), but is traced out twice on the interval \(0 \leq t \leq 4 \pi\).

In the preceding section you saw that if a circle rolls along a line, a point on its circumference will trace a path called a cycloid. If the circle rolls around the circumference of another circle, the path of the point is an epicycloid. The next example shows how to find the arc length of an epicycloid.

\section*{EXAMPLE 4 Finding Arc Length}

A circle of radius 1 rolls around the circumference of a larger circle of radius 4, as shown in Figure 10.33. The epicycloid traced by a point on the circumference of the smaller circle is given by
\[
x=5 \cos t-\cos 5 t \quad \text { and } \quad y=5 \sin t-\sin 5 t
\]

Find the distance traveled by the point in one complete trip about the larger circle.
Solution Before applying Theorem 10.8, note in Figure 10.33 that the curve has sharp points when \(t=0\) and \(t=\pi / 2\). Between these two points, \(d x / d t\) and \(d y / d t\) are not simultaneously 0 . So, the portion of the curve generated from \(t=0\) to \(t=\pi / 2\) is smooth. To find the total distance traveled by the point, you can find the arc length of that portion lying in the first quadrant and multiply by 4.
\[
\begin{array}{rlr}
s & =4 \int_{0}^{\pi / 2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad \text { Parametric form for arc length } \\
& =4 \int_{0}^{\pi / 2} \sqrt{(-5 \sin t+5 \sin 5 t)^{2}+(5 \cos t-5 \cos 5 t)^{2}} d t \\
& =20 \int_{0}^{\pi / 2} \sqrt{2-2 \sin t \sin 5 t-2 \cos t \cos 5 t} d t \\
& =20 \int_{0}^{\pi / 2} \sqrt{2-2 \cos 4 t} d t & \\
& =20 \int_{0}^{\pi / 2} \sqrt{4 \sin ^{2} 2 t} d t & \\
& =40 \int_{0}^{\pi / 2} \sin 2 t d t & \text { Trigonometric identity } \\
& =-20[\cos 2 t]_{0}^{\pi / 2} \\
& =40
\end{array}
\]

For the epicycloid shown in Figure 10.33, an arc length of 40 seems about right because the circumference of a circle of radius 6 is \(2 \pi r=12 \pi \approx 37.7\).


Figure 10.34

NOTE The graph of \(r=a \theta\) is called the spiral of Archimedes. The graph of \(r=\theta / 2000 \pi\) (in Example 5) is of this form.

\section*{EXAMPLE 5 Length of a Recording Tape}

A recording tape 0.001 inch thick is wound around a reel whose inner radius is 0.5 inch and whose outer radius is 2 inches, as shown in Figure 10.34. How much tape is required to fill the reel?
Solution To create a model for this problem, assume that as the tape is wound around the reel, its distance \(r\) from the center increases linearly at a rate of 0.001 inch per revolution, or
\[
r=(0.001) \frac{\theta}{2 \pi}=\frac{\theta}{2000 \pi}, \quad 1000 \pi \leq \theta \leq 4000 \pi
\]
where \(\theta\) is measured in radians. You can determine that the coordinates of the point \((x, y)\) corresponding to a given radius are
\[
x=r \cos \theta
\]
and
\[
y=r \sin \theta
\]

Substituting for \(r\), you obtain the parametric equations
\[
x=\left(\frac{\theta}{2000 \pi}\right) \cos \theta \quad \text { and } \quad y=\left(\frac{\theta}{2000 \pi}\right) \sin \theta
\]

You can use the arc length formula to determine that the total length of the tape is
\[
\begin{aligned}
s & =\int_{1000 \pi}^{4000 \pi} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
& =\frac{1}{2000 \pi} \int_{1000 \pi}^{4000 \pi} \sqrt{(-\theta \sin \theta+\cos \theta)^{2}+(\theta \cos \theta+\sin \theta)^{2}} d \theta \\
& =\frac{1}{2000 \pi} \int_{1000 \pi}^{4000 \pi} \sqrt{\theta^{2}+1} d \theta \\
& =\frac{1}{2000 \pi}\left(\frac{1}{2}\right)\left[\theta \sqrt{\theta^{2}+1}+\ln \left|\theta+\sqrt{\theta^{2}+1}\right|\right]_{1000 \pi}^{4000 \pi} \quad \begin{array}{l}
\text { Integration tables } \\
\text { (Appendix B), Formula } 26
\end{array} \\
& \approx 11,781 \text { inches } \\
& \approx 982 \text { feet. }
\end{aligned}
\]

FOR FURTHER INFORMATION For more information on the mathematics of recording tape, see "Tape Counters" by Richard L. Roth in The American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

The length of the tape in Example 5 can be approximated by adding the circumferences of circular pieces of tape. The smallest circle has a radius of 0.501 and the largest has a radius of 2 .
\[
\begin{aligned}
s & \approx 2 \pi(0.501)+2 \pi(0.502)+2 \pi(0.503)+\cdots+2 \pi(2.000) \\
& =\sum_{i=1}^{1500} 2 \pi(0.5+0.001 i) \\
& =2 \pi[1500(0.5)+0.001(1500)(1501) / 2] \\
& \approx 11,786 \text { inches }
\end{aligned}
\]

\section*{Area of a Surface of Revolution}

You can use the formula for the area of a surface of revolution in rectangular form to develop a formula for surface area in parametric form.

\section*{THEOREM 10.9 AREA OF A SURFACE OF REVOLUTION}

If a smooth curve \(C\) given by \(x=f(t)\) and \(y=g(t)\) does not cross itself on an interval \(a \leq t \leq b\), then the area \(S\) of the surface of revolution formed by revolving \(C\) about the coordinate axes is given by the following.
1. \(S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad\) Revolution about the \(x\)-axis: \(g(t) \geq 0\)
2. \(S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad\) Revolution about the \(y\)-axis: \(f(t) \geq 0\)

These formulas are easy to remember if you think of the differential of arc length as
\[
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\]

Then the formulas are written as follows.
1. \(S=2 \pi \int_{a}^{b} g(t) d s\)
2. \(S=2 \pi \int_{a}^{b} f(t) d s\)

\section*{EXAMPLE 6 Finding the Area of a Surface of Revolution}


The surface of revolution has a surface area of \(9 \pi\).
Figure 10.35

Let \(C\) be the arc of the circle
\[
x^{2}+y^{2}=9
\]
from \((3,0)\) to \((3 / 2,3 \sqrt{3} / 2)\), as shown in Figure 10.35. Find the area of the surface formed by revolving \(C\) about the \(x\)-axis.
Solution You can represent \(C\) parametrically by the equations
\[
x=3 \cos t \quad \text { and } \quad y=3 \sin t, \quad 0 \leq t \leq \pi / 3
\]
(Note that you can determine the interval for \(t\) by observing that \(t=0\) when \(x=3\) and \(t=\pi / 3\) when \(x=3 / 2\).) On this interval, \(C\) is smooth and \(y\) is nonnegative, and you can apply Theorem 10.9 to obtain a surface area of
\[
\begin{aligned}
S & =2 \pi \int_{0}^{\pi / 3}(3 \sin t) \sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}} d t \\
& =6 \pi \int_{0}^{\pi / 3} \sin t \sqrt{9\left(\sin ^{2} t+\cos ^{2} t\right)} d t \\
& =6 \pi \int_{0}^{\pi / 3} 3 \sin t d t \\
& =-18 \pi[\cos t]_{0}^{\pi / 3} \\
& =-18 \pi\left(\frac{1}{2}-1\right) \\
& =9 \pi
\end{aligned}
\]

\subsection*{10.3 Exercises}

In Exercises 1-4, find \(d y / d x\).
1. \(x=t^{2}, y=7-6 t\)
2. \(x=\sqrt[3]{t}, y=4-t\)
3. \(x=\sin ^{2} \theta, y=\cos ^{2} \theta\)
4. \(x=2 e^{\theta}, y=e^{-\theta / 2}\)

In Exercises 5-14, find \(d y / d x\) and \(d^{2} y / d x^{2}\), and find the slope and concavity (if possible) at the given value of the parameter.
\begin{tabular}{lll} 
5. Parametric Equations & & \\
5oint \\
6. \(x=4 t, y=3 t-2\) & & \\
7. \(x=y=3 t-1\) & & \\
7. \(x=t+1, y=t^{2}+3 t\) \\
8. \(x=t^{2}+5 t+4, y=4 t\) & & \(t=1\) \\
9. \(x=4 \cos \theta, y=4 \sin \theta\) & & \(t=0\) \\
10. \(x=\cos \theta, y=3 \sin \theta\) & & \(\theta=\frac{\pi}{4}\) \\
11. \(x=2+\sec \theta, y=1+2 \tan \theta\) & & \(\theta=\frac{\pi}{6}\) \\
12. \(x=\sqrt{t}, y=\sqrt{t-1}\) & & \(t=2\) \\
13. \(x=\cos ^{3} \theta, y=\sin ^{3} \theta\) & & \(\theta=\frac{\pi}{4}\) \\
14. \(x=\theta-\sin \theta, y=1-\cos \theta\) & & \(\theta=\pi\)
\end{tabular}

In Exercises 15-18, find an equation of the tangent line at each given point on the curve.
15. \(x=2 \cot \theta\)
\(y=2 \sin ^{2} \theta\)

17. \(\begin{aligned} x & =t^{2}-4 \\ y & =t^{2}-2 t\end{aligned}\)
\((0,0),(-3,-1)\), and \((-3,3)\)
16. \(x=2-3 \cos \theta\)
\(y=3+2 \sin \theta\)

18. \(\begin{aligned} x & =t^{4}+2 \\ y & =t^{3}+t\end{aligned}\)
\((2,0),(3,-2)\), and \((18,10)\)

In Exercises 19-22, (a) use a graphing utility to graph the curve represented by the parametric equations, (b) use a graphing utility to find \(d x / d t, d y / d t\), and \(d y / d x\) at the given value of the parameter, (c) find an equation of the tangent line to the curve at the given value of the parameter, and (d) use a graphing utility to graph the curve and the tangent line from part (c).
19. \(\begin{array}{ll}\frac{\text { Parametric Equations }}{x=6 t, y=t^{2}+4} & \frac{\text { Parameter }}{t=1} \\ \text { 20. } x=t-2, y=\frac{1}{t}+3 & t=1\end{array}\)
Parametric Equations
Parameter
21. \(x=t^{2}-t+2, y=t^{3}-3 t\)
\(\theta=\frac{3 \pi}{4}\)

In Exercises 23-26, find the equations of the tangent lines at the point where the curve crosses itself.
23. \(x=2 \sin 2 t, \quad y=3 \sin t\)
24. \(x=2-\pi \cos t, \quad y=2 t-\pi \sin t\)
25. \(x=t^{2}-t, \quad y=t^{3}-3 t-1\)
26. \(x=t^{3}-6 t, \quad y=t^{2}\)

In Exercises 27 and 28, find all points (if any) of horizontal and vertical tangency to the portion of the curve shown.
27. Involute of a circle:
\(x=\cos \theta+\theta \sin \theta\)
28. \(x=2 \theta\)
\(y=2(1-\cos \theta)\) \(y=\sin \theta-\theta \cos \theta\)



In Exercises 29-38, find all points (if any) of horizontal and vertical tangency to the curve. Use a graphing utility to confirm your results.
29. \(x=4-t, y=t^{2} \quad\) 30. \(x=t+1, \quad y=t^{2}+3 t\)
31. \(x=t+4, \quad y=t^{3}-3 t\)
32. \(x=t^{2}-t+2, \quad y=t^{3}-3 t\)
33. \(x=3 \cos \theta, \quad y=3 \sin \theta\)
34. \(x=\cos \theta, \quad y=2 \sin 2 \theta\)
35. \(x=5+3 \cos \theta, \quad y=-2+\sin \theta\)
36. \(x=4 \cos ^{2} \theta, \quad y=2 \sin \theta\)
37. \(x=\sec \theta, \quad y=\tan \theta\)
38. \(x=\cos ^{2} \theta, \quad y=\cos \theta\)

In Exercises 39-44, determine the \(t\) intervals on which the curve is concave downward or concave upward.
39. \(x=3 t^{2}, \quad y=t^{3}-t\)
40. \(x=2+t^{2}, \quad y=t^{2}+t^{3}\)
41. \(x=2 t+\ln t, \quad y=2 t-\ln t\)
42. \(x=t^{2}, \quad y=\ln t\)
43. \(x=\sin t, \quad y=\cos t, \quad 0<t<\pi\)
44. \(x=4 \cos t, \quad y=2 \sin t, \quad 0<t<2 \pi\)

Arc Length In Exercises 45-48, write an integral that represents the arc length of the curve on the given interval. D not evaluate the integral.

Parametric Equations
45. \(x=3 t-t^{2}, \quad y=2 t^{3 / 2}\)
46. \(x=\ln t, \quad y=4 t-3\)
47. \(x=e^{t}+2, \quad y=2 t+1\)
48. \(x=t+\sin t, \quad y=t-\cos t\)

\section*{Interval}
\(1 \leq t \leq 3\)
\(1 \leq t \leq 5\)
\(-2 \leq t \leq 2\)
\(0 \leq t \leq \pi\)

Arc Length In Exercises 49-56, find the arc length of the curve on the given interval.
\begin{tabular}{lll} 
& \(\frac{\text { Parametric Equations }}{}\) & \\
49. \(x=3 t+5, \quad y=7-2 t\) & & \(\frac{\text { Interval }}{-1 \leq t \leq 3}\) \\
50. \(x=t^{2}, \quad y=2 t\) & & \(0 \leq t \leq 2\) \\
51. \(x=6 t^{2}, \quad y=2 t^{3}\) & & \(1 \leq t \leq 4\) \\
52. \(x=t^{2}+1, \quad y=4 t^{3}+3\) & & \(-1 \leq t \leq 0\) \\
53. \(x=e^{-t} \cos t, \quad y=e^{-t} \sin t\) & & \(0 \leq t \leq \frac{\pi}{2}\) \\
54. \(x=\arcsin t, \quad y=\ln \sqrt{1-t^{2}}\) & & \(0 \leq t \leq \frac{1}{2}\) \\
55. \(x=\sqrt{t}, \quad y=3 t-1\) & & \(0 \leq t \leq 1\) \\
56. \(x=t, \quad y=\frac{t^{5}}{10}+\frac{1}{6 t^{3}}\) & & \(1 \leq t \leq 2\)
\end{tabular}

Arc Length In Exercises 57-60, find the arc length of the curve on the interval \([0,2 \pi]\).
57. Hypocycloid perimeter: \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\)
58. Circle circumference: \(x=a \cos \theta, y=a \sin \theta\)
59. Cycloid arch: \(x=a(\theta-\sin \theta), y=a(1-\cos \theta)\)
60. Involute of a circle: \(x=\cos \theta+\theta \sin \theta, y=\sin \theta-\theta \cos \theta\)
61. Path of a Projectile The path of a projectile is modeled by the parametric equations
\(x=\left(90 \cos 30^{\circ}\right) t \quad\) and \(\quad y=\left(90 \sin 30^{\circ}\right) t-16 t^{2}\)
where \(x\) and \(y\) are measured in feet.
(a) Use a graphing utility to graph the path of the projectile.
(b) Use a graphing utility to approximate the range of the projectile.
(c) Use the integration capabilities of a graphing utility to approximate the arc length of the path. Compare this result with the range of the projectile.
62. Path of a Projectile If the projectile in Exercise 61 is launched at an angle \(\theta\) with the horizontal, its parametric equations are
\(x=(90 \cos \theta) t \quad\) and \(\quad y=(90 \sin \theta) t-16 t^{2}\).
Use a graphing utility to find the angle that maximizes the range of the projectile. What angle maximizes the arc length of the trajectory?
63. Folium of Descartes Consider the parametric equations \(x=\frac{4 t}{1+t^{3}} \quad\) and \(\quad y=\frac{4 t^{2}}{1+t^{3}}\).
(a) Use a graphing utility to graph the curve represented by the parametric equations.
(b) Use a graphing utility to find the points of horizontal tangency to the curve.
(c) Use the integration capabilities of a graphing utility to approximate the arc length of the closed loop. (Hint: Use symmetry and integrate over the interval \(0 \leq t \leq 1\).)
64. Witch of Agnesi Consider the parametric equations
\(x=4 \cot \theta \quad\) and \(\quad y=4 \sin ^{2} \theta, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\).
(a) Use a graphing utility to graph the curve represented by the parametric equations.
(b) Use a graphing utility to find the points of horizontal tangency to the curve.
(c) Use the integration capabilities of a graphing utility to approximate the arc length over the interval \(\pi / 4 \leq \theta \leq \pi / 2\).

\section*{65. Writing}
(a) Use a graphing utility to graph each set of parametric equations.
\[
\begin{array}{ll}
x=t-\sin t & x=2 t-\sin (2 t) \\
y=1-\cos t & y=1-\cos (2 t) \\
0 \leq t \leq 2 \pi & 0 \leq t \leq \pi
\end{array}
\]
(b) Compare the graphs of the two sets of parametric equations in part (a). If the curve represents the motion of a particle and \(t\) is time, what can you infer about the average speeds of the particle on the paths represented by the two sets of parametric equations?
(c) Without graphing the curve, determine the time required for a particle to traverse the same path as in parts (a) and (b) if the path is modeled by \(x=\frac{1}{2} t-\sin \left(\frac{1}{2} t\right) \quad\) and \(\quad y=1-\cos \left(\frac{1}{2} t\right)\).

\section*{66. Writing}
(a) Each set of parametric equations represents the motion of a particle. Use a graphing utility to graph each set.
First Particle
\(\frac{\text { Second Particle }}{x=4 \sin t}\)
\(x=3 \cos t\) \(y=3 \cos t\)
\(y=4 \sin t\)
\(0 \leq t \leq 2 \pi\)
(b) Determine the number of points of intersection.
(c) Will the particles ever be at the same place at the same time? If so, identify the point(s).
(d) Explain what happens if the motion of the second particle is represented by
\[
x=2+3 \sin t, \quad y=2-4 \cos t, \quad 0 \leq t \leq 2 \pi .
\]

Surface Area In Exercises 67-70, write an integral that represents the area of the surface generated by revolving the curve about the \(x\)-axis. Use a graphing utility to approximate the integral.
\begin{tabular}{|c|c|}
\hline Parametric Equations & Interval \\
\hline 67. \(x=3 t, \quad y=t+2\) & \(0 \leq t \leq 4\) \\
\hline 68. \(x=\frac{1}{4} t^{2}, \quad y=t+3\) & \(0 \leq t \leq 3\) \\
\hline 69. \(x=\cos ^{2} \theta, \quad y=\cos \theta\) & \(0 \leq \theta \leq \frac{\pi}{2}\) \\
\hline 70. \(x=\theta+\sin \theta, \quad y=\theta+\cos \theta\) & \(0 \leq \theta \leq \frac{\pi}{2}\) \\
\hline
\end{tabular}

Surface Area In Exercises 71-76, find the area of the surface generated by revolving the curve about each given axis.
71. \(x=2 t, \quad y=3 t, \quad 0 \leq t \leq 3\),
(a) \(x\)-axis
(b) \(y\)-axis
72. \(x=t, \quad y=4-2 t, \quad 0 \leq t \leq 2\),
(a) \(x\)-axis
(b) \(y\)-axis
73. \(x=5 \cos \theta, \quad y=5 \sin \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}, \quad y\)-axis
74. \(x=\frac{1}{3} t^{3}, \quad y=t+1, \quad 1 \leq t \leq 2, \quad y\)-axis
75. \(x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta, \quad 0 \leq \theta \leq \pi, \quad x\)-axis
76. \(x=a \cos \theta, y=b \sin \theta, \quad 0 \leq \theta \leq 2 \pi\),
(a) \(x\)-axis
(b) \(y\)-axis

\section*{WRITING ABOUT CONCEPTS}
77. Give the parametric form of the derivative.

\section*{In Exercises 78 and 79, mentally determine \(d y / d x\).}
78. \(x=t, \quad y=3\)
79. \(x=t, \quad y=6 t-5\)
80. Give the integral formula for arc length in parametric form.
81. Give the integral formulas for the areas of the surfaces of revolution formed when a smooth curve \(C\) is revolved about (a) the \(x\)-axis and (b) the \(y\)-axis.

\section*{CAPSTONE}
82. (a) Sketch a graph of a curve defined by the parametric equations \(x=g(t)\) and \(y=f(t)\) such that \(d x / d t>0\) and \(d y / d t<0\) for all real numbers \(t\).
(b) Sketch a graph of a curve defined by the parametric equations \(x=g(t)\) and \(y=f(t)\) such that \(d x / d t<0\) and \(d y / d t<0\) for all real numbers \(t\).
83. Use integration by substitution to show that if \(y\) is a continuous function of \(x\) on the interval \(a \leq x \leq b\), where \(x=f(t)\) and \(y=g(t)\), then
\(\int_{a}^{b} y d x=\int_{t_{1}}^{t_{2}} g(t) f^{\prime}(t) d t\)
where \(f\left(t_{1}\right)=a, f\left(t_{2}\right)=b\), and both \(g\) and \(f^{\prime}\) are continuous on \(\left[t_{1}, t_{2}\right]\).
84. Surface Area A portion of a sphere of radius \(r\) is removed by cutting out a circular cone with its vertex at the center of the sphere. The vertex of the cone forms an angle of \(2 \theta\). Find the surface area removed from the sphere.

Area In Exercises 85 and 86, find the area of the region. (Use the result of Exercise 83.)
85. \(x=2 \sin ^{2} \theta\)
\(y=2 \sin ^{2} \theta \tan \theta\)
\(0 \leq \theta<\frac{\pi}{2}\)
86. \(x=2 \cot \theta\)
\(y=2 \sin ^{2} \theta\)
\(0<\theta<\pi\)



CAS Areas of Simple Closed Curves In Exercises 87-92, use a computer algebra system and the result of Exercise 83 to match the closed curve with its area. (These exercises were based on The Srveyors Area Formula,"by Brt Baden, College Mathematics Journal, Sptember 1986, pp. 335-337, by permission of the author.)
(a) \(\frac{8}{3} a b\)
(b) \(\frac{3}{8} \pi a^{2}\)
(c) \(2 \pi a^{2}\)
(d) \(\pi a b\)
(e) \(2 \pi a b\)
(f) \(6 \pi a^{2}\)
87. Ellipse: \((0 \leq t \leq 2 \pi)\)
\(x=b \cos t\)
\(y=a \sin t\)

89. Cardioid: \((0 \leq t \leq 2 \pi)\)
\(x=2 a \cos t-a \cos 2 t\)
\(y=2 a \sin t-a \sin 2 t\)

88. Astroid: \((0 \leq t \leq 2 \pi)\)
\[
x=a \cos ^{3} t
\]
\[
y=a \sin ^{3} t
\]

90. Deltoid: \((0 \leq t \leq 2 \pi)\)
\(x=2 a \cos t+a \cos 2 t\)
\(y=2 a \sin t-a \sin 2 t\)

91. Hourglass: \((0 \leq t \leq 2 \pi)\)
\(x=a \sin 2 t\)
\(y=b \sin t\)

92. Teardrop: \((0 \leq t \leq 2 \pi)\)
\(x=2 a \cos t-a \sin 2 t\)
\(y=b \sin t\)


Centroid In Exercises 93 and 94, find the centroid of the region bounded by the graph of the parametric equations and the coordinate axes. (Use the result of Exercise 83.)
93. \(x=\sqrt{t}, \quad y=4-t\)
94. \(x=\sqrt{4-t}, \quad y=\sqrt{t}\)

Volume In Exercises 95 and 96, find the volume of the solid formed by revolving the region bounded by the graphs of the given equations about the \(x\)-axis. (Use the result of Exercise 83.)
95. \(x=6 \cos \theta, \quad y=6 \sin \theta\)
96. \(x=\cos \theta, \quad y=3 \sin \theta, \quad a>0\)
97. Cycloid Use the parametric equations
\(x=a(\theta-\sin \theta) \quad\) and \(\quad y=a(1-\cos \theta), a>0\)
to answer the following.
(a) Find \(d y / d x\) and \(d^{2} y / d x^{2}\).
(b) Find the equation of the tangent line at the point where \(\theta=\pi / 6\).
(c) Find all points (if any) of horizontal tangency.
(d) Determine where the curve is concave upward or concave downward.
(e) Find the length of one arc of the curve.
98. Use the parametric equations
\(x=t^{2} \sqrt{3} \quad\) and \(\quad y=3 t-\frac{1}{3} t^{3}\)
to answer the following.
(a) Use a graphing utility to graph the curve on the interval \(-3 \leq t \leq 3\).
(b) Find \(d y / d x\) and \(d^{2} y / d x^{2}\).
(c) Find the equation of the tangent line at the point \(\left(\sqrt{3}, \frac{8}{3}\right)\).
(d) Find the length of the curve.
(e) Find the surface area generated by revolving the curve about the \(x\)-axis.
99. Involute of a Circle The involute of a circle is described by the endpoint \(P\) of a string that is held taut as it is unwound from a spool that does not turn (see figure). Show that a parametric representation of the involute is
\(x=r(\cos \theta+\theta \sin \theta) \quad\) and \(\quad y=r(\sin \theta-\theta \cos \theta)\).


Figure for 99


Figure for 100
100. Involute of a Circle The figure shows a piece of string tied to a circle with a radius of one unit. The string is just long enough to reach the opposite side of the circle. Find the area that is covered when the string is unwound counterclockwise.
101. (a) Use a graphing utility to graph the curve given by
\[
x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}, \quad-20 \leq t \leq 20 .
\]
(b) Describe the graph and confirm your result analytically.
(c) Discuss the speed at which the curve is traced as \(t\) increases from - 20 to 20.
102. Tractrix A person moves from the origin along the positive \(y\)-axis pulling a weight at the end of a 12 -meter rope. Initially, the weight is located at the point \((12,0)\).
(a) In Exercise 96 of Section 8.7, it was shown that the path of the weight is modeled by the rectangular equation
\(y=-12 \ln \left(\frac{12-\sqrt{144-x^{2}}}{x}\right)-\sqrt{144-x^{2}}\)
where \(0<x \leq 12\). Use a graphing utility to graph the rectangular equation.
(b) Use a graphing utility to graph the parametric equations
\(x=12 \operatorname{sech} \frac{t}{12} \quad\) and \(\quad y=t-12 \tanh \frac{t}{12}\)
where \(t \geq 0\). How does this graph compare with the graph in part (a)? Which graph (if either) do you think is a better representation of the path?
(c) Use the parametric equations for the tractrix to verify that the distance from the \(y\)-intercept of the tangent line to the point of tangency is independent of the location of the point of tangency.

True or False? In Exercises 103 and 104, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
103. If \(x=f(t)\) and \(y=g(t)\), then \(d^{2} y / d x^{2}=g^{\prime \prime}(t) / f^{\prime \prime}(t)\).
104. The curve given by \(x=t^{3}, y=t^{2}\) has a horizontal tangent at the origin because \(d y / d t=0\) when \(t=0\).
105. Recording Tape Another method you could use to solve Example 5 is to find the area of the reel with an inner radius of 0.5 inch and an outer radius of 2 inches, and then use the formula for the area of the rectangle where the width is 0.001 inch. Use this method to determine how much tape is required to fill the reel.

\subsection*{10.4 Polar Coordinates and Polar Graphs}


Polar coordinates
Figure 10.36
- Understand the polar coordinate system.
- Rewrite rectangular coordinates and equations in polar form and vice versa.
- Sketch the graph of an equation given in polar form.
- Find the slope of a tangent line to a polar graph.
- Identify several types of special polar graphs.

\section*{Polar Coordinates}

So far, you have been representing graphs as collections of points \((x, y)\) on the rectangular coordinate system. The corresponding equations for these graphs have been in either rectangular or parametric form. In this section you will study a coordinate system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point \(O\), called the pole (or origin), and construct from \(O\) an initial ray called the polar axis, as shown in Figure 10.36. Then each point \(P\) in the plane can be assigned polar coordinates \((r, \theta)\), as follows.
\(r=\) directed distance from \(O\) to \(P\)
\(\theta=\) directed angle, counterclockwise from polar axis to segment \(\overline{O P}\)
Figure 10.37 shows three points on the polar coordinate system. Notice that in this system, it is convenient to locate points with respect to a grid of concentric circles intersected by radial lines through the pole.

(a)

Figure 10.37

With rectangular coordinates, each point \((x, y)\) has a unique representation. This is not true with polar coordinates. For instance, the coordinates \((r, \theta)\) and \((r, 2 \pi+\theta)\) represent the same point [see parts (b) and (c) in Figure 10.37]. Also, because \(r\) is a directed distance, the coordinates \((r, \theta)\) and \((-r, \theta+\pi)\) represent the same point. In general, the point \((r, \theta)\) can be written as
\[
(r, \theta)=(r, \theta+2 n \pi)
\]
or
\[
(r, \theta)=(-r, \theta+(2 n+1) \pi)
\]
where \(n\) is any integer. Moreover, the pole is represented by \((0, \theta)\), where \(\theta\) is any angle.


Relating polar and rectangular coordinates
Figure 10.38


To convert from polar to rectangular coordinates, let \(x=r \cos \theta\) and \(y=r \sin \theta\). Figure 10.39


To convert from rectangular to polar coordinates, let \(\tan \theta=y / x\) and \(r=\sqrt{x^{2}+y^{2}}\). Figure 10.40

\section*{Coordinate Conversion}

To establish the relationship between polar and rectangular coordinates, let the polar axis coincide with the positive \(x\)-axis and the pole with the origin, as shown in Figure 10.38. Because \((x, y)\) lies on a circle of radius \(r\), it follows that \(r^{2}=x^{2}+y^{2}\). Moreover, for \(r>0\), the definitions of the trigonometric functions imply that
\[
\tan \theta=\frac{y}{x}, \quad \cos \theta=\frac{x}{r}, \quad \text { and } \quad \sin \theta=\frac{y}{r}
\]

If \(r<0\), you can show that the same relationships hold.

\section*{THEOREM 10.10 COORDINATE CONVERSION}

The polar coordinates \((r, \theta)\) of a point are related to the rectangular coordinates \((x, y)\) of the point as follows.
1. \(x=r \cos \theta\)
2. \(\tan \theta=\frac{y}{x}\)
\(y=r \sin \theta\)
\[
r^{2}=x^{2}+y^{2}
\]

\section*{EXAMPLE 1 Polar-to-Rectangular Conversion}
a. For the point \((r, \theta)=(2, \pi)\),
\[
x=r \cos \theta=2 \cos \pi=-2 \quad \text { and } \quad y=r \sin \theta=2 \sin \pi=0
\]

So, the rectangular coordinates are \((x, y)=(-2,0)\).
b. For the point \((r, \theta)=(\sqrt{3}, \pi / 6)\),
\[
x=\sqrt{3} \cos \frac{\pi}{6}=\frac{3}{2} \quad \text { and } \quad y=\sqrt{3} \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2} .
\]

So, the rectangular coordinates are \((x, y)=(3 / 2, \sqrt{3} / 2)\).
See Figure 10.39.

\section*{EXAMPLE 2 Rectangular-to-Polar Conversion}
a. For the second quadrant point \((x, y)=(-1,1)\),
\[
\tan \theta=\frac{y}{x}=-1 \quad \square \quad \theta=\frac{3 \pi}{4} .
\]

Because \(\theta\) was chosen to be in the same quadrant as \((x, y)\), you should use a positive value of \(r\).
\[
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
& =\sqrt{(-1)^{2}+(1)^{2}} \\
& =\sqrt{2}
\end{aligned}
\]

This implies that one set of polar coordinates is \((r, \theta)=(\sqrt{2}, 3 \pi / 4)\).
b. Because the point \((x, y)=(0,2)\) lies on the positive \(y\)-axis, choose \(\theta=\pi / 2\) and \(r=2\), and one set of polar coordinates is \((r, \theta)=(2, \pi / 2)\).
See Figure 10.40.

(a) Circle: \(r=2\)

(b) Radial line: \(\theta=\frac{\pi}{3}\)

(c) Vertical line: \(r=\sec \theta\)

Figure 10.41


Spiral of Archimedes
Figure 10.42

\section*{Polar Graphs}

One way to sketch the graph of a polar equation is to convert to rectangular coordinates and then sketch the graph of the rectangular equation.

\section*{EXAMPLE 3 Graphing Polar Equations}

Describe the graph of each polar equation. Confirm each description by converting to a rectangular equation.
a. \(r=2\)
b. \(\theta=\frac{\pi}{3}\)
c. \(r=\sec \theta\)

\section*{Solution}
a. The graph of the polar equation \(r=2\) consists of all points that are two units from the pole. In other words, this graph is a circle centered at the origin with a radius of 2. [See Figure 10.41(a).] You can confirm this by using the relationship \(r^{2}=x^{2}+y^{2}\) to obtain the rectangular equation
\[
x^{2}+y^{2}=2^{2} . \quad \text { Rectangular equation }
\]
b. The graph of the polar equation \(\theta=\pi / 3\) consists of all points on the line that makes an angle of \(\pi / 3\) with the positive \(x\)-axis. [See Figure 10.41(b).] You can confirm this by using the relationship \(\tan \theta=y / x\) to obtain the rectangular equation
\[
y=\sqrt{3} x . \quad \text { Rectangular equation }
\]
c. The graph of the polar equation \(r=\sec \theta\) is not evident by simple inspection, so you can begin by converting to rectangular form using the relationship \(r \cos \theta=x\).
\[
\begin{aligned}
r & =\sec \theta & & \text { Polar equation } \\
r \cos \theta & =1 & & \\
x & =1 & & \text { Rectangular equation }
\end{aligned}
\]

From the rectangular equation, you can see that the graph is a vertical line. [See Figure 10.41(c).]

TECHNOLOGY Sketching the graphs of complicated polar equations by hand can be tedious. With technology, however, the task is not difficult. If your graphing utility has a polar mode, use it to graph the equations in the exercise set. If your graphing utility doesn't have a polar mode, but does have a parametric mode, you can graph \(r=f(\theta)\) by writing the equation as
\[
\begin{aligned}
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned}
\]

For instance, the graph of \(r=\frac{1}{2} \theta\) shown in Figure 10.42 was produced with a graphing calculator in parametric mode. This equation was graphed using the parametric equations
\[
\begin{aligned}
& x=\frac{1}{2} \theta \cos \theta \\
& y=\frac{1}{2} \theta \sin \theta
\end{aligned}
\]
with the values of \(\theta\) varying from \(-4 \pi\) to \(4 \pi\). This curve is of the form \(r=a \theta\) and is called a spiral of Archimedes.

\section*{EXAMPLE 4 Sketching a Polar Graph}

NOTE One way to sketch the graph of \(r=2 \cos 3 \theta\) by hand is to make a table of values.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(\theta\) & 0 & \(\frac{\pi}{6}\) & \(\frac{\pi}{3}\) & \(\frac{\pi}{2}\) & \(\frac{2 \pi}{3}\) \\
\hline\(r\) & 2 & 0 & -2 & 0 & 2 \\
\hline
\end{tabular}

By extending the table and plotting the points, you will obtain the curve shown in Example 4.

Sketch the graph of \(r=2 \cos 3 \theta\).
Solution Begin by writing the polar equation in parametric form.
\[
x=2 \cos 3 \theta \cos \theta \quad \text { and } \quad y=2 \cos 3 \theta \sin \theta
\]

After some experimentation, you will find that the entire curve, which is called a rose curve, can be sketched by letting \(\theta\) vary from 0 to \(\pi\), as shown in Figure 10.43. If you try duplicating this graph with a graphing utility, you will find that by letting \(\theta\) vary from 0 to \(2 \pi\), you will actually trace the entire curve twice.

\(0 \leq \theta \leq \frac{\pi}{6}\)

\(0 \leq \theta \leq \frac{2 \pi}{3}\)
Figure 10.43

\(0 \leq \theta \leq \frac{\pi}{3}\)

\(0 \leq \theta \leq \frac{5 \pi}{6}\)

\(0 \leq \theta \leq \frac{\pi}{2}\)

\[
0 \leq \theta \leq \pi
\]
\[
0-0-1
\]

Use a graphing utility to experiment with other rose curves (they are of the form \(r=a \cos n \theta\) or \(r=a \sin n \theta\) ). For instance, Figure 10.44 shows the graphs of two other rose curves.


Generated by Mathematica
Rose curves
Figure 10.44


Tangent line to polar curve
Figure 10.45


Horizontal and vertical tangent lines of \(r=\sin \theta\)
Figure 10.46

\section*{Slope and Tangent Lines}

To find the slope of a tangent line to a polar graph, consider a differentiable function given by \(r=f(\theta)\). To find the slope in polar form, use the parametric equations
\[
x=r \cos \theta=f(\theta) \cos \theta \quad \text { and } \quad y=r \sin \theta=f(\theta) \sin \theta
\]

Using the parametric form of \(d y / d x\) given in Theorem 10.7, you have
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}
\end{aligned}
\]
which establishes the following theorem.

\section*{THEOREM 10.11 SLOPE IN POLAR FORM}

If \(f\) is a differentiable function of \(\theta\), then the slope of the tangent line to the graph of \(r=f(\theta)\) at the point \((r, \theta)\) is
\[
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}
\]
provided that \(d x / d \theta \neq 0\) at \((r, \theta)\). (See Figure 10.45.)

From Theorem 10.11, you can make the following observations.
1. Solutions to \(\frac{d y}{d \theta}=0\) yield horizontal tangents, provided that \(\frac{d x}{d \theta} \neq 0\).
2. Solutions to \(\frac{d x}{d \theta}=0\) yield vertical tangents, provided that \(\frac{d y}{d \theta} \neq 0\).

If \(d y / d \theta\) and \(d x / d \theta\) are simultaneously 0 , no conclusion can be drawn about tangent lines.

\section*{EXAMPLE 5 Finding Horizontal and Vertical Tangent Lines}

Find the horizontal and vertical tangent lines of \(r=\sin \theta, 0 \leq \theta \leq \pi\).
Solution Begin by writing the equation in parametric form.
\[
x=r \cos \theta=\sin \theta \cos \theta
\]
and
\[
y=r \sin \theta=\sin \theta \sin \theta=\sin ^{2} \theta
\]

Next, differentiate \(x\) and \(y\) with respect to \(\theta\) and set each derivative equal to 0 .
\[
\begin{aligned}
& \frac{d x}{d \theta}=\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta=0 \quad \square \theta \theta=\frac{\pi}{4}, \frac{3 \pi}{4} \\
& \frac{d y}{d \theta}=2 \sin \theta \cos \theta=\sin 2 \theta=0 \quad \square \theta=0, \frac{\pi}{2}
\end{aligned}
\]

So, the graph has vertical tangent lines at \((\sqrt{2} / 2, \pi / 4)\) and \((\sqrt{2} / 2,3 \pi / 4)\), and it has horizontal tangent lines at \((0,0)\) and \((1, \pi / 2)\), as shown in Figure 10.46.


Horizontal and vertical tangent lines of \(r=2(1-\cos \theta)\)
Figure 10.47


This rose curve has three tangent lines ( \(\theta=\pi / 6, \theta=\pi / 2\), and \(\theta=5 \pi / 6\) ) at the pole.
Figure 10.48

\section*{EXAMPLE 6 Finding Horizontal and Vertical Tangent Lines}

Find the horizontal and vertical tangents to the graph of \(r=2(1-\cos \theta)\).
Solution Using \(y=r \sin \theta\), differentiate and set \(d y / d \theta\) equal to 0 .
\[
\begin{aligned}
y & =r \sin \theta=2(1-\cos \theta) \sin \theta \\
\frac{d y}{d \theta} & =2[(1-\cos \theta)(\cos \theta)+\sin \theta(\sin \theta)] \\
& =-2(2 \cos \theta+1)(\cos \theta-1)=0
\end{aligned}
\]

So, \(\cos \theta=-\frac{1}{2}\) and \(\cos \theta=1\), and you can conclude that \(d y / d \theta=0\) when \(\theta=2 \pi / 3,4 \pi / 3\), and 0 . Similarly, using \(x=r \cos \theta\), you have
\[
\begin{aligned}
x & =r \cos \theta=2 \cos \theta-2 \cos ^{2} \theta \\
\frac{d x}{d \theta} & =-2 \sin \theta+4 \cos \theta \sin \theta=2 \sin \theta(2 \cos \theta-1)=0
\end{aligned}
\]

So, \(\sin \theta=0\) or \(\cos \theta=\frac{1}{2}\), and you can conclude that \(d x / d \theta=0\) when \(\theta=0\), \(\pi, \pi / 3\), and \(5 \pi / 3\). From these results, and from the graph shown in Figure 10.47, you can conclude that the graph has horizontal tangents at \((3,2 \pi / 3)\) and \((3,4 \pi / 3)\), and has vertical tangents at \((1, \pi / 3),(1,5 \pi / 3)\), and \((4, \pi)\). This graph is called a cardioid. Note that both derivatives \((d y / d \theta\) and \(d x / d \theta)\) are 0 when \(\theta=0\). Using this information alone, you don't know whether the graph has a horizontal or vertical tangent line at the pole. From Figure 10.47, however, you can see that the graph has a cusp at the pole.

Theorem 10.11 has an important consequence. Suppose the graph of \(r=f(\theta)\) passes through the pole when \(\theta=\alpha\) and \(f^{\prime}(\alpha) \neq 0\). Then the formula for \(d y / d x\) simplifies as follows.
\[
\frac{d y}{d x}=\frac{f^{\prime}(\alpha) \sin \alpha+f(\alpha) \cos \alpha}{f^{\prime}(\alpha) \cos \alpha-f(\alpha) \sin \alpha}=\frac{f^{\prime}(\alpha) \sin \alpha+0}{f^{\prime}(\alpha) \cos \alpha-0}=\frac{\sin \alpha}{\cos \alpha}=\tan \alpha
\]

So, the line \(\theta=\alpha\) is tangent to the graph at the pole, \((0, \alpha)\).

\section*{THEOREM 10.12 TANGENT LINES AT THE POLE}

If \(f(\alpha)=0\) and \(f^{\prime}(\alpha) \neq 0\), then the line \(\theta=\alpha\) is tangent at the pole to the graph of \(r=f(\theta)\).

Theorem 10.12 is useful because it states that the zeros of \(r=f(\theta)\) can be used to find the tangent lines at the pole. Note that because a polar curve can cross the pole more than once, it can have more than one tangent line at the pole. For example, the rose curve
\[
f(\theta)=2 \cos 3 \theta
\]
has three tangent lines at the pole, as shown in Figure 10.48. For this curve, \(f(\theta)=2 \cos 3 \theta\) is 0 when \(\theta\) is \(\pi / 6, \pi / 2\), and \(5 \pi / 6\). Moreover, the derivative \(f^{\prime}(\theta)=-6 \sin 3 \theta\) is not 0 for these values of \(\theta\).

Limaçons
\(r=a \pm b \cos \theta\)
\(r=a \pm b \sin \theta\)
\((a>0, b>0)\)

\section*{Special Polar Graphs}

Several important types of graphs have equations that are simpler in polar form than in rectangular form. For example, the polar equation of a circle having a radius of \(a\) and centered at the origin is simply \(r=a\). Later in the text you will come to appreciate this benefit. For now, several other types of graphs that have simpler equations in polar form are shown below. (Conics are considered in Section 10.6.)



Limaçon with inner loop

\(\frac{a}{b}=1\)
Cardioid (heart-shaped)

\(1<\frac{a}{b}<2\)
Dimpled limaçon

\(\frac{a}{b} \geq 2\)
Convex limaçon

\(r=a \cos n \theta\)
Rose curve

\(r=a \cos n \theta\)
Rose curve

\(r=a \sin n \theta\)
Rose curve
\(r=a \sin \theta\)
Circle

\(r^{2}=a^{2} \sin 2 \theta\)
Lemniscate


\[
\begin{aligned}
& r=a \sin n \theta \\
& \text { Rose curve }
\end{aligned}
\]

Circles and Lemniscates

\(r=a \cos \theta\)
Circle

\(r^{2}=a^{2} \cos 2 \theta\)
Lemniscate


TECHNOLOGY The rose curves described above are of the form \(r=a \cos n \theta\) or \(r=a \sin n \theta\), where \(n\) is a positive integer that is greater than or equal to 2 . Use a graphing utility to graph \(r=a \cos n \theta\) or \(r=a \sin n \theta\) for some noninteger values of \(n\). Are these graphs also rose curves? For example, try sketching the graph of \(r=\cos \frac{2}{3} \theta, 0 \leq \theta \leq 6 \pi\).

FOR FURTHER INFORMATION For more information on rose curves and related curves, see the article "A Rose is a Rose . . ." by Peter M. Maurer in The American Mathematical Monthly. The computer-generated graph at the left is the result of an algorithm that Maurer calls "The Rose." To view this article, go to the website www.matharticles.com.

\subsection*{10.4 Exercises}

In Exercises 1-6, plot the point in polar coordinates and find the corresponding rectangular coordinates for the point.
1. \((8, \pi / 2)\)
2. \((-2,5 \pi / 3)\)
3. \((-4,-3 \pi / 4)\)
4. \((0,-7 \pi / 6)\)
5. \((\sqrt{2}, 2.36)\)
6. \((-3,-1.57)\)

In Exercises 7-10, use the angle feature of a graphing utility to find the rectangular coordinates for the point given in polar coordinates. Plot the point.
7. \((7,5 \pi / 4)\)
8. \((-2,11 \pi / 6)\)
9. \((-4.5,3.5)\)
10. \((9.25,1.2)\)

In Exercises 11-16, the rectangular coordinates of a point are given. Plot the point and find two sets of polar coordinates for the point for \(0 \leq \theta<\mathbf{2 \pi}\).
11. \((2,2)\)
12. \((0,-6)\)
13. \((-3,4)\)
14. \((4,-2)\)
15. \((-1,-\sqrt{3})\)
16. \((3,-\sqrt{3})\)

In Exercises 17-20, use the angle feature of a graphing utility to find one set of polar coordinates for the point given in rectangular coordinates.
17. \((3,-2)\)
18. \((3 \sqrt{2}, 3 \sqrt{2})\)
19. \(\left(\frac{7}{4}, \frac{5}{2}\right)\)
20. \((0,-5)\)
21. Plot the point \((4,3.5)\) if the point is given in (a) rectangular coordinates and (b) polar coordinates.
22. Graphical Reasoning
(a) Set the window format of a graphing utility to rectangular coordinates and locate the cursor at any position off the axes. Move the cursor horizontally and vertically. Describe any changes in the displayed coordinates of the points.
(b) Set the window format of a graphing utility to polar coordinates and locate the cursor at any position off the axes. Move the cursor horizontally and vertically. Describe any changes in the displayed coordinates of the points.
(c) Why are the results in parts (a) and (b) different?

In Exercises 23-26, match the graph with its polar equation. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

23. \(r=2 \sin \theta\)
24. \(r=4 \cos 2 \theta\)
25. \(r=3(1+\cos \theta)\)
26. \(r=2 \sec \theta\)

In Exercises 27-36, convert the rectangular equation to polar form and sketch its graph.
27. \(x^{2}+y^{2}=9\)
28. \(x^{2}-y^{2}=9\)
29. \(x^{2}+y^{2}=a^{2}\)
30. \(x^{2}+y^{2}-2 a x=0\)
31. \(y=8\)
32. \(x=12\)
33. \(3 x-y+2=0\)
34. \(x y=4\)
35. \(y^{2}=9 x\)
36. \(\left(x^{2}+y^{2}\right)^{2}-9\left(x^{2}-y^{2}\right)=0\)

In Exercises 37-46, convert the polar equation to rectangular form and sketch its graph.
37. \(r=4\)
38. \(r=-5\)
39. \(r=3 \sin \theta\)
40. \(r=5 \cos \theta\)
41. \(r=\theta\)
42. \(\theta=\frac{5 \pi}{6}\)
43. \(r=3 \sec \theta\)
44. \(r=2 \csc \theta\)
45. \(r=\sec \theta \tan \theta\)
46. \(r=\cot \theta \csc \theta\)

In Exercises 47-56, use a graphing utility to graph the polar equation. Find an interval for \(\boldsymbol{\theta}\) over which the graph is traced only once.
47. \(r=2-5 \cos \theta\)
48. \(r=3(1-4 \cos \theta)\)
49. \(r=2+\sin \theta\)
50. \(r=4+3 \cos \theta\)
51. \(r=\frac{2}{1+\cos \theta}\)
52. \(r=\frac{2}{4-3 \sin \theta}\)
53. \(r=2 \cos \left(\frac{3 \theta}{2}\right)\)
54. \(r=3 \sin \left(\frac{5 \theta}{2}\right)\)
55. \(r^{2}=4 \sin 2 \theta\)
56. \(r^{2}=\frac{1}{\theta}\)
57. Convert the equation
\[
r=2(h \cos \theta+k \sin \theta)
\]
to rectangular form and verify that it is the equation of a circle. Find the radius and the rectangular coordinates of the center of the circle.

\section*{58. Distance Formula}
(a) Verify that the Distance Formula for the distance between the two points \(\left(r_{1}, \theta_{1}\right)\) and \(\left(r_{2}, \theta_{2}\right)\) in polar coordinates is
\[
d=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}
\]
(b) Describe the positions of the points relative to each other for \(\theta_{1}=\theta_{2}\). Simplify the Distance Formula for this case. Is the simplification what you expected? Explain.
(c) Simplify the Distance Formula for \(\theta_{1}-\theta_{2}=90^{\circ}\). Is the simplification what you expected? Explain.
(d) Choose two points on the polar coordinate system and find the distance between them. Then choose different polar representations of the same two points and apply the Distance Formula again. Discuss the result.

In Exercises 59-62, use the result of Exercise 58 to approximate the distance between the two points in polar coordinates.
59. \(\left(1, \frac{5 \pi}{6}\right),\left(4, \frac{\pi}{3}\right)\)
60. \(\left(8, \frac{7 \pi}{4}\right),(5, \pi)\)
61. \((2,0.5),(7,1.2)\)
62. \((4,2.5),(12,1)\)

In Exercises 63 and 64, find \(d y / d x\) and the slopes of the tangent lines shown on the graph of the polar equation.
63. \(r=2+3 \sin \theta\)

64. \(r=2(1-\sin \theta)\)


In Exercises 65-68, use a graphing utility to (a) graph the polar equation, (b) draw the tangent line at the given value of \(\theta\), and (c) find \(d y / d x\) at the given value of \(\theta\). (Hint: Let the increment between the values of \(\theta\) equal \(\pi / 24\).)
65. \(r=3(1-\cos \theta), \theta=\frac{\pi}{2}\)
66. \(r=3-2 \cos \theta, \theta=0\)
67. \(r=3 \sin \theta, \theta=\frac{\pi}{3}\)
68. \(r=4, \theta=\frac{\pi}{4}\)

In Exercises 69 and 70, find the points of horizontal and vertical tangency (if any) to the polar curve.
69. \(r=1-\sin \theta\)
70. \(r=a \sin \theta\)

In Exercises 71 and 72, find the points of horizontal tangency (if any) to the polar curve.
71. \(r=2 \csc \theta+3\)
72. \(r=a \sin \theta \cos ^{2} \theta\)

In Exercises 73-76, use a graphing utility to graph the polar equation and find all points of horizontal tangency.
73. \(r=4 \sin \theta \cos ^{2} \theta\)
74. \(r=3 \cos 2 \theta \sec \theta\)
75. \(r=2 \csc \theta+5\)
76. \(r=2 \cos (3 \theta-2)\)

In Exercises 77-84, sketch a graph of the polar equation and find the tangents at the pole.
77. \(r=5 \sin \theta\)
78. \(r=5 \cos \theta\)
79. \(r=2(1-\sin \theta)\)
80. \(r=3(1-\cos \theta)\)
81. \(r=4 \cos 3 \theta\)
82. \(r=-\sin 5 \theta\)
83. \(r=3 \sin 2 \theta\)
84. \(r=3 \cos 2 \theta\)

In Exercises 85-96, sketch a graph of the polar equation.
85. \(r=8\)
86. \(r=1\)
87. \(r=4(1+\cos \theta)\)
88. \(r=1+\sin \theta\)
89. \(r=3-2 \cos \theta\)
90. \(r=5-4 \sin \theta\)
91. \(r=3 \csc \theta\)
92. \(r=\frac{6}{2 \sin \theta-3 \cos \theta}\)
93. \(r=2 \theta\)
94. \(r=\frac{1}{\theta}\)
95. \(r^{2}=4 \cos 2 \theta\)
96. \(r^{2}=4 \sin \theta\)

In Exercises 97-100, use a graphing utility to graph the equation and show that the given line is an asymptote of the graph.
\begin{tabular}{|c|c|c|}
\hline Name of Graph & Polar Equation & Asymptote \\
\hline 97. Conchoid & \(r=2-\sec \theta\) & \(x=-1\) \\
\hline 98. Conchoid & \(r=2+\csc \theta\) & \(y=1\) \\
\hline 99. Hyperbolic spiral & \(r=2 / \theta\) & \(y=2\) \\
\hline 100. Strophoid & \(r=2 \cos 2 \theta \sec \theta\) & \(x=-2\) \\
\hline
\end{tabular}

\section*{WRITING ABOUT CONCEPTS}
101. Describe the differences between the rectangular coordinate system and the polar coordinate system.
102. Give the equations for the coordinate conversion from rectangular to polar coordinates and vice versa.
103. How are the slopes of tangent lines determined in polar coordinates? What are tangent lines at the pole and how are they determined?

\section*{CAPSTONE}
104. Describe the graphs of the following polar equations.
(a) \(r=7\)
(b) \(r^{2}=7\)
(c) \(r=\frac{7}{\cos \theta}\)
(d) \(r=\frac{7}{\sin \theta}\)
(e) \(r=7 \cos \theta\)
(f) \(r=7 \sin \theta\)
105. Sketch the graph of \(r=4 \sin \theta\) over each interval.
(a) \(0 \leq \theta \leq \frac{\pi}{2}\)
(b) \(\frac{\pi}{2} \leq \theta \leq \pi\)
(c) \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)
106. Think About It Use a graphing utility to graph the polar equation \(r=6[1+\cos (\theta-\phi)]\) for (a) \(\phi=0\), (b) \(\phi=\pi / 4\), and (c) \(\phi=\pi / 2\). Use the graphs to describe the effect of the angle \(\phi\). Write the equation as a function of \(\sin \theta\) for part (c).
107. Verify that if the curve whose polar equation is \(r=f(\theta)\) is rotated about the pole through an angle \(\phi\), then an equation for the rotated curve is \(r=f(\theta-\phi)\).
108. The polar form of an equation of a curve is \(r=f(\sin \theta)\). Show that the form becomes
(a) \(r=f(-\cos \theta)\) if the curve is rotated counterclockwise \(\pi / 2\) radians about the pole.
(b) \(r=f(-\sin \theta)\) if the curve is rotated counterclockwise \(\pi\) radians about the pole.
(c) \(r=f(\cos \theta)\) if the curve is rotated counterclockwise \(3 \pi / 2\) radians about the pole.

In Exercises 109-112, use the results of Exercises 107 and 108.
109. Write an equation for the limaçon \(r=2-\sin \theta\) after it has been rotated by the given amount. Use a graphing utility to graph the rotated limaçon.
(a) \(\frac{\pi}{4}\)
(b) \(\frac{\pi}{2}\)
(c) \(\pi\)
(d) \(\frac{3 \pi}{2}\)
110. Write an equation for the rose curve \(r=2 \sin 2 \theta\) after it has been rotated by the given amount. Verify the results by using a graphing utility to graph the rotated rose curve.
(a) \(\frac{\pi}{6}\)
(b) \(\frac{\pi}{2}\)
(c) \(\frac{2 \pi}{3}\)
(d) \(\pi\)
111. Sketch the graph of each equation.
(a) \(r=1-\sin \theta\)
(b) \(r=1-\sin \left(\theta-\frac{\pi}{4}\right)\)
112. Prove that the tangent of the angle \(\psi(0 \leq \psi \leq \pi / 2)\) between the radial line and the tangent line at the point \((r, \theta)\) on the graph of \(r=f(\theta)\) (see figure) is given by \(\tan \psi=|r /(d r / d \theta)|\).


In Exercises 113-118, use the result of Exercise 112 to find the angle \(\psi\) between the radial and tangent lines to the graph for the indicated value of \(\boldsymbol{\theta}\). Use a graphing utility to graph the polar equation, the radial line, and the tangent line for the indicated value of \(\boldsymbol{\theta}\). Identify the angle \(\psi\).
\begin{tabular}{|c|c|}
\hline Polar Equation & Value of \(\theta\) \\
\hline 113. \(r=2(1-\cos \theta)\) & \(\theta=\pi\) \\
\hline 114. \(r=3(1-\cos \theta)\) & \(\theta=3 \pi / 4\) \\
\hline 115. \(r=2 \cos 3 \theta\) & \(\theta=\pi / 4\) \\
\hline 116. \(r=4 \sin 2 \theta\) & \(\theta=\pi / 6\) \\
\hline \[
\text { 117. } r=\frac{6}{1-}
\] & \(\theta=2 \pi / 3\) \\
\hline 118. \(r=5\) & \(\theta=\pi / 6\) \\
\hline
\end{tabular}

True or False? In Exercises 119-122, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
119. If \(\left(r_{1}, \theta_{1}\right)\) and \(\left(r_{2}, \theta_{2}\right)\) represent the same point on the polar coordinate system, then \(\left|r_{1}\right|=\left|r_{2}\right|\).
120. If \(\left(r, \theta_{1}\right)\) and \(\left(r, \theta_{2}\right)\) represent the same point on the polar coordinate system, then \(\theta_{1}=\theta_{2}+2 \pi n\) for some integer \(n\).
121. If \(x>0\), then the point \((x, y)\) on the rectangular coordinate system can be represented by \((r, \theta)\) on the polar coordinate system, where \(r=\sqrt{x^{2}+y^{2}}\) and \(\theta=\arctan (y / x)\).
122. The polar equations \(r=\sin 2 \theta, \quad r=-\sin 2 \theta, \quad\) and \(r=\sin (-2 \theta)\) all have the same graph.

\section*{SECTION PROJECT}

\section*{Anamorphic Art}

Anamorphic art appears distorted, but when the art is viewed from a particular point or is viewed with a device such as a mirror, it appears to be normal. Use the anamorphic transformations \(r=y+16 \quad\) and \(\quad \theta=-\frac{\pi}{8} x, \quad-\frac{3 \pi}{4} \leq \theta \leq \frac{3 \pi}{4}\)
to sketch the transformed polar image of the rectangular graph. When the reflection (in a cylindrical mirror centered at the pole) of each polar image is viewed from the polar axis, the viewer will see the original rectangular image.
(a) \(y=3\)
(b) \(x=2\)
(c) \(y=x+5\)
(d) \(x^{2}+(y-5)^{2}=5^{2}\)


This example of anamorphic art is from the Millington-Barnard Collection at the University of Mississippi. When the reflection of the transformed "polar painting" is viewed in the mirror, the viewer sees the distorted art in its proper proportions.

FOR FURTHER INFORMATION For more information on anamorphic art, see the article "Anamorphisms" by Philip Hickin in the Mathematical Gazette.

\subsection*{10.5 Area and Arc Length in Polar Coordinates}


The area of a sector of a circle is \(A=\frac{1}{2} \theta r^{2}\).
Figure 10.49

(a)

(b)

Figure 10.50
- Find the area of a region bounded by a polar graph.
- Find the points of intersection of two polar graphs.
- Find the arc length of a polar graph.
- Find the area of a surface of revolution (polar form).

\section*{Area of a Polar Region}

The development of a formula for the area of a polar region parallels that for the area of a region on the rectangular coordinate system, but uses sectors of a circle instead of rectangles as the basic elements of area. In Figure 10.49, note that the area of a circular sector of radius \(r\) is given by \(\frac{1}{2} \theta r^{2}\), provided \(\theta\) is measured in radians.

Consider the function given by \(r=f(\theta)\), where \(f\) is continuous and nonnegative on the interval given by \(\alpha \leq \theta \leq \beta\). The region bounded by the graph of \(f\) and the radial lines \(\theta=\alpha\) and \(\theta=\beta\) is shown in Figure 10.50(a). To find the area of this region, partition the interval \([\alpha, \beta]\) into \(n\) equal subintervals
\[
\alpha=\theta_{0}<\theta_{1}<\theta_{2}<\cdots<\theta_{n-1}<\theta_{n}=\beta .
\]

Then approximate the area of the region by the sum of the areas of the \(n\) sectors, as shown in Figure 10.50(b).
\[
\begin{aligned}
\text { Radius of } i \text { th sector } & =f\left(\theta_{i}\right) \\
\text { Central angle of } i \text { th sector } & =\frac{\beta-\alpha}{n}=\Delta \theta \\
A & \approx \sum_{i=1}^{n}\left(\frac{1}{2}\right) \Delta \theta\left[f\left(\theta_{i}\right)\right]^{2}
\end{aligned}
\]

Taking the limit as \(n \rightarrow \infty\) produces
\[
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \frac{1}{2} \sum_{i=1}^{n}\left[f\left(\theta_{i}\right)\right]^{2} \Delta \theta \\
& =\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta
\end{aligned}
\]
which leads to the following theorem.

\section*{THEOREM 10.13 AREA IN POLAR COORDINATES}

If \(f\) is continuous and nonnegative on the interval \([\alpha, \beta], 0<\beta-\alpha \leq 2 \pi\), then the area of the region bounded by the graph of \(r=f(\theta)\) between the radial lines \(\theta=\alpha\) and \(\theta=\beta\) is given by
\[
\begin{array}{rlr}
A & =\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta & \\
& =\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta . & 0<\beta-\alpha \leq 2 \pi
\end{array}
\]

NOTE You can use the same formula to find the area of a region bounded by the graph of a continuous nonpositive function. However, the formula is not necessarily valid if \(f\) takes on both positive and negative values in the interval \([\alpha, \beta]\).


The area of one petal of the rose curve that lies between the radial lines \(\theta=-\pi / 6\) and \(\theta=\pi / 6\) is \(3 \pi / 4\).
Figure 10.51


The area between the inner and outer loops is approximately 8.34.
Figure 10.52

\section*{EXAMPLE 1 Finding the Area of a Polar Region}

Find the area of one petal of the rose curve given by \(r=3 \cos 3 \theta\).
Solution In Figure 10.51, you can see that the petal on the right is traced as \(\theta\) increases from \(-\pi / 6\) to \(\pi / 6\). So, the area is
\[
\begin{aligned}
A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta & =\frac{1}{2} \int_{-\pi / 6}^{\pi / 6}(3 \cos 3 \theta)^{2} d \theta \\
& =\frac{9}{2} \int_{-\pi / 6}^{\pi / 6} \frac{1+\cos 6 \theta}{2} d \theta \\
& =\frac{9}{4}\left[\theta+\frac{\sin 6 \theta}{6}\right]_{-\pi / 6}^{\pi / 6} \\
& =\frac{9}{4}\left(\frac{\pi}{6}+\frac{\pi}{6}\right)=\frac{3 \pi}{4}
\end{aligned}
\]

Formula for area in polar coordinates

Trigonometric identity

NOTE To find the area of the region lying inside all three petals of the rose curve in Example 1, you could not simply integrate between 0 and \(2 \pi\). In doing this you would obtain \(9 \pi / 2\), which is twice the area of the three petals. The duplication occurs because the rose curve is traced twice as \(\theta\) increases from 0 to \(2 \pi\).

\section*{EXAMPLE 2 Finding the Area Bounded by a Single Curve}

Find the area of the region lying between the inner and outer loops of the limaçon \(r=1-2 \sin \theta\).

Solution In Figure 10.52, note that the inner loop is traced as \(\theta\) increases from \(\pi / 6\) to \(5 \pi / 6\). So, the area inside the inner loop is
\[
\begin{array}{rlr}
A_{1}=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta & =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(1-2 \sin \theta)^{2} d \theta & \begin{array}{l}
\text { Formula for area in } \\
\text { polar coordinates }
\end{array} \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(1-4 \sin \theta+4 \sin ^{2} \theta\right) d \theta & \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[1-4 \sin \theta+4\left(\frac{1-\cos 2 \theta}{2}\right)\right] d \theta & \begin{array}{l}
\text { Trigonometric } \\
\text { identity }
\end{array} \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(3-4 \sin \theta-2 \cos 2 \theta) d \theta & \text { Simplify. } \\
& =\frac{1}{2}[3 \theta+4 \cos \theta-\sin 2 \theta]_{\pi / 6}^{5 \pi / 6} & \\
& =\frac{1}{2}(2 \pi-3 \sqrt{3}) & \\
& =\pi-\frac{3 \sqrt{3}}{2}
\end{array}
\]

In a similar way, you can integrate from \(5 \pi / 6\) to \(13 \pi / 6\) to find that the area of the region lying inside the outer loop is \(A_{2}=2 \pi+(3 \sqrt{3} / 2)\). The area of the region lying between the two loops is the difference of \(A_{2}\) and \(A_{1}\).
\[
A=A_{2}-A_{1}=\left(2 \pi+\frac{3 \sqrt{3}}{2}\right)-\left(\pi-\frac{3 \sqrt{3}}{2}\right)=\pi+3 \sqrt{3} \approx 8.34
\]

FOR FURTHER INFORMATION For
more information on using technology to find points of intersection, see the article "Finding Points of Intersection of PolarCoordinate Graphs" by Warren W. Esty in Mathematics Teacher. To view this article, go to the website www.matharticles.com.

\section*{Points of Intersection of Polar Graphs}

Because a point may be represented in different ways in polar coordinates, care must be taken in determining the points of intersection of two polar graphs. For example, consider the points of intersection of the graphs of
\[
r=1-2 \cos \theta \quad \text { and } \quad r=1
\]
as shown in Figure 10.53. If, as with rectangular equations, you attempted to find the points of intersection by solving the two equations simultaneously, you would obtain
\[
\begin{aligned}
r & =1-2 \cos \theta & & \text { First equation } \\
1 & =1-2 \cos \theta & & \text { Substitute } r=1 \text { from 2nd equation into } 1 \text { st equation. } \\
\cos \theta & =0 & & \text { Simplify. } \\
\theta & =\frac{\pi}{2}, \frac{3 \pi}{2} . & & \text { Solve for } \theta .
\end{aligned}
\]

The corresponding points of intersection are \((1, \pi / 2)\) and \((1,3 \pi / 2)\). However, from Figure 10.53 you can see that there is a third point of intersection that did not show up when the two polar equations were solved simultaneously. (This is one reason why you should sketch a graph when finding the area of a polar region.) The reason the third point was not found is that it does not occur with the same coordinates in the two graphs. On the graph of \(r=1\), the point occurs with coordinates \((1, \pi)\), but on the graph of \(r=1-2 \cos \theta\), the point occurs with coordinates \((-1,0)\).

You can compare the problem of finding points of intersection of two polar graphs with that of finding collision points of two satellites in intersecting orbits about Earth, as shown in Figure 10.54. The satellites will not collide as long as they reach the points of intersection at different times ( \(\theta\)-values). Collisions will occur only at the points of intersection that are "simultaneous points"-those reached at the same time ( \(\theta\)-value).

NOTE Because the pole can be represented by \((0, \theta)\), where \(\theta\) is any angle, you should check separately for the pole when finding points of intersection.


Three points of intersection: \((1, \pi / 2)\), \((-1,0),(1,3 \pi / 2)\)
Figure 10.53


The paths of satellites can cross without causing a collision.
Figure 10.54


Figure 10.55

\section*{EXAMPLE 3 Finding the Area of a Region Between Two Curves}

Find the area of the region common to the two regions bounded by the following curves.
\[
\begin{array}{ll}
r=-6 \cos \theta & \\
r=2-2 \cos \theta & \\
\text { Cardioid }
\end{array}
\]

Solution Because both curves are symmetric with respect to the \(x\)-axis, you can work with the upper half-plane, as shown in Figure 10.55. The gray shaded region lies between the circle and the radial line \(\theta=2 \pi / 3\). Because the circle has coordinates \((0, \pi / 2)\) at the pole, you can integrate between \(\pi / 2\) and \(2 \pi / 3\) to obtain the area of this region. The region that is shaded red is bounded by the radial lines \(\theta=2 \pi / 3\) and \(\theta=\pi\) and the cardioid. So, you can find the area of this second region by integrating between \(2 \pi / 3\) and \(\pi\). The sum of these two integrals gives the area of the common region lying above the radial line \(\theta=\pi\).
\[
\begin{aligned}
\frac{A}{2} & =\overbrace{\frac{1}{2} \int_{\pi / 2}^{2 \pi / 3}(-6 \cos \theta)^{2} d \theta+}^{\begin{array}{l}
\text { Region between circle } \\
\text { and radial line } \theta=2 \pi / 3
\end{array}} \overbrace{\frac{1}{2} \int_{2 \pi / 3}^{\pi}(2-2 \cos \theta)^{2} d \theta}^{\begin{array}{c}
\text { Region between cardioid and } \\
\text { radial lines } \theta=2 \pi / 3 \text { and } \theta=\pi
\end{array}} \\
& =18 \int_{\pi / 2}^{2 \pi / 3} \cos ^{2} \theta d \theta+\frac{1}{2} \int_{2 \pi / 3}^{\pi}\left(4-8 \cos \theta+4 \cos ^{2} \theta\right) d \theta \\
& =9 \int_{\pi / 2}^{2 \pi / 3}(1+\cos 2 \theta) d \theta+\int_{2 \pi / 3}^{\pi}(3-4 \cos \theta+\cos 2 \theta) d \theta \\
& =9\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\pi / 2}^{2 \pi / 3}+\left[3 \theta-4 \sin \theta+\frac{\sin 2 \theta}{2}\right]_{2 \pi / 3}^{\pi} \\
& =9\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{4}-\frac{\pi}{2}\right)+\left(3 \pi-2 \pi+2 \sqrt{3}+\frac{\sqrt{3}}{4}\right) \\
& =\frac{5 \pi}{2} \\
& \approx 7.85
\end{aligned}
\]

Finally, multiplying by 2 , you can conclude that the total area is \(5 \pi\).

NOTE To check the reasonableness of the result obtained in Example 3, note that the area of the circular region is \(\pi r^{2}=9 \pi\). So, it seems reasonable that the area of the region lying inside the circle and the cardioid is \(5 \pi\).

To see the benefit of polar coordinates for finding the area in Example 3, consider the following integral, which gives the comparable area in rectangular coordinates.
\[
\frac{A}{2}=\int_{-4}^{-3 / 2} \sqrt{2 \sqrt{1-2 x}-x^{2}-2 x+2} d x+\int_{-3 / 2}^{0} \sqrt{-x^{2}-6 x} d x
\]

Use the integration capabilities of a graphing utility to show that you obtain the same area as that found in Example 3.

NOTE When applying the arc length formula to a polar curve, be sure that the curve is traced out only once on the interval of integration. For instance, the rose curve given by \(r=\cos 3 \theta\) is traced out once on the interval \(0 \leq \theta \leq \pi\), but is traced out twice on the interval \(0 \leq \theta \leq 2 \pi\).

\section*{Arc Length in Polar Form}

The formula for the length of a polar arc can be obtained from the arc length formula for a curve described by parametric equations. (See Exercise 89.)

\section*{THEOREM 10.14 ARC LENGTH OF A POLAR CURVE}

Let \(f\) be a function whose derivative is continuous on an interval \(\alpha \leq \theta \leq \beta\).
The length of the graph of \(r=f(\theta)\) from \(\theta=\alpha\) to \(\theta=\beta\) is
\[
s=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta .
\]

\section*{EXAMPLE 4 Finding the Length of a Polar Curve}

Find the length of the arc from \(\theta=0\) to \(\theta=2 \pi\) for the cardioid
\[
r=f(\theta)=2-2 \cos \theta
\]
as shown in Figure 10.56.
Solution Because \(f^{\prime}(\theta)=2 \sin \theta\), you can find the arc length as follows.
\[
\begin{array}{rlr}
s & =\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta & \text { Formula for arc length of a polar curve } \\
& =\int_{0}^{2 \pi} \sqrt{(2-2 \cos \theta)^{2}+(2 \sin \theta)^{2}} d \theta &
\end{array}
\]
\[
=2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\cos \theta} d \theta
\]
\[
=2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{2 \sin ^{2} \frac{\theta}{2}} d \theta \quad \text { Trigonometric identity }
\]
\[
=4 \int_{0}^{2 \pi} \sin \frac{\theta}{2} d \theta \quad \sin \frac{\theta}{2} \geq 0 \text { for } 0 \leq \theta \leq 2 \pi
\]
\[
=8\left[-\cos \frac{\theta}{2}\right]_{0}^{2 \pi}
\]
\[
=8(1+1)
\]
\[
=16
\]

In the fifth step of the solution, it is legitimate to write
\[
\sqrt{2 \sin ^{2}(\theta / 2)}=\sqrt{2} \sin (\theta / 2)
\]
rather than
\[
\sqrt{2 \sin ^{2}(\theta / 2)}=\sqrt{2}|\sin (\theta / 2)|
\]
because \(\sin (\theta / 2) \geq 0\) for \(0 \leq \theta \leq 2 \pi\).

NOTE Using Figure 10.56, you can determine the reasonableness of this answer by comparing it with the circumference of a circle. For example, a circle of radius \(\frac{5}{2}\) has a circumference of \(5 \pi \approx 15.7\).

NOTE When using Theorem 10.15, check to see that the graph of \(r=f(\theta)\) is traced only once on the interval \(\alpha \leq \theta \leq \beta\). For example, the circle given by \(r=\cos \theta\) is traced only once on the interval \(0 \leq \theta \leq \pi\).

\section*{Area of a Surface of Revolution}

The polar coordinate versions of the formulas for the area of a surface of revolution can be obtained from the parametric versions given in Theorem 10.9, using the equations \(x=r \cos \theta\) and \(y=r \sin \theta\).

\section*{THEOREM 10.15 AREA OF A SURFACE OF REVOLUTION}

Let \(f\) be a function whose derivative is continuous on an interval \(\alpha \leq \theta \leq \beta\). The area of the surface formed by revolving the graph of \(r=f(\theta)\) from \(\theta=\alpha\) to \(\theta=\beta\) about the indicated line is as follows.
1. \(S=2 \pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta \quad\) About the polar axis
2. \(S=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta \quad\) About the line \(\theta=\frac{\pi}{2}\)

\section*{EXAMPLE 5 Finding the Area of a Surface of Revolution}

Find the area of the surface formed by revolving the circle \(r=f(\theta)=\cos \theta\) about the line \(\theta=\pi / 2\), as shown in Figure 10.57.

(a)

(b)

Figure 10.57
Solution You can use the second formula given in Theorem 10.15 with \(f^{\prime}(\theta)=-\sin \theta\). Because the circle is traced once as \(\theta\) increases from 0 to \(\pi\), you have
\[
\begin{aligned}
S & =2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta & & \begin{array}{l}
\text { Formula for area of a surface of } \\
\text { revolution }
\end{array} \\
& =2 \pi \int_{0}^{\pi} \cos \theta(\cos \theta) \sqrt{\cos ^{2} \theta+\sin ^{2} \theta} d \theta & & \\
& =2 \pi \int_{0}^{\pi} \cos ^{2} \theta d \theta & & \text { Trigonometric identity } \\
& =\pi \int_{0}^{\pi}(1+\cos 2 \theta) d \theta & & \text { Trigonometric identity } \\
& =\pi\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\pi}=\pi^{2} & &
\end{aligned}
\]

\subsection*{10.5 Exercises}

In Exercises 1-4, write an integral that represents the area of the shaded region of the figure. Do not evaluate the integral.
1. \(r=4 \sin \theta\)

2. \(r=\cos 2 \theta\)

3. \(r=3-2 \sin \theta\)

4. \(r=1-\cos 2 \theta\)


In Exercises 5-16, find the area of the region.
5. Interior of \(r=6 \sin \theta\)
6. Interior of \(r=3 \cos \theta\)
7. One petal of \(r=2 \cos 3 \theta\)
8. One petal of \(r=4 \sin 3 \theta\)
9. One petal of \(r=\sin 2 \theta\)
10. One petal of \(r=\cos 5 \theta\)
11. Interior of \(r=1-\sin \theta\)
12. Interior of \(r=1-\sin \theta\) (above the polar axis)
13. Interior of \(r=5+2 \sin \theta\)
14. Interior of \(r=4-4 \cos \theta\)
15. Interior of \(r^{2}=4 \cos 2 \theta\)
16. Interior of \(r^{2}=6 \sin 2 \theta\)

In Exercises 17-24, use a graphing utility to graph the polar equation and find the area of the given region.
17. Inner loop of \(r=1+2 \cos \theta\)
18. Inner loop of \(r=2-4 \cos \theta\)
19. Inner loop of \(r=1+2 \sin \theta\)
20. Inner loop of \(r=4-6 \sin \theta\)
21. Between the loops of \(r=1+2 \cos \theta\)
22. Between the loops of \(r=2(1+2 \sin \theta)\)
23. Between the loops of \(r=3-6 \sin \theta\)
24. Between the loops of \(r=\frac{1}{2}+\cos \theta\)

In Exercises 25-34, find the points of intersection of the graphs of the equations.
25. \(r=1+\cos \theta\)
\(r=1-\cos \theta\)

27. \(r=1+\cos \theta\)
\[
r=1-\sin \theta
\]

\[
\text { 29. } \begin{aligned}
r & =4-5 \sin \theta \\
r & =3 \sin \theta
\end{aligned}
\]
31. \(r=\frac{\theta}{2}\)
\(r=2\)
33. \(\begin{aligned} r & =2 \sin 2 \theta \\ r & =1\end{aligned}\)
\[
r=1
\]
26. \(r=3(1+\sin \theta)\)
\(r=3(1-\sin \theta)\)

28. \(r=2-3 \cos \theta\)
\(r=\cos \theta\)

30. \(r=1+\cos \theta\)
\(r=3 \cos \theta\)
32. \(\theta=\frac{\pi}{4}\)
\(r=2\)
34. \(r=3+\sin \theta\)
\(r=2 \csc \theta\)

In Exercises 35 and 36, use a graphing utility to graph the polar equations and approximate the points of intersection of the graphs. Confirm your results analytically.
\[
\text { 35. } \begin{aligned}
r & =2+3 \cos \theta \\
r & =\frac{\sec \theta}{2}
\end{aligned}
\]
36. \(r=3(1-\cos \theta)\)
\[
r=\frac{6}{1-\cos \theta}
\]

Writing In Exercises 37 and 38, use a graphing utility to graph the polar equations and find the points of intersection of the graphs. Watch the graphs as they are traced in the viewing window. Explain why the pole is not a point of intersection obtained by solving the equations simultaneously.
37. \(r=\cos \theta\)
\(r=2-3 \sin \theta\)
38. \(r=4 \sin \theta\)
\(r=2(1+\sin \theta)\)

In Exercises 39-46, use a graphing utility to graph the polar equations and find the area of the given region.
39. Common interior of \(r=4 \sin 2 \theta\) and \(r=2\)
40. Common interior of \(r=2(1+\cos \theta)\) and \(r=2(1-\cos \theta)\)
41. Common interior of \(r=3-2 \sin \theta\) and \(r=-3+2 \sin \theta\)
42. Common interior of \(r=5-3 \sin \theta\) and \(r=5-3 \cos \theta\)
43. Common interior of \(r=4 \sin \theta\) and \(r=2\)
44. Common interior of \(r=2 \cos \theta\) and \(r=2 \sin \theta\)
45. Inside \(r=2 \cos \theta\) and outside \(r=1\)
46. Inside \(r=3 \sin \theta\) and outside \(r=1+\sin \theta\)

In Exercises 47-50, find the area of the region.
47. Inside \(r=a(1+\cos \theta)\) and outside \(r=a \cos \theta\)
48. Inside \(r=2 a \cos \theta\) and outside \(r=a\)
49. Common interior of \(r=a(1+\cos \theta)\) and \(r=a \sin \theta\)
50. Common interior of \(r=a \cos \theta\) and \(r=a \sin \theta\), where \(a>0\)
51. Antenna Radiation The radiation from a transmitting antenna is not uniform in all directions. The intensity from a particular antenna is modeled by \(r=a \cos ^{2} \theta\).
(a) Convert the polar equation to rectangular form.
(b) Use a graphing utility to graph the model for \(a=4\) and \(a=6\).
(c) Find the area of the geographical region between the two curves in part (b).
52. Area The area inside one or more of the three interlocking circles \(r=2 a \cos \theta, r=2 a \sin \theta\), and \(r=a\) is divided into seven regions. Find the area of each region.
53. Conjecture Find the area of the region enclosed by
\(r=a \cos (n \theta)\)
for \(n=1,2,3, \ldots\). . Use the results to make a conjecture about the area enclosed by the function if \(n\) is even and if \(n\) is odd.
54. Area Sketch the strophoid
\(r=\sec \theta-2 \cos \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}\).
Convert this equation to rectangular coordinates. Find the area enclosed by the loop.

In Exercises 55-60, find the length of the curve over the given interval.
\begin{tabular}{|c|c|}
\hline Polar Equation & Interval \\
\hline 55. \(r=8\) & \(0 \leq \theta \leq 2 \pi\) \\
\hline 56. \(r=a\) & \(0 \leq \theta \leq 2 \pi\) \\
\hline 57. \(r=4 \sin \theta\) & \(0 \leq \theta \leq \pi\) \\
\hline 58. \(r=2 a \cos \theta\) & \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\) \\
\hline 59. \(r=1+\sin \theta\) & \(0 \leq \theta \leq 2 \pi\) \\
\hline 60. \(r=8(1+\cos \theta)\) & \(0 \leq \theta \leq 2 \pi\) \\
\hline
\end{tabular}

In Exercises 61-66, use a graphing utility to graph the polar equation over the given interval. Use the integration capabilities of the graphing utility to approximate the length of the curve accurate to two decimal places.
61. \(r=2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}\)
62. \(r=\sec \theta, \quad 0 \leq \theta \leq \frac{\pi}{3}\)
63. \(r=\frac{1}{\theta}, \quad \pi \leq \theta \leq 2 \pi\)
64. \(r=e^{\theta}, \quad 0 \leq \theta \leq \pi\)
65. \(r=\sin (3 \cos \theta), \quad 0 \leq \theta \leq \pi\)
\(66 r=2 \sin (2 \cos \theta), \quad 0 \leq \theta \leq \pi\)
In Exercises 67-70, find the area of the surface formed by revolving the curve about the given line.
\begin{tabular}{llll}
\(\frac{\text { Polar Equation }}{}\) & & Interval & \\
67. \(r=6 \cos \theta\) & & Axis of Rev \\
68. \(r=a \leq \theta \leq \frac{\pi}{2}\) & & Polar axis \\
69. \(r=e^{a \theta}\) & & \(0 \leq \theta \leq \frac{\pi}{2}\) & \\
70. \(r=a=\frac{\pi}{2}\) \\
70 \(r(1+\cos \theta)\) & \(0 \leq \theta \leq \pi\) & & Polar axis
\end{tabular}

In Exercises 71 and 72, use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis.
71. \(r=4 \cos 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{4}\)
72. \(r=\theta, \quad 0 \leq \theta \leq \pi\)

\section*{WRITING ABOUT CONCEPTS}
73. Explain why finding points of intersection of polar graphs may require further analysis beyond solving two equations simultaneously.
74. Which integral yields the arc length of \(r=3(1-\cos 2 \theta)\) ? State why the other integrals are incorrect.
(a) \(3 \int_{0}^{2 \pi} \sqrt{(1-\cos 2 \theta)^{2}+4 \sin ^{2} 2 \theta} d \theta\)
(b) \(12 \int_{0}^{\pi / 4} \sqrt{(1-\cos 2 \theta)^{2}+4 \sin ^{2} 2 \theta} d \theta\)
(c) \(3 \int_{0}^{\pi} \sqrt{(1-\cos 2 \theta)^{2}+4 \sin ^{2} 2 \theta} d \theta\)
(d) \(6 \int_{0}^{\pi / 2} \sqrt{(1-\cos 2 \theta)^{2}+4 \sin ^{2} 2 \theta} d \theta\)
75. Give the integral formulas for the area of the surface of revolution formed when the graph of \(r=f(\theta)\) is revolved about (a) the \(x\)-axis and (b) the \(y\)-axis.

\section*{CAPSTONE}
76. For each polar equation, sketch its graph, determine the interval that traces the graph only once, and find the area of the region bounded by the graph using a geometric formula and integration.
(a) \(r=10 \cos \theta\)
(b) \(r=5 \sin \theta\)
77. Surface Area of a Torus Find the surface area of the torus generated by revolving the circle given by \(r=2\) about the line \(r=5 \sec \theta\).
78. Surface Area of a Torus Find the surface area of the torus generated by revolving the circle given by \(r=a\) about the line \(r=b \sec \theta\), where \(0<a<b\).
79. Approximating Area Consider the circle \(r=8 \cos \theta\).
(a) Find the area of the circle.
(b) Complete the table giving the areas \(A\) of the sectors of the circle between \(\theta=0\) and the values of \(\theta\) in the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\boldsymbol{\theta}\) & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\
\hline \(\boldsymbol{A}\) & & & & & & & \\
\hline
\end{tabular}
(c) Use the table in part (b) to approximate the values of \(\theta\) for which the sector of the circle composes \(\frac{1}{4}, \frac{1}{2}\), and \(\frac{3}{4}\) of the total area of the circle.
(d) Use a graphing utility to approximate, to two decimal places, the angles \(\theta\) for which the sector of the circle composes \(\frac{1}{4}, \frac{1}{2}\), and \(\frac{3}{4}\) of the total area of the circle.
(e) Do the results of part (d) depend on the radius of the circle? Explain.
80. Approximate Area Consider the circle \(r=3 \sin \theta\).
(a) Find the area of the circle.
(b) Complete the table giving the areas \(A\) of the sectors of the circle between \(\theta=0\) and the values of \(\theta\) in the table.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\boldsymbol{\theta}\) & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\
\hline\(A\) & & & & & & & \\
\hline
\end{tabular}
(c) Use the table in part (b) to approximate the values of \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4}\), and \(\frac{1}{2}\) of the total area of the circle.
(d) Use a graphing utility to approximate, to two decimal places, the angles \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4}\), and \(\frac{1}{2}\) of the total area of the circle.
81. What conic section does the following polar equation represent? \(r=a \sin \theta+b \cos \theta\)
82. Area Find the area of the circle given by \(r=\sin \theta+\cos \theta\). Check your result by converting the polar equation to rectangular form, then using the formula for the area of a circle.
83. Spiral of Archimedes The curve represented by the equation \(r=a \theta\), where \(a\) is a constant, is called the spiral of Archimedes.
(a) Use a graphing utility to graph \(r=\theta\), where \(\theta \geq 0\). What happens to the graph of \(r=a \theta\) as \(a\) increases? What happens if \(\theta \leq 0\) ?
(b) Determine the points on the spiral \(r=a \theta(a>0, \theta \geq 0)\), where the curve crosses the polar axis.
(c) Find the length of \(r=\theta\) over the interval \(0 \leq \theta \leq 2 \pi\).
(d) Find the area under the curve \(r=\theta\) for \(0 \leq \theta \leq 2 \pi\).
84. Logarithmic Spiral The curve represented by the equation \(r=a e^{b \theta}\), where \(a\) and \(b\) are constants, is called a logarithmic spiral. The figure shows the graph of \(r=e^{\theta / 6}\), \(-2 \pi \leq \theta \leq 2 \pi\). Find the area of the shaded region.

85. The larger circle in the figure is the graph of \(r=1\). Find the polar equation of the smaller circle such that the shaded regions are equal.

86. Folium of Descartes A curve called the folium of Descartes can be represented by the parametric equations
\(x=\frac{3 t}{1+t^{3}} \quad\) and \(\quad y=\frac{3 t^{2}}{1+t^{3}}\).
(a) Convert the parametric equations to polar form.
(b) Sketch the graph of the polar equation from part (a).
(c) Use a graphing utility to approximate the area enclosed by the loop of the curve.

True or False? In Exercises 87 and 88, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
87. If \(f(\theta)>0\) for all \(\theta\) and \(g(\theta)<0\) for all \(\theta\), then the graphs of \(r=f(\theta)\) and \(r=g(\theta)\) do not intersect.
88. If \(f(\theta)=g(\theta)\) for \(\theta=0, \pi / 2\), and \(3 \pi / 2\), then the graphs of \(r=f(\theta)\) and \(r=g(\theta)\) have at least four points of intersection.
89. Use the formula for the arc length of a curve in parametric form to derive the formula for the arc length of a polar curve.

\subsection*{10.6 Polar Equations of Conics and Kepler's Laws}
- Analyze and write polar equations of conics.
- Understand and use Kepler's Laws of planetary motion.

\section*{Polar Equations of Conics}

In this chapter you have seen that the rectangular equations of ellipses and hyperbolas take simple forms when the origin lies at their centers. As it happens, there are many important applications of conics in which it is more convenient to use one of the foci as the reference point (the origin) for the coordinate system. For example, the sun lies at a focus of Earth's orbit. Similarly, the light source of a parabolic reflector lies at its focus. In this section you will see that polar equations of conics take simple forms if one of the foci lies at the pole.

The following theorem uses the concept of eccentricity, as defined in Section 10.1, to classify the three basic types of conics. A proof of this theorem is given in Appendix A.

\section*{THEOREM 10.16 CLASSIFICATION OF CONICS BY ECCENTRICITY}

Let \(F\) be a fixed point (focus) and let \(D\) be a fixed line (directrix) in the plane. Let \(P\) be another point in the plane and let \(e\) (eccentricity) be the ratio of the distance between \(P\) and \(F\) to the distance between \(P\) and \(D\). The collection of all points \(P\) with a given eccentricity is a conic.
1. The conic is an ellipse if \(0<e<1\).
2. The conic is a parabola if \(e=1\).
3. The conic is a hyperbola if \(e>1\).


Ellipse: \(0<e<1\)
\(\frac{P F}{P Q}<1\)
Fgure 10.58


Parabola: \(e=1\)
\(P F=P Q\)


Hyperbola: \(e>1\)
\(\frac{P F}{P Q}=\frac{P^{\prime} F}{P^{\prime} Q^{\prime}}>1\)

In Figure 10.58, note that for each type of conic the pole corresponds to the fixed point (focus) given in the definition. The benefit of this location can be seen in the proof of the following theorem.


Fgure 10.59

\section*{THEOREM 10.17 POLAR EQUATIONS OF CONICS}

The graph of a polar equation of the form
\[
r=\frac{e d}{1 \pm e \cos \theta} \quad \text { or } \quad r=\frac{e d}{1 \pm e \sin \theta}
\]
is a conic, where \(e>0\) is the eccentricity and \(|d|\) is the distance between the focus at the pole and its corresponding directrix.

PROOF The following is a proof for \(r=e d /(1+e \cos \theta)\) with \(d>0\). In Figure 10.59 , consider a vertical directrix \(d\) units to the right of the focus \(F=(0,0)\). If \(P=(r, \theta)\) is a point on the graph of \(r=e d /(1+e \cos \theta)\), the distance between \(P\) and the directrix can be shown to be
\[
P Q=|d-x|=|d-r \cos \theta|=\left|\frac{r(1+e \cos \theta)}{e}-r \cos \theta\right|=\left|\frac{r}{e}\right|
\]

Because the distance between \(P\) and the pole is simply \(P F=|r|\), the ratio of \(P F\) to \(P Q\) is \(P F / P Q=|r| /|r / e|=|e|=e\) and, by Theorem 10.16, the graph of the equation must be a conic. The proofs of the other cases are similar.

The four types of equations indicated in Theorem 10.17 can be classified as follows, where \(d>0\).
a. Horizontal directrix above the pole: \(\quad r=\frac{e d}{1+e \sin \theta}\)
b. Horizontal directrix below the pole: \(\quad r=\frac{e d}{1-e \sin \theta}\)
c. Vertical directrix to the right of the pole: \(r=\frac{e d}{1+e \cos \theta}\)
d. Vertical directrix to the left of the pole: \(r=\frac{e d}{1-e \cos \theta}\)

Figure 10.60 illustrates these four possibilities for a parabola.


The four types of polar equations for a parabola

\section*{Fgure 10.60}


The graph of the conic is an ellipse with \(e=\frac{2}{3}\).
Fgure 10.61

\section*{EXAMPLE 1 Determining a Conic from Its Equation}

Sketch the graph of the conic given by \(r=\frac{15}{3-2 \cos \theta}\).
Solution To determine the type of conic, rewrite the equation as
\[
\begin{aligned}
r & =\frac{15}{3-2 \cos \theta} & & \text { Write original equation. } \\
& =\frac{5}{1-(2 / 3) \cos \theta} . & & \begin{array}{l}
\text { Divide numerator and } \\
\text { denominator by } 3
\end{array}
\end{aligned}
\]

So, the graph is an ellipse with \(e=\frac{2}{3}\). You can sketch the upper half of the ellipse by plotting points from \(\theta=0\) to \(\theta=\pi\), as shown in Figure 10.61. Then, using symmetry with respect to the polar axis, you can sketch the lower half.

For the ellipse in Figure 10.61, the major axis is horizontal and the vertices lie at \((15,0)\) and \((3, \pi)\). So, the length of the major axis is \(2 a=18\). To find the length of the minor axis, you can use the equations \(e=c / a\) and \(b^{2}=a^{2}-c^{2}\) to conclude that
\[
b^{2}=a^{2}-c^{2}=a^{2}-(e a)^{2}=a^{2}\left(1-e^{2}\right) . \quad \text { Ellipse }
\]

Because \(e=\frac{2}{3}\), you have
\[
b^{2}=9^{2}\left[1-\left(\frac{2}{3}\right)^{2}\right]=45
\]
which implies that \(b=\sqrt{45}=3 \sqrt{5}\). So, the length of the minor axis is \(2 b=6 \sqrt{5}\). A similar analysis for hyperbolas yields
\[
b^{2}=c^{2}-a^{2}=(e a)^{2}-a^{2}=a^{2}\left(e^{2}-1\right) . \quad \text { Hyperbola }
\]

\section*{EXAMPLE 2 Sketching a Conic from Its Polar Equation}

Sketch the graph of the polar equation \(r=\frac{32}{3+5 \sin \theta}\).
Solution Dividing the numerator and denominator by 3 produces
\[
r=\frac{32 / 3}{1+(5 / 3) \sin \theta}
\]

Because \(e=\frac{5}{3}>1\), the graph is a hyperbola. Because \(d=\frac{32}{5}\), the directrix is the line \(y=\frac{32}{5}\). The transverse axis of the hyperbola lies on the line \(\theta=\pi / 2\), and the vertices occur at
\[
(r, \theta)=\left(4, \frac{\pi}{2}\right) \quad \text { and } \quad(r, \theta)=\left(-16, \frac{3 \pi}{2}\right)
\]

Because the length of the transverse axis is 12 , you can see that \(a=6\). To find \(b\), write
\[
b^{2}=a^{2}\left(e^{2}-1\right)=6^{2}\left[\left(\frac{5}{3}\right)^{2}-1\right]=64
\]

Therefore, \(b=8\). Finally, you can use \(a\) and \(b\) to determine the asymptotes of the hyperbola and obtain the sketch shown in Figure 10.62.


Fgure 10.63

\section*{Kepler's Laws}

Kepler's Laws, named after the German astronomer Johannes Kepler, can be used to describe the orbits of the planets about the sun.
1. Each planet moves in an elliptical orbit with the sun as a focus.
2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.
3. The square of the period is proportional to the cube of the mean distance between the planet and the sun.*
Although Kepler derived these laws empirically, they were later validated by Newton. In fact, Newton was able to show that each law can be deduced from a set of universal laws of motion and gravitation that govern the movement of all heavenly bodies, including comets and satellites. This is shown in the next example, involving the comet named after the English mathematician and physicist Edmund Halley (1656-1742).

\section*{EXAMPLE 3 Halley's Comet}

Halley's comet has an elliptical orbit with the sun at one focus and has an eccentricity of \(e \approx 0.967\). The length of the major axis of the orbit is approximately 35.88 astronomical units (AU). (An astronomical unit is defined as the mean distance between Earth and the sun, 93 million miles.) Find a polar equation for the orbit. How close does Halley's comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form
\[
r=\frac{e d}{(1+e \sin \theta)} .
\]

Because the vertices of the ellipse occur when \(\theta=\pi / 2\) and \(\theta=3 \pi / 2\), you can determine the length of the major axis to be the sum of the \(r\)-values of the vertices, as shown in Figure 10.63. That is,
\[
\begin{aligned}
2 a & =\frac{0.967 d}{1+0.967}+\frac{0.967 d}{1-0.967} \\
35.88 & \approx 29.79 d .
\end{aligned} \quad 2 a \approx 35.88
\]

So, \(d \approx 1.204\) and \(e d \approx(0.967)(1.204) \approx 1.164\). Using this value in the equation produces
\[
r=\frac{1.164}{1+0.967 \sin \theta}
\]
where \(r\) is measured in astronomical units. To find the closest point to the sun (the focus), you can write \(c=e a \approx(0.967)(17.94) \approx 17.35\). Because \(c\) is the distance between the focus and the center, the closest point is
\[
\begin{aligned}
a-c & \approx 17.94-17.35 \\
& \approx 0.59 \mathrm{AU} \\
& \approx 55,000,000 \text { miles. }
\end{aligned}
\]

\footnotetext{
* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit, the proportionality constant is 1. For example, because Mars has a mean distance to the sun of \(D=1.524 A U\), its period \(P\) is given by \(D^{3}=P^{2}\). So, the period for Mars is \(P=1.88\).
}


Egure 10.65

Kepler's Second Law states that as a planet moves about the sun, a ray from the sun to the planet sweeps out equal areas in equal times. This law can also be applied to comets or asteroids with elliptical orbits. For example, Figure 10.64 shows the orbit of the asteroid Apollo about the sun. Applying Kepler's Second Law to this asteroid, you know that the closer it is to the sun, the greater its velocity, because a short ray must be moving quickly to sweep out as much area as a long ray.


A ray from the sun to the asteroid Apollo sweeps out equal areas in equal times.

\section*{Fgure 10.64}

\section*{EXAMPLE 4 The Asteroid Apollo}

The asteroid Apollo has a period of 661 Earth days, and its orbit is approximated by the ellipse
\[
r=\frac{1}{1+(5 / 9) \cos \theta}=\frac{9}{9+5 \cos \theta}
\]
where \(r\) is measured in astronomical units. How long does it take Apollo to move from the position given by \(\theta=-\pi / 2\) to \(\theta=\pi / 2\), as shown in Figure 10.65?
Solution Begin by finding the area swept out as \(\theta\) increases from \(-\pi / 2\) to \(\pi / 2\).
\[
\begin{array}{rlr}
A & =\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta & \text { Formula for area of a polar graph } \\
& =\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}\left(\frac{9}{9+5 \cos \theta}\right)^{2} d \theta &
\end{array}
\]

Using the substitution \(u=\tan (\theta / 2)\), as discussed in Section 8.6, you obtain
\[
A=\frac{81}{112}\left[\frac{-5 \sin \theta}{9+5 \cos \theta}+\frac{18}{\sqrt{56}} \arctan \frac{\sqrt{56} \tan (\theta / 2)}{14}\right]_{-\pi / 2}^{\pi / 2} \quad \approx 0.90429
\]

Because the major axis of the ellipse has length \(2 a=81 / 28\) and the eccentricity is \(e=5 / 9\), you can determine that \(b=a \sqrt{1-e^{2}}=9 / \sqrt{56}\). So, the area of the ellipse is
\[
\text { Area of ellipse }=\pi a b=\pi\left(\frac{81}{56}\right)\left(\frac{9}{\sqrt{56}}\right) \approx 5.46507
\]

Because the time required to complete the orbit is 661 days, you can apply Kepler's Second Law to conclude that the time \(t\) required to move from the position \(\theta=-\pi / 2\) to \(\theta=\pi / 2\) is given by
\[
\frac{t}{661}=\frac{\text { area of elliptical segment }}{\text { area of ellipse }} \approx \frac{0.90429}{5.46507}
\]
which implies that \(t \approx 109\) days.

\subsection*{10.6 Exercises}

Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the polar equation when (a) \(e=1\), (b) \(e=0.5\), and (c) \(e=1.5\). Identify the conic.
1. \(r=\frac{2 e}{1+e \cos \theta}\)
2. \(r=\frac{2 e}{1-e \cos \theta}\)
3. \(r=\frac{2 e}{1-e \sin \theta}\)
4. \(r=\frac{2 e}{1+e \sin \theta}\)
5. Writing Consider the polar equation
\[
r=\frac{4}{1+e \sin \theta} .
\]
(a) Use a graphing utility to graph the equation for \(e=0.1\), \(e=0.25, e=0.5, e=0.75\), and \(e=0.9\). Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{-}\)and \(e \rightarrow 0^{+}\).
(b) Use a graphing utility to graph the equation for \(e=1\). Identify the conic.
(c) Use a graphing utility to graph the equation for \(e=1.1\), \(e=1.5\), and \(e=2\). Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{+}\)and \(e \rightarrow \infty\).
6. Consider the polar equation
\[
r=\frac{4}{1-0.4 \cos \theta} .
\]
(a) Identify the conic without graphing the equation.
(b) Without graphing the following polar equations, describe how each differs from the polar equation above.
\[
r=\frac{4}{1+0.4 \cos \theta}, \quad r=\frac{4}{1-0.4 \sin \theta}
\]
(c) Verify the results of part (b) graphically.

In Exercises 7-12, match the polar equation with the correct graph. Fe graphs are labeled (a), (b), (c), (d), (e), and (f).]
(a)

(b)

(c)

(d)

(e)

(f)

7. \(r=\frac{6}{1-\cos \theta}\)
8. \(r=\frac{2}{2-\cos \theta}\)
9. \(r=\frac{3}{1-2 \sin \theta}\)
10. \(r=\frac{2}{1+\sin \theta}\)
11. \(r=\frac{6}{2-\sin \theta}\)
12. \(r=\frac{2}{2+3 \cos \theta}\)

In Exercises 13-26, find the eccentricity and the distance from the pole to the directrix of the conic. Fen sketch and identify the graph. Use a graphing utility to confirm your results.
13. \(r=\frac{1}{1-\cos \theta}\)
14. \(r=\frac{1}{1+\sin \theta}\)
15. \(r=\frac{-4}{1-\sin \theta}\)
16. \(r=\frac{4}{1+\cos \theta}\)
17. \(r=\frac{6}{2+\cos \theta}\)
18. \(r=\frac{10}{5+4 \sin \theta}\)
19. \(r(2+\sin \theta)=4\)
20. \(r(3-2 \cos \theta)=6\)
21. \(r=\frac{5}{-1+2 \cos \theta}\)
22. \(r=\frac{-6}{3+7 \sin \theta}\)
23. \(r=\frac{3}{2+6 \sin \theta}\)
24. \(r=\frac{8}{1+4 \cos \theta}\)
25. \(r=\frac{300}{-12+6 \sin \theta}\)
26. \(r=\frac{180}{15-3.75 \cos \theta}\)

In Exercises 27-30, use a graphing utility to graph the polar equation. Identify the graph and find its eccentricity.
27. \(r=\frac{3}{-4+2 \sin \theta}\)
28. \(r=\frac{-15}{2+8 \sin \theta}\)
29. \(r=\frac{-10}{1-\cos \theta}\)
30. \(r=\frac{6}{6+7 \cos \theta}\)

In Exercises 31-34, use a graphing utility to graph the conic. escribe how the graph differs from the graph in the indicated exercise.
31. \(r=\frac{-4}{1-\sin (\theta-\pi / 4)}\)
(See Exercise 15.)
32. \(r=\frac{4}{1+\cos (\theta-\pi / 3)}\)
(See Exercise 16.)
33. \(r=\frac{6}{2+\cos (\theta+\pi / 6)} \quad\) (See Exercise 17.)
34. \(r=\frac{-6}{3+7 \sin (\theta+2 \pi / 3)} \quad\) (See Exercise 22.)
35. Write the equation for the ellipse rotated \(\pi / 6\) radian clockwise from the ellipse
\[
r=\frac{8}{8+5 \cos \theta} .
\]
36. Write the equation for the parabola rotated \(\pi / 4\) radian counterclockwise from the parabola
\[
r=\frac{9}{1+\sin \theta} .
\]

In Exercises 37-48, find a polar equation for the conic with its focus at the pole. ( Dr convenience, the equation for the directrix is given in rectangular form.)
\begin{tabular}{lllll} 
& \multicolumn{5}{l}{ Conic } & & Eccentricity & & & Directrix \\
37. Parabola & & \(e=1\) & & \(x=-3\) \\
38. Parabola & & \(e=1\) & & \(y=4\) \\
39. Ellipse & & \(e=\frac{1}{2}\) & & \(y=1\) \\
40. 4llipse & & \(e=\frac{3}{4}\) & & \(y=-2\) \\
41. Hyperbola & & \(e=2\) & & \(x=1\) \\
42. Hyperbola & & \(e=\frac{3}{2}\) & & \(x=-1\)
\end{tabular}

\section*{Conic}
43. Parabola
44. Parabola
45. Ellipse
46. Ellipse
47. Hyperbola
48. Hyperbola

Vertex or Vertices
\(\left(1,-\frac{\pi}{2}\right)\)
\((5, \pi)\)
\((2,0),(8, \pi)\)
\(\left(2, \frac{\pi}{2}\right),\left(4, \frac{3 \pi}{2}\right)\)
49. Find a polar equation for the ellipse with focus \((0,0)\), eccentricity \(\frac{1}{2}\), and a directrix at \(r=4 \sec \theta\).
50. Find a polar equation for the hyperbola with focus \((0,0)\), eccentricity 2, and a directrix at \(r=-8 \csc \theta\).

\section*{WRITING ABOUT CONCEPTS}
51. Classify the conics by their eccentricities.
52. Identify each conic.
(a) \(r=\frac{5}{1-2 \cos \theta}\)
(b) \(r=\frac{5}{10-\sin \theta}\)
(c) \(r=\frac{5}{3-3 \cos \theta}\)
(d) \(r=\frac{5}{1-3 \sin (\theta-\pi / 4)}\)
53. Describe what happens to the distance between the directrix and the center of an ellipse if the foci remain fixed and \(e\) approaches 0 .

\section*{CAPSTONE}
54. Explain how the graph of each conic differs from the graph of \(r=\frac{4}{1+\sin \theta}\).
(a) \(r=\frac{4}{1-\cos \theta}\)
(b) \(r=\frac{4}{1-\sin \theta}\)
(c) \(r=\frac{4}{1+\cos \theta}\)
(d) \(r=\frac{4}{1-\sin (\theta-\pi / 4)}\)
55. Show that the polar equation for \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) is
\[
r^{2}=\frac{b^{2}}{1-e^{2} \cos ^{2} \theta} \cdot \quad \text { Ellipse }
\]
56. Show that the polar equation for \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) is
\[
r^{2}=\frac{-b^{2}}{1-e^{2} \cos ^{2} \theta} \cdot \quad \text { Hyperbola }
\]

In Exercises 57-60, use the results of Exercises 55 and 56 to write the polar form of the equation of the conic.
57. Ellipse: focus at \((4,0)\); vertices at \((5,0),(5, \pi)\)
58. Hyperbola: focus at \((5,0)\); vertices at \((4,0),(4, \pi)\)
59. \(\frac{x^{2}}{9}-\frac{y^{2}}{16}=1\)
60. \(\frac{x^{2}}{4}+y^{2}=1\)

In Exercises 61-64, use the integration capabilities of a graphing utility to approximate to two decimal places the area of the region bounded by the graph of the polar equation.
61. \(r=\frac{3}{2-\cos \theta}\)
62. \(r=\frac{9}{4+\cos \theta}\)
63. \(r=\frac{2}{3-2 \sin \theta}\)
64. \(r=\frac{3}{6+5 \sin \theta}\)
65. Explorer 18 On November 27, 1963, the United States launched Explorer 18. Its low and high points above the surface of Earth were approximately 119 miles and 123,000 miles (see figure). The center of Earth is the focus of the orbit. Find the polar equation for the orbit and find the distance between the surface of Earth and the satellite when \(\theta=60^{\circ}\). (Assume that the radius of Earth is 4000 miles.)

66. Planetary Motion The planets travel in elliptical orbits with the sun as a focus, as shown in the figure.

(a) Show that the polar equation of the orbit is given by \(r=\frac{\left(1-e^{2}\right) a}{1-e \cos \theta}\)
where \(e\) is the eccentricity.
(b) Show that the minimum distance (perihelion) from the sun to the planet is \(r=a(1-e)\) and the maximum distance (aphelion) is \(r=a(1+e)\).

In Exercises 67-70, use Exercise 66 to find the polar equation of the elliptical orbit of the planet, and the perihelion and aphelion distances.
67. Earth
\[
\begin{aligned}
& a=1.496 \times 10^{8} \text { kilometers } \\
& e=0.0167
\end{aligned}
\]
68. Saturn
\[
a=1.427 \times 10^{9} \text { kilometers }
\]
\[
e=0.0542
\]
69. Neptune
\[
a=4.498 \times 10^{9} \text { kilometers }
\]
\[
e=0.0086
\]
70. Mercury
\[
\begin{aligned}
& a=5.791 \times 10^{7} \text { kilometers } \\
& e=0.2056
\end{aligned}
\]

CAS 71. Planetary Motion In Exercise 69, the polar equation for the elliptical orbit of Neptune was found. Use the equation and a computer algebra system to perform each of the following.
(a) Approximate the area swept out by a ray from the sun to the planet as \(\theta\) increases from 0 to \(\pi / 9\). Use this result to determine the number of years required for the planet to move through this arc if the period of one revolution around the sun is 165 years.
(b) By trial and error, approximate the angle \(\alpha\) such that the area swept out by a ray from the sun to the planet as \(\theta\) increases from \(\pi\) to \(\alpha\) equals the area found in part (a) (see figure). Does the ray sweep through a larger or smaller angle than in part (a) to generate the same area? Why is this the case?

(c) Approximate the distances the planet traveled in parts (a) and (b). Use these distances to approximate the average number of kilometers per year the planet traveled in the two cases.
72. Comet Hale-Bopp The comet Hale-Bopp has an elliptical orbit with the sun at one focus and has an eccentricity of \(e \approx 0.995\). The length of the major axis of the orbit is approximately 500 astronomical units.
(a) Find the length of its minor axis.
(b) Find a polar equation for the orbit.
(c) Find the perihelion and aphelion distances.

In Exercises 73 and 74, let \(r_{0}\) represent the distance from the focus to the nearest vertex, and let \(r_{1}\) represent the distance from the focus to the farthest vertex.
73. Show that the eccentricity of an ellipse can be written as \(e=\frac{r_{1}-r_{0}}{r_{1}+r_{0}}\). Then show that \(\frac{r_{1}}{r_{0}}=\frac{1+e}{1-e}\).
74. Show that the eccentricity of a hyperbola can be written as
\[
e=\frac{r_{1}+r_{0}}{r_{1}-r_{0}} \text {. Then show that } \frac{r_{1}}{r_{0}}=\frac{e+1}{e-1} .
\]

In Exercises 75 and 76, show that the graphs of the given equations intersect at right angles.
75. \(r=\frac{e d}{1+\sin \theta} \quad\) and \(\quad r=\frac{e d}{1-\sin \theta}\)
76. \(r=\frac{c}{1+\cos \theta} \quad\) and \(\quad r=\frac{d}{1-\cos \theta}\)

\section*{10 REVIEW EXERCISES}

In Exercises 1-6, match the equation with the correct graph. Ie graphs are labeled (a), (b), (c), (d), (e), and (f).]
(a)

(b)

(c)

(d)

(e)

(f)

1. \(4 x^{2}+y^{2}=4\)
2. \(4 x^{2}-y^{2}=4\)
3. \(y^{2}=-4 x\)
4. \(y^{2}-4 x^{2}=4\)
5. \(x^{2}+4 y^{2}=4\)
6. \(x^{2}=4 y\)

In Exercises 7-12, analyze the equation and sketch its graph. Use a graphing utility to confirm your results.
7. \(16 x^{2}+16 y^{2}-16 x+24 y-3=0\)
8. \(y^{2}-12 y-8 x+20=0\)
9. \(3 x^{2}-2 y^{2}+24 x+12 y+24=0\)
10. \(5 x^{2}+y^{2}-20 x+19=0\)
11. \(3 x^{2}+2 y^{2}-12 x+12 y+29=0\)
12. \(12 x^{2}-12 y^{2}-12 x+24 y-45=0\)

In Exercises 13 and 14, find an equation of the parabola.
13. Vertex: \((0,2)\); directrix: \(x=-3\)
14. Vertex: \((2,6)\); focus: \((2,4)\)

In Exercises 15 and 16, find an equation of the ellipse.
15. Vertices: \((-5,0),(7,0)\); foci: \((-3,0),(5,0)\)
16. Center: \((0,0)\); solution points: \((1,2),(2,0)\)

In Exercises 17 and 18, find an equation of the hyperbola.
17. Vertices: \(( \pm 7,0)\); foci: \(( \pm 9,0)\)
18. Foci: \((0, \pm 8)\); asymptotes: \(y= \pm 4 x\)

In Exercises 19 and 20, use a graphing utility to approximate the perimeter of the ellipse.
19. \(\frac{x^{2}}{9}+\frac{y^{2}}{4}=1\) 20. \(\frac{x^{2}}{4}+\frac{y^{2}}{25}=1\)
21. A line is tangent to the parabola \(y=x^{2}-2 x+2\) and perpendicular to the line \(y=x-2\). Find the equation of the line.
22. A line is tangent to the parabola \(3 x^{2}+y=x-6\) and perpendicular to the line \(2 x+y=5\). Find the equation of the line.
23. Satellite Antenna A cross section of a large parabolic antenna is modeled by the graph of
\(y=\frac{x^{2}}{200}, \quad-100 \leq x \leq 100\).
The receiving and transmitting equipment is positioned at the focus.
(a) Find the coordinates of the focus.
(b) Find the surface area of the antenna.
24. Fire Truck Consider a fire truck with a water tank 16 feet long whose vertical cross sections are ellipses modeled by the equation
\(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\).
(a) Find the volume of the tank.
(b) Find the force on the end of the tank when it is full of water. (The density of water is 62.4 pounds per cubic foot.)
(c) Find the depth of the water in the tank if it is \(\frac{3}{4}\) full (by volume) and the truck is on level ground.
(d) Approximate the tank's surface area.

In Exercises 25-32, sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter.
25. \(x=1+8 t, y=3-4 t\)
26. \(x=t-6, y=t^{2}\)
27. \(x=e^{t}-1, y=e^{3 t}\)
28. \(x=e^{4 t}, y=t+4\)
29. \(x=6 \cos \theta, y=6 \sin \theta\)
30. \(x=2+5 \cos t, y=3+2 \sin t\)
31. \(x=2+\sec \theta, y=3+\tan \theta\)
32. \(x=5 \sin ^{3} \theta, y=5 \cos ^{3} \theta\)

In Exercises 33-36, find a parametric representation of the line or conic.
33. Line: passes through \((-2,6)\) and \((3,2)\)
34. Circle: center at \((-4,-5)\); radius 3
35. Ellipse: center at \((-3,4)\); horizontal major axis of length 8 and minor axis of length 6
36. Hyperbola: vertices at \((0, \pm 4)\); foci at \((0, \pm 5)\)
37. Rotary Engine The rotary engine was developed by Felix Wankel in the 1950s. It features a rotor, which is a modified equilateral triangle. The rotor moves in a chamber that, in two dimensions, is an epitrochoid. Use a graphing utility to graph the chamber modeled by the parametric equations
\(x=\cos 3 \theta+5 \cos \theta\)
and
\(y=\sin 3 \theta+5 \sin \theta\).
38. Serpentine Curve Consider the parametric equations \(x=2 \cot \theta\) and \(y=4 \sin \theta \cos \theta, 0<\theta<\pi\).
(a) Use a graphing utility to graph the curve.
(b) Eliminate the parameter to show that the rectangular equation of the serpentine curve is \(\left(4+x^{2}\right) y=8 x\).

In Exercises 39-48, (a) find \(d y / d x\) and all points of horizontal tangency, (b) eliminate the parameter where possible, and (c) sketch the curve represented by the parametric equations.
39. \(x=2+5 t, \quad y=1-4 t\)
40. \(x=t-6, \quad y=t^{2}\)
41. \(x=\frac{1}{t}, \quad y=2 t+3\)
42. \(x=\frac{1}{t}, \quad y=t^{2}\)
43. \(x=\frac{1}{2 t+1}\)
44. \(x=2 t-1\)
\(y=\frac{1}{t^{2}-2 t}\)
\(y=\frac{1}{t^{2}-2 t}\)
45. \(x=5+\cos \theta\)
\(y=3+4 \sin \theta\)
46. \(x=10 \cos \theta\)
\(y=10 \sin \theta\)
47. \(x=\cos ^{3} \theta\)
\(y=4 \sin ^{3} \theta\)
48. \(x=e^{t}\)
\(y=e^{-t}\)
In Exercises 49-52, find all points (if any) of horizontal and vertical tangency to the curve. Use a graphing utility to confirm your results.
49. \(x=5-t, \quad y=2 t^{2}\)
50. \(x=t+2, \quad y=t^{3}-2 t\)
51. \(x=2+2 \sin \theta, \quad y=1+\cos \theta\)
52. \(x=2-2 \cos \theta, \quad y=2 \sin 2 \theta\)

In Exercises 53 and 54, (a) use a graphing utility to graph the curve represented by the parametric equations, (b) use a graphing utility to find \(d x / d \theta, d y / d \theta\), and \(d y / d x\) for \(\theta=\pi / 6\), and (c) use a graphing utility to graph the tangent line to the curve when \(\theta=\pi / 6\).
53. \(x=\cot \theta\)
\(y=\sin 2 \theta\)
54. \(x=2 \theta-\sin \theta\)
\(y=2-\cos \theta\)

Arc Length In Exercises 55 and 56, find the arc length of the curve on the given interval.
55. \(x=r(\cos \theta+\theta \sin \theta)\)
56. \(x=6 \cos \theta\)
\(y=r(\sin \theta-\theta \cos \theta)\)
\(y=6 \sin \theta\)
\(0 \leq \theta \leq \pi\)
\(0 \leq \theta \leq \pi\)

Surface Area In Exercises 57 and 58, find the area of the surface generated by revolving the curve about (a) the \(x\) axis and (b) the yexis.
57. \(x=t, \quad y=3 t, \quad 0 \leq t \leq 2\)
58. \(x=2 \cos \theta, \quad y=2 \sin \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}\)

Area In Exercises 59 and 60, find the area of the region.
59. \(x=3 \sin \theta\)
60. \(x=2 \cos \theta\)
\(y=2 \cos \theta\)
\(y=\sin \theta\)
\(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)
\(0 \leq \theta \leq \pi\)



In Exercises 61-64, plot the point in polar coordinates and find the corresponding rectangular coordinates of the point.
61. \(\left(5, \frac{3 \pi}{2}\right)\)
62. \(\left(-6, \frac{7 \pi}{6}\right)\)
63. \((\sqrt{3}, 1.56)\)
64. \((-2,-2.45)\)

In Exercises 65-68, the rectangular coordinates of a point are given. Pt the point and find two sets of polar coordinates of the point for \(0 \leq \theta<\mathbf{2 \pi}\).
65. \((4,-4)\)
66. \((0,-7)\)
67. \((-1,3)\)
68. \((-\sqrt{3},-\sqrt{3})\)

In Exercises 69-76, convert the polar equation to rectangular form.
69. \(r=3 \cos \theta\)
70. \(r=10\)
71. \(r=-2(1+\cos \theta)\)
72. \(r=\frac{1}{2-\cos \theta}\)
73. \(r^{2}=\cos 2 \theta\)
74. \(r=4 \sec \left(\theta-\frac{\pi}{3}\right)\)
75. \(r=4 \cos 2 \theta \sec \theta\)
76. \(\theta=\frac{3 \pi}{4}\)

In Exercises 77-80, convert the rectangular equation to polar form.
77. \(\left(x^{2}+y^{2}\right)^{2}=a x^{2} y\)
78. \(x^{2}+y^{2}-4 x=0\)
79. \(x^{2}+y^{2}=a^{2}\left(\arctan \frac{y}{x}\right)^{2}\)
80. \(\left(x^{2}+y^{2}\right)\left(\arctan \frac{y}{x}\right)^{2}=a^{2}\)

In Exercises 81-92, sketch a graph of the polar equation.
81. \(r=6\)
82. \(\theta=\frac{\pi}{10}\)
83. \(r=-\sec \theta\)
84. \(r=5 \csc \theta\)
85. \(r=-2(1+\cos \theta)\)
86. \(r=3-4 \cos \theta\)
87. \(r=4-3 \cos \theta\)
88. \(r=4 \theta\)
89. \(r=-3 \cos 2 \theta\)
90. \(r=\cos 5 \theta\)
91. \(r^{2}=4 \sin ^{2} 2 \theta\)
92. \(r^{2}=\cos 2 \theta\)

In Exercises 93-96, use a graphing utility to graph the polar equation.
93. \(r=\frac{3}{\cos (\theta-\pi / 4)}\)
94. \(r=2 \sin \theta \cos ^{2} \theta\)
95. \(r=4 \cos 2 \theta \sec \theta\)
96. \(r=4(\sec \theta-\cos \theta)\)

In Exercises 97 and 98, (a) find the tangents at the pole, (b) find all points of vertical and horizontal tangency, and (c) use a graphing utility to graph the polar equation and draw a tangent line to the graph for \(\theta=\pi / \mathbf{6}\).
97. \(r=1-2 \cos \theta\)
98. \(r^{2}=4 \sin 2 \theta\)

In Exercises 99 and 100, show that the graphs of the polar equations are orthogonal at the points of intersection. Use a graphing utility to confirm your results graphically.
99. \(r=1+\cos \theta\)
100. \(r=a \sin \theta\)
\(r=1-\cos \theta\)
\(r=a \cos \theta\)

In Exercises 101-106, find the area of the region.
101. One petal of \(r=3 \cos 5 \theta\)
102. One petal of \(r=2 \sin 6 \theta\)
103. Interior of \(r=2+\cos \theta\)
104. Interior of \(r=5(1-\sin \theta)\)
105. Interior of \(r^{2}=4 \sin 2 \theta\)
106. Common interior of \(r=4 \cos \theta\) and \(r=2\)
107. Find the points of intersection of the graphs of \(r=1-\cos \theta\) and \(r=1+\sin \theta\).
108. Find the points of intersection of the graphs of \(r=1+\sin \theta\) and \(r=3 \sin \theta\).

In Exercises 109-112, use a graphing utility to graph the polar equation. Set up an integral for finding the area of the given region and use the integration capabilities of a graphing utility to approximate the integral accurate to two decimal places.
109. Interior of \(r=\sin \theta \cos ^{2} \theta\)
110. Interior of \(r=4 \sin 3 \theta\)
111. Common interior of \(r=3\) and \(r^{2}=18 \sin 2 \theta\)
112. Region bounded by the polar axis and \(r=e^{\theta}\) for \(0 \leq \theta \leq \pi\)

In Exercises 113 and 114, find the length of the curve over the given interval.
113. \(\frac{\text { Polar Equation }}{r=a(1-\cos \theta)}\)
\(\frac{\text { Interval }}{0 \leq \theta \leq \pi}\)
114. \(r=a \cos 2 \theta\)
\[
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
\]

In Exercises 115 and 116, write an integral that represents the area of the surface formed by revolving the curve about the given line. Use a graphing utility to approximate the integral.
\begin{tabular}{lll} 
Polar Equation & & Interval \\
115. \(r=1+4 \cos \theta\) & \(0 \leq \theta \leq \frac{\pi}{2}\) & \\
116. \(r=2 \sin \theta\) & \(0 \leq \theta \leq \frac{\pi}{2}\) & \(\theta=\frac{\pi}{2}\)
\end{tabular}

In Exercises 117-122, sketch and identify the graph. Use a graphing utility to confirm your results.
117. \(r=\frac{6}{1-\sin \theta}\)
118. \(r=\frac{2}{1+\cos \theta}\)
119. \(r=\frac{6}{3+2 \cos \theta}\)
120. \(r=\frac{4}{5-3 \sin \theta}\)
121. \(r=\frac{4}{2-3 \sin \theta}\)
122. \(r=\frac{8}{2-5 \cos \theta}\)

In Exercises 123-128, find a polar equation for the line or conic with its focus at the pole.
123. Circle

Center: \((5, \pi / 2)\)
Solution point: \((0,0)\)
125. Parabola

Vertex: \((2, \pi)\)
127. Ellipse

Vertices: \((5,0),(1, \pi)\)
124. Line Solution point: \((0,0)\) Slope: \(\sqrt{3}\)
126. Parabola

Vertex: \((2, \pi / 2)\)
128. Hyperbola Vertices: \((1,0),(7,0)\)

\section*{P.S. PROBLEM SOLVING}
1. Consider the parabola \(x^{2}=4 y\) and the focal chord \(y=\frac{3}{4} x+1\).
(a) Sketch the graph of the parabola and the focal chord.
(b) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect at right angles.
(c) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect on the directrix of the parabola.
2. Consider the parabola \(x^{2}=4 p y\) and one of its focal chords.
(a) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect at right angles.
(b) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect on the directrix of the parabola.
3. Prove Theorem 10.2, Reflective Property of a Parabola, as shown in the figure.

4. Consider the hyperbola
\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\)
with foci \(F_{1}\) and \(F_{2}\), as shown in the figure. Let \(T\) be the tangent line at a point \(M\) on the hyperbola. Show that incoming rays of light aimed at one focus are reflected by a hyperbolic mirror toward the other focus.


Igure for 4


Egure for 5
5. Consider a circle of radius \(a\) tangent to the \(y\)-axis and the line \(x=2 a\), as shown in the figure. Let \(A\) be the point where the segment \(O B\) intersects the circle. The cissoid of idcles consists of all points \(P\) such that \(O P=A B\).
(a) Find a polar equation of the cissoid.
(b) Find a set of parametric equations for the cissoid that does not contain trigonometric functions.
(c) Find a rectangular equation of the cissoid.
6. Consider the region bounded by the ellipse \(x^{2} / a^{2}+y^{2} / b^{2}=1\), with eccentricity \(e=c / a\).
(a) Show that the area of the region is \(\pi a b\).
(b) Show that the solid (oblate spheroid) generated by revolving the region about the minor axis of the ellipse has a volume of \(V=4 \pi^{2} b / 3\) and a surface area of
\[
S=2 \pi a^{2}+\pi\left(\frac{b^{2}}{e}\right) \ln \left(\frac{1+e}{1-e}\right) .
\]
(c) Show that the solid (prolate spheroid) generated by revolving the region about the major axis of the ellipse has a volume of \(V=4 \pi a b^{2} / 3\) and a surface area of
\(S=2 \pi b^{2}+2 \pi\left(\frac{a b}{e}\right) \arcsin e\).
7. The curve given by the parametric equations
\(x(t)=\frac{1-t^{2}}{1+t^{2}}\) and \(y(t)=\frac{t\left(1-t^{2}\right)}{1+t^{2}}\)
is called a strophoid.
(a) Find a rectangular equation of the strophoid.
(b) Find a polar equation of the strophoid.
(c) Sketch a graph of the strophoid.
(d) Find the equations of the two tangent lines at the origin.
(e) Find the points on the graph at which the tangent lines are horizontal.
8. Find a rectangular equation of the portion of the cycloid given by the parametric equations \(x=a(\theta-\sin \theta)\) and \(y=a(1-\cos \theta)\), \(0 \leq \theta \leq \pi\), as shown in the figure.

9. Consider the cornu spiral given by
\(x(t)=\int_{0}^{t} \cos \left(\frac{\pi u^{2}}{2}\right) d u\) and \(y(t)=\int_{0}^{t} \sin \left(\frac{\pi u^{2}}{2}\right) d u\).
(a) Use a graphing utility to graph the spiral over the interval \(-\pi \leq t \leq \pi\).
(b) Show that the cornu spiral is symmetric with respect to the origin.
(c) Find the length of the cornu spiral from \(t=0\) to \(t=a\). What is the length of the spiral from \(t=-\pi\) to \(t=\pi\) ?
10. A particle is moving along the path described by the parametric equations \(x=1 / t\) and \(y=\sin t / t\), for \(1 \leq t<\infty\), as shown in the figure. Find the length of this path.

11. Let \(a\) and \(b\) be positive constants. Find the area of the region in the first quadrant bounded by the graph of the polar equation
\(r=\frac{a b}{(a \sin \theta+b \cos \theta)}, \quad 0 \leq \theta \leq \frac{\pi}{2}\).
12. Consider the right triangle shown in the figure.
(a) Show that the area of the triangle is \(A(\alpha)=\frac{1}{2} \int_{0}^{\alpha} \sec ^{2} \theta d \theta\).
(b) Show that \(\tan \alpha=\int_{0}^{\alpha} \sec ^{2} \theta d \theta\).
(c) Use part (b) to derive the formula for the derivative of the tangent function.


\section*{Igure for 12}


Igure for 13
13. Determine the polar equation of the set of all points \((r, \theta)\), the product of whose distances from the points \((1,0)\) and \((-1,0)\) is equal to 1 , as shown in the figure.
14. Four dogs are located at the corners of a square with sides of length \(d\). The dogs all move counterclockwise at the same speed directly toward the next dog, as shown in the figure. Find the polar equation of a dog's path as it spirals toward the center of the square.

15. An air traffic controller spots two planes at the same altitude flying toward each other (see figure). Their flight paths are \(20^{\circ}\) and \(315^{\circ}\). One plane is 150 miles from point \(P\) with a speed of 375 miles per hour. The other is 190 miles from point \(P\) with a speed of 450 miles per hour.

(a) Find parametric equations for the path of each plane where \(t\) is the time in hours, with \(t=0\) corresponding to the time at which the air traffic controller spots the planes.
(b) Use the result of part (a) to write the distance between the planes as a function of \(t\).
(c) Use a graphing utility to graph the function in part (b). When will the distance between the planes be minimum? If the planes must keep a separation of at least 3 miles, is the requirement met?
16. Use a graphing utility to graph the curve shown below. The curve is given by
\(r=e^{\cos \theta}-2 \cos 4 \theta+\sin ^{5} \frac{\theta}{12}\).
Over what interval must \(\theta\) vary to produce the curve?


WHIN
For more information on this curve, see the article "A Study in Step Size" by Temple H. Fay in Mathematics Magazine. To view this article, go to the website www.matharticles.com.
17. Use a graphing utility to graph the polar equation \(r=\cos 5 \theta+n \cos \theta\) for \(0 \leq \theta<\pi\) and for the integers \(n=-5\) to \(n=5\). What values of \(n\) produce the "heart" portion of the curve? What values of \(n\) produce the "bell" portion? (This curve, created by Michael W. Chamberlin, appeared in The College Mathematics Journal)

\section*{Appendices}
Appendix A Proofs of Selected Theorems ..... A2
Appendix B Integration Tables ..... A20
Appendix C Precalculus Review (Online)C. 1 Real Numbers and the Real Number Line
C. 2 The Cartesian Plane
C. 3 Review of Trigonometric Functions
Appendix D Rotation and the General Second-Degree Equation (Online)
Appendix E Complex Numbers (Online)
Appendix F Business and Economic Applications (Online)

\section*{Proofs of Selected Theorems}

\section*{THEOREM 1.2 PROPERTIES OF LIMITS (PROPERTIES 2, 3, 4, AND 5) (PAGE 59)}

Let \(b\) and \(c\) be real numbers, let \(n\) be a positive integer, and let \(f\) and \(g\) be functions with the following limits.
\[
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
\]
2. Sum or difference: \(\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K\)
3. Product: \(\quad \lim _{x \rightarrow c}[f(x) g(x)]=L K\)
4. Quotient: \(\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}, \quad\) provided \(K \neq 0\)
5. Power: \(\quad \lim _{x \rightarrow c}[f(x)]^{n}=L^{n}\)

PR00F To prove Property 2, choose \(\varepsilon>0\). Because \(\varepsilon / 2>0\), you know that there exists \(\delta_{1}>0\) such that \(0<|x-c|<\delta_{1}\) implies \(|f(x)-L|<\varepsilon / 2\). You also know that there exists \(\delta_{2}>0\) such that \(0<|x-c|<\delta_{2}\) implies \(|g(x)-K|<\varepsilon / 2\). Let \(\delta\) be the smaller of \(\delta_{1}\) and \(\delta_{2}\); then \(0<|x-c|<\delta\) implies that
\[
|f(x)-L|<\frac{\varepsilon}{2} \quad \text { and } \quad|g(x)-K|<\frac{\varepsilon}{2} .
\]

So, you can apply the triangle inequality to conclude that
\[
|[f(x)+g(x)]-(L+K)| \leq|f(x)-L|+|g(x)-K|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\]
which implies that
\[
\lim _{x \rightarrow c}[f(x)+g(x)]=L+K=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) .
\]

The proof that
\[
\lim _{x \rightarrow c}[f(x)-g(x)]=L-K
\]
is similar.
To prove Property 3, given that
\[
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
\]
you can write
\[
f(x) g(x)=[f(x)-L][g(x)-K]+[L g(x)+K f(x)]-L K .
\]

Because the limit of \(f(x)\) is \(L\), and the limit of \(g(x)\) is \(K\), you have
\[
\lim _{x \rightarrow c}[f(x)-L]=0 \quad \text { and } \quad \lim _{x \rightarrow c}[g(x)-K]=0
\]

Let \(0<\varepsilon<1\). Then there exists \(\delta>0\) such that if \(0<|x-c|<\delta\), then
\[
|f(x)-L-0|<\varepsilon \quad \text { and } \quad|g(x)-K-0|<\varepsilon
\]
which implies that
\[
|[f(x)-L][g(x)-K]-0|=|f(x)-L||g(x)-K|<\varepsilon \varepsilon<\varepsilon
\]

So,
\[
\lim _{x \rightarrow c}[f(x)-L][g(x)-K]=0
\]

Furthermore, by Property 1, you have
\[
\lim _{x \rightarrow c} L g(x)=L K \quad \text { and } \quad \lim _{x \rightarrow c} K f(x)=K L
\]

Finally, by Property 2, you obtain
\[
\begin{aligned}
\lim _{x \rightarrow c} f(x) g(x) & =\lim _{x \rightarrow c}[f(x)-L][g(x)-K]+\lim _{x \rightarrow c} L g(x)+\lim _{x \rightarrow c} K f(x)-\lim _{x \rightarrow c} L K \\
& =0+L K+K L-L K \\
& =L K .
\end{aligned}
\]

To prove Property 4, note that it is sufficient to prove that
\[
\lim _{x \rightarrow c} \frac{1}{g(x)}=\frac{1}{K}
\]

Then you can use Property 3 to write
\[
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} f(x) \frac{1}{g(x)}=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} \frac{1}{g(x)}=\frac{L}{K} .
\]

Let \(\varepsilon>0\). Because \(\lim _{x \rightarrow c} g(x)=K\), there exists \(\delta_{1}>0\) such that if
\[
0<|x-c|<\delta_{1}, \text { then }|g(x)-K|<\frac{|K|}{2}
\]
which implies that
\[
|K|=|g(x)+[|K|-g(x)]| \leq|g(x)|+||K|-g(x)|<|g(x)|+\frac{|K|}{2}
\]

That is, for \(0<|x-c|<\delta_{1}\),
\[
\frac{|K|}{2}<|g(x)| \quad \text { or } \quad \frac{1}{|g(x)|}<\frac{2}{|K|}
\]

Similarly, there exists a \(\delta_{2}>0\) such that if \(0<|x-c|<\delta_{2}\), then
\[
|g(x)-K|<\frac{|K|^{2}}{2} \varepsilon
\]

Let \(\delta\) be the smaller of \(\delta_{1}\) and \(\delta_{2}\). For \(0<|x-c|<\delta\), you have
\[
\left|\frac{1}{g(x)}-\frac{1}{K}\right|=\left|\frac{K-g(x)}{g(x) K}\right|=\frac{1}{|K|} \cdot \frac{1}{|g(x)|}|K-g(x)|<\frac{1}{|K|} \cdot \frac{2}{|K|} \frac{|K|^{2}}{2} \varepsilon=\varepsilon
\]

So, \(\lim _{x \rightarrow c} \frac{1}{g(x)}=\frac{1}{K}\).
Finally, the proof of Property 5 can be obtained by a straightforward application of mathematical induction coupled with Property 3.

\section*{THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL (PAGE 60)}

Let \(n\) be a positive integer. The following limit is valid for all \(c\) if \(n\) is odd, and is valid for \(c>0\) if \(n\) is even.
\[
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
\]

PROOF Consider the case for which \(c>0\) and \(n\) is any positive integer. For a given \(\varepsilon>0\), you need to find \(\delta>0\) such that
\[
|\sqrt[n]{x}-\sqrt[n]{c}|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta
\]
which is the same as saying
\[
-\varepsilon<\sqrt[n]{x}-\sqrt[n]{c}<\varepsilon \quad \text { whenever } \quad-\delta<x-c<\delta
\]

Assume \(\varepsilon<\sqrt[n]{c}\), which implies that \(0<\sqrt[n]{c}-\varepsilon<\sqrt[n]{c}\). Now, let \(\delta\) be the smaller of the two numbers.
\[
c-(\sqrt[n]{c}-\varepsilon)^{n} \quad \text { and } \quad(\sqrt[n]{c}+\varepsilon)^{n}-c
\]

Then you have
\[
\begin{array}{rlrl}
-\delta & <x-c & <\delta \\
-\left[c-(\sqrt[n]{c}-\varepsilon)^{n}\right] & <x-c & <(\sqrt[n]{c}+\varepsilon)^{n}-c \\
(\sqrt[n]{c}-\varepsilon)^{n}-c & <x-c & & <(\sqrt[n]{c}+\varepsilon)^{n}-c \\
(\sqrt[n]{c}-\varepsilon)^{n} & <x & & <(\sqrt[n]{c}+\varepsilon)^{n} \\
\sqrt[n]{c}-\varepsilon & <\sqrt[n]{x} & & <\sqrt[n]{c}+\varepsilon \\
-\varepsilon & <\sqrt[n]{x}-\sqrt[n]{c} & <\varepsilon .
\end{array}
\]

\section*{THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION (PAGE 61)}

If \(f\) and \(g\) are functions such that \(\lim _{x \rightarrow c} g(x)=L\) and \(\lim _{x \rightarrow L} f(x)=f(L)\), then
\[
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L)
\]

PROOF For a given \(\varepsilon>0\), you must find \(\delta>0\) such that
\[
|f(g(x))-f(L)|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta
\]

Because the limit of \(f(x)\) as \(x \rightarrow L\) is \(f(L)\), you know there exists \(\delta_{1}>0\) such that
\[
|f(u)-f(L)|<\varepsilon \quad \text { whenever } \quad|u-L|<\delta_{1} .
\]

Moreover, because the limit of \(g(x)\) as \(x \rightarrow c\) is \(L\), you know there exists \(\delta>0\) such that
\[
|g(x)-L|<\delta_{1} \quad \text { whenever } \quad 0<|x-c|<\delta
\]

Finally, letting \(u=g(x)\), you have
\[
|f(g(x))-f(L)|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta
\]

\section*{THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT (PAGE 62)}

Let \(c\) be a real number and let \(f(x)=g(x)\) for all \(x \neq c\) in an open interval containing \(c\). If the limit of \(g(x)\) as \(x\) approaches \(c\) exists, then the limit of \(f(x)\) also exists and
\[
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)
\]

PROOF Let \(L\) be the limit of \(g(x)\) as \(x \rightarrow c\). Then, for each \(\varepsilon>0\) there exists a \(\delta>0\) such that \(f(x)=g(x)\) in the open intervals \((c-\delta, c)\) and \((c, c+\delta)\), and
\[
|g(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta
\]

Because \(f(x)=g(x)\) for all \(x\) in the open interval other than \(x=c\), it follows that
\[
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta .
\]

So, the limit of \(f(x)\) as \(x \rightarrow c\) is also \(L\).

\section*{THEOREM 1.8 THE SQUEEZE THEOREM (PAGE 65)}

If \(h(x) \leq f(x) \leq g(x)\) for all \(x\) in an open interval containing \(c\), except possibly at \(c\) itself, and if
\[
\lim _{x \rightarrow c} h(x)=L=\lim _{x \rightarrow c} g(x)
\]
then \(\lim _{x \rightarrow c} f(x)\) exists and is equal to \(L\).

PROOF For \(\varepsilon>0\) there exist \(\delta_{1}>0\) and \(\delta_{2}>0\) such that
\[
|h(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta_{1}
\]
and
\[
|g(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta_{2}
\]

Because \(h(x) \leq f(x) \leq g(x)\) for all \(x\) in an open interval containing \(c\), except possibly at \(c\) itself, there exists \(\delta_{3}>0\) such that \(h(x) \leq f(x) \leq g(x)\) for \(0<|x-c|<\delta_{3}\). Let \(\delta\) be the smallest of \(\delta_{1}, \delta_{2}\), and \(\delta_{3}\). Then, if \(0<|x-c|<\delta\), it follows that \(|h(x)-L|<\varepsilon\) and \(|g(x)-L|<\varepsilon\), which implies that
\[
\begin{gathered}
-\varepsilon<h(x)-L<\varepsilon \quad \text { and } \quad-\varepsilon<g(x)-L<\varepsilon \\
L-\varepsilon<h(x) \quad \text { and } \quad g(x)<L+\varepsilon .
\end{gathered}
\]

Now, because \(h(x) \leq f(x) \leq g(x)\), it follows that \(L-\varepsilon<f(x)<L+\varepsilon\), which implies that \(|f(x)-L|<\varepsilon\). Therefore,
\[
\lim _{x \rightarrow c} f(x)=L
\]

\section*{THEOREM 1.11 PROPERTIES OF CONTINUITY (PAGE 75)}

If \(b\) is a real number and \(f\) and \(g\) are continuous at \(x=c\), then the following functions are also continuous at \(c\).
1. Scalar multiple: bf
2. Sum or difference: \(f \pm g\)
3. Product: \(f g\)
4. Quotient: \(\frac{f}{g}\), if \(g(c) \neq 0\)

PROOF Because \(f\) and \(g\) are continuous at \(x=c\), you can write
\[
\lim _{x \rightarrow c} f(x)=f(c) \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=g(c)
\]

For Property 1 , when \(b\) is a real number, it follows from Theorem 1.2 that
\[
\lim _{x \rightarrow c}[(b f)(x)]=\lim _{x \rightarrow c}[b f(x)]=b \lim _{x \rightarrow c}[f(x)]=b f(c)=(b f)(c)
\]

Thus, \(b f\) is continuous at \(x=c\).
For Property 2, it follows from Theorem 1.2 that
\[
\begin{aligned}
\lim _{x \rightarrow c}(f \pm g)(x) & =\lim _{x \rightarrow c}[f(x) \pm g(x)] \\
& =\lim _{x \rightarrow c}[f(x)] \pm \lim _{x \rightarrow c}[g(x)] \\
& =f(c) \pm g(c) \\
& =(f \pm g)(c) .
\end{aligned}
\]

Thus, \(f \pm g\) is continuous at \(x=c\).
For Property 3, it follows from Theorem 1.2 that
\[
\begin{aligned}
\lim _{x \rightarrow c}(f g)(x) & =\lim _{x \rightarrow c}[f(x) g(x)] \\
& =\lim _{x \rightarrow c}[f(x)] \lim _{x \rightarrow c}[g(x)] \\
& =f(c) g(c) \\
& =(f g)(c) .
\end{aligned}
\]

Thus, \(f g\) is continuous at \(x=c\).
For Property 4, when \(g(c) \neq 0\), it follows from Theorem 1.2 that
\[
\begin{aligned}
\lim _{x \rightarrow c} \frac{f}{g}(x) & =\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \\
& =\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)} \\
& =\frac{f(c)}{g(c)} \\
& =\frac{f}{g}(\mathrm{c}) .
\end{aligned}
\]

Thus, \(\frac{f}{g}\) is continuous at \(x=c\).

\section*{THEOREM 1.14 VERTICAL ASYMPTOTES (PAGE 85)}

Let \(f\) and \(g\) be continuous on an open interval containing \(c\). If \(f(c) \neq 0\), \(g(c)=0\), and there exists an open interval containing \(c\) such that \(g(x) \neq 0\) for all \(x \neq c\) in the interval, then the graph of the function given by
\[
h(x)=\frac{f(x)}{g(x)}
\]
has a vertical asymptote at \(x=c\).

PROOF Consider the case for which \(f(c)>0\), and there exists \(b>c\) such that \(c<x<b\) implies \(g(x)>0\). Then for \(M>0\), choose \(\delta_{1}\) such that
\[
0<x-c<\delta_{1} \quad \text { implies that } \frac{f(c)}{2}<f(x)<\frac{3 f(c)}{2}
\]
and \(\delta_{2}\) such that
\[
0<x-c<\delta_{2} \quad \text { implies that } 0<g(x)<\frac{f(c)}{2 M}
\]

Now let \(\delta\) be the smaller of \(\delta_{1}\) and \(\delta_{2}\). Then it follows that
\[
0<x-c<\delta \quad \text { implies that } \frac{f(x)}{g(x)}>\frac{f(c)}{2}\left[\frac{2 M}{f(c)}\right]=M .
\]

So, it follows that
\[
\lim _{x \rightarrow c^{+}} \frac{f(x)}{g(x)}=\infty
\]
and the line \(x=c\) is a vertical asymptote of the graph of \(h\).

\section*{ALTERNATIVE FORM OF THE DERIVATIVE (PAGE 101)}

The derivative of \(f\) at \(c\) is given by
\[
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
\]
provided this limit exists.

PROOF The derivative of \(f\) at \(c\) is given by
\[
f^{\prime}(c)=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
\]

Let \(x=c+\Delta x\). Then \(x \rightarrow c\) as \(\Delta x \rightarrow 0\). So, replacing \(c+\Delta x\) by \(x\), you have
\[
f^{\prime}(c)=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
\]

\section*{THEOREM 2.10 THE CHAIN RULE (PAGE 131)}

If \(y=f(u)\) is a differentiable function of \(u\), and \(u=g(x)\) is a differentiable function of \(x\), then \(y=f(g(x))\) is a differentiable function of \(x\) and
\[
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
\]
or, equivalently,
\[
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
\]

PROOF In Section 2.4, you let \(h(x)=f(g(x))\) and used the alternative form of the derivative to show that \(h^{\prime}(c)=f^{\prime}(g(c)) g^{\prime}(c)\), provided \(g(x) \neq g(c)\) for values of \(x\) other than \(c\). Now consider a more general proof. Begin by considering the derivative of \(f\).
\[
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
\]

For a fixed value of \(x\), define a function \(\eta\) such that
\[
\eta(\Delta x)= \begin{cases}0, & \Delta x=0 \\ \frac{\Delta y}{\Delta x}-f^{\prime}(x), & \Delta x \neq 0 .\end{cases}
\]

Because the limit of \(\eta(\Delta x)\) as \(\Delta x \rightarrow 0\) doesn't depend on the value of \(\eta(0)\), you have
\[
\lim _{\Delta x \rightarrow 0} \eta(\Delta x)=\lim _{\Delta x \rightarrow 0}\left[\frac{\Delta y}{\Delta x}-f^{\prime}(x)\right]=0
\]
and you can conclude that \(\eta\) is continuous at 0 . Moreover, because \(\Delta y=0\) when \(\Delta x=0\), the equation
\[
\Delta y=\Delta x \eta(\Delta x)+\Delta x f^{\prime}(x)
\]
is valid whether \(\Delta x\) is zero or not. Now, by letting \(\Delta u=g(x+\Delta x)-g(x)\), you can use the continuity of \(g\) to conclude that
\[
\lim _{\Delta x \rightarrow 0} \Delta u=\lim _{\Delta x \rightarrow 0}[g(x+\Delta x)-g(x)]=0
\]
which implies that
\[
\lim _{\Delta x \rightarrow 0} \eta(\Delta u)=0 .
\]

Finally,
\[
\Delta y=\Delta u \eta(\Delta u)+\Delta u f^{\prime}(u) \rightarrow \frac{\Delta y}{\Delta x}=\frac{\Delta u}{\Delta x} \eta(\Delta u)+\frac{\Delta u}{\Delta x} f^{\prime}(u), \quad \Delta x \neq 0
\]
and taking the limit as \(\Delta x \rightarrow 0\), you have
\[
\begin{aligned}
\frac{d y}{d x}=\frac{d u}{d x}\left[\lim _{\Delta x \rightarrow 0} \eta(\Delta u)\right]+\frac{d u}{d x} f^{\prime}(u) & =\frac{d y}{d x}(0)+\frac{d u}{d x} f^{\prime}(u) \\
& =\frac{d u}{d x} f^{\prime}(u) \\
& =\frac{d u}{d x} \cdot \frac{d y}{d u} .
\end{aligned}
\]

\section*{CONCAVITY INTERPRETATION (PAGE 190)}
1. Let \(f\) be differentiable on an open interval \(I\). If the graph of \(f\) is concave upward on \(I\), then the graph of \(f\) lies above all of its tangent lines on \(I\).
2. Let \(f\) be differentiable on an open interval \(I\). If the graph of \(f\) is concave downward on \(I\), then the graph of \(f\) lies below all of its tangent lines on \(I\).

PROOF Assume that \(f\) is concave upward on \(I=(a, b)\). Then, \(f^{\prime}\) is increasing on \((a, b)\). Let \(c\) be a point in the interval \(I=(a, b)\). The equation of the tangent line to the graph of \(f\) at \(c\) is given by
\[
g(x)=f(c)+f^{\prime}(c)(x-c) .
\]

If \(x\) is in the open interval \((c, b)\), then the directed distance from point \((x, f(x))\) (on the graph of \(f\) ) to the point \((x, g(x))\) (on the tangent line) is given by
\[
\begin{aligned}
d & =f(x)-\left[f(c)+f^{\prime}(c)(x-c)\right] \\
& =f(x)-f(c)-f^{\prime}(c)(x-c) .
\end{aligned}
\]

Moreover, by the Mean Value Theorem there exists a number \(z\) in \((c, x)\) such that
\[
f^{\prime}(z)=\frac{f(x)-f(c)}{x-c} .
\]

So, you have
\[
\begin{aligned}
d & =f(x)-f(c)-f^{\prime}(c)(x-c) \\
& =f^{\prime}(z)(x-c)-f^{\prime}(c)(x-c) \\
& =\left[f^{\prime}(z)-f^{\prime}(c)\right](x-c) .
\end{aligned}
\]

The second factor \((x-c)\) is positive because \(c<x\). Moreover, because \(f^{\prime}\) is increasing, it follows that the first factor \(\left[f^{\prime}(z)-f^{\prime}(c)\right]\) is also positive. Therefore, \(d>0\) and you can conclude that the graph of \(f\) lies above the tangent line at \(x\). If \(x\) is in the open interval ( \(a, c\) ), a similar argument can be given. This proves the first statement. The proof of the second statement is similar.

\section*{THEOREM 3.7 TEST FOR CONCAVITY (PAGE 191)}

Let \(f\) be a function whose second derivative exists on an open interval \(I\).
1. If \(f^{\prime \prime}(x)>0\) for all \(x\) in \(I\), then the graph of \(f\) is concave upward in \(I\).
2. If \(f^{\prime \prime}(x)<0\) for all \(x\) in \(I\), then the graph of \(f\) is concave downward in \(I\).

PROOF For Property 1, assume \(f^{\prime \prime}(x)>0\) for all \(x\) in \((a, b)\). Then, by Theorem 3.5, \(f^{\prime}\) is increasing on \([a, b]\). Thus, by the definition of concavity, the graph of \(f\) is concave upward on \((a, b)\).
For Property 2, assume \(f^{\prime \prime}(x)<0\) for all \(x\) in \((a, b)\). Then, by Theorem \(3.5, f^{\prime}\) is decreasing on \([a, b]\). Thus, by the definition of concavity, the graph of \(f\) is concave downward on \((a, b)\).

\section*{THEOREM 3.10 LIMITS AT INFINITY (PAGE 199)}

If \(r\) is a positive rational number and \(c\) is any real number, then
\[
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0
\]

Furthermore, if \(x^{r}\) is defined when \(x<0\), then \(\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0\).

\section*{PROOF Begin by proving that}
\[
\lim _{x \rightarrow \infty} \frac{1}{x}=0
\]

For \(\varepsilon>0\), let \(M=1 / \varepsilon\). Then, for \(x>M\), you have
\[
\left.x>M=\frac{1}{\varepsilon} \quad \square \frac{1}{x}<\varepsilon \quad \square \quad \frac{1}{x}-0 \right\rvert\,<\varepsilon .
\]

So, by the definition of a limit at infinity, you can conclude that the limit of \(1 / x\) as \(x \rightarrow \infty\) is 0 . Now, using this result, and letting \(r=m / n\), you can write the following.
\[
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{c}{x^{r}} & =\lim _{x \rightarrow \infty} \frac{c}{x^{m / n}} \\
& =c\left[\lim _{x \rightarrow \infty}\left(\frac{1}{\sqrt[n]{x}}\right)^{m}\right] \\
& =c\left(\lim _{x \rightarrow \infty} \sqrt[n]{\frac{1}{x}}\right)^{m} \\
& =c\left(\sqrt[n]{\lim _{x \rightarrow \infty} \frac{1}{x}}\right)^{m} \\
& =c(\sqrt[n]{0})^{m} \\
& =0
\end{aligned}
\]

The proof of the second part of the theorem is similar.

\section*{THEOREM 4.2 SUMMATION FORMULAS (PAGE 260)}
1. \(\sum_{i=1}^{n} c=c n\)
2. \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)
3. \(\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}\)
4. \(\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}\)

PROOF The proof of Property 1 is straightforward. By adding \(c\) to itself \(n\) times, you obtain a sum of \(c n\).

To prove Property 2, write the sum in increasing and decreasing order and add corresponding terms, as follows.
\[
\begin{aligned}
& \begin{array}{c}
\left.\sum_{i=1}^{n} i=\begin{array}{c}
1 \\
\downarrow
\end{array} \quad+\quad 2 \quad \begin{array}{ccc}
3 \\
\downarrow & +\cdots+(n-1)+ & n \\
\downarrow & \downarrow
\end{array}\right]
\end{array} \\
& \begin{array}{cccc}
\sum_{i=1}^{n} i= & n & +(n-1)+(n-2)+\cdots+ & 2 \\
\downarrow & \downarrow & \downarrow
\end{array}+\begin{array}{c}
1 \\
\downarrow
\end{array} \\
& 2 \sum_{i=1}^{n} i=\underbrace{(n+1)+(n+1)+(n+1)+\cdots+(n+1)+(n+1)}_{n \text { terms }}
\end{aligned}
\]

So,
\[
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
\]

To prove Property 3, use mathematical induction. First, if \(n=1\), the result is true because
\[
\sum_{i=1}^{1} i^{2}=1^{2}=1=\frac{1(1+1)(2+1)}{6}
\]

Now, assuming the result is true for \(n=k\), you can show that it is true for \(n=k+1\), as follows.
\[
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\sum_{i=1}^{k} i^{2}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k+1}{6}\left(2 k^{2}+k+6 k+6\right) \\
& =\frac{k+1}{6}[(2 k+3)(k+2)] \\
& =\frac{(k+1)(k+2)[2(k+1)+1]}{6}
\end{aligned}
\]

Property 4 can be proved using a similar argument with mathematical induction.

\section*{THEOREM 4.8 PRESERVATION OF INEQUALITY (PAGE 278)}
1. If \(f\) is integrable and nonnegative on the closed interval \([a, b]\), then
\[
0 \leq \int_{a}^{b} f(x) d x
\]
2. If \(f\) and \(g\) are integrable on the closed interval \([a, b]\) and \(f(x) \leq g(x)\) for every \(x\) in \([a, b]\), then
\[
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
\]

PROOF To prove Property 1, suppose, on the contrary, that
\[
\int_{a}^{b} f(x) d x=I<0
\]

Then, let \(a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\) be a partition of [ \(\left.a, b\right]\), and let
\[
R=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
\]
be a Riemann sum. Because \(f(x) \geq 0\), it follows that \(R \geq 0\). Now, for \(\|\Delta\|\) sufficiently small, you have \(|R-I|<-I / 2\), which implies that
\[
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=R<I-\frac{I}{2}<0
\]
which is not possible. From this contradiction, you can conclude that
\[
0 \leq \int_{a}^{b} f(x) d x
\]

To prove Property 2 of the theorem, note that \(f(x) \leq g(x)\) implies that \(g(x)-f(x) \geq 0\). So, you can apply the result of Property 1 to conclude that
\[
\begin{aligned}
0 & \leq \int_{a}^{b}[g(x)-f(x)] d x \\
0 & \leq \int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x & \leq \int_{a}^{b} g(x) d x .
\end{aligned}
\]

\section*{PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION (PAGE 325)}

The natural logarithmic function is one-to-one.
\[
\lim _{x \rightarrow 0^{+}} \ln x=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln x=\infty
\]

PROOF Recall from Section P. 3 that a function \(f\) is one-to-one if for \(x_{1}\) and \(x_{2}\) in its domain
\[
x_{1} \neq x_{2} \quad \square f\left(x_{1}\right) \neq f\left(x_{2}\right) .
\]

Let \(f(x)=\ln x\). Then \(f^{\prime}(x)=\frac{1}{x}>0\) for \(x>0\). So \(f\) is increasing on its entire domain \((0, \infty)\) and therefore is strictly monotonic (see Section 3.3). Choose \(x_{1}\) and \(x_{2}\) in the domain of \(f\) such that \(x_{1} \neq x_{2}\). Because \(f\) is strictly monotonic, it follows that either
\[
f\left(x_{1}\right)<f\left(x_{2}\right) \quad \text { or } \quad f\left(x_{1}\right)>f\left(x_{2}\right)
\]

In either case, \(f\left(x_{1}\right) \neq f\left(x_{2}\right)\). So, \(f(x)=\ln x\) is one-to-one. To verify the limits, begin by showing that \(\ln 2 \geq \frac{1}{2}\). From the Mean Value Theorem for Integrals, you can write
\[
\ln 2=\int_{1}^{2} \frac{1}{x} d x=\frac{1}{c}(2-1)=\frac{1}{c}
\]
where \(c\) is in [1,2].

This implies that
\[
\begin{aligned}
& 1 \leq c \leq 2 \\
& 1 \geq \frac{1}{c} \geq \frac{1}{2} \\
& 1 \geq \ln 2 \geq \frac{1}{2}
\end{aligned}
\]

Now, let \(N\) be any positive (large) number. Because \(\ln x\) is increasing, it follows that if \(x>2^{2 N}\), then
\(\ln x>\ln 2^{2 N}=2 N \ln 2\).
However, because \(\ln 2 \geq \frac{1}{2}\), it follows that
\[
\ln x>2 N \ln 2 \geq 2 N\left(\frac{1}{2}\right)=N .
\]

This verifies the second limit. To verify the first limit, let \(z=1 / x\). Then, \(z \rightarrow \infty\) as \(x \rightarrow 0^{+}\), and you can write
\[
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln x & =\lim _{x \rightarrow 0^{+}}\left(-\ln \frac{1}{x}\right) \\
& =\lim _{z \rightarrow \infty}(-\ln z) \\
& =-\lim _{z \rightarrow \infty} \ln z \\
& =-\infty .
\end{aligned}
\]

\section*{THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE FUNCTIONS (PAGE 347)}

Let \(f\) be a function whose domain is an interval \(I\). If \(f\) has an inverse function, then the following statements are true.
1. If \(f\) is continuous on its domain, then \(f^{-1}\) is continuous on its domain.
2. If \(f\) is increasing on its domain, then \(f^{-1}\) is increasing on its domain.
3. If \(f\) is decreasing on its domain, then \(f^{-1}\) is decreasing on its domain.
4. If \(f\) is differentiable on an interval containing \(c\) and \(f^{\prime}(c) \neq 0\), then \(f^{-1}\) is differentiable at \(f(c)\).
(PROOF To prove Property 1, first show that if \(f\) is continuous on \(I\) and has an inverse function, then \(f\) is strictly monotonic on \(I\). Suppose that \(f\) were not strictly monotonic. Then there would exist numbers \(x_{1}, x_{2}, x_{3}\) in \(I\) such that \(x_{1}<x_{2}<x_{3}\), but \(f\left(x_{2}\right)\) is not between \(f\left(x_{1}\right)\) and \(f\left(x_{3}\right)\). Without loss of generality, assume \(f\left(x_{1}\right)<f\left(x_{3}\right)<f\left(x_{2}\right)\). By the Intermediate Value Theorem, there exists a number \(x_{0}\) between \(x_{1}\) and \(x_{2}\) such that \(f\left(x_{0}\right)=f\left(x_{3}\right)\). So, \(f\) is not one-to-one and cannot have an inverse function. So, \(f\) must be strictly monotonic.

Because \(f\) is continuous, the Intermediate Value Theorem implies that the set of values of \(f\)
\[
\{f(x): x \in I\}
\]
forms an interval \(J\). Assume that \(a\) is an interior point of \(J\). From the previous argument, \(f^{-1}(a)\) is an interior point of \(I\). Let \(\varepsilon>0\). There exists \(0<\varepsilon_{1}<\varepsilon\) such that
\[
I_{1}=\left(f^{-1}(a)-\varepsilon_{1}, f^{-1}(a)+\varepsilon_{1}\right) \subseteq I .
\]

Because \(f\) is strictly monotonic on \(I_{1}\), the set of values \(\left\{f(x): x \in I_{1}\right\}\) forms an interval \(J_{1} \subseteq J\). Let \(\delta>0\) such that \((a-\delta, a+\delta) \subseteq J_{1}\). Finally, if
\[
|y-a|<\delta, \text { then }\left|f^{-1}(y)-f^{-1}(a)\right|<\varepsilon_{1}<\varepsilon
\]

So, \(f^{-1}\) is continuous at \(a\). A similar proof can be given if \(a\) is an endpoint.
To prove Property 2, let \(y_{1}\) and \(y_{2}\) be in the domain of \(f^{-1}\), with \(y_{1}<y_{2}\). Then, there exist \(x_{1}\) and \(x_{2}\) in the domain of \(f\) such that
\[
f\left(x_{1}\right)=y_{1}<y_{2}=f\left(x_{2}\right)
\]

Because \(f\) is increasing, \(f\left(x_{1}\right)<f\left(x_{2}\right)\) holds precisely when \(x_{1}<x_{2}\). Therefore,
\[
f^{-1}\left(y_{1}\right)=x_{1}<x_{2}=f^{-1}\left(y_{2}\right)
\]
which implies that \(f^{-1}\) is increasing. (Property 3 can be proved in a similar way.)
Finally, to prove Property 4, consider the limit
\[
\left(f^{-1}\right)^{\prime}(a)=\lim _{y \rightarrow a} \frac{f^{-1}(y)-f^{-1}(a)}{y-a}
\]
where \(a\) is in the domain of \(f^{-1}\) and \(f^{-1}(a)=c\). Because \(f\) is differentiable on an interval containing \(c, f\) is continuous on that interval, and so is \(f^{-1}\) at \(a\). So, \(y \rightarrow a\) implies that \(x \rightarrow c\), and you have
\[
\begin{aligned}
\left(f^{-1}\right)^{\prime}(a) & =\lim _{x \rightarrow c} \frac{x-c}{f(x)-f(c)} \\
& =\lim _{x \rightarrow c} \frac{1}{\left(\frac{f(x)-f(c)}{x-c}\right)} \\
& =\frac{1}{\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}} \\
& =\frac{1}{f^{\prime}(c)} .
\end{aligned}
\]

So, \(\left(f^{-1}\right)^{\prime}(a)\) exists, and \(f^{-1}\) is differentiable at \(f(c)\).

\section*{THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION (PAGE 347)}

Let \(f\) be a function that is differentiable on an interval \(I\). If \(f\) has an inverse function \(g\), then \(g\) is differentiable at any \(x\) for which \(f^{\prime}(g(x)) \neq 0\). Moreover,
\[
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0
\]
(PROOF From the proof of Theorem 5.8, letting \(a=x\), you know that \(g\) is differentiable. Using the Chain Rule, differentiate both sides of the equation \(x=f(g(x))\) to obtain
\[
1=f^{\prime}(g(x)) \frac{d}{d x}[g(x)]
\]

Because \(f^{\prime}(g(x)) \neq 0\), you can divide by this quantity to obtain
\[
\frac{d}{d x}[g(x)]=\frac{1}{f^{\prime}(g(x))}
\]

\section*{THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS (PROPERTY 2) (PAGE 353)}
2. \(\frac{e^{a}}{e^{b}}=e^{a-b}\) (Let \(a\) and \(b\) be any real numbers.)

PR00F To prove Property 2, you can write
\[
\ln \left(\frac{e^{a}}{e^{b}}\right)=\ln e^{a}-\ln e^{b}=a-b=\ln \left(e^{a-b}\right)
\]

Because the natural logarithmic function is one-to-one, you can conclude that
\[
\frac{e^{a}}{e^{b}}=e^{a-b} .
\]

\section*{THEOREM 5.15 A LIMIT INVOLVING \(\boldsymbol{e}\) (PAGE 366)}
\[
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=e
\]

PR00F Let \(y=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\). Taking the natural logarithm of each side, you have \(\ln y=\ln \left[\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right]\).

Because the natural logarithmic function is continuous, you can write
\[
\ln y=\lim _{x \rightarrow \infty}\left[x \ln \left(1+\frac{1}{x}\right)\right]=\lim _{x \rightarrow \infty}\left\{\frac{\ln [1+(1 / x)]}{1 / x}\right\} .
\]

Letting \(x=\frac{1}{t}\), you have
\[
\begin{aligned}
\ln y & =\lim _{t \rightarrow 0^{+}} \frac{\ln (1+t)}{t}=\lim _{t \rightarrow 0^{+}} \frac{\ln (1+t)-\ln 1}{t} \\
& =\frac{d}{d x} \ln x \text { at } x=1 \\
& =\frac{1}{x} \text { at } x=1 \\
& =1 .
\end{aligned}
\]

Finally, because \(\ln y=1\), you know that \(y=e\), and you can conclude that
\[
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
\]

\section*{THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS \((\arcsin u\) and \(\arccos u)(P A G E ~ 376)\)}

Let \(u\) be a differentiable function of \(x\).
\[
\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} \quad \frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}
\]

\section*{PROOF}

Method 1: Apply Theorem 5.9.
Let \(f(x)=\sin x\) and \(g(x)=\arcsin x\). Because \(f\) is differentiable on \(-\pi / 2 \leq y \leq \pi / 2\), you can apply Theorem 5.9.
\[
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=\frac{1}{\cos (\arcsin x)}=\frac{1}{\sqrt{1-\sin ^{2}(\arcsin x)}}=\frac{1}{\sqrt{1-x^{2}}}
\]

If \(u\) is a differentiable function of \(x\), then you can use the Chain Rule to write
\[
\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}, \quad \text { where } \quad u^{\prime}=\frac{d u}{d x} .
\]

Method 2: Use implicit differentiation.
Let \(y=\arccos x, 0 \leq y \leq \pi\). So, \(\cos y=x\), and you can use implicit differentiation as follows.
\[
\begin{aligned}
\cos y & =x \\
-\sin y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{-1}{\sin y}=\frac{-1}{\sqrt{1-\cos ^{2} y}}=\frac{-1}{\sqrt{1-x^{2}}}
\end{aligned}
\]

If \(u\) is a differentiable function of \(x\), then you can use the Chain Rule to write
\[
\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}, \quad \text { where } \quad u^{\prime}=\frac{d u}{d x} .
\]

\section*{THEOREM 8.3 THE EXTENDED MEAN VALUE THEOREM (PAGE 570)}

If \(f\) and \(g\) are differentiable on an open interval \((a, b)\) and continuous on \([a, b]\) such that \(g^{\prime}(x) \neq 0\) for any \(x\) in \((a, b)\), then there exists a point \(c\) in \((a, b)\) such that \(\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\).

PROOF You can assume that \(g(a) \neq g(b)\), because otherwise, by Rolle's Theorem, it would follow that \(g^{\prime}(x)=0\) for some \(x\) in \((a, b)\). Now, define \(h(x)\) as
\[
h(x)=f(x)-\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right] g(x) .
\]

Then
\[
h(a)=f(a)-\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right] g(a)=\frac{f(a) g(b)-f(b) g(a)}{g(b)-g(a)}
\]
and
\[
h(b)=f(b)-\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right] g(b)=\frac{f(a) g(b)-f(b) g(a)}{g(b)-g(a)}
\]
and by Rolle's Theorem there exists a point \(c\) in \((a, b)\) such that
\[
h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(c)=0
\]
which implies that \(\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\).

\section*{THEOREM 8.4 L'HÔPITAL'S RULE (PAGE 570)}

Let \(f\) and \(g\) be functions that are differentiable on an open interval \((a, b)\) containing \(c\), except possibly at \(c\) itself. Assume that \(g^{\prime}(x) \neq 0\) for all \(x\) in \((a, b)\), except possibly at \(c\) itself. If the limit of \(f(x) / g(x)\) as \(x\) approaches \(c\) produces the indeterminate form \(0 / 0\), then
\[
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\]
provided the limit on the right exists (or is infinite). This result also applies if the limit of \(f(x) / g(x)\) as \(x\) approaches \(c\) produces any one of the indeterminate forms \(\infty / \infty,(-\infty) / \infty, \infty /(-\infty)\), or \((-\infty) /(-\infty)\).

You can use the Extended Mean Value Theorem to prove L'Hôpital's Rule. Of the several different cases of this rule, the proof of only one case is illustrated. The remaining cases where \(x \rightarrow c^{-}\)and \(x \rightarrow c\) are left for you to prove.

PROOF Consider the case for which \(\lim _{x \rightarrow c^{+}} f(x)=0\) and \(\lim _{x \rightarrow c^{+}} g(x)=0\). Define the following new functions:
\[
F(x)=\left\{\begin{array}{ll}
f(x), & x \neq c \\
0, & x=c
\end{array} \quad \text { and } \quad G(x)= \begin{cases}g(x), & x \neq c \\
0, & x=c\end{cases}\right.
\]

For any \(x, c<x<b, F\) and \(G\) are differentiable on \((c, x]\) and continuous on \([c, x]\). You can apply the Extended Mean Value Theorem to conclude that there exists a number \(z\) in \((c, x)\) such that
\[
\frac{F^{\prime}(z)}{G^{\prime}(z)}=\frac{F(x)-F(c)}{G(x)-G(c)}=\frac{F(x)}{G(x)}=\frac{f^{\prime}(z)}{g^{\prime}(z)}=\frac{f(x)}{g(x)}
\]

Finally, by letting \(x\) approach \(c\) from the right, \(x \rightarrow c^{+}\), you have \(z \rightarrow c^{+}\)because \(c<z<x\), and
\[
\lim _{x \rightarrow c^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c^{+}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow c^{+}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{x \rightarrow c^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
\]

\section*{THEOREM 9.19 TAYLOR'S THEOREM (PAGE 656)}

If a function \(f\) is differentiable through order \(n+1\) in an interval \(I\) containing \(c\), then, for each \(x\) in \(I\), there exists \(z\) between \(x\) and \(c\) such that
\(f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)\) where \(R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}\).

PROOF To find \(R_{n}(x)\), fix \(x\) in \(I(x \neq c)\) and write \(R_{n}(x)=f(x)-P_{n}(x)\) where \(P_{n}(x)\) is the \(n\)th Taylor polynomial for \(f(x)\). Then let \(g\) be a function of \(t\) defined by
\[
g(t)=f(x)-f(t)-f^{\prime}(t)(x-t)-\cdots-\frac{f^{(n)}(t)}{n!}(x-t)^{n}-R_{n}(x) \frac{(x-t)^{n+1}}{(x-c)^{n+1}}
\]

The reason for defining \(g\) in this way is that differentiation with respect to \(t\) has a telescoping effect. For example, you have
\[
\frac{d}{d t}\left[-f(t)-f^{\prime}(t)(x-t)\right]=-f^{\prime}(t)+f^{\prime}(t)-f^{\prime \prime}(t)(x-t)=-f^{\prime \prime}(t)(x-t)
\]

The result is that the derivative \(g^{\prime}(t)\) simplifies to
\[
g^{\prime}(t)=-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}+(n+1) R_{n}(x) \frac{(x-t)^{n}}{(x-c)^{n+1}}
\]
for all \(t\) between \(c\) and \(x\). Moreover, for a fixed \(x\),
\[
g(c)=f(x)-\left[P_{n}(x)+R_{n}(x)\right]=f(x)-f(x)=0
\]
and
\[
g(x)=f(x)-f(x)-0-\cdots-0=f(x)-f(x)=0
\]

Therefore, \(g\) satisfies the conditions of Rolle's Theorem, and it follows that there is a number \(z\) between \(c\) and \(x\) such that \(g^{\prime}(z)=0\). Substituting \(z\) for \(t\) in the equation for \(g^{\prime}(t)\) and then solving for \(R_{n}(x)\), you obtain
\[
\begin{aligned}
& g^{\prime}(z)=-\frac{f^{(n+1)}(z)}{n!}(x-z)^{n}+(n+1) R_{n}(x) \frac{(x-z)^{n}}{(x-c)^{n+1}}=0 \\
& R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}
\end{aligned}
\]

Finally, because \(g(c)=0\), you have
\[
\begin{aligned}
0 & =f(x)-f(c)-f^{\prime}(c)(x-c)-\cdots-\frac{f^{(n)}(c)}{n!}(x-c)^{n}-R_{n}(x) \\
f(x) & =f(c)+f^{\prime}(c)(x-c)+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x) .
\end{aligned}
\]

\section*{THEOREM 9.20 CONVERGENCE OF A POWER SERIES (PAGE 662)}

For a power series centered at \(c\), precisely one of the following is true.
1. The series converges only at \(c\).
2. There exists a real number \(R>0\) such that the series converges absolutely for \(|x-c|<R\), and diverges for \(|x-c|>R\).
3. The series converges absolutely for all \(x\).

The number \(R\) is the radius of convergence of the power series. If the series converges only at \(c\), the radius of convergence is \(R=0\), and if the series converges for all \(x\), the radius of convergence is \(R=\infty\). The set of all values of \(x\) for which the power series converges is the interval of convergence of the power series.

PROOF In order to simplify the notation, the theorem for the power series \(\sum a_{n} x^{n}\) centered at \(x=0\) will be proved. The proof for a power series centered at \(x=c\) follows easily. A key step in this proof uses the completeness property of the set of real numbers: If a nonempty set \(S\) of real numbers has an upper bound, then it must have a least upper bound (see page 603).

It must be shown that if a power series \(\sum a_{n} x^{n}\) converges at \(x=d, d \neq 0\), then it converges for all \(b\) satisfying \(|b|<|d|\). Because \(\sum a_{n} x^{n}\) converges, \(\lim _{x \rightarrow \infty} a_{n} d^{n}=0\).

So, there exists \(N>0\) such that \(a_{n} d^{n}<1\) for all \(n \geq N\). Then for \(n \geq N\),
\[
\left|a_{n} b^{n}\right|=\left|a_{n} b^{n} \frac{d^{n}}{d^{n}}\right|=\left|a_{n} d^{n}\right|\left|\frac{b^{n}}{d^{n}}\right|<\left|\frac{b^{n}}{d^{n}}\right| .
\]

So, for \(|b|<|d|,\left|\frac{b}{d}\right|<1\), which implies that
\[
\sum\left|\frac{b^{n}}{d^{n}}\right|
\]
is a convergent geometric series. By the Comparison Test, the series \(\sum a_{n} b^{n}\) converges.
Similarly, if the power series \(\sum a_{n} x^{n}\) diverges at \(x=b\), where \(b \neq 0\), then it diverges for all \(d\) satisfying \(|d|>|b|\). If \(\sum a_{n} d^{n}\) converged, then the argument above would imply that \(\sum a_{n} b^{n}\) converged as well.

Finally, to prove the theorem, suppose that neither Case 1 nor Case 3 is true. Then there exist points \(b\) and \(d\) such that \(\sum a_{n} x^{n}\) converges at \(b\) and diverges at \(d\). Let \(S=\left\{x: \sum a_{n} x^{n}\right.\) converges \(\}\). \(S\) is nonempty because \(b \in S\). If \(x \in S\), then \(|x| \leq|d|\), which shows that \(|d|\) is an upper bound for the nonempty set \(S\). By the completeness property, \(S\) has a least upper bound, \(R\).

Now, if \(|x|>R\), then \(x \notin S\), so \(\sum a_{n} x^{n}\) diverges. And if \(|x|<R\), then \(|x|\) is not an upper bound for \(S\), so there exists \(b\) in \(S\) satisfying \(|b|>|x|\). Since \(b \in S, \sum a_{n} b^{n}\) converges, which implies that \(\sum a_{n} x^{n}\) converges.

\section*{THEOREM 10.16 CLASSIFICATION OF CONICS BY ECCENTRICITY (PAGE 750)}

Let \(F\) be a fixed point (focus) and let \(D\) be a fixed line (directrix) in the plane. Let \(P\) be another point in the plane and let \(e\) (eccentricity) be the ratio of the distance between \(P\) and \(F\) to the distance between \(P\) and \(D\). The collection of all points \(P\) with a given eccentricity is a conic.
1. The conic is an ellipse if \(0<e<1\).
2. The conic is a parabola if \(e=1\).
3. The conic is a hyperbola if \(e>1\).


Figure A. 1

PR00F If \(e=1\), then, by definition, the conic must be a parabola. If \(e \neq 1\), then you can consider the focus \(F\) to lie at the origin and the directrix \(x=d\) to lie to the right of the origin, as shown in Figure A.1. For the point \(P=(r, \theta)=(x, y)\), you have \(|P F|=r\) and \(|P Q|=d-r \cos \theta\). Given that \(e=|P F| /|P Q|\), it follows that
\[
|P F|=|P Q| e \quad \square \quad r=e(d-r \cos \theta) .
\]

By converting to rectangular coordinates and squaring each side, you obtain
\[
x^{2}+y^{2}=e^{2}(d-x)^{2}=e^{2}\left(d^{2}-2 d x+x^{2}\right)
\]

Completing the square produces
\[
\left(x+\frac{e^{2} d}{1-e^{2}}\right)^{2}+\frac{y^{2}}{1-e^{2}}=\frac{e^{2} d^{2}}{\left(1-e^{2}\right)^{2}}
\]

If \(e<1\), this equation represents an ellipse. If \(e>1\), then \(1-e^{2}<0\), and the equation represents a hyperbola.

\section*{\(B_{\text {Integration Tables }}\)}

\section*{Forms Involving \(u^{n}\)}
1. \(\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \neq-1\)
2. \(\int \frac{1}{u} d u=\ln |u|+C\)

Forms Involving \(a+b u\)
3. \(\int \frac{u}{a+b u} d u=\frac{1}{b^{2}}(b u-a \ln |a+b u|)+C\)
4. \(\int \frac{u}{(a+b u)^{2}} d u=\frac{1}{b^{2}}\left(\frac{a}{a+b u}+\ln |a+b u|\right)+C\)
5. \(\int \frac{u}{(a+b u)^{n}} d u=\frac{1}{b^{2}}\left[\frac{-1}{(n-2)(a+b u)^{n-2}}+\frac{a}{(n-1)(a+b u)^{n-1}}\right]+C, \quad n \neq 1,2\)
6. \(\int \frac{u^{2}}{a+b u} d u=\frac{1}{b^{3}}\left[-\frac{b u}{2}(2 a-b u)+a^{2} \ln |a+b u|\right]+C\)
7. \(\int \frac{u^{2}}{(a+b u)^{2}} d u=\frac{1}{b^{3}}\left(b u-\frac{a^{2}}{a+b u}-2 a \ln |a+b u|\right)+C\)
8. \(\int \frac{u^{2}}{(a+b u)^{3}} d u=\frac{1}{b^{3}}\left[\frac{2 a}{a+b u}-\frac{a^{2}}{2(a+b u)^{2}}+\ln |a+b u|\right]+C\)
9. \(\int \frac{u^{2}}{(a+b u)^{n}} d u=\frac{1}{b^{3}}\left[\frac{-1}{(n-3)(a+b u)^{n-3}}+\frac{2 a}{(n-2)(a+b u)^{n-2}}-\frac{a^{2}}{(n-1)(a+b u)^{n-1}}\right]+C, \quad n \neq 1,2,3\)
10. \(\int \frac{1}{u(a+b u)} d u=\frac{1}{a} \ln \left|\frac{u}{a+b u}\right|+C\)
11. \(\int \frac{1}{u(a+b u)^{2}} d u=\frac{1}{a}\left(\frac{1}{a+b u}+\frac{1}{a} \ln \left|\frac{u}{a+b u}\right|\right)+C\)
12. \(\int \frac{1}{u^{2}(a+b u)} d u=-\frac{1}{a}\left(\frac{1}{u}+\frac{b}{a} \ln \left|\frac{u}{a+b u}\right|\right)+C\)
13. \(\int \frac{1}{u^{2}(a+b u)^{2}} d u=-\frac{1}{a^{2}}\left[\frac{a+2 b u}{u(a+b u)}+\frac{2 b}{a} \ln \left|\frac{u}{a+b u}\right|\right]+C\)

Forms Involving \(a+b u+c u^{2}, b^{2} \neq 4 a c\)
14. \(\int \frac{1}{a+b u+c u^{2}} d u= \begin{cases}\frac{2}{\sqrt{4 a c-b^{2}}} \arctan \frac{2 c u+b}{\sqrt{4 a c-b^{2}}}+C, & b^{2}<4 a c \\ \frac{1}{\sqrt{b^{2}-4 a c}} \ln \left|\frac{2 c u+b-\sqrt{b^{2}-4 a c}}{2 c u+b+\sqrt{b^{2}-4 a c}}\right|+C, & b^{2}>4 a c\end{cases}\)
15. \(\int \frac{u}{a+b u+c u^{2}} d u=\frac{1}{2 c}\left(\ln \left|a+b u+c u^{2}\right|-b \int \frac{1}{a+b u+c u^{2}} d u\right)\)

Forms Involving \(\sqrt{a+b u}\)
16. \(\int u^{n} \sqrt{a+b u} d u=\frac{2}{b(2 n+3)}\left[u^{n}(a+b u)^{3 / 2}-n a \int u^{n-1} \sqrt{a+b u} d u\right]\)
17. \(\int \frac{1}{u \sqrt{a+b u}} d u= \begin{cases}\frac{1}{\sqrt{a}} \ln \left|\frac{\sqrt{a+b u}-\sqrt{a}}{\sqrt{a+b u}+\sqrt{a}}\right|+C, & a>0 \\ \frac{2}{\sqrt{-a}} \arctan \sqrt{\frac{a+b u}{-a}}+C, & a<0\end{cases}\)
18. \(\int \frac{1}{u^{n} \sqrt{a+b u}} d u=\frac{-1}{a(n-1)}\left[\frac{\sqrt{a+b u}}{u^{n-1}}+\frac{(2 n-3) b}{2} \int \frac{1}{u^{n-1} \sqrt{a+b u}} d u\right], n \neq 1\)
19. \(\int \frac{\sqrt{a+b u}}{u} d u=2 \sqrt{a+b u}+a \int \frac{1}{u \sqrt{a+b u}} d u\)
20. \(\int \frac{\sqrt{a+b u}}{u^{n}} d u=\frac{-1}{a(n-1)}\left[\frac{(a+b u)^{3 / 2}}{u^{n-1}}+\frac{(2 n-5) b}{2} \int \frac{\sqrt{a+b u}}{u^{n-1}} d u\right], n \neq 1\)
21. \(\int \frac{u}{\sqrt{a+b u}} d u=\frac{-2(2 a-b u)}{3 b^{2}} \sqrt{a+b u}+C\)
22. \(\int \frac{u^{n}}{\sqrt{a+b u}} d u=\frac{2}{(2 n+1) b}\left(u^{n} \sqrt{a+b u}-n a \int \frac{u^{n-1}}{\sqrt{a+b u}} d u\right)\)
\(\underline{\text { Forms Involving } a^{2} \pm u^{2}, a>0}\)
23. \(\int \frac{1}{a^{2}+u^{2}} d u=\frac{1}{a} \arctan \frac{u}{a}+C\)
24. \(\int \frac{1}{u^{2}-a^{2}} d u=-\int \frac{1}{a^{2}-u^{2}} d u=\frac{1}{2 a} \ln \left|\frac{u-a}{u+a}\right|+C\)
25. \(\int \frac{1}{\left(a^{2} \pm u^{2}\right)^{n}} d u=\frac{1}{2 a^{2}(n-1)}\left[\frac{u}{\left(a^{2} \pm u^{2}\right)^{n-1}}+(2 n-3) \int \frac{1}{\left(a^{2} \pm u^{2}\right)^{n-1}} d u\right], n \neq 1\)

Forms Involving \(\sqrt{u^{2} \pm a^{2}}, a>0\)
26. \(\int \sqrt{u^{2} \pm a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2} \pm a^{2}} \pm a^{2} \ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|\right)+C\)
27. \(\int u^{2} \sqrt{u^{2} \pm a^{2}} d u=\frac{1}{8}\left[u\left(2 u^{2} \pm a^{2}\right) \sqrt{u^{2} \pm a^{2}}-a^{4} \ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|\right]+C\)
28. \(\int \frac{\sqrt{u^{2}+a^{2}}}{u} d u=\sqrt{u^{2}+a^{2}}-a \ln \left|\frac{a+\sqrt{u^{2}+a^{2}}}{u}\right|+C\)
29. \(\int \frac{\sqrt{u^{2}-a^{2}}}{u} d u=\sqrt{u^{2}-a^{2}}-a \operatorname{arcsec} \frac{|u|}{a}+C\)
30. \(\int \frac{\sqrt{u^{2} \pm a^{2}}}{u^{2}} d u=\frac{-\sqrt{u^{2} \pm a^{2}}}{u}+\ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|+C\)
31. \(\int \frac{1}{\sqrt{u^{2} \pm a^{2}}} d u=\ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|+C\)
32. \(\int \frac{1}{u \sqrt{u^{2}+a^{2}}} d u=\frac{-1}{a} \ln \left|\frac{a+\sqrt{u^{2}+a^{2}}}{u}\right|+C\)
33. \(\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C\)
34. \(\int \frac{u^{2}}{\sqrt{u^{2} \pm a^{2}}} d u=\frac{1}{2}\left(u \sqrt{u^{2} \pm a^{2}} \mp a^{2} \ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|\right)+C\)
35. \(\int \frac{1}{u^{2} \sqrt{u^{2} \pm a^{2}}} d u=\mp \frac{\sqrt{u^{2} \pm a^{2}}}{a^{2} u}+C\)
36. \(\int \frac{1}{\left(u^{2} \pm a^{2}\right)^{3 / 2}} d u=\frac{ \pm u}{a^{2} \sqrt{u^{2} \pm a^{2}}}+C\)

Forms Involving \(\sqrt{a^{2}-u^{2}}, a>0\)
37. \(\int \sqrt{a^{2}-u^{2}} d u=\frac{1}{2}\left(u \sqrt{a^{2}-u^{2}}+a^{2} \arcsin \frac{u}{a}\right)+C\)
38. \(\int u^{2} \sqrt{a^{2}-u^{2}} d u=\frac{1}{8}\left[u\left(2 u^{2}-a^{2}\right) \sqrt{a^{2}-u^{2}}+a^{4} \arcsin \frac{u}{a}\right]+C\)
39. \(\int \frac{\sqrt{a^{2}-u^{2}}}{u} d u=\sqrt{a^{2}-u^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}-u^{2}}}{u}\right|+C\)
40. \(\int \frac{\sqrt{a^{2}-u^{2}}}{u^{2}} d u=\frac{-\sqrt{a^{2}-u^{2}}}{u}-\arcsin \frac{u}{a}+C\)
41. \(\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\arcsin \frac{u}{a}+C\)
42. \(\int \frac{1}{u \sqrt{a^{2}-u^{2}}} d u=\frac{-1}{a} \ln \left|\frac{a+\sqrt{a^{2}-u^{2}}}{u}\right|+C\)
43. \(\int \frac{u^{2}}{\sqrt{a^{2}-u^{2}}} d u=\frac{1}{2}\left(-u \sqrt{a^{2}-u^{2}}+a^{2} \arcsin \frac{u}{a}\right)+C\)
44. \(\int \frac{1}{u^{2} \sqrt{a^{2}-u^{2}}} d u=\frac{-\sqrt{a^{2}-u^{2}}}{a^{2} u}+C\)
45. \(\int \frac{1}{\left(a^{2}-u^{2}\right)^{3 / 2}} d u=\frac{u}{a^{2} \sqrt{a^{2}-u^{2}}}+C\)
46. \(\int \sin u d u=-\cos u+C\)
48. \(\int \sin ^{2} u d u=\frac{1}{2}(u-\sin u \cos u)+C\)
50. \(\int \sin ^{n} u d u=-\frac{\sin ^{n-1} u \cos u}{n}+\frac{n-1}{n} \int \sin ^{n-2} u d u\)
52. \(\int u \sin u d u=\sin u-u \cos u+C\)
54. \(\int u^{n} \sin u d u=-u^{n} \cos u+n \int u^{n-1} \cos u d u\)
56. \(\int \frac{1}{1 \pm \sin u} d u=\tan u \mp \sec u+C\)
58. \(\int \frac{1}{\sin u \cos u} d u=\ln |\tan u|+C\)
47. \(\int \cos u d u=\sin u+C\)
49. \(\int \cos ^{2} u d u=\frac{1}{2}(u+\sin u \cos u)+C\)
51. \(\int \cos ^{n} u d u=\frac{\cos ^{n-1} u \sin u}{n}+\frac{n-1}{n} \int \cos ^{n-2} u d u\)
53. \(\int u \cos u d u=\cos u+u \sin u+C\)
55. \(\int u^{n} \cos u d u=u^{n} \sin u-n \int u^{n-1} \sin u d u\)
57. \(\int \frac{1}{1 \pm \cos u} d u=-\cot u \pm \csc u+C\)

Forms Involving \(\tan u, \cot u, \sec u, \csc u\)
59. \(\int \tan u d u=-\ln |\cos u|+C\)
60. \(\int \cot u d u=\ln |\sin u|+C\)
61. \(\int \sec u d u=\ln |\sec u+\tan u|+C\)
62. \(\int \csc u d u=\ln |\csc u-\cot u|+C \quad\) or \(\quad \int \csc u d u=-\ln |\csc u+\cot u|+C\)
63. \(\int \tan ^{2} u d u=-u+\tan u+C\)
64. \(\int \cot ^{2} u d u=-u-\cot u+C\)
65. \(\int \sec ^{2} u d u=\tan u+C\)
66. \(\int \csc ^{2} u d u=-\cot u+C\)
67. \(\int \tan ^{n} u d u=\frac{\tan ^{n-1} u}{n-1}-\int \tan ^{n-2} u d u, n \neq 1\)
68. \(\int \cot ^{n} u d u=-\frac{\cot ^{n-1} u}{n-1}-\int\left(\cot ^{n-2} u\right) d u, n \neq 1\)
69. \(\int \sec ^{n} u d u=\frac{\sec ^{n-2} u \tan u}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} u d u, n \neq 1\)
70. \(\int \csc ^{n} u d u=-\frac{\csc ^{n-2} u \cot u}{n-1}+\frac{n-2}{n-1} \int \csc ^{n-2} u d u, n \neq 1\)
71. \(\int \frac{1}{1 \pm \tan u} d u=\frac{1}{2}(u \pm \ln |\cos u \pm \sin u|)+C\)
72. \(\int \frac{1}{1 \pm \cot u} d u=\frac{1}{2}(u \mp \ln |\sin u \pm \cos u|)+C\)
73. \(\int \frac{1}{1 \pm \sec u} d u=u+\cot u \mp \csc u+C\)
74. \(\int \frac{1}{1 \pm \csc u} d u=u-\tan u \pm \sec u+C\)

\section*{Forms Involving Inverse Trigonometric Functions}
75. \(\int \arcsin u d u=u \arcsin u+\sqrt{1-u^{2}}+C\)
77. \(\int \arctan u d u=u \arctan u-\ln \sqrt{1+u^{2}}+C\)
79. \(\int \operatorname{arcsec} u d u=u \operatorname{arcsec} u-\ln \left|u+\sqrt{u^{2}-1}\right|+C\)
80. \(\int \operatorname{arccsc} u d u=u \operatorname{arccsc} u+\ln \left|u+\sqrt{u^{2}-1}\right|+C\)

\section*{Forms Involving \(e^{u}\)}
81. \(\int e^{u} d u=e^{u}+C\)
82. \(\int u e^{u} d u=(u-1) e^{u}+C\)
83. \(\int u^{n} e^{u} d u=u^{n} e^{u}-n \int u^{n-1} e^{u} d u\)
84. \(\int \frac{1}{1+e^{u}} d u=u-\ln \left(1+e^{u}\right)+C\)
85. \(\int e^{a u} \sin b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \sin b u-b \cos b u)+C\)
86. \(\int e^{a u} \cos b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \cos b u+b \sin b u)+C\)

\section*{Forms Involving \(\ln u\)}
87. \(\int \ln u d u=u(-1+\ln u)+C\)
88. \(\int u \ln u d u=\frac{u^{2}}{4}(-1+2 \ln u)+C\)
89. \(\int u^{n} \ln u d u=\frac{u^{n+1}}{(n+1)^{2}}[-1+(n+1) \ln u]+C, n \neq-1\)
90. \(\int(\ln u)^{2} d u=u\left[2-2 \ln u+(\ln u)^{2}\right]+C\)
91. \(\int(\ln u)^{n} d u=u(\ln u)^{n}-n \int(\ln u)^{n-1} d u\)

\section*{Forms Involving Hyperbolic Functions}
92. \(\int \cosh u d u=\sinh u+C\)
93. \(\int \sinh u d u=\cosh u+C\)
94. \(\int \operatorname{sech}^{2} u d u=\tanh u+C\)
95. \(\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C\)
96. \(\int \operatorname{sech} u \tanh u d u=-\operatorname{sech} u+C\)
97. \(\int \operatorname{csch} u \operatorname{coth} u d u=-\operatorname{csch} u+C\)

Forms Involving Inverse Hyperbolic Functions (in logarithmic form)
98. \(\int \frac{d u}{\sqrt{u^{2} \pm a^{2}}}=\ln \left(u+\sqrt{u^{2} \pm a^{2}}\right)+C\)
99. \(\int \frac{d u}{a^{2}-u^{2}}=\frac{1}{2 a} \ln \left|\frac{a+u}{a-u}\right|+C\)
100. \(\int \frac{d u}{u \sqrt{a^{2} \pm u^{2}}}=-\frac{1}{a} \ln \frac{a+\sqrt{a^{2} \pm u^{2}}}{|u|}+C\)

\section*{Answers to Odd-Numbered Exercises}

\section*{Chapter P}

\section*{Section P. 1 (page 8)}
1. b 2. d 3. a 4. c
5. Answers will vary.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -4 & -2 & 0 & 2 & 4 \\
\hline \(\boldsymbol{y}\) & 0 & 1 & 2 & 3 & 4 \\
\hline
\end{tabular}

7. Answers will vary.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -3 & -2 & 0 & 2 & 3 \\
\hline \(\boldsymbol{y}\) & -5 & 0 & 4 & 0 & -5 \\
\hline
\end{tabular}

9. Answers will vary.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -5 & -4 & -3 & -2 & -1 & 0 & 1 \\
\hline \(\boldsymbol{y}\) & 3 & 2 & 1 & 0 & 1 & 2 & 3 \\
\hline
\end{tabular}
11. Answers will vary.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 1 & 4 & 9 & 16 \\
\hline \(\boldsymbol{y}\) & -6 & -5 & -4 & -3 & -2 \\
\hline
\end{tabular}

13. Answers will vary.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline \(\boldsymbol{y}\) & -1 & \(-\frac{3}{2}\) & -3 & Undef. & 3 & \(\frac{3}{2}\) & 1 \\
\hline
\end{tabular}

15.
\[
\begin{aligned}
& \mathrm{Xmin}=-5 \\
& \mathrm{Xmax}=4 \\
& \mathrm{Xscl}=1 \\
& \mathrm{Ymin}=-5 \\
& \mathrm{Ymax}=8 \\
& \mathrm{Yscl}=1
\end{aligned}
\]
17. \(y=\sqrt{5-x}\)

\(\begin{array}{ll}\text { (a) } y \approx 1.73 & \text { (b) } x=-4\end{array}\)
19. \((0,-5),\left(\frac{5}{2}, 0\right)\)
21. \((0,-2),(-2,0),(1,0)\)
23. \((0,0),(4,0),(-4,0)\)
25. \((4,0)\)
27. \((0,0)\)
29. Symmetric with respect to the \(y\)-axis
31. Symmetric with respect to the \(x\)-axis
33. Symmetric with respect to the origin
35. No symmetry
37. Symmetric with respect to the origin
39. Symmetric with respect to the \(y\)-axis
41. \(y=2-3 x\)

Symmetry: none

43. \(y=\frac{1}{2} x-4\)

Symmetry: none

45. \(y=9-x^{2}\)

Symmetry: \(y\)-axis

49. \(y=x^{3}+2\)

Symmetry: none

53. \(x=y^{3}\)

Symmetry: origin

57. \(y=6-|x|\)

Symmetry: \(y\)-axis

61. \(y_{1}=\sqrt{\frac{6-x}{3}}\)
\(y_{2}=-\sqrt{\frac{6-x}{3}}\)
Symmetry: \(x\)-axis
63. \((3,5) \quad\) 65. \((-1,5),(2,2)\)
69. \((-1,-1),(0,0),(1,1)\)
71. \((-1,-5),(0,-1),(2,1)\)
67. \((-1,-2),(2,1)\)
47. \(y=(x+3)^{2}\)

Symmetry: none

51. \(y=x \sqrt{x+5}\)

Symmetry: none

55. \(y=8 / x\)

Symmetry: origin

59. \(y_{1}=\sqrt{x+9}\)
\(y_{2}=-\sqrt{x+9}\)
Symmetry: \(x\)-axis

73. \((-2,2),(-3, \sqrt{3})\)
75. (a) \(y=-0.027 t^{2}+5.73 t+26.9\)
(b)


The model is a good fit for the data.
(c) 212.9
77. \(x \approx 3133\) units 79. \(y=(x+4)(x-3)(x-8)\)
81. (a) Proof (b) Proof
83. False. \((4,-5)\) is not a point on the graph of \(x=y^{2}-29\).
85. True 87. \(x^{2}+(y-4)^{2}=4\)

\section*{Section P. 2 (page 16)}
1. \(m=1\)
3. \(m=0\)
5. \(m=-12\)
7.

9. \(m=3\)

11. \(m\) is undefined.

13. \(m=2\)

15. \((0,2),(1,2),(5,2)\)
17. \((0,10),(2,4),(3,1)\)
19. (a) \(\frac{1}{3}\) (b) \(10 \sqrt{10} \mathrm{ft}\)
21. (a)

(b) Population increased least rapidly from 2004 to 2005.
23. \(m=4,(0,-3)\)
25. \(m=-\frac{1}{5},(0,4) \quad\) 27. \(m\) is undefined, no \(y\)-intercept
29. \(3 x-4 y+12=0\)
31. \(2 x-3 y=0\)


33. \(3 x-y-11=0\)

35. \(2 x-y=0\)

37. \(2 x-y-3=0\)

39. \(8 x+3 y-40=0\)

41. \(x-6=0\)

43. \(22 x-4 y+3=0\)

45. \(x-3=0\)
47. \(3 x+2 y-6=0\)
49. \(x+y-3=0\)
51.

53.

55.

59. (a)

57.

(b)


The lines in (a) do not appear perpendicular, but they do in (b) because a square setting is used. The lines are perpendicular.
61. (a) \(x+7=0\)
(b) \(y+2=0\)
63. (a) \(2 x-y-3=0 \quad\) (b) \(x+2 y-4=0\)
65. (a) \(40 x-24 y-9=0 \quad\) (b) \(24 x+40 y-53=0\)
67. \(V=250 t-150\)
71. \(y=2 x\)

75. \(\left(0, \frac{-a^{2}+b^{2}+c^{2}}{2 c}\right)\)
77. \(\left(b, \frac{a^{2}-b^{2}}{c}\right)\)
79. \(5 F-9 C-160=0 ; 72^{\circ} \mathrm{F} \approx 22.2^{\circ} \mathrm{C}\)
81. (a) \(W_{1}=14.50+0.75 x, W_{2}=11.20+1.30 x\)
(b)

(c) When six units are produced, the wage for both options is \(\$ 19.00\) per hour. Choose option 1 if you think you will produce less than six units and choose option 2 if you think you will produce more than six units.
83. (a) \(x=(1530-p) / 15\)
(b)

(c) 49 units

45 units
85. \(12 y+5 x-169=0\)
87. 2
89. \((5 \sqrt{2}) / 2\)
91. \(2 \sqrt{2}\)
93. Proof
95. Proof
97. Proof
99. True

\section*{Section P. 3 (page 27)}
1. (a) Domain of \(f\) : \([-4,4]\); Range of \(f\) : \([-3,5]\)

Domain of \(g:[-3,3]\); Range of \(g:[-4,4]\)
(b) \(f(-2)=-1 ; g(3)=-4\)
(c) \(x=-1\)
(d) \(x=1\)
(e) \(x=-1, x=1\), and \(x=2\)
3. (a) -4
(b) -25
(c) \(7 b-4\)
(d) \(7 x-11\)
5. (a) 5
(b) 0
(c) 1
(d) \(4+2 t-t^{2}\)
7. (a) 1
(b) \(0 \quad\) (c) \(-\frac{1}{2}\)
9. \(3 x^{2}+3 x \Delta x+(\Delta x)^{2}, \Delta x \neq 0\)
11. \((\sqrt{x-1}-x+1) /[(x-2)(x-1)]\)
\(=-1 /[\sqrt{x-1}(1+\sqrt{x-1})], x \neq 2\)
13. Domain: \((-\infty, \infty)\); Range: \([0, \infty)\)
15. Domain: \([0, \infty)\); Range: \([0, \infty)\)
17. Domain: All real numbers \(t\) such that \(t \neq 4 n+2\), where \(n\) is an integer; Range: \((-\infty,-1] \cup[1, \infty)\)
19. Domain: \((-\infty, 0) \cup(0, \infty)\); Range: \((-\infty, 0) \cup(0, \infty)\)
21. Domain: \([0,1]\)
23. Domain: All real numbers \(x\) such that \(x \neq 2 n \pi\), where \(n\) is an integer
25. Domain: \((-\infty,-3) \cup(-3, \infty)\)
27. (a) -1
(b) 2
(c) 6
(d) \(2 t^{2}+4\)
Domain: \((-\infty, \infty)\); Range: \((-\infty, 1) \cup[2, \infty)\)
29. (a) 4 (b) 0 (c) -2 (d) \(-b^{2}\)

Domain: \((-\infty, \infty)\); Range: \((-\infty, 0] \cup[1, \infty)\)
31. \(f(x)=4-x\)

Domain: \((-\infty, \infty)\)
Range: \((-\infty, \infty)\)

35. \(f(x)=\sqrt{9-x^{2}}\)

Domain: \([-3,3]\)
Range: \([0,3]\)

33. \(h(x)=\sqrt{x-6}\)

Domain: \([6, \infty)\) Range: [0, \(\infty\) )

37. \(g(t)=3 \sin \pi t\)

Domain: \((-\infty, \infty)\)
Range: \([-3,3]\)

39. The student travels \(\frac{1}{2}\) mile/minute during the first 4 minutes, is stationary for the next 2 minutes, and travels 1 mile/minute during the final 4 minutes.
41. \(y\) is not a function of \(x\).
43. \(y\) is a function of \(x\).
45. \(y\) is not a function of \(x\).
47. \(y\) is not a function of \(x\).
49.
50. \(b\)
51. \(c\)
52. \(a\)
53. \(e\)
54. \(g\)
55. (a)

(b)

(c)

(d)

(e)

(f)

57. (a) Vertical translation

(b) Reflection about the \(x\)-axis

(c) Horizontal translation

59. (a) \(0 \quad\) (b) \(0 \quad\) (c) \(-1 \quad\) (d) \(\sqrt{15}\)
(e) \(\sqrt{x^{2}-1} \quad\) (f) \(x-1(x \geq 0)\)
61. \((f \circ g)(x)=x\); Domain: \([0, \infty)\)
\((g \circ f)(x)=|x| ;\) Domain: \((-\infty, \infty)\)
No, their domains are different.
63. \((f \circ g)(x)=3 /\left(x^{2}-1\right)\); Domain: \((-\infty,-1) \cup(-1,1) \cup(1, \infty)\)
\((g \circ f)(x)=\left(9 / x^{2}\right)-1\); Domain: \((-\infty, 0) \cup(0, \infty)\)
No
65. (a) 4 (b) -2
(c) Undefined. The graph of \(g\) does not exist at \(x=-5\).
(d) \(3 \quad\) (e) 2
(f) Undefined. The graph of \(f\) does not exist at \(x=-4\).
67. Answers will vary.

Example: \(f(x)=\sqrt{x} ; g(x)=x-2 ; h(x)=2 x\)
69. Even
71. Odd
73. (a) \(\left(\frac{3}{2}, 4\right)\)
(b) \(\left(\frac{3}{2},-4\right)\)
75. \(f\) is even. \(g\) is neither even nor odd. \(h\) is odd.
77. \(f(x)=-5 x-6,-2 \leq x \leq 0\)
79. \(y=-\sqrt{-x}\)
81. Answers will vary. Sample answer:

83. Answers will vary. Sample answer:

85. \(c=25\)
87. (a) \(T(4)=16^{\circ} \mathrm{C}, T(15) \approx 23^{\circ} \mathrm{C}\)
(b) The changes in temperature occur 1 hour later.
(c) The temperatures are \(1^{\circ}\) lower.
89. (a)

(b) \(A(20) \approx 384\) acres/farm
91. \(f(x)=|x|+|x-2|= \begin{cases}2 x-2, & \text { if } x \geq 2 \\ 2, & \text { if } 0<x<2 \\ -2 x+2, & \text { if } x \leq 0\end{cases}\)
93. Proof 95. Proof
97. (a) \(V(x)=x(24-2 x)^{2}, 0<x<12\)
(b)

\[
4 \times 16 \times 16 \mathrm{~cm}
\]
\begin{tabular}{cccc} 
(c) & \multicolumn{2}{c}{\begin{tabular}{c} 
Length and \\
Width
\end{tabular}} &
\end{tabular} \begin{tabular}{c} 
Volume, \(V\)
\end{tabular}

The dimensions of the box that yield a maximum volume are \(4 \times 16 \times 16 \mathrm{~cm}\).
99. False. For example, if \(f(x)=x^{2}\), then \(f(-1)=f(1)\).
101. True 103. Putnam Problem A1, 1988

\section*{Section P. 4 (page 34)}
1. Trigonometric
3. No relationship
5. (a) and (b)
7. (a) \(d=0.066 F\)

(b)


The model fits well.

Approximately linear
(c) 136
9. (a) \(y=0.151 x+0.10 ; r \approx 0.880\)
(b) 35

(c) Greater per capita energy consumption by a country tends to correspond to greater per capita gross national product of the country. The four countries that differ most from the linear model are Venezuela, South Korea, Hong Kong, and the United Kingdom.
(d) \(y=0.155 x+0.22 ; r \approx 0.984\)
11. (a) \(y_{1}=0.04040 t^{3}-0.3695 t^{2}+1.123 t+5.88\)
\(y_{2}=0.264 t+3.35\)
\(y_{3}=0.01439 t^{3}-0.1886 t^{2}+0.476 t+1.59\)
(b) \(y_{1}+y_{2}+y_{3}=0.05479 t^{3}-0.5581 t^{2}+1.863 t+10.82\)


About 47.5 cents/mi
13. (a) \(t=0.002 s^{2}-0.04 s+1.9\)
(b)

(c) According to the model, the times required to attain speeds of less than 20 miles per hour are all about the same.
(d) \(t=0.002 s^{2}+0.02 s+0.1\)

(e) No. From the graph in part (b), you can see that the model from part (a) follows the data more closely than the model from part (d).
15. (a) \(y=-1.806 x^{3}+14.58 x^{2}+16.4 x+10\)
(b)

17. (a) Yes. At time \(t\) there is one and only one displacement \(y\).
(b) Amplitude: 0.35 ; Period: 0.5 (c) \(y=0.35 \sin (4 \pi t)+2\)
(d)
19. Answers will vary.

The model appears to fit the data well.

21. Putnam Problem A2, 2004

\section*{Review Exercises for Chapter P (page 37)}
1. \(\left(\frac{8}{5}, 0\right),(0,-8)\)
3. \((3,0),\left(0, \frac{3}{4}\right)\)
5. \(y\)-axis symmetry
7.

9.

11.

13.

15.
\[
\begin{aligned}
& \mathrm{X} \min =-5 \\
& \mathrm{X} \max =5 \\
& \mathrm{Xscl}=1 \\
& \mathrm{Ymin}=-30 \\
& \mathrm{Ymax}=10 \\
& \mathrm{Yscl}=5
\end{aligned}
\]
21.

23. \(t=\frac{1}{5}\)
\(m=\frac{3}{7}\)
25. \(y=\frac{7}{4} x-\frac{41}{4}\) or
\(7 x-4 y-41=0\)

27. \(y=-\frac{2}{3} x-2\) or \(2 x+3 y+6=0\)

29. (a) \(7 x-16 y+101=0 \quad\) (b) \(5 x-3 y+30=0\)
(c) \(5 x+3 y=0\)
(d) \(x+3=0\)
31. \(V=12,500-850 t\); \(\$ 9950\)
33. Not a function

35. Function

37. (a) Undefined (b) \(-1 /(1+\Delta x), \Delta x \neq 0,-1\)
39. (a) Domain: \([-6,6]\); Range: \([0,6]\)
(b) Domain: \((-\infty, 5) \cup(5, \infty)\); Range: \((-\infty, 0) \cup(0, \infty)\)
(c) Domain: \((-\infty, \infty)\); Range: \((-\infty, \infty)\)
41. (a)

(c)

43. (a)



All the graphs pass through the origin. The graphs of the odd powers of \(x\) are symmetric with respect to the origin and the graphs of the even powers are symmetric with respect to the \(y\)-axis. As the powers increase, the graphs become flatter in the interval \(-1<x<1\). Graphs of these equations with odd powers pass through Quadrants I and III. Graphs of these equations with even powers pass through Quadrants I and II.
(b) The graph of \(y=x^{7}\) should pass through the origin and Quadrants I and III. It should be symmetric with respect to the origin and be fairly flat in the interval \((-1,1)\). The graph of \(y=x^{8}\) should pass through the origin and Quadrants I and II. It should be symmetric with respect to the \(y\)-axis and be fairly flat in the interval \((-1,1)\).
45. (a) \(A=x(12-x)\)
(b) Domain: \((0,12)\)

(c) Maximum area:

36 in. \({ }^{2} ; 6 \times 6\) in.
47. (a) Minimum degree: 3; Leading coefficient: negative
(b) Minimum degree: 4; Leading coefficient: positive
(c) Minimum degree: 2; Leading coefficient: negative
(d) Minimum degree: 5; Leading coefficient: positive
49. (a) Yes. For each time \(t\) there corresponds one and only one displacement \(y\).
\(\begin{array}{lll}\text { (b) Amplitude: } 0.25 \text {; Period: } 1.1 & \text { (c) } y \approx \frac{1}{4} \cos (5.7 t)\end{array}\)
(d)


The model appears to fit the data.

\section*{P.S. Problem Solving (page 39)}
1. (a) Center: \((3,4)\); Radius: 5
(b) \(y=-\frac{3}{4} x\)
(c) \(y=\frac{3}{4} x-\frac{9}{2}\)
(d) \(\left(3,-\frac{9}{4}\right)\)
3.

(a) \(H(x)-2= \begin{cases}-1, & x \geq 0 \\ -2, & x<0\end{cases}\)
(b) \(H(x-2)= \begin{cases}1, & x \geq 2 \\ 0, & x<2\end{cases}\)

(c) \(-H(x)=\left\{\begin{aligned}-1, & x \geq 0 \\ 0, & x<0\end{aligned}\right.\)
(d) \(H(-x)= \begin{cases}1, & x \leq 0 \\ 0, & x>0\end{cases}\)


(e) \(\frac{1}{2} H(x)= \begin{cases}\frac{1}{2}, & x \geq 0 \\ 0, & x<0\end{cases}\)
(f) \(-H(x-2)+2= \begin{cases}1, & x \geq 2 \\ 2, & x<2\end{cases}\)


5. (a) \(A(x)=x[(100-x) / 2]\); Domain: \((0,100)\)
(b)

Dimensions \(50 \mathrm{~m} \times 25 \mathrm{~m}\) yield maximum area of \(1250 \mathrm{~m}^{2}\).
(c) \(50 \mathrm{~m} \times 25 \mathrm{~m}\); Area \(=1250 \mathrm{~m}^{2}\)
7. \(T(x)=\left[2 \sqrt{4+x^{2}}+\sqrt{(3-x)^{2}+1}\right] / 4\)
9. (a) 5, less
(b) 3, greater
(c) 4.1 , less
(d) \(4+h\)
(e) 4; Answers will vary.
11. Using the definition of absolute value, you can rewrite the equation as
\(\left\{\begin{array}{rl}2 y, & y>0 \\ 0, & y \leq 0\end{array}=\left\{\begin{aligned} 2 x, & x>0 \\ 0, & x \leq 0\end{aligned}\right.\right.\).
For \(x>0\) and \(y>0\), you have \(2 y=2 x \rightarrow y=x\). For any \(x \leq 0, y\) is any \(y \leq 0\). So, the graph of \(y+|y|=x+|x|\) is as follows.

13. (a) \(\left(x+\frac{4}{k-1}\right)^{2}+y^{2}=\frac{16 k}{(k-1)^{2}}\)
(b)

(c) As \(k\) becomes very large, \(\frac{4}{k-1} \rightarrow 0\) and \(\frac{16 k}{(k-1)^{2}} \rightarrow 0\).

The center of the circle gets closer to \((0,0)\), and its radius approaches 0 .
15. (a) Domain: \((-\infty, 1) \cup(1, \infty)\); Range: \((-\infty, 0) \cup(0, \infty)\)
(b) \(f(f(x))=\frac{x-1}{x}\)

Domain: \((-\infty, 0) \cup(0,1) \cup(1, \infty)\)
(c) \(f(f(f(x)))=x\)

Domain: \((-\infty, 0) \cup(0,1) \cup(1, \infty)\)
(d)


The graph is not a line because there are holes at \(x=0\) and \(x=1\).

\section*{Chapter 1}

\section*{Section 1.1 (page 47)}
1. Precalculus: 300 ft
3. Calculus: Slope of the tangent line at \(x=2\) is 0.16 .
5. (a) Precalculus: 10 square units
(b) Calculus: 5 square units
7. (a)

(b) \(1 ; \frac{3}{2} ; \frac{5}{2}\)
(c) 2. Use points closer to \(P\).
9. (a) Area \(\approx 10.417\); Area \(\approx 9.145\) (b) Use more rectangles.
11. (a) 5.66
(b) 6.11
(c) Increase the number of line segments.

\section*{Section 1.2 (page 54)}
1.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 3.9 & 3.99 & 3.999 & 4.001 & 4.01 & 4.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.2041 & 0.2004 & 0.2000 & 0.2000 & 0.1996 & 0.1961 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-3 x-4} \approx 0.2000\left(\right.\) Actual limit is \(\frac{1}{5}\).)
3.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.2050 & 0.2042 & 0.2041 & 0.2041 & 0.2040 & 0.2033 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 0} \frac{\sqrt{x+6}-\sqrt{6}}{x} \approx 0.2041\left(\right.\) Actual limit is \(\frac{1}{2 \sqrt{6}}\).)
5.
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 2.9 & 2.99 & 2.999 \\
\hline\(f(x)\) & -0.0641 & -0.0627 & -0.0625 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 3.001 & 3.01 & 3.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -0.0625 & -0.0623 & -0.0610 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow 3} \frac{[1 /(x+1)]-(1 / 4)}{x-3} \approx-0.0625\left(\text { Actual limit is }-\frac{1}{16}\right)
\]
7.
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.9983 & 0.99998 & 1.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 1.0000 & 0.99998 & 0.9983 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 0} \frac{\sin x}{x} \approx 1.0000\) (Actual limit is 1.)
9.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.2564 & 0.2506 & 0.2501 & 0.2499 & 0.2494 & 0.2439 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 1} \frac{x-2}{x^{2}+x-6} \approx 0.2500\left(\right.\) Actual limit is \(\frac{1}{4}\).)
11.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.7340 & 0.6733 & 0.6673 & 0.6660 & 0.6600 & 0.6015 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{6}-1} \approx 0.6666\left(\right.\) Actual limit is \(\frac{2}{3}\).)
13.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 1.9867 & 1.9999 & 2.0000 & 2.0000 & 1.9999 & 1.9867 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \approx 2.0000\) (Actual limit is 2. )
15. \(1 \quad\) 17. 2
19. Limit does not exist. The function approaches 1 from the right side of 2 but it approaches -1 from the left side of 2 .
21. 0
23. Limit does not exist. The function oscillates between 1 and -1 as \(x\) approaches 0 .
25. (a) 2
(b) Limit does not exist. The function approaches 1 from the right side of 1 but it approaches 3.5 from the left side of 1 .
(c) Value does not exist. The function is undefined at \(x=4\).
(d) 2
27. \(\lim _{x \rightarrow c} f(x)\) exists for all points on the graph except where \(c=-3\).
29.

31.

\(\lim _{x \rightarrow c} f(x)\) exists for all points on the graph except where \(c=4\).
33. (a)

(b)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 3 & 3.3 & 3.4 & 3.5 & 3.6 & 3.7 & 4 \\
\hline \(\boldsymbol{C}\) & 11.57 & 12.36 & 12.36 & 12.36 & 12.36 & 12.36 & 12.36 \\
\hline
\end{tabular}
\[
\lim _{t \rightarrow 3.5} C(t)=12.36
\]
(c)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 2 & 2.5 & 2.9 & 3 & 3.1 & 3.5 & 4 \\
\hline \(\boldsymbol{C}\) & 10.78 & 11.57 & 11.57 & 11.57 & 12.36 & 12.36 & 12.36 \\
\hline
\end{tabular}

The limit does not exist because the limits from the right and left are not equal.
35. \(\delta=0.4\)
37. \(\delta=\frac{1}{11} \approx 0.091\)
39. \(L=8\). Let \(\delta=0.01 / 3 \approx 0.0033\).
41. \(L=1\). Let \(\delta=0.01 / 5=0.002\).
43. 6
45. -3
47. 3
49. 0
51. 10
53. 2
55. 4
57.

\(\lim _{x \rightarrow 4} f(x)=\frac{1}{6}\)
Domain: \([-5,4) \cup(4, \infty)\)
The graph has a hole at \(x=4\).
59.

\[
\lim _{x \rightarrow 9} f(x)=6
\]

Domain: \([0,9) \cup(9, \infty)\)
The graph has a hole at \(x=9\).
61. Answers will vary. Sample answer: As \(x\) approaches 8 from either side, \(f(x)\) becomes arbitrarily close to 25 .
63. (i) The values of \(f\) approach different numbers as \(x\) approaches \(c\) from different sides of \(c\).

(ii) The values of \(f\) increase or decrease without bound as \(x\) approaches \(c\).

(iii) The values of \(f\) oscillate between two fixed numbers as \(x\) approaches \(c\).

65. (a) \(r=\frac{3}{\pi} \approx 0.9549 \mathrm{~cm}\)
(b) \(\frac{5.5}{2 \pi} \leq r \leq \frac{6.5}{2 \pi}\), or approximately \(0.8754<r<1.0345\)
(c) \(\lim _{r \rightarrow 3 / \pi} 2 \pi r=6 ; \varepsilon=0.5 ; \delta \approx 0.0796\)
67.
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.001 & -0.0001 & -0.00001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 2.7196 & 2.7184 & 2.7183 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.00001 & 0.0001 & 0.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 2.7183 & 2.7181 & 2.7169 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow 0} f(x) \approx 2.7183
\]

69.

\(\delta=0.001\)
(1.999, 2.001)
71. False. The existence or nonexistence of \(f(x)\) at \(x=c\) has no bearing on the existence of the limit of \(f(x)\) as \(x \rightarrow c\).
73. False. See Exercise 17.
75. Yes. As \(x\) approaches 0.25 from either side, \(\sqrt{x}\) becomes arbitrarily close to 0.5 .
77. \(\lim _{x \rightarrow 0} \frac{\sin n x}{x}=n\)
79-81. Proofs
83. Answers will vary.
85. Putnam Problem B1, 1986

\section*{Section 1.3 (page 67)}
1.

(a) 0 (b) -5
5. 8 7. -1
9. 0
11. 7
(a) 0
13. 2
(b) About 0.52 or \(\pi / 6\)
5.
19. \(1 / 5\)
21. 7
23. (a) 4
(b) 64
(c) 64
25. (a)
(b) 2
(c) 2
27. 1
29. \(1 / 2\)
31.
33. \(1 / 2\)
35. -1
37. (a) 10
(b) 5
(c) 6
(d) \(3 / 2\)
39. (a) 64
(b) 2
(c) 12
(d) 8
41. (a) -1
(b) -2
\(g(x)=\frac{x^{2}-x}{x}\) and \(f(x)=x-1\) agree except at \(x=0\).
43. (a) 2 (b) 0
\(g(x)=\frac{x^{3}-x}{x-1}\) and \(f(x)=x^{2}+x\) agree except at \(x=1\).
45. -2
\(f(x)=\frac{x^{2}-1}{x+1}\) and \(g(x)=x-1\) agree except at \(x=-1\).
47. 12
\(f(x)=\frac{x^{3}-8}{x-2}\) and \(g(x)=x^{2}+2 x+4\) agree except at \(x=2\).
49. -1
51. \(1 / 8\)
53. \(5 / 6\)
55. \(1 / 6\)
57. \(\sqrt{5} / 10\)
59. \(-1 / 9\)
61. 2
63. \(2 x-2\)
65. \(1 / 5\)
67. 0
69. 0
71. 0
73. 1
75. \(3 / 2\)
77.


The graph has a hole at \(x=0\).

Answers will vary. Example:
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.358 & 0.354 & 0.354 & 0.354 & 0.353 & 0.349 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \approx 0.354\left(\right.\) Actual limit is \(\left.\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4}.\right)\)
79.


The graph has a hole at \(x=0\).

Answers will vary. Example:
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -0.263 & -0.251 & -0.250 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -0.250 & -0.249 & -0.238 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow 0} \frac{[1 /(2+x)]-(1 / 2)}{x} \approx-0.250\left(\text { Actual limit is }-\frac{1}{4} .\right)
\]
81.


The graph has a hole at \(t=0\).

Answers will vary. Example:
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & -0.1 & -0.01 & 0 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{t})\) & 2.96 & 2.9996 & \(?\) & 2.9996 & 2.96 \\
\hline
\end{tabular}
\[
\lim _{t \rightarrow 0} \frac{\sin 3 t}{t}=3
\]
83.


The graph has a hole at \(x=0\).

Answers will vary. Example:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 & 0 & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -0.1 & -0.01 & -0.001 & \(?\) & 0.001 & 0.01 & 0.1 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=0
\]
85. 3
91.


0


0
The graph has a hole at \(x=0\).
97. \(f\) and \(g\) agree at all but one point if \(c\) is a real number such that \(f(x)=g(x)\) for all \(x \neq c\).
99. An indeterminate form is obtained when evaluating a limit using direct substitution produces a meaningless fractional form, such as \(\frac{0}{0}\).
101.


The magnitudes of \(f(x)\) and \(g(x)\) are approximately equal when \(x\) is close to 0 . Therefore, their ratio is approximately 1 .
103. \(-64 \mathrm{ft} / \mathrm{sec}(\) speed \(=64 \mathrm{ft} / \mathrm{sec}) \quad\) 105. \(-29.4 \mathrm{~m} / \mathrm{sec}\)
107. Let \(f(x)=1 / x\) and \(g(x)=-1 / x\).
\(\lim _{x \rightarrow 0} f(x)\) and \(\lim _{x \rightarrow 0} g(x)\) do not exist. However,
\(\lim _{x \rightarrow 0}[f(x)+g(x)]=\lim _{x \rightarrow 0}\left[\frac{1}{x}+\left(-\frac{1}{x}\right)\right]=\lim _{x \rightarrow 0} 0=0\)
and therefore does exist.
109-113. Proofs
115. Let \(f(x)=\left\{\begin{aligned} 4, & \text { if } x \geq 0 \\ -4, & \text { if } x<0\end{aligned}\right.\)
\(\lim _{x \rightarrow 0}|f(x)|=\lim _{x \rightarrow 0} 4=4\)
\(\lim _{x \rightarrow 0} f(x)\) does not exist because for \(x<0, f(x)=-4\) and for \(x \geq 0, f(x)=4\).
117. False. The limit does not exist because the function approaches 1 from the right side of 0 and approaches -1 from the left side of 0 . (See graph below.)

119. True.
121. False. The limit does not exist because \(f(x)\) approaches 3 from the left side of 2 and approaches 0 from the right side of 2. (See graph below.)

123. Proof
125. (a) All \(x \neq 0, \frac{\pi}{2}+n \pi\)
(b)


The domain is not obvious. The hole at \(x=0\) is not apparent from the graph.
(c) \(\frac{1}{2}\)
(d) \(\frac{1}{2}\)
127. The graphing utility was not set in radian mode.

\section*{Section 1.4 (page 78)}
1. (a) 3 (b) 3 (c) \(3 ; f(x)\) is continuous on \((-\infty, \infty)\).
3. (a) 0 (b) \(0 \quad\) (c) 0 ; Discontinuity at \(x=3\)
5. (a) -3 (b) 3 (c) Limit does not exist.

Discontinuity at \(x=2\)
7. \(\frac{1}{16} \quad\) 9. \(\frac{1}{10}\)
11. Limit does not exist. The function decreases without bound as \(x\) approaches -3 from the left.
13. -1
15. \(-1 / x^{2}\)
17. \(5 / 2\)
19. 2
21. Limit does not exist. The function decreases without bound as \(x\) approaches \(\pi\) from the left and increases without bound as \(x\) approaches \(\pi\) from the right.
23. 8
25. Limit does not exist. The function approaches 5 from the left side of 3 but approaches 6 from the right side of 3 .
27. Discontinuous at \(x=-2\) and \(x=2\)
29. Discontinuous at every integer
31. Continuous on \([-7,7]\) 33. Continuous on \([-1,4]\)
35. Nonremovable discontinuity at \(x=0\)
37. Continuous for all real \(x\)
39. Nonremovable discontinuities at \(x=-2\) and \(x=2\)
41. Continuous for all real \(x\)
43. Nonremovable discontinuity at \(x=1\)

Removable discontinuity at \(x=0\)
45. Continuous for all real \(x\)
47. Removable discontinuity at \(x=-2\) Nonremovable discontinuity at \(x=5\)
49. Nonremovable discontinuity at \(x=-7\)
51. Continuous for all real \(x\)
53. Nonremovable discontinuity at \(x=2\)
55. Continuous for all real \(x\)
57. Nonremovable discontinuities at integer multiples of \(\pi / 2\)
59. Nonremovable discontinuities at each integer
61.

\(\lim _{x \rightarrow 0^{+}} f(x)=0\)
\(\lim _{x \rightarrow 0^{-}} f(x)=0\)
Discontinuity at \(x=-2\)
63. \(a=7\)
65. \(a=2\)
67. \(a=-1, b=1\)
69. Continuous for all real \(x\)
71. Nonremovable discontinuities at \(x=1\) and \(x=-1\)
73.


Nonremovable discontinuity at each integer


Nonremovable discontinuity at \(x=4\)
77. Continuous on \((-\infty, \infty)\)
79. Continuous on the open intervals . . . \((-6,-2),(-2,2)\), \((2,6), \ldots\)
81.


The graph has a hole at \(x=0\). The graph appears to be continuous, but the function is not continuous on \([-4,4]\). It is not obvious from the graph that the function has a discontinuity at \(x=0\).
83. Because \(f(x)\) is continuous on the interval \([1,2]\) and \(f(1)=37 / 12\) and \(f(2)=-8 / 3\), by the Intermediate Value Theorem there exists a real number \(c\) in \([1,2]\) such that \(f(c)=0\).
85. Because \(f(x)\) is continuous on the interval \([0, \pi]\) and \(f(0)=-3\) and \(f(\pi) \approx 8.87\), by the Intermediate Value Theorem there exists a real number \(c\) in \([0, \pi]\) such that \(f(c)=0\).
87. \(0.68,0.6823 \quad\) 89. \(0.56,0.5636\)
91. \(f(3)=11\)
93. \(f(2)=4\)
95. (a) The limit does not exist at \(x=c\).
(b) The function is not defined at \(x=c\).
(c) The limit exists, but it is not equal to the value of the function at \(x=c\).
(d) The limit does not exist at \(x=c\).
97. If \(f\) and \(g\) are continuous for all real \(x\), then so is \(f+g\) (Theorem 1.11, part 2). However, \(f / g\) might not be continuous if \(g(x)=0\). For example, let \(f(x)=x\) and \(g(x)=x^{2}-1\). Then \(f\) and \(g\) are continuous for all real \(x\), but \(f / g\) is not continuous at \(x= \pm 1\).
99. True
101. False. A rational function can be written as \(P(x) / Q(x)\) where \(P\) and \(Q\) are polynomials of degree \(m\) and \(n\), respectively. It can have, at most, \(n\) discontinuities.
103. \(\lim _{t \rightarrow 4^{-}} f(t) \approx 28 ; \lim _{t \rightarrow 4^{+}} f(t) \approx 56\)

At the end of day 3 , the amount of chlorine in the pool is about 28 oz . At the beginning of day 4 , the amount of chlorine in the pool is about 56 oz .
105. \(C= \begin{cases}0.40, & 0<t \leq 10 \\ 0.40+0.05 \llbracket t-9 \rrbracket, & t>10, t \text { is not an integer } \\ 0.40+0.05(t-10), & t>10, t \text { is an integer }\end{cases}\)


There is a nonremovable discontinuity at each integer greater than or equal to 10 .

107-109. Proofs
111. Answers will vary.
113. (a)

(b) There appears to be a limiting speed, and a possible cause is air resistance.
115. \(c=(-1 \pm \sqrt{5}) / 2\)
117. Domain: \(\left[-c^{2}, 0\right) \cup(0, \infty)\); Let \(f(0)=1 /(2 c)\)
119. \(h(x)\) has a nonremovable discontinuity at every integer except 0 .

121. Putnam Problem B2, 1988

\section*{Section 1.5 (page 88)}
1. \(\lim _{x \rightarrow 4^{+}} \frac{1}{x-4}=\infty, \quad \lim _{x \rightarrow 4^{-}} \frac{1}{x-4}=-\infty\)
3. \(\lim _{x \rightarrow 4^{+}} \frac{1}{(x-4)^{2}}=\infty, \quad \lim _{x \rightarrow 4^{-}} \frac{1}{(x-4)^{2}}=\infty\)
5. \(\lim _{x \rightarrow-2^{+}} 2\left|\frac{x}{x^{2}-4}\right|=\infty, \quad \lim _{x \rightarrow-2^{-}} 2\left|\frac{x}{x^{2}-4}\right|=\infty\)
7. \(\lim _{x \rightarrow-2^{+}} \tan (\pi x / 4)=-\infty, \lim _{x \rightarrow-2^{-}} \tan (\pi x / 4)=\infty\)
9.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -3.5 & -3.1 & -3.01 & -3.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.31 & 1.64 & 16.6 & 167 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -2.999 & -2.99 & -2.9 & -2.5 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -167 & -16.7 & -1.69 & -0.36 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow-3^{+}} f(x)=-\infty \lim _{x \rightarrow-3^{-}} f(x)=\infty
\]
11.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -3.5 & -3.1 & -3.01 & -3.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 3.8 & 16 & 151 & 1501 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \(\boldsymbol{x}\) & -2.999 & -2.99 & -2.9 & -2.5 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -1499 & -149 & -14 & -2.3 \\
\hline
\end{tabular}
\(\lim _{x \rightarrow-3^{+}} f(x)=-\infty \quad \lim _{x \rightarrow-3^{-}} f(x)=\infty\)
\(\begin{array}{ll}\text { 13. } x=0 & \text { 15. } x= \pm 2\end{array}\)
17. No vertical asymptote
19. \(x=2, \quad x=-1\)
21. \(t=0\)
23. \(x=-2, x=1\)
25. No vertical asymptote 27. No vertical asymptote
29. \(x=\frac{1}{2}+n, n\) is an integer.
31. \(t=n \pi, n\) is a nonzero integer.
33. Removable discontinuity at \(x=-1\)
35. Vertical asymptote at \(x=-1 \quad\) 37. \(\infty\) 39. \(\infty\)
41. \(\infty\)
43. \(-\frac{1}{5}\)
45. \(\frac{1}{2}\)
47. \(-\infty\) 49. \(\infty\)
51. 0
53. Limit does not exist.
55.

\(\lim _{x \rightarrow 1^{+}} f(x)=\infty\)
57.

\(\lim _{x \rightarrow 5^{-}} f(x)=-\infty\)
59. Answers will vary.
61. Answers will vary. Example: \(f(x)=\frac{x-3}{x^{2}-4 x-12}\)
63.

67. (a) \(\frac{1}{3}(200 \pi) \mathrm{ft} / \mathrm{sec}\)
(b) \(200 \pi \mathrm{ft} / \mathrm{sec}\)
(c) \(\lim _{\theta \rightarrow(\pi / 2)^{-}}\left[50 \pi \sec ^{2} \theta\right]=\infty\)
69. (a) Domain: \(x>25\)
(b)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 30 & 40 & 50 & 60 \\
\hline \(\boldsymbol{y}\) & 150 & 66.667 & 50 & 42.857 \\
\hline
\end{tabular}
(c) \(\lim _{x \rightarrow 25^{+}} \frac{25 x}{x-25}=\infty\)

As \(x\) gets closer and closer to \(25 \mathrm{mi} / \mathrm{h}, y\) becomes larger and larger.
71. (a) \(A=50 \tan \theta-50 \theta\); Domain: \((0, \pi / 2)\)
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{\theta}\) & 0.3 & 0.6 & 0.9 & 1.2 & 1.5 \\
\hline \(\boldsymbol{f}(\boldsymbol{\theta})\) & 0.47 & 4.21 & 18.0 & 68.6 & 630.1 \\
\hline
\end{tabular}
(c) \(\lim _{\theta \rightarrow \pi / 2^{-}} A=\infty\)
73. False; let \(f(x)=\left(x^{2}-1\right) /(x-1)\)
75. False; let \(f(x)=\tan x\)
77. Let \(f(x)=\frac{1}{x^{2}}\) and \(g(x)=\frac{1}{x^{4}}\), and let \(c=0\). \(\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty\) and \(\lim _{x \rightarrow 0} \frac{1}{x^{4}}=\infty\), but \(\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{4}}\right)=\lim _{x \rightarrow 0}\left(\frac{x^{2}-1}{x^{4}}\right)=-\infty \neq 0\).
79. Given \(\lim _{x \rightarrow c} f(x)=\infty\), let \(g(x)=1\). Then \(\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0\) by Theorem 1.15.
81. Answers will vary.

\section*{Review Exercises for Chapter 1 (page 91)}
1. Calculus

3.
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -1.0526 & -1.0050 & -1.0005 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f ( x )}\) & -0.9995 & -0.9950 & -0.9524 \\
\hline
\end{tabular}

The estimate of the limit of \(f(x)\), as \(x\) approaches zero, is -1.00 .
5. 5; Proof
7. -3 ; Proof
9. (a) 4
(b) 5
11. 16
13. \(\sqrt{6} \approx 2.45\)
15. \(-\frac{1}{4}\)
17. \(\frac{1}{2} \quad\) 19. -1
21. 75
23. 0

27. \(-\frac{1}{2}\)
29. \(\frac{7}{12}\)
31. (a)
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 1.1 & 1.01 & 1.001 & 1.0001 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.5680 & 0.5764 & 0.5773 & 0.5773 \\
\hline
\end{tabular}
\[
\lim _{x \rightarrow 1^{+}} f(x) \approx 0.5773
\]
(b)


The graph has a hole at \(x=1\). \(\lim _{x \rightarrow 1^{+}} f(x) \approx 0.5774\)
(c) \(\sqrt{3} / 3\)
33. \(-39.2 \mathrm{~m} / \mathrm{sec}\)
35. -1
37. 0
39. Limit does not exist. The limit as \(t\) approaches 1 from the left is 2 whereas the limit as \(t\) approaches 1 from the right is 1 .
41. Continuous for all real \(x\)
43. Nonremovable discontinuity at each integer Continuous on \((k, k+1)\) for all integers \(k\)
45. Removable discontinuity at \(x=1\)

Continuous on \((-\infty, 1) \cup(1, \infty)\)
47. Nonremovable discontinuity at \(x=2\)

Continuous on \((-\infty, 2) \cup(2, \infty)\)
49. Nonremovable discontinuity at \(x=-1\)

Continuous on \((-\infty,-1) \cup(-1, \infty)\)
51. Nonremovable discontinuity at each even integer Continuous on \((2 k, 2 k+2)\) for all integers \(k\)
53. \(c=-\frac{1}{2}\) 55. Proof
57. (a) -4
(b) 4
(c) Limit does not exist.
59. \(x=0\)
61. \(x=10\)
63. \(-\infty\)
65. \(\frac{1}{3}\)
67. \(-\infty\)
69. \(-\infty\)
71. \(\frac{4}{5} \quad\) 73. \(\infty\)
75. (a) \(\$ 14,117.65\)
(b) \(\$ 80,000.00\)
(c) \(\$ 720,000.00\)
(d) \(\infty\)

\section*{P.S. Problem Solving (page 93)}
1. (a) Perimeter \(\triangle P A O=1+\sqrt{\left(x^{2}-1\right)^{2}+x^{2}}+\sqrt{x^{4}+x^{2}}\)

Perimeter \(\triangle P B O=1+\sqrt{x^{4}+(x-1)^{2}}+\sqrt{x^{4}+x^{2}}\)
(b)
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 4 & 2 & 1 \\
\hline Perimeter \(\triangle \boldsymbol{P A O}\) & 33.0166 & 9.0777 & 3.4142 \\
\hline Perimeter \(\triangle \boldsymbol{P B O}\) & 33.7712 & 9.5952 & 3.4142 \\
\hline \(\boldsymbol{r}(\boldsymbol{x})\) & 0.9777 & 0.9461 & 1.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{x}\) & 0.1 & 0.01 \\
\hline Perimeter \(\triangle \boldsymbol{P} \boldsymbol{A} \boldsymbol{O}\) & 2.0955 & 2.0100 \\
\hline Perimeter \(\triangle \boldsymbol{P B} \boldsymbol{O}\) & 2.0006 & 2.0000 \\
\hline \(\boldsymbol{r}(\boldsymbol{x})\) & 1.0475 & 1.0050 \\
\hline
\end{tabular}
(c) 1
3. (a) Area (hexagon) \(=(3 \sqrt{3}) / 2 \approx 2.5981\)

Area \((\) circle \()=\pi \approx 3.1416\)
Area \((\) circle \()-\operatorname{Area}(\) hexagon \() \approx 0.5435\)
(b) \(A_{n}=(n / 2) \sin (2 \pi / n)\)
(c)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 6 & 12 & 24 & 48 & 96 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & 2.5981 & 3.0000 & 3.1058 & 3.1326 & 3.1394 \\
\hline
\end{tabular}
(d) 3.1416 or \(\pi\)
5. (a) \(m=-\frac{12}{5} \quad\) (b) \(y=\frac{5}{12} x-\frac{169}{12}\)
(c) \(m_{x}=\frac{-\sqrt{169-x^{2}}+12}{x-5}\)
(d) \(\frac{5}{12}\); It is the same as the slope of the tangent line found in (b).
7. (a) Domain: \([-27,1) \cup(1, \infty)\)
(b)

(c) \(\frac{1}{14}\)
(d) \(\frac{1}{12}\)

The graph has a hole at \(x=1\).
9. (a) \(g_{1}, g_{4}\)
(b) \(g_{1}\)
(c) \(g_{1}, g_{3}, g_{4}\)
11.

(a) \(f(1)=0, f(0)=0, f\left(\frac{1}{2}\right)=-1, f(-2.7)=-1\)
(b) \(\lim _{x \rightarrow 1^{-}} f(x)=-1, \lim _{x \rightarrow 1^{+}} f(x)=-1, \lim _{x \rightarrow 1 / 2} f(x)=-1\)
(c) There is a discontinuity at each integer.
13. (a)

(b) (i) \(\lim _{x \rightarrow a^{+}} P_{a, b}(x)=1\)
(ii) \(\lim _{x \rightarrow a^{-}} P_{a, b}(x)=0\)
(iii) \(\lim _{x \rightarrow b^{+}} P_{a, b}(x)=0\)
(iv) \(\lim _{x \rightarrow b^{-}} P_{a, b}(x)=1\)
(c) Continuous for all positive real numbers except \(a\) and \(b\)
(d) The area under the graph of \(U\) and above the \(x\)-axis is 1 .

\section*{Chapter 2}

\section*{Section 2.1 (page 103)}
1. (a) \(m_{1}=0, m_{2}=5 / 2\)
(b) \(m_{1}=-5 / 2, m_{2}=2\)
3.

9. \(m=3\)
11. \(f^{\prime}(x)=0\)
13. \(f^{\prime}(x)=-10\)
15. \(h^{\prime}(s)=\frac{2}{3}\)
17. \(f^{\prime}(x)=2 x+1\)
19. \(f^{\prime}(x)=3 x^{2}-12\)
21. \(f^{\prime}(x)=\frac{-1}{(x-1)^{2}}\)
23. \(f^{\prime}(x)=\frac{1}{2 \sqrt{x+4}}\)
25. (a) Tangent line: \(y=2 x+2\)
(b)

27. (a) Tangent line:
\[
y=12 x-16
\]
(b)

29. (a) Tangent line: \(y=\frac{1}{2} x+\frac{1}{2}\)
(b)

5. \(m=-5\)
7. \(m=4\)
53. \(f(x)=5-3 x\) \(c=1\)
57. \(f(x)=-3 x+2\)

47.

49.

51. Answers will vary.

Sample answer: \(y=-x\)

55. \(f(x)=-x^{2}\)
\(c=6\)
59. Answers will vary. Sample answer: \(f(x)=x^{3}\)

61. \(y=2 x+1 ; y=-2 x+9\)
63. (a)


For this function, the slopes of the tangent lines are always distinct for different values of \(x\).
(b)


For this function, the slopes of the tangent lines are sometimes the same.
65. (a)

\[
f^{\prime}(0)=0, f^{\prime}\left(\frac{1}{2}\right)=\frac{1}{2}, f^{\prime}(1)=1, f^{\prime}(2)=2
\]
(b) \(f^{\prime}\left(-\frac{1}{2}\right)=-\frac{1}{2}, f^{\prime}(-1)=-1, f^{\prime}(-2)=-2\)

(d) \(f^{\prime}(x)=x\)
67.

69. \(f(2)=4 ; f(2.1)=3.99 ; f^{\prime}(2) \approx-0.1\)
71.


As \(x\) approaches infinity, the graph of \(f\) approaches a line of slope 0 . Thus \(f^{\prime}(x)\) approaches 0 .
73. 6
75. 4
77. \(g(x)\) is not differentiable at \(x=0\).
79. \(f(x)\) is not differentiable at \(x=6\).
81. \(h(x)\) is not differentiable at \(x=-7\).
83. \((-\infty, 3) \cup(3, \infty)\)
85. \((-\infty,-4) \cup(-4, \infty)\)
87. \((1, \infty)\)

\((-\infty, 5) \cup(5, \infty)\)
91.

\((-\infty, 0) \cup(0, \infty)\)
93. The derivative from the left is -1 and the derivative from the right is 1 , so \(f\) is not differentiable at \(x=1\).
95. The derivatives from both the right and the left are 0 , so \(f^{\prime}(1)=0\).
97. \(f\) is differentiable at \(x=2\).
99. (a) \(d=(3|m+1|) / \sqrt{m^{2}+1}\)
(b)

101. False. The slope is \(\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x}\).
103. False. For example: \(f(x)=|x|\). The derivative from the left and the derivative from the right both exist but are not equal.
105. Proof

\section*{Section 2.2 (page 115)}
1. (a) \(\frac{1}{2}\)
(b) \(3 \quad\) 3. 0
5. \(7 x^{6}\)
7. \(-5 / x^{6}\)
9. \(1 /\left(5 x^{4 / 5}\right)\)
11. 1
13. \(-4 t+3\)
15. \(2 x+12 x^{2}\)
17. \(3 t^{2}+10 t-3\)
19. \(\frac{\pi}{2} \cos \theta+\sin \theta\)
21. \(2 x+\frac{1}{2} \sin x\)
23. \(-\frac{1}{x^{2}}-3 \cos x\)

Function
Rewrite
Derivative
Simplify
25. \(y=\frac{5}{2 x^{2}}\)
\(y=\frac{5}{2} x^{-2}\)
\(y^{\prime}=-5 x^{-3}\)
\(y^{\prime}=-\frac{5}{x^{3}}\)
27. \(y=\frac{6}{(5 x)^{3}} \quad y=\frac{6}{125} x^{-3} \quad y^{\prime}=-\frac{18}{125} x^{-4} \quad y^{\prime}=-\frac{18}{125 x^{4}}\)
29. \(y=\frac{\sqrt{x}}{x} \quad y=x^{-1 / 2} \quad y^{\prime}=-\frac{1}{2} x^{-3 / 2} \quad y^{\prime}=-\frac{1}{2 x^{3 / 2}}\)
31. -2
33. 0
35. 8
37. 3
39. \(2 x+6 / x^{3}\)
41. \(2 t+12 / t^{4}\)
43. \(8 x+3\)
45. \(\left(x^{3}-8\right) / x^{3}\)
47. \(3 x^{2}+1\)
49. \(\frac{1}{2 \sqrt{x}}-\frac{2}{x^{2 / 3}}\)
51. \(\frac{4}{5 s^{1 / 5}}-\frac{2}{3 s^{1 / 3}}\)
53. \(\frac{3}{\sqrt{x}}-5 \sin x\)
55. (a) \(2 x+y-2=0\)
(b)

57. (a) \(3 x+2 y-7=0\)
(b)

59. \((-1,2),(0,3),(1,2)\)
61. No horizontal tangents
63. \((\pi, \pi)\)
65. \(k=-1, k=-9\)
67. \(k=3\)
69. \(k=4 / 27\)
71.

75.


The rate of change of \(f\) is constant and therefore \(f^{\prime}\) is a constant function.
77. \(y=2 x-1\)

79. \(f^{\prime}(x)=3+\cos x \neq 0\) for all \(x\).
81. \(x-4 y+4=0\)
83.

\(f^{\prime}(1)\) appears to be close to -1 .
\(f^{\prime}(1)=-1\)
85. (a)

(3.9, 7.7019), \(S(x)=2.981 x-3.924\)
(b) \(T(x)=3(x-4)+8=3 x-4\)

The slope (and equation) of the secant line approaches that of the tangent line at \((4,8)\) as you choose points closer and closer to \((4,8)\).
(c)


The approximation becomes less accurate.
(d)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline\(\Delta \boldsymbol{x}\) & -3 & -2 & -1 & -0.5 & -0.1 & 0 \\
\hline \(\boldsymbol{f}(\mathbf{4}+\Delta \boldsymbol{x})\) & 1 & 2.828 & 5.196 & 6.548 & 7.702 & 8 \\
\hline \(\boldsymbol{T}(\mathbf{4}+\Delta \boldsymbol{x})\) & -1 & 2 & 5 & 6.5 & 7.7 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(\Delta \boldsymbol{x}\) & 0.1 & 0.5 & 1 & 2 & 3 \\
\hline \(\boldsymbol{f}(\mathbf{4}+\Delta \boldsymbol{x})\) & 8.302 & 9.546 & 11.180 & 14.697 & 18.520 \\
\hline \(\boldsymbol{T}(\mathbf{4}+\Delta \boldsymbol{x})\) & 8.3 & 9.5 & 11 & 14 & 17 \\
\hline
\end{tabular}
87. False. Let \(f(x)=x\) and \(g(x)=x+1\).
89. False. \(d y / d x=0\)
91. True
93. Average rate: 4 Instantaneous rates:
95. Average rate: \(\frac{1}{2}\) Instantaneous rates: \(f^{\prime}(1)=4 ; f^{\prime}(2)=4\) \(f^{\prime}(1)=1 ; f^{\prime}(2)=\frac{1}{4}\)
97.
(a) \(s(t)=-16 t^{2}+1362 ; v(t)=-32 t\)
(b) \(-48 \mathrm{ft} / \mathrm{sec}\)
(c) \(s^{\prime}(1)=-32 \mathrm{ft} / \mathrm{sec} ; s^{\prime}(2)=-64 \mathrm{ft} / \mathrm{sec}\)
(d) \(t=\frac{\sqrt{1362}}{4} \approx 9.226 \mathrm{sec}\)
(e) \(-295.242 \mathrm{ft} / \mathrm{sec}\)
99. \(v(5)=71 \mathrm{~m} / \mathrm{sec} ; v(10)=22 \mathrm{~m} / \mathrm{sec}\)
101.

103.

105. (a) \(R(v)=0.417 v-0.02\)
(b) \(B(v)=0.0056 v^{2}+0.001 v+0.04\)
(c) \(T(v)=0.0056 v^{2}+0.418 v+0.02\)
(d)

(e) \(T^{\prime}(v)=0.0112 v+0.418\)
\(T^{\prime}(40)=0.866\)
\(T^{\prime}(80)=1.314\)
\(T^{\prime}(100)=1.538\)
(f) Stopping distance increases at an increasing rate.
107. \(V^{\prime}(6)=108 \mathrm{~cm}^{3} / \mathrm{cm}\) 109. Proof
111. (a) The rate of change of the number of gallons of gasoline sold when the price is \(\$ 2.979\)
(b) In general, the rate of change when \(p=2.979\) should be negative. As prices go up, sales go down.
113. \(y=2 x^{2}-3 x+1 \quad\) 115. \(9 x+y=0,9 x+4 y+27=0\)
117. \(a=\frac{1}{3}, b=-\frac{4}{3}\)
119. \(f_{1}(x)=|\sin x|\) is differentiable for all \(x \neq n \pi, n\) an integer. \(f_{2}(x)=\sin |x|\) is differentiable for all \(x \neq 0\).

\section*{Section 2.3 (page 126)}
1. \(2\left(2 x^{3}-6 x^{2}+3 x-6\right)\)
3. \(\left(1-5 t^{2}\right) /(2 \sqrt{t})\)
5. \(x^{2}(3 \cos x-x \sin x)\) 7. \(\left(1-x^{2}\right) /\left(x^{2}+1\right)^{2}\)
9. \(\left(1-5 x^{3}\right) /\left[2 \sqrt{x}\left(x^{3}+1\right)^{2}\right] \quad\) 11. \((x \cos x-2 \sin x) / x^{3}\)
13. \(f^{\prime}(x)=\left(x^{3}+4 x\right)(6 x+2)+\left(3 x^{2}+2 x-5\right)\left(3 x^{2}+4\right)\) \(=15 x^{4}+8 x^{3}+21 x^{2}+16 x-20\) \(f^{\prime}(0)=-20\)
15. \(f^{\prime}(x)=\frac{x^{2}-6 x+4}{(x-3)^{2}}\)
17. \(f^{\prime}(x)=\cos x-x \sin x\)
\(f^{\prime}(1)=-\frac{1}{4}\)
\[
f^{\prime}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{8}(4-\pi)
\]

Function Rewrite Differentiate
19. \(y=\frac{x^{2}+3 x}{7} \quad y=\frac{1}{7} x^{2}+\frac{3}{7} x \quad y^{\prime}=\frac{2}{7} x+\frac{3}{7} \quad y^{\prime}=\frac{2 x+3}{7}\)
21. \(y=\frac{6}{7 x^{2}} \quad y=\frac{6}{7} x^{-2} \quad y^{\prime}=-\frac{12}{7} x^{-3} \quad y^{\prime}=-\frac{12}{7 x^{3}}\)
23. \(y=\frac{4 x^{3 / 2}}{x} \quad y=4 x^{1 / 2}, \quad y^{\prime}=2 x^{-1 / 2} \quad y^{\prime}=\frac{2}{\sqrt{x}}\),
\(x>0 \quad x>0\)
25. \(\frac{\left(x^{2}-1\right)(-3-2 x)-\left(4-3 x-x^{2}\right)(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{3}{(x+1)^{2}}, x \neq 1\)
27. \(1-12 /(x+3)^{2}=\left(x^{2}+6 x-3\right) /(x+3)^{2}\)
29. \(\frac{3}{2} x^{-1 / 2}+\frac{1}{2} x^{-3 / 2}=(3 x+1) / 2 x^{3 / 2}\)
31. \(6 s^{2}\left(s^{3}-2\right)\)
33. \(-\left(2 x^{2}-2 x+3\right) /\left[x^{2}(x-3)^{2}\right]\)
35. \(\left(6 x^{2}+5\right)(x-3)(x+2)+\left(2 x^{3}+5 x\right)(1)(x+2)\)
\[
\begin{aligned}
& +\left(2 x^{3}+5 x\right)(x-3)(1) \\
& =10 x^{4}-8 x^{3}-21 x^{2}-10 x-30
\end{aligned}
\]
37. \(\frac{\left(x^{2}-c^{2}\right)(2 x)-\left(x^{2}+c^{2}\right)(2 x)}{\left(x^{2}-c^{2}\right)^{2}}=-\frac{4 x c^{2}}{\left(x^{2}-c^{2}\right)^{2}}\)
39. \(t(t \cos t+2 \sin t)\)
41. \(-(t \sin t+\cos t) / t^{2}\)
43. \(-1+\sec ^{2} x=\tan ^{2} x\)
45. \(\frac{1}{4 t^{3 / 4}}-6 \csc t \cot t\)
47. \(\frac{-6 \cos ^{2} x+6 \sin x-6 \sin ^{2} x}{4 \cos ^{2} x}=\frac{3}{2}\left(-1+\tan x \sec x-\tan ^{2} x\right)\)
\[
=\frac{3}{2} \sec x(\tan x-\sec x)
\]
49. \(\csc x \cot x-\cos x=\cos x \cot ^{2} x \quad\) 51. \(x\left(x \sec ^{2} x+2 \tan x\right)\)
53. \(2 x \cos x+2 \sin x-x^{2} \sin x+2 x \cos x\)
\[
=4 x \cos x+\left(2-x^{2}\right) \sin x
\]
55. \(\left(\frac{x+1}{x+2}\right)(2)+(2 x-5)\left[\frac{(x+2)(1)-(x+1)(1)}{(x+2)^{2}}\right]\)
\[
=\frac{2 x^{2}+8 x-1}{(x+2)^{2}}
\]
57. \(\frac{1-\sin \theta+\theta \cos \theta}{(1-\sin \theta)^{2}}\)
59. \(y^{\prime}=\frac{-2 \csc x \cot x}{(1-\csc x)^{2}}, \quad-4 \sqrt{3}\)
61. \(h^{\prime}(t)=\sec t(t \tan t-1) / t^{2}, \quad 1 / \pi^{2}\)
63. (a) \(y=-3 x-1\)
(b)

65. (a) \(y=4 x+25\)
(b)

67. (a) \(4 x-2 y-\pi+2=0\)
69. \(2 y+x-4=0\)
(b)

71. \(25 y-12 x+16=0\)
73. \((1,1)\)
75. \((0,0),(2,4)\)
77. Tangent lines: \(2 y+x=7 ; 2 y+x=-1\)

79. \(f(x)+2=g(x)\)
81. (a) \(p^{\prime}(1)=1\)
(b) \(q^{\prime}(4)=-1 / 3\)
83. \((18 t+5) /(2 \sqrt{t}) \mathrm{cm}^{2} / \mathrm{sec}\)
85. (a) \(-\$ 38.13\) thousand \(/ 100\) components
(b) \(-\$ 10.37\) thousand \(/ 100\) components
(c) \(-\$ 3.80\) thousand \(/ 100\) components

The cost decreases with increasing order size.
87. 31.55 bacteria/h
89. Proof
91. (a) \(q(t)=-0.0546 t^{3}+2.529 t^{2}-36.89 t+186.6\) \(v(t)=0.0796 t^{3}-2.162 t^{2}+15.32 t+5.9\)
(b)


(c) \(A=\frac{0.0796 t^{3}-2.162 t^{2}+15.32 t+5.9}{-0.0546 t^{3}+2.529 t^{2}-36.89 t+186.6}\)

\(A\) represents the average value (in billions of dollars) per one million personal computers.
(d) \(A^{\prime}(t)\) represents the rate of change of the average value per one million personal computers for the given year.
93. \(12 x^{2}+12 x-6\)
95. \(3 / \sqrt{x}\)
97. \(2 /(x-1)^{3}\)
99. \(2 \cos x-x \sin x\)
101. \(2 x\)
103. \(1 / \sqrt{x}\)
105. 0
107. -10
109. Answers will vary. For example: \(f(x)=(x-2)^{2}\)

111.

115.

113.

117. \(v(3)=27 \mathrm{~m} / \mathrm{sec}\) \(a(3)=-6 \mathrm{~m} / \mathrm{sec}^{2}\)
The speed of the object is decreasing.
119. \begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 0 & 1 & 2 & 3 & 4 \\
\hline \(\boldsymbol{s}(\boldsymbol{t})\) & 0 & 57.75 & 99 & 123.75 & 132 \\
\hline \(\boldsymbol{v}(\boldsymbol{t})\) & 66 & 49.5 & 33 & 16.5 & 0 \\
\hline \(\boldsymbol{a}(\boldsymbol{t})\) & -16.5 & -16.5 & -16.5 & -16.5 & -16.5 \\
\hline
\end{tabular}

The average velocity on \([0,1]\) is 57.75 , on \([1,2]\) is 41.25 , on \([2,3]\) is 24.75 , and on \([3,4]\) is 8.25 .
121. \(f^{(n)}(x)=n(n-1)(n-2) \cdots(2)(1)=n\) !
123. (a) \(f^{\prime \prime}(x)=g(x) h^{\prime \prime}(x)+2 g^{\prime}(x) h^{\prime}(x)+g^{\prime \prime}(x) h(x)\)
\[
\begin{aligned}
f^{\prime \prime \prime}(x)= & g(x) h^{\prime \prime \prime}(x)+3 g^{\prime}(x) h^{\prime \prime}(x)+ \\
& 3 g^{\prime \prime}(x) h^{\prime}(x)+g^{\prime \prime \prime}(x) h(x) \\
f^{(4)}(x)= & g(x) h^{(4)}(x)+4 g^{\prime}(x) h^{\prime \prime \prime}(x)+6 g^{\prime \prime}(x) h^{\prime \prime}(x)+ \\
& 4 g^{\prime \prime \prime}(x) h^{\prime}(x)+g^{(4)}(x) h(x)
\end{aligned}
\]
(b) \(f^{(n)}(x)=g(x) h^{(n)}(x)+\frac{n!}{1!(n-1)!} g^{\prime}(x) h^{(n-1)}(x)+\)
\[
\begin{aligned}
& \frac{n!}{2!(n-2)!} g^{\prime \prime}(x) h^{(n-2)}(x)+\cdots+ \\
& \frac{n!}{(n-1)!1!} g^{(n-1)}(x) h^{\prime}(x)+g^{(n)}(x) h(x)
\end{aligned}
\]
125. \(n=1: f^{\prime}(x)=x \cos x+\sin x\)
\(n=2: f^{\prime}(x)=x^{2} \cos x+2 x \sin x\)
\(n=3: f^{\prime}(x)=x^{3} \cos x+3 x^{2} \sin x\)
\(n=4: f^{\prime}(x)=x^{4} \cos x+4 x^{3} \sin x\)
General rule: \(f^{\prime}(x)=x^{n} \cos x+n x^{(n-1)} \sin x\)
127. \(y^{\prime}=-1 / x^{2}, y^{\prime \prime}=2 / x^{3}\),
\(x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}=x^{3}\left(2 / x^{3}\right)+2 x^{2}\left(-1 / x^{2}\right)\)
\[
=2-2=0
\]
129. \(y^{\prime}=2 \cos x, y^{\prime \prime}=-2 \sin x\),
\(y^{\prime \prime}+y=-2 \sin x+2 \sin x+3=3\)
131. False. \(d y / d x=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\)
133. True
135. True
137. \(f(x)=3 x^{2}-2 x-1\)
139. \(f^{\prime}(x)=2|x| ; f^{\prime \prime}(0)\) does not exist.
141. Proof

\section*{Section 2.4 (page 137)}
1. \begin{tabular}{l}
\(y=f(g(x))\) \\
\(y=(5 x-8)\) \\
\hline
\end{tabular}
\(u=g(x)\)
\(u=5 x-8\)
\(y=f(u)\)
\(y=u^{4}\)
3. \(y=\sqrt{x^{3}-7}\)
\(u=x^{3}-7\)
\(y=\sqrt{u}\)
5. \(y=\csc ^{3} x\)
\(u=\csc x \quad y=u^{3}\)
7. \(12(4 x-1)^{2}\)
9. \(-108(4-9 x)^{3}\)
11. \(\frac{1}{2}(5-t)^{-1 / 2}(-1)=-1 /(2 \sqrt{5-t})\)
13. \(\frac{1}{3}\left(6 x^{2}+1\right)^{-2 / 3}(12 x)=4 x / \sqrt[3]{\left(6 x^{2}+1\right)^{2}}\)
15. \(\frac{1}{2}\left(9-x^{2}\right)^{-3 / 4}(-2 x)=-x / \sqrt[4]{\left(9-x^{2}\right)^{3}} \quad\) 17. \(-1 /(x-2)^{2}\)
19. \(-2(t-3)^{-3}(1)=-2 /(t-3)^{3}\)
21. \(-1 /\left[2 \sqrt{(x+2)^{3}}\right]\)
23. \(x^{2}\left[4(x-2)^{3}(1)\right]+(x-2)^{4}(2 x)=2 x(x-2)^{3}(3 x-2)\)
25. \(x\left(\frac{1}{2}\right)\left(1-x^{2}\right)^{-1 / 2}(-2 x)+\left(1-x^{2}\right)^{1 / 2}(1)=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\)
27. \(\frac{\left(x^{2}+1\right)^{1 / 2}(1)-x(1 / 2)\left(x^{2}+1\right)^{-1 / 2}(2 x)}{x^{2}+1}=\frac{1}{\sqrt{\left(x^{2}+1\right)^{3}}}\)
29. \(\frac{-2(x+5)\left(x^{2}+10 x-2\right)}{\left(x^{2}+2\right)^{3}}\)
31. \(\frac{-9(1-2 v)^{2}}{(v+1)^{4}}\)
33. \(2\left(\left(x^{2}+3\right)^{5}+x\right)\left(5\left(x^{2}+3\right)^{4}(2 x)+1\right)\)
\[
=20 x\left(x^{2}+3\right)^{9}+2\left(x^{2}+3\right)^{5}+20 x^{2}\left(x^{2}+3\right)^{4}+2 x
\]
35. \(\frac{1}{2}\left(2+\left(2+x^{1 / 2}\right)^{1 / 2}\right)^{-1 / 2}\left(\frac{1}{2}\left(2+x^{1 / 2}\right)^{-1 / 2}\right)\left(\frac{1}{2} x^{-1 / 2}\right)\)
\[
=\frac{1}{8 \sqrt{x}(\sqrt{2+\sqrt{x}})(\sqrt{2+\sqrt{2+\sqrt{x}}})}
\]
37. \(\left(1-3 x^{2}-4 x^{3 / 2}\right) /\left[2 \sqrt{x}\left(x^{2}+1\right)^{2}\right]\)


The zero of \(y^{\prime}\) corresponds to the point on the graph of the function where the tangent line is horizontal.
39. \(-\frac{\sqrt{\frac{x+1}{x}}}{2 x(x+1)}\)

\(y^{\prime}\) has no zeros.
41. \(-[\pi x \sin (\pi x)+\cos (\pi x)+1] / x^{2}\)


The zeros of \(y^{\prime}\) correspond to the points on the graph of the function where the tangent lines are horizontal.
43. (a) 1 (b) 2 ; The slope of \(\sin a x\) at the origin is \(a\).
45. \(-4 \sin 4 x \quad\) 47. \(15 \sec ^{2} 3 x \quad\) 49. \(2 \pi^{2} x \cos (\pi x)^{2}\)
51. \(2 \cos 4 x\)
53. \(\left(-1-\cos ^{2} x\right) / \sin ^{3} x\)
55. \(8 \sec ^{2} x \tan x \quad\) 57. \(10 \tan 5 \theta \sec ^{2} 5 \theta\)
59. \(\sin 2 \theta \cos 2 \theta=\frac{1}{2} \sin 4 \theta\)
61. \(\frac{6 \pi \sin (\pi t-1)}{\cos ^{3}(\pi t-1)} \quad\) 63. \(\frac{1}{2 \sqrt{x}}+2 x \cos (2 x)^{2}\)
65. \(2 \sec ^{2} 2 x \cos (\tan 2 x)\)
67. \(s^{\prime}(t)=\frac{t+3}{\sqrt{t^{2}+6 t-2}}, \frac{6}{5} \quad\) 69. \(f^{\prime}(x)=\frac{-15 x^{2}}{\left(x^{3}-2\right)^{2}},-\frac{3}{5}\)
71. \(f^{\prime}(t)=\frac{-5}{(t-1)^{2}},-5\)
73. \(y^{\prime}=-12 \sec ^{3} 4 x \tan 4 x, 0\)
75. (a) \(8 x-5 y-7=0\)
(b)

77. (a) \(24 x+y+23=0\)
(b)

79. (a) \(2 x-y-2 \pi=0\)
(b)

81. (a) \(4 x-y+(1-\pi)=0\)
(b)

83. (a) \(g^{\prime}(1 / 2)=-3\)
(b) \(3 x+y-3=0\)
(c)

85. (a) \(s^{\prime}(0)=0\)
(b) \(y=\frac{4}{3}\)
(c)

87. \(3 x+4 y-25=0\)

89. \(\left(\frac{\pi}{6}, \frac{3 \sqrt{3}}{2}\right),\left(\frac{5 \pi}{6},-\frac{3 \sqrt{3}}{2}\right),\left(\frac{3 \pi}{2}, 0\right) \quad\) 91. \(2940(2-7 x)^{2}\)
93. \(\frac{2}{(x-6)^{3}}\)
95. \(2\left(\cos x^{2}-2 x^{2} \sin x^{2}\right)\)
97. \(h^{\prime \prime}(x)=18 x+6,24\)
99. \(f^{\prime \prime}(x)=-4 x^{2} \cos \left(x^{2}\right)-2 \sin \left(x^{2}\right), 0\)
101.


The zeros of \(f^{\prime}\) correspond to the points where the graph of \(f\) has horizontal tangents.
103.


The zeros of \(f^{\prime}\) correspond to the points where the graph of \(f\) has horizontal tangents.
105. The rate of change of \(g\) is three times as fast as the rate of change of \(f\).
107. (a) \(g^{\prime}(x)=f^{\prime}(x)\)
(b) \(h^{\prime}(x)=2 f^{\prime}(x)\)
(c) \(r^{\prime}(x)=-3 f^{\prime}(-3 x) \quad\) (d) \(s^{\prime}(x)=f^{\prime}(x+2)\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline \(\boldsymbol{f}^{\prime}(\boldsymbol{x})\) & 4 & \(\frac{2}{3}\) & \(-\frac{1}{3}\) & -1 & -2 & -4 \\
\hline \(\boldsymbol{g}^{\prime}(\boldsymbol{x})\) & 4 & \(\frac{2}{3}\) & \(-\frac{1}{3}\) & -1 & -2 & -4 \\
\hline \(\boldsymbol{h}^{\prime}(\boldsymbol{x})\) & 8 & \(\frac{4}{3}\) & \(-\frac{2}{3}\) & -2 & -4 & -8 \\
\hline \(\boldsymbol{r}^{\prime}(\boldsymbol{x})\) & & 12 & 1 & & & \\
\hline \(\boldsymbol{s}^{\prime}(\boldsymbol{x})\) & \(-\frac{1}{3}\) & -1 & -2 & -4 & & \\
\hline
\end{tabular}
109. (a) \(\frac{1}{2}\)
(b) \(s^{\prime}(5)\) does not exist because \(g\) is not differentiable at 6 .
111. (a) 1.461 (b) -1.016
113. \(0.2 \mathrm{rad}, 1.45 \mathrm{rad} / \mathrm{sec} \quad\) 115. \(0.04224 \mathrm{~cm} / \mathrm{sec}\)
117. (a) \(x=-1.637 t^{3}+19.31 t^{2}-0.5 t-1\)
(b) \(\frac{d C}{d t}=-294.66 t^{2}+2317.2 t-30\)
(c) Because \(x\), the number of units produced in \(t\) hours, is not a linear function, and therefore the cost with respect to time \(t\) is not linear.
119. (a) Yes, if \(f(x+p)=f(x)\) for all \(x\), then \(f^{\prime}(x+p)=f^{\prime}(x)\), which shows that \(f^{\prime}\) is periodic as well.
(b) Yes, if \(g(x)=f(2 x)\), then \(g^{\prime}(x)=2 f^{\prime}(2 x)\). Because \(f^{\prime}\) is periodic, so is \(g^{\prime}\).
121. (a) 0
(b) \(f^{\prime}(x)=2 \sec x \cdot \sec x \tan x=2 \sec ^{2} x \tan x\) \(g^{\prime}(x)=2 \tan x \sec ^{2} x=2 \sec ^{2} x \tan x\) \(f^{\prime}(x)=g^{\prime}(x)\)
123. Proof 125. \(f^{\prime}(x)=2 x\left(\frac{x^{2}-9}{\left|x^{2}-9\right|}\right), x \neq \pm 3\)
127. \(f^{\prime}(x)=\cos x \sin x /|\sin x|, x \neq k \pi\)
129. (a) \(P_{1}(x)=2 / 3(x-\pi / 6)+2 / \sqrt{3}\)
\[
P_{2}(x)=5 /(3 \sqrt{3})(x-\pi / 6)^{2}+2 / 3(x-\pi / 6)+2 / \sqrt{3}
\]
(b)

(c) \(P_{2}\)
(d) The accuracy worsens as you move away from \(x=\pi / 6\).
131. False. If \(f(x)=\sin ^{2} 2 x\), then \(f^{\prime}(x)=2(\sin 2 x)(2 \cos 2 x)\).
133. Putnam Problem A1, 1967

\section*{Section 2.5 (page 146)}
\(\begin{array}{lll}\text { 1. }-x / y & \text { 3. }-\sqrt{y / x} & \text { 5. }\left(y-3 x^{2}\right) /(2 y-x)\end{array}\)
7. \(\left(1-3 x^{2} y^{3}\right) /\left(3 x^{3} y^{2}-1\right)\)
9. \(\left(6 x y-3 x^{2}-2 y^{2}\right) /\left(4 x y-3 x^{2}\right)\)
11. \(\cos x /[4 \sin (2 y)] \quad\) 13. \((\cos x-\tan y-1) /\left(x \sec ^{2} y\right)\)
15. \([y \cos (x y)] /[1-x \cos (x y)]\)
17. (a) \(y_{1}=\sqrt{64-x^{2}} ; y_{2}=-\sqrt{64-x^{2}}\)
(b)

(c) \(y^{\prime}=\mp \frac{x}{\sqrt{64-x^{2}}}=-\frac{x}{y}\)
(d) \(y^{\prime}=-\frac{x}{y}\)
19. (a) \(y_{1}=\frac{4}{5} \sqrt{25-x^{2}} ; y_{2}=-\frac{4}{5} \sqrt{25-x^{2}}\)
(b)

(c) \(y^{\prime}=\mp \frac{4 x}{5 \sqrt{25-x^{2}}}=-\frac{16 x}{25 y}\)
(d) \(y^{\prime}=-\frac{16 x}{25 y}\)
21. \(-\frac{y}{x},-\frac{1}{6}\)
23. \(\frac{98 x}{y\left(x^{2}+49\right)^{2}}\), Undefined
25. \(-\sqrt[3]{\frac{y}{x}},-\frac{1}{2}\)
27. \(-\sin ^{2}(x+y)\) or \(-\frac{x^{2}}{x^{2}+1}, 0\)
29. \(-\frac{1}{2}\)
31. 0
33. \(y=-x+7\)
35. \(y=-x+2\)
37. \(y=\sqrt{3} x / 6+8 \sqrt{3} / 3 \quad\) 39. \(y=-\frac{2}{11} x+\frac{30}{11}\)
41. (a) \(y=-2 x+4\) (b) Answers will vary.
43. \(\cos ^{2} y,-\frac{\pi}{2}<y<\frac{\pi}{2}, \frac{1}{1+x^{2}}\)
45. \(-4 / y^{3}\)
47. \(-36 / y^{3}\)
49. \((3 x) /(4 y)\)
51. \(2 x+3 y-30=0\)

53. At (4, 3):

Tangent line: \(4 x+3 y-25=0\) Normal line: \(3 x-4 y=0\)


At ( \(-3,4\) ):
Tangent line: \(3 x-4 y+25=0\) Normal line: \(4 x+3 y=0\)

55. \(x^{2}+y^{2}=r^{2} \Rightarrow y^{\prime}=-x / y \Rightarrow y / x=\) slope of normal line. Then for \(\left(x_{0}, y_{0}\right)\) on the circle, \(x_{0} \neq 0\), an equation of the normal line is \(y=\left(y_{0} / x_{0}\right) x\), which passes through the origin. If \(x_{0}=0\), the normal line is vertical and passes through the origin.
57. Horizontal tangents: \((-4,0),(-4,10)\)

Vertical tangents: \((0,5),(-8,5)\)
59.


At \((1,2)\) :
Slope of ellipse: -1
Slope of parabola: 1
At \((1,-2)\) :
Slope of ellipse: 1
Slope of parabola: -1
63. Derivatives: \(\frac{d y}{d x}=-\frac{y}{x}, \frac{d y}{d x}=\frac{x}{y}\)


65. (a) \(\frac{d y}{d x}=\frac{3 x^{3}}{y}\)
(b) \(y \frac{d y}{d t}=3 x^{3} \frac{d x}{d t}\)
67. (a) \(\frac{d y}{d x}=\frac{-3 \cos \pi x}{\sin \pi y} \quad\) (b) \(-\sin \pi y\left(\frac{d y}{d t}\right)=3 \cos \pi x\left(\frac{d x}{d t}\right)\)
69. Answers will vary. In the explicit form of a function, the variable is explicitly written as a function of \(x\). In an implicit equation, the function is only implied by an equation. An example of an implicit function is \(x^{2}+x y=5\). In explicit form it would be \(y=\left(5-x^{2}\right) / x\).

73. (a)

(b)

(c) \(\left(\frac{8 \sqrt{7}}{7}, 5\right)\)
\[
\begin{aligned}
& y_{1}=\frac{1}{3}[(\sqrt{7}+7) x+(8 \sqrt{7}+23)] \\
& y_{2}=-\frac{1}{3}[(-\sqrt{7}+7) x-(23-8 \sqrt{7})] \\
& y_{3}=-\frac{1}{3}[(\sqrt{7}-7) x-(23-8 \sqrt{7})] \\
& y_{4}=-\frac{1}{3}[(\sqrt{7}+7) x-(8 \sqrt{7}+23)]
\end{aligned}
\]
75. Proof 77. \((6,-8),(-6,8)\)
79. \(y=-\frac{\sqrt{3}}{2} x+2 \sqrt{3}, y=\frac{\sqrt{3}}{2} x-2 \sqrt{3}\)
81. (a) \(y=2 x-6\)
(b)


\section*{Section 2.6 (page 154)}
1. (a) \(\frac{3}{4}\)
(b) 20
3. (a) \(-\frac{5}{8}\)
(b) \(\frac{3}{2}\)
5. (a) \(-8 \mathrm{~cm} / \mathrm{sec}\)
(b) \(0 \mathrm{~cm} / \mathrm{sec}\)
(c) \(8 \mathrm{~cm} / \mathrm{sec}\)
7. (a) \(8 \mathrm{~cm} / \mathrm{sec}\)
(b) \(4 \mathrm{~cm} / \mathrm{sec}\)
(c) \(2 \mathrm{~cm} / \mathrm{sec}\)
9. In a linear function, if \(x\) changes at a constant rate, so does \(y\). However, unless \(a=1, y\) does not change at the same rate as \(x\).
11. \(\left(4 x^{3}+6 x\right) / \sqrt{x^{4}+3 x^{2}+1}\)
13. (a) \(64 \pi \mathrm{~cm}^{2} / \mathrm{min}\)
(b) \(256 \pi \mathrm{~cm}^{2} / \mathrm{min}\)
15. (a) Proof
(b) When \(\theta=\frac{\pi}{6}, \frac{d A}{d t}=\frac{\sqrt{3}}{8} s^{2}\). When \(\theta=\frac{\pi}{3}, \frac{d A}{d t}=\frac{1}{8} s^{2}\).
(c) If \(s\) and \(d \theta / d t\) are constant, \(d A / d t\) is proportional to \(\cos \theta\).
17. (a) \(2 /(9 \pi) \mathrm{cm} / \mathrm{min}\) (b) \(1 /(18 \pi) \mathrm{cm} / \mathrm{min}\)
19. (a) \(144 \mathrm{~cm}^{2} / \mathrm{sec}\)
(b) \(720 \mathrm{~cm}^{2} / \mathrm{sec}\)
21. \(8 /(405 \pi) \mathrm{ft} / \mathrm{min}\)
23. (a) \(12.5 \%\)
(b) \(\frac{1}{144} \mathrm{~m} / \mathrm{min}\)
25. (a) \(-\frac{7}{12} \mathrm{ft} / \mathrm{sec} ;-\frac{3}{2} \mathrm{ft} / \mathrm{sec} ;-\frac{48}{7} \mathrm{ft} / \mathrm{sec}\)
\(\begin{array}{ll}\text { (b) } \frac{527}{24} \mathrm{ft}^{2} / \mathrm{sec} & \text { (c) } \frac{1}{12} \mathrm{rad} / \mathrm{sec}\end{array}\)
27. Rate of vertical change: \(\frac{1}{5} \mathrm{~m} / \mathrm{sec}\)

Rate of horizontal change: \(-\sqrt{3} / 15 \mathrm{~m} / \mathrm{sec}\)
29. (a) \(-750 \mathrm{mi} / \mathrm{h}\) (b) 30 min
31. \(-50 / \sqrt{85} \approx-5.42 \mathrm{ft} / \mathrm{sec}\)
33. (a) \(\frac{25}{3} \mathrm{ft} / \mathrm{sec}\)
(b) \(\frac{10}{3} \mathrm{ft} / \mathrm{sec}\)
35. (a) 12 sec (b) \(\frac{1}{2} \sqrt{3} \mathrm{~m} \quad\) (c) \((\sqrt{5} \pi) / 120 \mathrm{~m} / \mathrm{sec}\)
37. Evaporation rate proportional to \(S \Rightarrow \frac{d V}{d t}=k\left(4 \pi r^{2}\right)\) \(V=\left(\frac{4}{3}\right) \pi r^{3} \Rightarrow \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}\). So \(k=\frac{d r}{d t}\).
39. \(0.6 \mathrm{ohm} / \mathrm{sec}\)
41. \(\frac{d v}{d t}=\frac{16 r}{v} \sec ^{2} \theta \frac{d \theta}{d t}, \frac{d \theta}{d t}=\frac{v}{16 r} \cos ^{2} \theta \frac{d v}{d t}\)
43. \(\frac{2 \sqrt{21}}{525} \approx 0.017 \mathrm{rad} / \mathrm{sec}\)
45. (a) \(\frac{200 \pi}{3} \mathrm{ft} / \mathrm{sec}\)
(b) \(200 \pi \mathrm{ft} / \mathrm{sec}\)
(c) About \(427.43 \pi \mathrm{ft} / \mathrm{sec}\)
47. About \(84.9797 \mathrm{mi} / \mathrm{h}\)
49. (a) \(\frac{d y}{d t}=3 \frac{d x}{d t}\) means that \(y\) changes three times as fast as \(x\) changes.
(b) \(y\) changes slowly when \(x \approx 0\) or \(x \approx L . y\) changes more rapidly when \(x\) is near the middle of the interval.
51. \(-18.432 \mathrm{ft} / \mathrm{sec}^{2} \quad\) 53. About \(-97.96 \mathrm{~m} / \mathrm{sec}\)

\section*{Review Exercises for Chapter 2 (page 158)}
1. \(f^{\prime}(x)=2 x-4 \quad\) 3. \(f^{\prime}(x)=-2 /(x-1)^{2}\)
5. \(f\) is differentiable at all \(x \neq 3\).
7.

9. \(-\frac{3}{2}\)
11. (a) \(y=3 x+1\)
13. 8
(b)

15. 0
17. \(8 x^{7}\)
19. \(52 t^{3}\)
21. \(3 x^{2}-22 x\)
23. \(\frac{3}{\sqrt{x}}+\frac{1}{\sqrt[3]{x^{2}}}\)
25. \(-4 /\left(3 t^{3}\right)\)
27. \(4-5 \cos \theta\)
29. \(-3 \sin \theta-(\cos \theta) / 4\)
31.

\(f^{\prime}>0\) where the slopes of tangent lines to the graph of \(f\) are positive.
37. (a)
(b) 50

(c) \(x=25\)
(d) \(y^{\prime}=1-0.04 x\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 10 & 25 & 30 & 50 \\
\hline \(\boldsymbol{y}^{\prime}\) & 1 & 0.6 & 0 & -0.2 & -1 \\
\hline
\end{tabular}
(e) \(y^{\prime}(25)=0\)
39. (a) \(x^{\prime}(t)=2 t-3\)
(b) \((-\infty, 1.5)\)
(c) \(x=-\frac{1}{4}\)
(d) 1
41. \(4\left(5 x^{3}-15 x^{2}-11 x-8\right)\)
43. \(\sqrt{x} \cos x+\sin x /(2 \sqrt{x})\)
45. \(-\left(x^{2}+1\right) /\left(x^{2}-1\right)^{2}\)
47. \((8 x) /\left(9-4 x^{2}\right)^{2}\)
49. \(\frac{4 x^{3} \cos x+x^{4} \sin x}{\cos ^{2} x}\)
51. \(3 x^{2} \sec x \tan x+6 x \sec x\)
53. \(-x \sin x\)
55. \(y=4 x-3\)
57. \(y=0\)
59. \(v(4)=20 \mathrm{~m} / \mathrm{sec} ; a(4)=-8 \mathrm{~m} / \mathrm{sec}^{2}\)
61. \(-48 t\)
63. \(\frac{225}{4} \sqrt{x}\)
65. \(6 \sec ^{2} \theta \tan \theta\)
67. \(y^{\prime \prime}+y=-(2 \sin x+3 \cos x)+(2 \sin x+3 \cos x)=0\)
69. \(\frac{2(x+5)\left(-x^{2}-10 x+3\right)}{\left(x^{2}+3\right)^{3}}\)
71. \(s\left(s^{2}-1\right)^{3 / 2}\left(8 s^{3}-3 s+25\right)\)
73. \(-45 \sin (9 x+1)\)
75. \(\frac{1}{2}(1-\cos 2 x)=\sin ^{2} x\)
77. \(\sin ^{1 / 2} x \cos x-\sin ^{5 / 2} x \cos x=\cos ^{3} x \sqrt{\sin x}\)
79. \(\frac{(x+2)(\pi \cos \pi x)-\sin \pi x}{(x+2)^{2}}\)
81. -2
83. 0
85. \((x+2) /(x+1)^{3 / 2}\)

\(g^{\prime}\) is not equal to zero for
87. \(5 /\left[6(t+1)^{1 / 6}\right]\)

\(f^{\prime}\) has no zeros. any \(x\).
89. (a)
(a) \(f^{\prime}(2)=24\)
(b) \(y=24 t-44\)
(c)

91. (a) \(f^{\prime}(-2)=-\frac{1}{2 \sqrt{3} \cos ^{2} \sqrt{3}} \approx-11.1983\)
(b) \(y=-\frac{\sqrt{3}(x+2)}{6 \cos ^{2} \sqrt{3}}+\tan \sqrt{3}\)
(c)

93. \(14-4 \cos 2 x\)
95. \(2 \csc ^{2} x \cot x\)
97. \([8(2 t+1)] /(1-t)^{4}\)
99. \(18 \sec ^{2} 3 \theta \tan 3 \theta+\sin (\theta-1)\)
101. (a) \(-18.667^{\circ} / \mathrm{h}\)
(b) \(-7.284^{\circ} / \mathrm{h}\)
(c) \(-3.240^{\circ} / \mathrm{h}\)
(d) \(-0.747^{\circ} / \mathrm{h}\)
103. \(-\frac{2 x+3 y}{3\left(x+y^{2}\right)}\)
105. \(\frac{\sqrt{y}(2 \sqrt{x}-\sqrt{y})}{\sqrt{x}(\sqrt{x}+8 \sqrt{y})}=\frac{2 x-9 y}{9 x-32 y}\)
107. \(\frac{y \sin x+\sin y}{\cos x-x \cos y}\)
109. Tangent line: \(3 x+y-10=0\)

Normal line: \(x-3 y=0\)

111. (a) \(2 \sqrt{ } 2\) units \(/ \mathrm{sec}\)
(b) 4 units/sec
(c) 8 units \(/ \mathrm{sec}\)
113. \(\frac{2}{25} \mathrm{~m} / \mathrm{min}\)
115. \(-38.34 \mathrm{~m} / \mathrm{sec}\)

\section*{P.S. Problem Solving (page 161)}
1. (a) \(r=\frac{1}{2} ; x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}\)
(b) Center: \(\left(0, \frac{5}{4}\right) ; x^{2}+\left(y-\frac{5}{4}\right)^{2}=1\)
3. (a) \(P_{1}(x)=1\)
(b) \(P_{2}(x)=1-\frac{1}{2} x^{2}\)
(c)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -1.0 & -0.1 & -0.001 & 0 & 0.001 \\
\hline \(\cos \boldsymbol{x}\) & 0.5403 & 0.9950 & 1.000 & 1 & 1.000 \\
\hline \(\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{x})\) & 0.5 & 0.995 & 1.000 & 1 & 1.000 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{x}\) & 0.1 & 1.0 \\
\hline \(\cos \boldsymbol{x}\) & 0.9950 & 0.5403 \\
\hline \(\boldsymbol{P}_{2}(\boldsymbol{x})\) & 0.995 & 0.5 \\
\hline
\end{tabular}
\(P_{2}(x)\) is a good approximation of \(f(x)=\cos x\) when \(x\) is very close to 0 .
(d) \(P_{3}(x)=x-\frac{1}{6} x^{3}\)
5. \(p(x)=2 x^{3}+4 x^{2}-5\)
7. (a) Graph \(\left\{\begin{array}{l}y_{1}=\frac{1}{a} \sqrt{x^{2}\left(a^{2}-x^{2}\right)} \\ y_{2}=-\frac{1}{a} \sqrt{x^{2}\left(a^{2}-x^{2}\right)}\end{array}\right.\) as separate equations.
(b) Answers will vary. Sample answer:


The intercepts will always be \((0,0),(a, 0)\), and \((-a, 0)\), and the maximum and minimum \(y\)-values appear to be \(\pm \frac{1}{2} a\).
(c) \(\left(\frac{a \sqrt{2}}{2}, \frac{a}{2}\right),\left(\frac{a \sqrt{2}}{2},-\frac{a}{2}\right),\left(-\frac{a \sqrt{2}}{2}, \frac{a}{2}\right),\left(-\frac{a \sqrt{2}}{2},-\frac{a}{2}\right)\)
9. (a) When the man is 90 ft from the light, the tip of his shadow is \(112 \frac{1}{2} \mathrm{ft}\) from the light. The tip of the child's shadow is \(111 \frac{1}{9} \mathrm{ft}\) from the light, so the man's shadow extends \(1 \frac{7}{18} \mathrm{ft}\) beyond the child's shadow.
(b) When the man is 60 ft from the light, the tip of his shadow is 75 ft from the light. The tip of the child's shadow is \(77 \frac{7}{9} \mathrm{ft}\) from the light, so the child's shadow extends \(2 \frac{7}{9} \mathrm{ft}\) beyond the man's shadow.
(c) \(d=80 \mathrm{ft}\)
(d) Let \(x\) be the distance of the man from the light and let \(s\) be the distance from the light to the tip of the shadow.
If \(0<x<80, d s / d t=-50 / 9\).
If \(x>80, d s / d t=-25 / 4\).
There is a discontinuity at \(x=80\).
11. Proof. The graph of \(L\) is a line passing through the origin \((0,0)\).
13. (a)
\begin{tabular}{|l|c|c|c|}
\hline\(z^{\circ}\) & 0.1 & 0.01 & 0.0001 \\
\hline\(\frac{\sin z}{z}\) & 0.0174532837 & 0.0174532924 & 0.0174532925 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { (b) } \pi / 180 & \text { (c) }(\pi / 180) \cos z\end{array}\)
(d) \(S(90)=1, C(180)=-1 ;(\pi / 180) C(z)\)
(e) Answers will vary.
15. (a) \(j\) would be the rate of change of acceleration.
(b) \(j=0\). Acceleration is constant, so there is no change in acceleration.
(c) \(a\) : position function, \(d\) velocity function, \(b\) : acceleration function, \(c\) jerk function

\section*{Chapter 3}

\section*{Section 3.1 (page 169)}
1. \(f^{\prime}(0)=0\)
3. \(f^{\prime}(2)=0\)
5. \(f^{\prime}(-2)\) is undefined.
7. 2 , absolute maximum (and relative maximum)
9. 1, absolute maximum (and relative maximum);

2, absolute minimum (and relative minimum);
3 , absolute maximum (and relative maximum)
11. \(x=0, x=2\)
13. \(t=8 / 3\)
15. \(x=\pi / 3, \pi, 5 \pi / 3\)
17. Minimum: \((2,1)\)

Maximum: \((-1,4)\)
21. Minimum: \(\left(-1,-\frac{5}{2}\right)\)

Maximum: \((2,2)\)
19. Minimum: \((1,-1)\)

Maximum: \((4,8)\)

Minimum: \((0,0)\)
23. Minimum: \((0,0)\)

Maximum: \((-1,5)\)
Maxima: \(\left(-1, \frac{1}{4}\right)\) and \(\left(1, \frac{1}{4}\right)\)
27. Minimum: \((1,-1)\)

Maximum: \(\left(0,-\frac{1}{2}\right)\)
29. Minimum: \((-1,-1)\)

Maximum: \((3,3)\)
31. Minimum value is -2 for \(-2 \leq x<-1\).

Maximum: \((2,2)\)
33. Minimum: \((1 / 6, \sqrt{3} / 2)\) Maximum: \((0,1)\)
37. (a) Minimum: \((0,-3)\);

Maximum: \((2,1)\)
(b) Minimum: \((0,-3)\)
(c) Maximum: \((2,1)\)
(d) No extrema
35. Minimum: \((\pi,-3)\)

Maxima: \((0,3\) and \((2 \pi, 3)\)
39. (a) Minimum: \((1,-1)\);

Maximum: \((-1,3)\)
(b) Maximum: \((3,3)\)
(c) Minimum: \((1,-1)\)
(d) Minimum: \((1,-1)\)


Minimum: \((0,2)\)
Maximum: \((3,36)\)
45.

43.


Minimum: \((4,1)\)
Minima: \(\left(\frac{-\sqrt{3}+1}{2}, \frac{3}{4}\right)\) and
\[
\left(\frac{\sqrt{3}+1}{2}, \frac{3}{4}\right)
\]

Maximum: \((3,31)\)
47. (a)

(b) Minimum: \((0.4398,-1.0613)\)
49. Maximum: \(\left|f^{\prime \prime}(\sqrt[3]{-10+\sqrt{108}})\right|=f^{\prime \prime}(\sqrt{3}-1) \approx 1.47\)
51. Maximum: \(\left|f^{(4)}(0)\right|=\frac{56}{81}\)
53. Answers will vary. Let \(f(x)=1 / x . f\) is continuous on \((0,1)\) but does not have a maximum or minimum.

57. (a) Yes
(b) No
59. (a) No
(b) Yes
61. Maximum: \(P(12)=72\); No. \(P\) is decreasing for \(I>12\).
63. \(\theta=\operatorname{arcsec} \sqrt{3} \approx 0.9553 \mathrm{rad}\)
65. True
67. True
69. Proof
71. Putnam Problem B3, 2004

\section*{Section 3.2 (page 176)}
1. \(f(-1)=f(1)=1 ; f\) is not continuous on \([-1,1]\).
3. \(f(0)=f(2)=0 ; f\) is not differentiable on \((0,2)\).
5. \((2,0),(-1,0) ; f^{\prime}\left(\frac{1}{2}\right)=0\)
7. \((0,0),(-4,0) ; f^{\prime}\left(-\frac{8}{3}\right)=0\)
9. \(f^{\prime}(-1)=0\)
11. \(f^{\prime}\left(\frac{3}{2}\right)=0\)
13. \(f^{\prime}\left(\frac{6-\sqrt{3}}{3}\right)=0 ; f^{\prime}\left(\frac{6+\sqrt{3}}{3}\right)=0\)
15. Not differentiable at \(x=0\)
17. \(f^{\prime}(-2+\sqrt{5})=0\)
19. \(f^{\prime}(\pi / 2)=0 ; f^{\prime}(3 \pi / 2)=0\)
21. \(f^{\prime}(0.249) \approx 0\)
23. Not continuous on \([0, \pi]\)
25.


Rolle's Theorem does not apply.
27.


Rolle's Theorem does not apply.
29. (a) \(f(1)=f(2)=38\)
(b) Velocity \(=0\) for some \(t\) in \((1,2) ; t=\frac{3}{2} \sec\)
31.

33. The function is not continuous on \([0,6]\).
35. The function is not continuous on \([0,6]\).
37. (a) Secant line: \(x+y-3=0\) (b) \(c=\frac{1}{2}\)
(c) Tangent line: \(4 x+4 y-21=0\)
(d)

39. \(f^{\prime}(-1 / 2)=-1\)
41. \(f^{\prime}(1 / \sqrt{3})=3, f^{\prime}(-1 / \sqrt{3})=3\)
43. \(f^{\prime}(8 / 27)=1\)
45. \(f\) is not differentiable at \(x=-\frac{1}{2}\).
47. \(f^{\prime}(\pi / 2)=0\)
49. (a)-(c)

(b) \(y=\frac{2}{3}(x-1)\)
(c) \(y=\frac{1}{3}(2 x+5-2 \sqrt{6})\)
51. (a)-(c)

(b) \(y=\frac{1}{4} x+\frac{3}{4}\)
(c) \(y=\frac{1}{4} x+1\)
53. (a) \(-14.7 \mathrm{~m} / \mathrm{sec}\) (b) 1.5 sec
55. No. Let \(f(x)=x^{2}\) on \([-1,2]\).
57. No. \(f(x)\) is not continuous on \([0,1]\). So it does not satisfy the hypothesis of Rolle's Theorem.
59. By the Mean Value Theorem, there is a time when the speed of the plane must equal the average speed of 454.5 miles/hour. The speed was 400 miles/hour when the plane was accelerating to 454.5 miles/hour and decelerating from 454.5 miles/hour.
61. Proof
63. (a)

(b) Yes;yes
(c) Because \(f(-1)=f(1)=0\), Rolle's Theorem applies on \([-1,1]\). Because \(f(1)=0\) and \(f(2)=3\), Rolle's Theorem does not apply on \([1,2]\).
(d) \(\lim _{x \rightarrow 3^{-}} f^{\prime}(x)=0 ; \lim _{x \rightarrow 3^{+}} f^{\prime}(x)=0\)
65.

71. \(a=6, b=1, c=2\)
73. \(f(x)=5\)
75. \(f(x)=x^{2}-1\)
77. False. \(f\) is not continuous on \([-1,1]\).
79. True

81-89. Proofs

\section*{Section 3.3 (page 186)}
1. (a) \((0,6)\) (b) \((6,8)\)
3. Increasing on \((3, \infty)\); Decreasing on \((-\infty, 3)\)
5. Increasing on \((-\infty,-2)\) and \((2, \infty)\); Decreasing on \((-2,2)\)
7. Increasing on \((-\infty,-1)\); Decreasing on \((-1, \infty)\)
9. Increasing on \((1, \infty)\); Decreasing on \((-\infty, 1)\)
11. Increasing on \((-2 \sqrt{2}, 2 \sqrt{2})\)

Decreasing on \((-4,-2 \sqrt{2})\) and \((2 \sqrt{2}, 4)\)
13. Increasing on \((0, \pi / 2)\) and \((3 \pi / 2,2 \pi)\);

Decreasing on \((\pi / 2,3 \pi / 2)\)
15. Increasing on \((0,7 \pi / 6)\) and \((11 \pi / 6,2 \pi)\);

Decreasing on \((7 \pi / 6,11 \pi / 6)\)
17. (a) Critical number: \(x=2\)
(b) Increasing on \((2, \infty)\); Decreasing on \((-\infty, 2)\)
(c) Relative minimum: \((2,-4)\)
19. (a) Critical number: \(x=1\)
(b) Increasing on \((-\infty, 1)\); Decreasing on \((1, \infty)\)
(c) Relative maximum: \((1,5)\)
21. (a) Critical numbers: \(x=-2,1\)
(b) Increasing on \((-\infty,-2)\) and \((1, \infty)\); Decreasing on \((-2,1)\)
(c) Relative maximum: \((-2,20)\);Relative minimum: \((1,-7)\)
23. (a) Critical numbers: \(x=-\frac{5}{3}, 1\)
(b) Increasing on \(\left(-\infty,-\frac{5}{3}\right),(1, \infty)\)

Decreasing on \(\left(-\frac{5}{3}, 1\right)\)
(c) Relative maximum: \(\left(-\frac{5}{3}, \frac{256}{27}\right)\)

Relative minimum: \((1,0)\)
25. (a) Critical numbers: \(x= \pm 1\)
(b) Increasing on \((-\infty,-1)\) and \((1, \infty)\); Decreasing on \((-1,1)\)
(c) Relative maximum: \(\left(-1, \frac{4}{5}\right)\);Relative minimum: \(\left(1,-\frac{4}{5}\right)\)
27. (a) Critical number: \(x=0\)
(b) Increasing on \((-\infty, \infty)\)
(c) No relative extrema
29. (a) Critical number: \(x=-2\)
(b) Increasing on \((-2, \infty)\); Decreasing on \((-\infty,-2)\)
(c) Relative minimum: \((-2,0)\)
31. (a) Critical number: \(x=5\)
(b) Increasing on \((-\infty, 5)\); Decreasing on \((5, \infty)\)
(c) Relative maximum: \((5,5)\)
33. (a) Critical numbers: \(x= \pm \sqrt{2} / 2\);Discontinuity: \(x=0\)
(b) Increasing on \((-\infty,-\sqrt{2} / 2)\) and \((\sqrt{2} / 2, \infty)\)

Decreasing on \((-\sqrt{2} / 2,0)\) and \((0, \sqrt{2} / 2)\)
(c) Relative maximum: \((-\sqrt{2} / 2,-2 \sqrt{2})\) Relative minimum: \((\sqrt{2} / 2,2 \sqrt{2})\)
35. (a) Critical number: \(x=0\);Discontinuities: \(x= \pm 3\)
(b) Increasing on \((-\infty,-3)\) and \((-3,0)\)

Decreasing on \((0,3)\) and \((3, \infty)\)
(c) Relative maximum: \((0,0)\)
37. (a) Critical numbers: \(x=-3\), 1;Discontinuity: \(x=-1\)
(b) Increasing on \((-\infty,-3)\) and \((1, \infty)\)

Decreasing on \((-3,-1)\) and \((-1,1)\)
(c) Relative maximum: \((-3,-8)\);Relative minimum: \((1,0)\)
39. (a) Critical number: \(x=0\)
(b) Increasing on \((-\infty, 0)\); Decreasing on \((0, \infty)\)
(c) No relative extrema
41. (a) Critical number: \(x=1\)
(b) Increasing on \((-\infty, 1)\); Decreasing on \((1, \infty)\)
(c) Relative maximum: \((1,4)\)
43. (a) Critical numbers: \(x=\pi / 6,5 \pi / 6\)

Increasing on \((0, \pi / 6),(5 \pi / 6,2 \pi)\)
Decreasing on \((\pi / 6,5 \pi / 6)\)
(b) Relative maximum: \((\pi / 6,(\pi+6 \sqrt{3}) / 12)\)

Relative minimum: \((5 \pi / 6,(5 \pi-6 \sqrt{3}) / 12)\)
45. (a) Critical numbers: \(x=\pi / 4,5 \pi / 4\)

Increasing on \((0, \pi / 4),(5 \pi / 4,2 \pi)\)
Decreasing on \((\pi / 4,5 \pi / 4)\)
(b) Relative maximum: \((\pi / 4, \sqrt{2})\)

Relative minimum: \((5 \pi / 4,-\sqrt{2})\)
47. (a) Critical numbers:
\(x=\pi / 4, \pi / 2,3 \pi / 4, \pi, 5 \pi / 4,3 \pi / 2,7 \pi / 4\)
Increasing on \((\pi / 4, \pi / 2),(3 \pi / 4, \pi),(5 \pi / 4,3 \pi / 2)\),
\[
(7 \pi / 4,2 \pi)
\]

Decreasing on \((0, \pi / 4),(\pi / 2,3 \pi / 4),(\pi, 5 \pi / 4)\),
\[
(3 \pi / 2,7 \pi / 4)
\]
(b) Relative maxima: \((\pi / 2,1),(\pi, 1),(3 \pi / 2,1)\)

Relative minima: \((\pi / 4,0),(3 \pi / 4,0),(5 \pi / 4,0),(7 \pi / 4,0)\)
49. (a) Critical numbers: \(\pi / 2,7 \pi / 6,3 \pi / 2,11 \pi / 6\)

Increasing on \(\left(0, \frac{\pi}{2}\right),\left(\frac{7 \pi}{6}, \frac{3 \pi}{2}\right),\left(\frac{11 \pi}{6}, 2 \pi\right)\)
Decreasing on \(\left(\frac{\pi}{2}, \frac{7 \pi}{6}\right),\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)\)
(b) Relative maxima: \(\left(\frac{\pi}{2}, 2\right),\left(\frac{3 \pi}{2}, 0\right)\)

Relative minima: \(\left(\frac{7 \pi}{6},-\frac{1}{4}\right),\left(\frac{11 \pi}{6},-\frac{1}{4}\right)\)
51. (a) \(f^{\prime}(x)=2\left(9-2 x^{2}\right) / \sqrt{9-x^{2}}\)
(b)

(d) \(f^{\prime}>0\) on \((-3 \sqrt{2} / 2,3 \sqrt{2} / 2)\)
\(f^{\prime}<0\) on \((-3,-3 \sqrt{2} / 2),(3 \sqrt{2} / 2,3)\)
53. (a) \(f^{\prime}(t)=t(t \cos t+2 \sin t)\)
(b)

(c) Critical numbers:
\(t=2.2889,5.0870\)
(d) \(\begin{aligned} f^{\prime} & >0 \text { on }(0,2.2889),(5.0870,2 \pi) \\ f^{\prime} & <0 \text { on }(2.2889,5.0870)\end{aligned}\)
55. (a) \(f^{\prime}(x)=-\cos (x / 3)\)
(b)

(c) Critical numbers:
\[
x=3 \pi / 2,9 \pi / 2
\]
(d) \(f^{\prime}>0\) on \(\left(\frac{3 \pi}{2}, \frac{9 \pi}{2}\right)\)
\[
f^{\prime}<0 \text { on }\left(0, \frac{3 \pi}{2}\right),\left(\frac{9 \pi}{2}, 6 \pi\right)
\]
57. \(f(x)\) is symmetric with respect to the origin.
Zeros: \((0,0),( \pm \sqrt{3}, 0)\)

59.

\(g(x)\) is continuous on \((-\infty, \infty)\)
and \(f(x)\) has holes at \(x=1\)
and \(x=-1\).
61.

63.

65. (a) Increasing on \((2, \infty)\); Decreasing on \((-\infty, 2)\)
(b) Relative minimum: \(x=2\)
67. (a) Increasing on \((-\infty,-1)\) and \((0,1)\);

Decreasing on \((-1,0)\) and \((1, \infty)\)
(b) Relative maxima: \(x=-1\) and \(x=1\)

Relative minimum: \(x=0\)
69. (a) Critical numbers: \(x=-1, x=1, x=2\)
(b) Relative maximum at \(x=1\), relative minimum at \(x=2\), and neither at \(x=-1\)
71. \(g^{\prime}(0)<0\)
73. \(g^{\prime}(-6)<0\)
75. \(g^{\prime}(0)>0\)
77. Answers will vary. Sample answer:

79. (a)

(b) Critical numbers: \(x \approx-0.40\) and \(x \approx 0.48\)
(c) Relative maximum: \((0.48,1.25)\)

Relative minimum: \((-0.40,0.75)\)
81. (a) \(s^{\prime}(t)=9.8(\sin \theta) t\); speed \(=|9.8(\sin \theta) t|\)
(b)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{\theta}\) & 0 & \(\pi / 4\) & \(\pi / 3\) & \(\pi / 2\) & \(2 \pi / 3\) & \(3 \pi / 4\) & \(\pi\) \\
\hline \(\boldsymbol{s}^{\prime}(\boldsymbol{(})\) & 0 & \(4.9 \sqrt{2} t\) & \(4.9 \sqrt{3} t\) & \(9.8 t\) & \(4.9 \sqrt{3} t\) & \(4.9 \sqrt{2} t\) & 0 \\
\hline
\end{tabular}

The speed is maximum at \(\theta=\pi / 2\).
83. (a)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline \(\boldsymbol{g}(\boldsymbol{x})\) & 0.48 & 0.84 & 1.00 & 0.91 & 0.60 & 0.14 \\
\hline
\end{tabular}
\[
f(x)>g(x)
\]
(b)

\(f(x)>g(x)\)
85. \(r=2 R / 3\)
87. (a) \(\frac{d R}{d T}=\frac{0.004 T^{3}-4}{2 \sqrt{0.001 T^{4}-4 T+100}}\)

Critical number: \(T=10\)
Minimum resistance: About 8.3666 ohms
(b)


Minimum resistance: About 8.3666 ohms
89. (a) \(v(t)=6-2 t\)
(b) \((0,3)\)
(c) \((3, \infty)\)
(d) \(t=3\)
91. (a) \(v(t)=3 t^{2}-10 t+4\)
(b) \((0,(5-\sqrt{13}) / 3)\) and \(((5+\sqrt{13}) / 3, \infty)\)
(c) \(\left(\frac{5-\sqrt{13}}{3}, \frac{5+\sqrt{13}}{3}\right)\)
(d) \(t=\frac{5 \pm \sqrt{13}}{3}\)
93. Answers will vary.
95. (a) Minimum degree: 3
(b) \(a_{3}(0)^{3}+a_{2}(0)^{2}+a_{1}(0)+a_{0}=0\) \(\begin{aligned} a_{3}(2)^{3}+a_{2}(2)^{2}+a_{1}(2)+a_{0} & =2 \\ 3 a_{3}(0)^{2}+2 a_{2}(0)+a_{1} & =0 \\ 3 a_{3}(2)^{2}+2 a_{2}(2)+a_{1} & =0\end{aligned}\)
(c) \(f(x)=-\frac{1}{2} x^{3}+\frac{3}{2} x^{2}\)
97. (a) Minimum degree: 4
(b) \(a_{4}(0)^{4}+a_{3}(0)^{3}+a_{2}(0)^{2}+a_{1}(0)+a_{0}=0\) \(a_{4}(2)^{4}+a_{3}(2)^{3}+a_{2}(2)^{2}+a_{1}(2)+a_{0}=4\) \(a_{4}(4)^{4}+a_{3}(4)^{3}+a_{2}(4)^{2}+a_{1}(4)+a_{0}=0\)
\(4 a_{4}(0)^{3}+3 a_{3}(0)^{2}+2 a_{2}(0)+a_{1}=0\)
\(4 a_{4}(2)^{3}+3 a_{3}(2)^{2}+2 a_{2}(2)+a_{1}=0\)
\(4 a_{4}(4)^{3}+3 a_{3}(4)^{2}+2 a_{2}(4)+a_{1}=0\)
(c) \(f(x)=\frac{1}{4} x^{4}-2 x^{3}+4 x^{2}\)
99. True 101. False. Let \(f(x)=x^{3}\).
103. False. Let \(f(x)=x^{3}\). There is a critical number at \(x=0\), but not a relative extremum.
105-107. Proofs

\section*{Section 3.4 (page 195)}
1. \(f^{\prime}>0, f^{\prime \prime}>0 \quad\) 3. \(f^{\prime}<0, f^{\prime \prime}<0\)
5. Concave upward: \((-\infty, \infty)\)
7. Concave upward: \((-\infty, 1)\);Concave downward: \((1, \infty)\)
9. Concave upward: \((-\infty, 2)\);Concave downward: \((2, \infty)\)
11. Concave upward: \((-\infty,-2),(2, \infty)\) Concave downward: \((-2,2)\)
13. Concave upward: \((-\infty,-1),(1, \infty)\) Concave downward: \((-1,1)\)
15. Concave upward: \((-2,2)\)

Concave downward: \((-\infty,-2),(2, \infty)\)
17. Concave upward: \((-\pi / 2,0)\);Concave downward: \((0, \pi / 2)\)
19. Points of inflection: \((-2,-8),(0,0)\)

Concave upward: \((-\infty,-2),(0, \infty)\)
Concave downward: \((-2,0)\)
21. Point of inflection: \((2,8)\);Concave downward: \((-\infty, 2)\)

Concave upward: \((2, \infty)\)
23. Points of inflection: \(( \pm 2 \sqrt{3} / 3,-20 / 9)\)

Concave upward: \((-\infty,-2 \sqrt{3} / 3),(2 \sqrt{3} / 3, \infty)\)
Concave downward: \((-2 \sqrt{3} / 3,2 \sqrt{3} / 3)\)
25. Points of inflection: \((2,-16),(4,0)\)

Concave upward: \((-\infty, 2),(4, \infty)\);Concave downward: \((2,4)\)
27. Concave upward: \((-3, \infty)\)
29. Points of inflection: \((-\sqrt{3} / 3,3),(\sqrt{3} / 3,3)\) Concave upward: \((-\infty,-\sqrt{3} / 3),(\sqrt{3} / 3, \infty)\)
Concave downward: \((-\sqrt{3} / 3, \sqrt{3} / 3)\)
31. Point of inflection: \((2 \pi, 0)\)

Concave upward: \((2 \pi, 4 \pi)\);Concave downward: \((0,2 \pi)\)
33. Concave upward: \((0, \pi),(2 \pi, 3 \pi)\)

Concave downward: \((\pi, 2 \pi),(3 \pi, 4 \pi)\)
35. Points of inflection: \((\pi, 0),(1.823,1.452),(4.46,-1.452)\)

Concave upward: \((1.823, \pi),(4.46,2 \pi)\)
Concave downward: \((0,1.823),(\pi, 4.46)\)
37. Relative minimum: \((5,0)\) 39. Relative maximum: \((3,9)\)
41. Relative maximum: \((0,3)\);Relative minimum: \((2,-1)\)
43. Relative minimum: \((3,-25)\)
45. Relative maximum: \((2.4,268.74)\);Relative minimum: \((0,0)\)
47. Relative minimum: \((0,-3)\)
49. Relative maximum: \((-2,-4)\);Relative minimum: \((2,4)\)
51. No relative extrema, because \(f\) is nonincreasing.
53. (a) \(f^{\prime}(x)=0.2 x(x-3)^{2}(5 x-6)\)
\(f^{\prime \prime}(x)=0.4(x-3)\left(10 x^{2}-24 x+9\right)\)
(b) Relative maximum: \((0,0)\)

Relative minimum: \((1.2,-1.6796)\)
Points of inflection: \((0.4652,-0.7048)\),
\((1.9348,-0.9048),(3,0)\)
(c)

\(f\) is increasing when \(f^{\prime}\) is positive, and decreasing when \(f^{\prime}\) is negative. \(f\) is concave upward when \(f^{\prime \prime}\) is positive, and concave downward when \(f^{\prime \prime}\) is negative.
55. (a) \(f^{\prime}(x)=\cos x-\cos 3 x+\cos 5 x\)
\(f^{\prime \prime}(x)=-\sin x+3 \sin 3 x-5 \sin 5 x\)
(b) Relative maximum: \((\pi / 2,1.53333)\)

Points of inflection: \((\pi / 6,0.2667),(1.1731,0.9637)\),
( \(1.9685,0.9637),(5 \pi / 6,0.2667)\)
(c)

\(f\) is increasing when \(f^{\prime}\) is positive, and decreasing when \(f^{\prime}\) is negative. \(f\) is concave upward when \(f^{\prime \prime}\) is positive, and concave downward when \(f^{\prime \prime}\) is negative.
57. (a)

59. Answers will vary. Example: \(f(x)=x^{4} ; f^{\prime \prime}(0)=0\), but \((0,0)\) is not a point of inflection.

(b)

61.

63.

67.

65.

69. Example:

71. (a) \(f(x)=(x-2)^{n}\) has a point of inflection at \((2,0)\) if \(n\) is odd and \(n \geq 3\).

(b) Proof
73. \(f(x)=\frac{1}{2} x^{3}-6 x^{2}+\frac{45}{2} x-24\)
75. (a) \(f(x)=\frac{1}{32} x^{3}+\frac{3}{16} x^{2} \quad\) (b) Two miles from touchdown
77. \(x=\left(\frac{15-\sqrt{33}}{16}\right) L \approx 0.578 L \quad\) 79. \(x=100\) units
81. (a)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\hline \(\boldsymbol{S}\) & 151.5 & 555.6 & 1097.6 & 1666.7 & 2193.0 & 2647.1 \\
\hline
\end{tabular}
\[
1.5<t<2
\]
(b) 3000

\[
t \approx 1.5
\]
83. \(P_{1}(x)=2 \sqrt{2}\)
\(P_{2}(x)=2 \sqrt{2}-\sqrt{2}(x-\pi / 4)^{2}\)
The values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives are equal when \(x=\pi / 4\). The approximations

85. \(P_{1}(x)=1-x / 2\)
\(P_{2}(x)=1-x / 2-x^{2} / 8\)
The values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives are equal when \(x=0\). The approximations worsen as you move away from \(x=0\).

87.

89. Proof
91. True
93. False. \(f\) is concave upward at \(x=c\) if \(f^{\prime \prime}(c)>0\).
95. Proof

\section*{Section 3.5 (page 205)}
\(\begin{array}{llllll}\text { 1. f } & \text { 2. } \mathrm{c} & \text { 3. d } & \text { 4. a } & \text { 5. b } & \text { 6. e }\end{array}\)
7.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 7 & 2.2632 & 2.0251 & 2.0025 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 2.0003 & 2.0000 & 2.0000 \\
\hline
\end{tabular}

\[
\lim _{x \rightarrow \infty} \frac{4 x+3}{2 x-1}=2
\]
9.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -2 & -2.9814 & -2.9998 & -3.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -3.0000 & -3.0000 & -3.0000 \\
\hline
\end{tabular}

\[
\lim _{x \rightarrow \infty} \frac{-6 x}{\sqrt{4 x^{2}+5}}=-3
\]
11.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) \\
\hline \(\boldsymbol{f ( x )}\) & 4.5000 & 4.9901 & 4.9999 & 5.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 5.0000 & 5.0000 & 5.0000 \\
\hline
\end{tabular}

\[
\lim _{x \rightarrow \infty}\left(5-\frac{1}{x^{2}+1}\right)=5
\]
13. (a) \(\infty\)
(b) 5 (c) 0
15. (a)
(b) 1 (c) \(\infty\)
17. (a) 0
(b) \(-\frac{2}{3}\) (c) \(-\infty\)
19. 4
21. \(\frac{2}{3} \quad\) 23. 0
25. \(-\infty\)
27. -1
29. -2
31. \(\frac{1}{2}\)
33. \(\infty\)
35. \(0 \quad 37\).
39.

41.

43. 1
45. 0
47. \(\frac{1}{6}\)
49.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 1.000 & 0.513 & 0.501 & 0.500 & 0.500 & 0.500 & 0.500 \\
\hline
\end{tabular}

\[
\lim _{x \rightarrow \infty}[x-\sqrt{x(x-1)}]=\frac{1}{2}
\]
51.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & \(10^{0}\) & \(10^{1}\) & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) & \(10^{6}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.479 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\
\hline
\end{tabular}


The graph has a hole at \(x=0\).
\[
\lim _{x \rightarrow \infty} x \sin \frac{1}{2 x}=\frac{1}{2}
\]
53. As \(x\) becomes large, \(f(x)\) approaches 4 .
55. Answers will vary. Example: let \(f(x)=\frac{-6}{0.1(x-2)^{2}+1}+6\).

57. (a) 5 (b) -5
59.

63.

65.

67.

71.

73.

75.

77.

79.

81.

83.

85. (a)

(b) Proof
87. \(100 \%\)
89. \(\lim _{t \rightarrow \infty} N(t)=+\infty ; \lim _{t \rightarrow \infty} E(t)=c\)
91. (a)

93. (a) \(T_{1}=-0.003 t^{2}+0.68 t+26.6\)
(b)

(d) \(T_{1}(0) \approx 26.6^{\circ}, T_{2}(0) \approx 25.0^{\circ}\)
(c)

(f) The limiting temperature is \(86^{\circ}\). No. \(T_{1}\) has no horizontal asymptote.
95. (a) \(d(m)=\frac{|3 m+3|}{\sqrt{m^{2}+1}}\)
(b)

(c) \(\lim _{m \rightarrow \infty} d(m)=3\)
\(\lim _{m \rightarrow-\infty} d(m)=3\)

As \(m\) approaches \(\pm \infty\), the distance approaches 3 .
97. (a) \(\lim _{x \rightarrow \infty} f(x)=2\)
(b) \(x_{1}=\sqrt{\frac{4-2 \varepsilon}{\varepsilon}}, x_{2}=-\sqrt{\frac{4-2 \varepsilon}{\varepsilon}}\)
(c) \(\sqrt{\frac{4-2 \varepsilon}{\varepsilon}}\)
(d) \(-\sqrt{\frac{4-2 \varepsilon}{\varepsilon}}\)
99. (a) Answers will vary. \(M=\frac{5 \sqrt{33}}{11}\)

101-105. Proofs
(b) Answers will vary. \(M=\frac{29 \sqrt{177}}{59}\)
107. False. Let \(f(x)=\frac{2 x}{\sqrt{x^{2}+2}} \cdot f^{\prime}(x)>0\) for all real numbers.

\section*{Section 3.6 (page 215)}
1. d 2. c 3. a 4. b
5.

9.

7.

11.

13.

17.

21.

25.

29.

33.

35.

19.

23.

27.

15.

31.


Minimum: \((-1.10,-9.05)\)
Maximum: (1.10, 9.05)
Points of inflection:
(-1.84, -7.86), (1.84, 7.86)
Vertical asymptote: \(x=0\)
Horizontal asymptote: \(y=0\)
Point of inflection: \((0,0)\)
Horizontal asymptotes: \(y= \pm 2\)
37.

39.

41.

45.

49.

51.

53.

55.

57.

59.

61.

63.

65. (a)


The graph appears to approach the line \(y=2 x\), which is the slant asymptote.



The graph has holes at \(x=0\) and at \(x=4\). Visually approximated critical numbers: \(\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}\)
(b) \(f^{\prime}(x)=\frac{-x \cos ^{2}(\pi x)}{\left(x^{2}+1\right)^{3 / 2}}-\frac{2 \pi \sin (\pi x) \cos (\pi x)}{\sqrt{x^{2}+1}}\)

Approximate critical numbers: \(\frac{1}{2}, 0.97, \frac{3}{2}, 1.98, \frac{5}{2}, 2.98, \frac{7}{2}\) The critical numbers where maxima occur appear to be integers in part (a), but by approximating them using \(f^{\prime}\) you can see that they are not integers.
67. Answers will vary. Example: \(y=1 /(x-3)\)
69. Answers will vary. Example: \(y=\left(3 x^{2}-7 x-5\right) /(x-3)\)
71. (a) \(f^{\prime}(x)=0\) for \(x= \pm 2 ; f^{\prime}(x)>0\) for \((-\infty,-2),(2, \infty)\) \(f^{\prime}(x)<0\) for \((-2,2)\)
(b) \(f^{\prime \prime}(x)=0\) for \(x=0 ; f^{\prime \prime}(x)>0\) for \((0, \infty)\) \(f^{\prime \prime}(x)<0\) for \((-\infty, 0)\)
(c) \((0, \infty)\)
(d) \(f^{\prime}\) is minimum for \(x=0\).
\(f\) is decreasing at the greatest rate at \(x=0\).
73. Answers will vary. Sample answer: The graph has a vertical asymptote at \(x=b\). If \(a\) and \(b\) are both positive, or both negative, then the graph of \(f\) approaches \(\infty\) as \(x\) approaches \(b\), and the graph has a minimum at \(x=-b\). If \(a\) and \(b\) have opposite signs, then the graph of \(f\) approaches \(-\infty\) as \(x\) approaches \(b\), and the graph has a maximum at \(x=-b\).
75. (a) If \(n\) is even, \(f\) is symmetric with respect to the \(y\)-axis.

If \(n\) is odd, \(f\) is symmetric with respect to the origin.
(b) \(n=0,1,2,3\) (c) \(n=4\)
(d) When \(n=5\), the slant asymptote is \(y=2 x\).
(e)


\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\boldsymbol{n}\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline \(\boldsymbol{M}\) & 1 & 2 & 3 & 2 & 1 & 0 \\
\hline \(\boldsymbol{N}\) & 2 & 3 & 4 & 5 & 2 & 3 \\
\hline
\end{tabular}
77. (a)

(e) \(13,250 / 7\)
79. \(y=x+3, y=-x-3\)


\section*{Section 3.7 (page 223)}
1. (a) and (b)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
First \\
Number \(\boldsymbol{x}\)
\end{tabular} & \begin{tabular}{c} 
Second \\
Number
\end{tabular} & Product \(\boldsymbol{P}\) \\
\hline 10 & \(110-10\) & \(10(110-10)=1000\) \\
\hline 20 & \(110-20\) & \(20(110-20)=1800\) \\
\hline 30 & \(110-30\) & \(30(110-30)=2400\) \\
\hline 40 & \(110-40\) & \(40(110-40)=2800\) \\
\hline 50 & \(110-50\) & \(50(110-50)=3000\) \\
\hline 60 & \(110-60\) & \(60(110-60)=3000\) \\
\hline 70 & \(110-70\) & \(70(110-70)=2800\) \\
\hline 90 & \(110-80\) & \(80(110-80)=2400\) \\
\hline 90 & \(110-90\) & \(90(110-90)=1800\) \\
\hline 100 & \(110-100\) & \(100(110-100)=1000\) \\
\hline
\end{tabular}

The maximum is attained near \(x=50\) and 60 .
(c) \(P=x(110-x)\)
(d) 3500

\(\begin{array}{lll}\text { 3. } S / 2 \text { and } S / 2 & \text { 5. } 21 \text { and } 7 & \text { 7. } 54 \text { and } 27\end{array}\)
9. \(l=w=20 \mathrm{~m}\)
11. \(l=w=4 \sqrt{2} \mathrm{ft}\)
13. \((1,1)\)
15. \(\left(\frac{7}{2}, \sqrt{\frac{7}{2}}\right)\)
17. Dimensions of page: \((2+\sqrt{30})\) in. \(\times(2+\sqrt{30})\) in.
19. \(x=Q_{0} / 2\)
21. \(700 \times 350 \mathrm{~m}\)
23. (a) Proof (b) \(V_{1}=99 \mathrm{in} .^{3}, V_{2}=125 \mathrm{in} .^{3}, V_{3}=117 \mathrm{in} .^{3}\)
(c) \(5 \times 5 \times 5 \mathrm{in}\).
25. Rectangular portion: \(16 /(\pi+4) \times 32 /(\pi+4) \mathrm{ft}\)
27. (a) \(L=\sqrt{x^{2}+4+\frac{8}{x-1}+\frac{4}{(x-1)^{2}}}, \quad x>1\)
(b)


Minimum when \(x \approx 2.587\)
(c) \((0,0),(2,0),(0,4)\)
29. Width: \(5 \sqrt{2} / 2\); Length: \(5 \sqrt{2}\)
31. (a)

(b)
\begin{tabular}{|c|c|c|}
\hline Length \(\boldsymbol{x}\) & Width \(\boldsymbol{y}\) & Area \(\boldsymbol{x} \boldsymbol{y}\) \\
\hline 10 & \(2 / \pi(100-10)\) & \((10)(2 / \pi)(100-10) \approx 573\) \\
\hline 20 & \(2 / \pi(100-20)\) & \((20)(2 / \pi)(100-20) \approx 1019\) \\
\hline 30 & \(2 / \pi(100-30)\) & \((30)(2 / \pi)(100-30) \approx 1337\) \\
\hline 40 & \(2 / \pi(100-40)\) & \((40)(2 / \pi)(100-40) \approx 1528\) \\
\hline 50 & \(2 / \pi(100-50)\) & \((50)(2 / \pi)(100-50) \approx 1592\) \\
\hline 60 & \(2 / \pi(100-60)\) & \((60)(2 / \pi)(100-60) \approx 1528\) \\
\hline
\end{tabular}

The maximum area of the rectangle is approximately \(1592 \mathrm{~m}^{2}\).
(c) \(A=2 / \pi\left(100 x-x^{2}\right), \quad 0<x<100\)
(d) \(\frac{d A}{d x}=\frac{2}{\pi}(100-2 x)\)
\[
=0 \text { when } x=50
\]

The maximum value is approximately 1592 when \(x=50\).
(e) 2000

33. \(18 \times 18 \times 36\) in.
35. \(32 \pi r^{3} / 81\)
37. No. The volume changes because the shape of the container changes when squeezed.
39. \(r=\sqrt[3]{21 /(2 \pi)} \approx 1.50(h=0\), so the solid is a sphere.)
41. Side of square: \(\frac{10 \sqrt{3}}{9+4 \sqrt{3}}\); Side of triangle: \(\frac{30}{9+4 \sqrt{3}}\)
43. \(w=(20 \sqrt{3}) / 3\) in., \(h=(20 \sqrt{6}) / 3\) in. 45. \(\theta=\pi / 4\)
47. \(h=\sqrt{2} \mathrm{ft} \quad\) 49. One mile from the nearest point on the coast
51. Proof
53.

(a) Origin to \(y\)-intercept: 2 Origin to \(x\)-intercept: \(\pi / 2\)
(b) \(d=\sqrt{x^{2}+(2-2 \sin x)^{2}}\)

(c) Minimum distance is 0.9795 when \(x \approx 0.7967\).
55. \(F=k W / \sqrt{k^{2}+1} ; \theta=\arctan k\)
57. (a)
\begin{tabular}{|c|c|c|c|}
\hline Base 1 & Base 2 & Altitude & Area \\
\hline 8 & \(8+16 \cos 10^{\circ}\) & \(8 \sin 10^{\circ}\) & \(\approx 22.1\) \\
\hline 8 & \(8+16 \cos 20^{\circ}\) & \(8 \sin 20^{\circ}\) & \(\approx 42.5\) \\
\hline 8 & \(8+16 \cos 30^{\circ}\) & \(8 \sin 30^{\circ}\) & \(\approx 59.7\) \\
\hline 8 & \(8+16 \cos 40^{\circ}\) & \(8 \sin 40^{\circ}\) & \(\approx 72.7\) \\
\hline 8 & \(8+16 \cos 50^{\circ}\) & \(8 \sin 50^{\circ}\) & \(\approx 80.5\) \\
\hline 8 & \(8+16 \cos 60^{\circ}\) & \(8 \sin 60^{\circ}\) & \(\approx 83.1\) \\
\hline
\end{tabular}
(b)
\begin{tabular}{|c|c|c|c|}
\hline Base 1 & Base 2 & Altitude & Area \\
\hline 8 & \(8+16 \cos 70^{\circ}\) & \(8 \sin 70^{\circ}\) & \(\approx 80.7\) \\
\hline 8 & \(8+16 \cos 80^{\circ}\) & \(8 \sin 80^{\circ}\) & \(\approx 74.0\) \\
\hline 8 & \(8+16 \cos 90^{\circ}\) & \(8 \sin 90^{\circ}\) & \(\approx 64.0\) \\
\hline
\end{tabular}

The maximum cross-sectional area is approximately \(83.1 \mathrm{ft}^{2}\).
(c) \(A=64(1+\cos \theta) \sin \theta, 0^{\circ}<\theta<90^{\circ}\)
(d) \(\frac{d A}{d \theta}=64(2 \cos \theta-1)(\cos \theta+1)\)
\[
=0 \text { when } \theta=60^{\circ}, 180^{\circ}, 300^{\circ}
\]

The maximum area occurs when \(\theta=60^{\circ}\).
(e)

59. 4045 units
61. \(y=\frac{64}{141} x ; S_{1} \approx 6.1 \mathrm{mi}\)
63. \(y=\frac{3}{10} x ; S_{3} \approx 4.50 \mathrm{mi}\) 65. Putnam Problem A1, 1986

\section*{Section 3.8 (page 233)}

In the answers for Exercises 1 and 3, the values in the tables have been rounded for convenience. Because a calculator or a computer program calculates internally using more digits than they display, you may produce slightly different values than those shown in the tables.
1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & \(\boldsymbol{x}_{\boldsymbol{n}}\) & \(\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)\) & \(\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)\) & \(\frac{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}\) & \(\boldsymbol{x}_{\boldsymbol{n}}-\frac{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}\) \\
\hline 1 & 2.2000 & -0.1600 & 4.4000 & -0.0364 & 2.2364 \\
\hline 2 & 2.2364 & 0.0015 & 4.4728 & 0.0003 & 2.2361 \\
\hline
\end{tabular}
3.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & \(\boldsymbol{x}_{\boldsymbol{n}}\) & \(\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)\) & \(f^{\prime}\left(x_{n}\right)\) & \(\frac{f\left(x_{n}\right)}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{n}\right)}\) & \(\boldsymbol{x}_{\boldsymbol{n}}-\frac{\boldsymbol{f ( x _ { n } )}}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}\) \\
\hline 1 & 1.6 & -0.0292 & -0.9996 & 0.0292 & 1.5708 \\
\hline 2 & 1.5708 & 0 & -1 & 0 & 1.5708 \\
\hline
\end{tabular}
5. -1.587
7. 0.682
9. \(1.250,5.000\)
11. \(0.900,1\).

100, 1.900
13. 1.935
15. 0.569
17. 4.493
19. (a) Proof
(b) \(\sqrt{5} \approx 2.236 ; \sqrt{7} \approx 2.646\)
21. \(f^{\prime}\left(x_{1}\right)=0\)
23. \(2=x_{1}=x_{3}=\ldots ; 1=x_{2}=x_{4}=\ldots\)
25. 0.74
27. Proof
29. (a)

\(\begin{array}{ll}\text { (b) } 1.347 & \text { (c) } 2.532\end{array}\)
(d)

\(x\)-intercept of \(y=-3 x+4\) is \(\frac{4}{3}\).
\(x\)-intercept of \(y=-1.313 x+3.156\) is approximately 2.404 .
(e) If the initial estimate \(x=x_{1}\) is not sufficiently close to the desired zero of a function, the \(x\)-intercept of the corresponding tangent line to the function may approximate a second zero of the function.
31. Answers will vary. Sample answer: If \(f\) is a function continuous on [ \(a, b]\) and differentiable on \((a, b)\), where \(c \in[a, b]\) and \(f(c)=0\), Newton's Method uses tangent lines to approximate \(c\). First, estimate an initial \(x_{1}\) close to \(c\).
 (See graph.) Then determine \(x_{2}\) using \(x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)\). Calculate a third estimate \(x_{3}\) using \(x_{3}=x_{2}-f\left(x_{2}\right) / f^{\prime}\left(x_{2}\right)\). Continue this process until \(\left|x_{n}-x_{n+1}\right|\) is within the desired accuracy and let \(x_{n+1}\) be the final approximation of \(c\).

33. 0.860
37. \(x \approx 1.563 \mathrm{mi} \quad\) 39. \(15.1,26.8\)
43. True 45. 0.217

\section*{Section 3.9 (page 240)}
1. \(T(x)=4 x-4\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 1.9 & 1.99 & 2 & 2.01 & 2.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 3.610 & 3.960 & 4 & 4.040 & 4.410 \\
\hline \(\boldsymbol{T}(\boldsymbol{x})\) & 3.600 & 3.960 & 4 & 4.040 & 4.400 \\
\hline
\end{tabular}
3. \(T(x)=80 x-128\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 1.9 & 1.99 & 2 & 2.01 & 2.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 24.761 & 31.208 & 32 & 32.808 & 40.841 \\
\hline \(\boldsymbol{T}(\boldsymbol{x})\) & 24.000 & 31.200 & 32 & 32.800 & 40.000 \\
\hline
\end{tabular}
5. \(T(x)=(\cos 2)(x-2)+\sin 2\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 1.9 & 1.99 & 2 & 2.01 & 2.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.946 & 0.913 & 0.909 & 0.905 & 0.863 \\
\hline \(\boldsymbol{T}(\boldsymbol{x})\) & 0.951 & 0.913 & 0.909 & 0.905 & 0.868 \\
\hline
\end{tabular}
7. \(\Delta y=0.331 ; d y=0.3\)
9. \(\Delta y=-0.039 ; d y=-0.040\)
11. \(6 x d x\)
13. \(-\frac{3}{(2 x-1)^{2}} d x\)
15. \(\frac{1-2 x^{2}}{\sqrt{1-x^{2}}} d x\)
17. \((3-\sin 2 x) d x\)
19. \(-\pi \sin \left(\frac{6 \pi x-1}{2}\right) d x\)
21. (a) 0.9
(b) 1.04
23. (a) 1.05
(b) 0.98
25. (a) 8.035
(b) 7.95
27. \(\pm \frac{5}{8}\) in. \(^{2}\)
29. \(\pm 8 \pi\) in. \(^{2}\)
31. (a) \(\frac{5}{6} \%\)
(b) \(1.25 \%\)
33. (a) \(\pm 5.12 \pi\) in. \(^{3}\)
(b) \(\pm 1.28 \pi \mathrm{in}^{2}\)
(c) \(0.75 \% .5 \%\)
35. \(80 \pi \mathrm{~cm}^{3}\)
37. (a) \(\frac{1}{4} \%\)
(b) \(216 \mathrm{sec}=3.6 \mathrm{~min}\)
39. (a) \(0.87 \%\)
(b) \(2.16 \%\)
41. 6407 ft
43. \(f(x)=\sqrt{x}, d y=\frac{1}{2 \sqrt{x}} d x\)
\(f(99.4) \approx \sqrt{100}+\frac{1}{2 \sqrt{100}}(-0.6)=9.97\)
Calculator: 9.97
45. \(f(x)=\sqrt[4]{x}, d y=\frac{1}{4 x^{3 / 4}} d x\)
\(f(624) \approx \sqrt[4]{625}+\frac{1}{4(625)^{3 / 4}}(-1)=4.998\)
Calculator: 4.998
47. \(y-f(0)=f^{\prime}(0)(x-0)\)
\[
y-2=\frac{1}{4} x
\]
\[
y=2+x / 4
\]

49. The value of \(d y\) becomes closer to the value of \(\Delta y\) as \(\Delta x\) decreases.
51. (a) \(f(x)=\sqrt{x} ; d y=\frac{1}{2 \sqrt{x}} d x\)
\[
f(4.02) \approx \sqrt{4}+\frac{1}{2 \sqrt{4}}(0.02)=2+\frac{1}{4}(0.02)
\]
(b) \(f(x)=\tan x ; d y=\sec ^{2} x d x\) \(f(0.05) \approx \tan 0+\sec ^{2}(0)(0.05)=0+1(0.05)\)
53. True 55. True

\section*{Review Exercises for Chapter 3 (page 242)}
1. Let \(f\) be defined at \(c\). If \(f^{\prime}(c)=0\) or if \(f^{\prime}\) is undefined at \(c\), then \(c\) is a critical number of \(f\).

3. Maximum: \((0,0)\)
5. Maximum: \((2 \pi, 17.57)\)

Minimum: \(\left(-\frac{5}{2},-\frac{25}{4}\right)\)
Minimum: \((2.73,0.88)\)
7. \(f(0) \neq f(4) \quad\) 9. Not continuous on \([-2,2]\)
11. (a)

13. \(f^{\prime}\left(\frac{2744}{729}\right)=\frac{3}{7}\)
15. \(f\) is not differentiable at \(x=5\).
17. \(f^{\prime}(0)=1\)
19. \(c=\frac{x_{1}+x_{2}}{2}\)
21. Critical number: \(x=-\frac{3}{2}\)

Increasing on \(\left(-\frac{3}{2}, \infty\right)\); Decreasing on \(\left(-\infty,-\frac{3}{2}\right)\)
23. Critical numbers: \(x=1, \frac{7}{3}\)

Increasing on \((-\infty, 1),\left(\frac{7}{3}, \infty\right)\); Decreasing on \(\left(1, \frac{7}{3}\right)\)
25. Critical number: \(x=1\)

Increasing on \((1, \infty)\); Decreasing on \((0,1)\)
27. Relative maximum: \(\left(-\frac{\sqrt{15}}{6}, \frac{5 \sqrt{15}}{9}\right)\)

Relative minimum: \(\left(\frac{\sqrt{15}}{6},-\frac{5 \sqrt{15}}{9}\right)\)
29. Relative minimum: \((2,-12)\)
31. (a) \(y=\frac{1}{4} \mathrm{in} . ; v=4 \mathrm{in} . / \mathrm{sec}\) (b) Proof (c) Period: \(\pi / 6\);Frequency: \(6 / \pi\)
33. (3, - 54); Concave upward: \((3, \infty)\);

Concave downward: \((-\infty, 3)\)
35. \((\pi / 2, \pi / 2),(3 \pi / 2,3 \pi / 2)\); Concave upward: \((\pi / 2,3 \pi / 2)\)

Concave downward: \((0, \pi / 2),(3 \pi / 2,2 \pi)\)
37. Relative minimum: \((-9,0)\)
39. Relative maxima: \((\sqrt{2} / 2,1 / 2),(-\sqrt{2} / 2,1 / 2)\)

Relative minimum: \((0,0)\)
41.

45. (a) \(D=0.00430 t^{4}-0.2856 t^{3}+5.833 t^{2}-26.85 t+87.1\)
(b) 500

(c) Maximum in 2005;Minimum in 1972
(d) 2005
47. 8
49. \(\frac{2}{3}\)
51. \(-\infty\)
53. 0
55. 6
57. Vertical asymptote: \(x=0\);Horizontal asymptote: \(y=-2\)
59. Vertical asymptote: \(x=4\);Horizontal asymptote: \(y=2\)
61.


Vertical asymptote: \(x=0\)
Relative minimum: \((3,108)\)
Relative maximum: \((-3,-108)\)
63.


Horizontal asymptote: \(y=0\)
Relative minimum:
(-0.155, - 1.077)
Relative maximum:
(2.155, 0.077)
65.

67.

69.

73.

77.

81.

75.

79.

83. (a) and (b) Maximum: \((1,3)\) Minimum: \((1,1)\)
85. \(t \approx 4.92 \approx 455\) P.M.; \(d \approx 64 \mathrm{~km}\)
87. \((0,0),(5,0),(0,10) \quad\) 89. Proof
91. 14.05 ft
93. \(3\left(3^{2 / 3}+2^{2 / 3}\right)^{3 / 2} \approx 21.07 \mathrm{ft} \quad\) 95. \(v \approx 54.77 \mathrm{mi} / \mathrm{h}\)
97. \(-1.532,-0.347,1.879\)
99. \(-1.164,1.453\)
101. \(d y=(1-\cos x+x \sin x) d x\)
103. \(d S= \pm 1.8 \pi \mathrm{~cm}^{2}, \frac{d S}{S} \times 100 \approx \pm 0.56 \%\)
\(d V= \pm 8.1 \pi \mathrm{~cm}^{3}, \frac{d V}{V} \times 100 \approx \pm 0.83 \%\)

\section*{P.S. Problem Solving (page 245)}
1. Choices of \(a\) may vary.

(a) One relative minimum at \((0,1)\) for \(a \geq 0\)
(b) One relative maximum at \((0,1)\) for \(a<0\)
(c) Two relative minima for \(a<0\) when \(x= \pm \sqrt{-a / 2}\)
(d) If \(a<0\), there are three critical points; if \(a \geq 0\), there is only one critical point.
3. All \(c\) where \(c\) is a real number 5-7. Proofs
9. About 9.19 ft
11. Minimum: \((\sqrt{2}-1) d\);There is no maximum.
13. (a)-(c) Proofs
15. (a)
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.5 & 1 & 2 \\
\hline\(\sqrt{\mathbf{1 + x}}\) & 1 & 1.2247 & 1.4142 & 1.7321 \\
\hline\(\frac{1}{2} x+\mathbf{1}\) & 1 & 1.25 & 1.5 & 2 \\
\hline
\end{tabular}
(b) Proof
17. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{v}\) & 20 & 40 & 60 & 80 & 100 \\
\hline \(\boldsymbol{s}\) & 5.56 & 11.11 & 16.67 & 22.22 & 27.78 \\
\hline \(\boldsymbol{d}\) & 5.1 & 13.7 & 27.2 & 44.2 & 66.4 \\
\hline
\end{tabular}
\(d(s)=0.071 s^{2}+0.389 s+0.727\)
(b) The distance between the back of the first vehicle and the front of the second vehicle is \(d(s)\), the safe stopping distance. The first vehicle passes the given point in \(5.5 / s\) seconds, and the second vehicle takes \(d(s) / s\) additional seconds. So, \(T=d(s) / s+5.5 / s\).
(c)

(d) \(s \approx 9.365 \mathrm{~m} / \mathrm{sec} ; 1.719 \mathrm{sec} ; 33.714 \mathrm{~km} / \mathrm{h}\)
(e) 10.597 m
19. (a) \(P(x)=x-x^{2}\)
(b)


\section*{Chapter 4}

\section*{Section 4.1 (page 255)}

1-3. Proofs 5. \(y=3 t^{3}+C\)
7. \(y=\frac{2}{5} x^{5 / 2}+C\) Original Integral
9. \(\int \sqrt[3]{x} d x\) Rewrite Integrate \(\int x^{1 / 3} d x\)
Integrate Simplify
\(\frac{x^{4 / 3}}{4 / 3}+C \quad \frac{3}{4} x^{4 / 3}+C\)
11. \(\int \frac{1}{x \sqrt{x}} d x\)
\(\int x^{-3 / 2} d x \quad \frac{x^{-1 / 2}}{-1 / 2}+C\) \(-\frac{2}{\sqrt{x}}+C\)
13. \(\int \frac{1}{2 x^{3}} d x\) \(\frac{1}{2} \int x^{-3} d x \quad \frac{1}{2}\left(\frac{x^{-2}}{-2}\right)+C \quad-\frac{1}{4 x^{2}}+C\)
15. \(\frac{1}{2} x^{2}+7 x+C\)
17. \(x^{2}-x^{3}+C\)
19. \(\frac{1}{6} x^{6}+x+C\)
21. \(\frac{2}{5} x^{5 / 2}+x^{2}+x+C\)
23. \(\frac{3}{5} x^{5 / 3}+C\)
25. \(-1 /\left(4 x^{4}\right)+C\)
27. \(\frac{2}{3} x^{3 / 2}+12 x^{1 / 2}+C=\frac{2}{3} x^{1 / 2}(x+18)+C\)
29. \(x^{3}+\frac{1}{2} x^{2}-2 x+C\)
31. \(\frac{2}{7} y^{7 / 2}+C\)
33. \(x+C\)
35. \(5 \sin x-4 \cos x+C\)
37. \(t+\csc t+C\)
39. \(\tan \theta+\cos \theta+C\)
41. \(\tan y+C\)
43. \(-\csc x+C\)
45. Answers will vary.

Example:

47. Answers will vary. Example:

49. \(y=x^{2}-x+1\)
51. (a) Answers will vary. Example:

53. (a) Answers will vary. Example:

(b) \(y=\frac{1}{4} x^{2}-x+2\)

(b) \(y=\sin x+4\)

55. (a)

(b) \(y=x^{2}-6\)
(c)

57. \(f(x)=3 x^{2}+8 \quad\) 59. \(h(t)=2 t^{4}+5 t-11\)
61. \(f(x)=x^{2}+x+4 \quad\) 63. \(f(x)=-4 \sqrt{x}+3 x\)
65. (a) \(h(t)=\frac{3}{4} t^{2}+5 t+12\) (b) 69 cm
67. When you evaluate the integral \(\int f(x) d x\), you are finding a function \(F(x)\) that is an antiderivative of \(f(x)\). So, there is no difference.
69.

71. 62.25 ft
73. \(v_{0} \approx 187.617 \mathrm{ft} / \mathrm{sec}\)
75. \(v(t)=-9.8 t+C_{1}=-9.8 t+v_{0}\)
\(f(t)=-4.9 t^{2}+v_{0} t+C_{2}=-4.9 t^{2}+v_{0} t+s_{0}\)
77. \(7.1 \mathrm{~m} \quad\) 79. \(320 \mathrm{~m} ;-32 \mathrm{~m} / \mathrm{sec}\)
81. (a) \(v(t)=3 t^{2}-12 t+9 ; a(t)=6 t-12\)
(b) \((0,1),(3,5)\)
(c) -3
83. \(a(t)=-1 /\left(2 t^{3 / 2}\right) ; x(t)=2 \sqrt{t}+2\)
85. (a) \(1.18 \mathrm{~m} / \mathrm{sec}^{2}\)
(b) 190 m
87. (a) 300 ft
(b) \(60 \mathrm{ft} / \mathrm{sec} \approx 41 \mathrm{mi} / \mathrm{h}\)
89. (a) Airplane A: \(s_{A}=\frac{625}{2} t^{2}-150 t+10\)

Airplane B: \(s_{B}=\frac{49,275}{68} t^{2}-250 t+17\)
(b)

(c) \(d=\frac{28,025}{68} t^{2}-100 t+7\)


Yes, \(d<3\) for \(t>0.0505 \mathrm{~h}\)

\section*{91. True \\ 93. True}
95. False. \(f\) has an infinite number of antiderivatives, each differing by a constant.
97.


\section*{Section 4.2 (page 267)}
1. 75
3. \(\frac{158}{85}\)
5. \(4 c\)
7. \(\sum_{i=1}^{11} \frac{1}{5 i}\)
9. \(\sum_{j=1}^{6}\left[7\left(\frac{j}{6}\right)+5\right]\)
11. \(\frac{2}{n} \sum_{i=1}^{n}\left[\left(\frac{2 i}{n}\right)^{3}-\left(\frac{2 i}{n}\right)\right]\)
13. \(\frac{3}{n} \sum_{i=1}^{n}\left[2\left(1+\frac{3 i}{n}\right)^{2}\right]\)
15. 84
17. 1200
19. 2470
21. 12,040
23. 2930
25. (a)

\[
\text { Area } \approx 21.75
\]
(b)


Area \(\approx 17.25\)
27. \(13<\) (Area of region) \(<15\)
29. \(55<(\) Area of region \()<74.5\)
31. \(0.7908<\) (Area of region) \(<1.1835\)
33. The area of the shaded region falls between 12.5 square units and 16.5 square units.
35. The area of the shaded region falls between 7 square units and 11 square units.
37. \(\frac{81}{4} \quad\) 39. 9
41. \(A \approx S \approx 0.768\)
43. \(A \approx S \approx 0.746\)
\(A \approx s \approx 0.518\)
\(A \approx s \approx 0.646\)
45. \((n+2) / n\)
\(n=10: S=1.2\)
\(n=100: S=1.02\)
\(n=1000: S=1.002\)
\(n=10,000: S=1.0002\)
47. \([2(n+1)(n-1)] / n^{2}\)
\(n=10: S=1.98\)
\(n=100: S=1.9998\)
\(n=1000: S=1.999998\)
\(n=10,000: S=1.99999998\)
49. \(\lim _{n \rightarrow \infty}\left[\frac{12(n+1)}{n}\right]=12\)
51. \(\lim _{n \rightarrow \infty} \frac{1}{6}\left(\frac{2 n^{3}-3 n^{2}+n}{n^{3}}\right)=\frac{1}{3}\)
53. \(\lim _{n \rightarrow \infty}[(3 n+1) / n]=3\)
55. (a)

(b) \(\Delta x=(2-0) / n=2 / n\)
(c) \(s(n)=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x\)
\(=\sum_{i=1}^{n}[(i-1)(2 / n)](2 / n)\)
(d) \(S(n)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\)
\(=\sum_{i=1}^{n}[i(2 / n)](2 / n)\)
(e)
\begin{tabular}{|l|c|c|c|c|}
\hline\(n\) & 5 & 10 & 50 & 100 \\
\hline\(s(n)\) & 1.6 & 1.8 & 1.96 & 1.98 \\
\hline \(\boldsymbol{S}(n)\) & 2.4 & 2.2 & 2.04 & 2.02 \\
\hline
\end{tabular}
(f) \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[(i-1)(2 / n)](2 / n)=2 ; \lim _{n \rightarrow \infty} \sum_{i=1}^{n}[i(2 / n)](2 / n)=2\)
57. \(A=3\)

61. \(A=54\)

65. \(A=\frac{2}{3}\)

69. \(A=\frac{125}{3}\)

71. \(A=\frac{44}{3}\)

59. \(A=\frac{7}{3}\)

63. \(A=34\)

67. \(A=8\)

77.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 4 & 8 & 12 & 16 & 20 \\
\hline \begin{tabular}{l} 
Approximate \\
Area
\end{tabular} & 5.3838 & 5.3523 & 5.3439 & 5.3403 & 5.3384 \\
\hline
\end{tabular}
79.
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 4 & 8 & 12 & 16 & 20 \\
\hline \begin{tabular}{l} 
Approximate \\
Area
\end{tabular} & 2.2223 & 2.2387 & 2.2418 & 2.2430 & 2.2435 \\
\hline
\end{tabular}
81. b
83. You can use the line \(y=x\) bounded by \(x=a\) and \(x=b\). The sum of the areas of the inscribed rectangles in the figure below is the lower sum.


The sum of the areas of the circumscribed rectangles in the figure below is the upper sum.


The rectangles in the first graph do not contain all of the area of the region, and the rectangles in the second graph cover more than the area of the region. The exact value of the area lies between these two sums.
85. (a)

(b)

\[
s(4)=\frac{46}{3}
\]
(c)

\(M(4)=\frac{6112}{315}\)
(e)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 4 & 8 & 20 & 100 & 200 \\
\hline \(\boldsymbol{s}(\boldsymbol{n})\) & 15.333 & 17.368 & 18.459 & 18.995 & 19.060 \\
\hline \(\boldsymbol{S}(\boldsymbol{n})\) & 21.733 & 20.568 & 19.739 & 19.251 & 19.188 \\
\hline \(\boldsymbol{M}(\boldsymbol{n})\) & 19.403 & 19.201 & 19.137 & 19.125 & 19.125 \\
\hline
\end{tabular}
(f) Because \(f\) is an increasing function, \(s(n)\) is always increasing and \(S(n)\) is always decreasing.
87. True
89. Suppose there are \(n\) rows and \(n+1\) columns. The stars on the left total \(1+2+\cdots+n\), as do the stars on the right. There are \(n(n+1)\) stars in total. So, \(2[1+2+\cdots+n]=n(n+1)\) and \(1+2+\cdots+n=[n(n+1)] / 2\).
91. (a) \(y=\left(-4.09 \times 10^{-5}\right) x^{3}+0.016 x^{2}-2.67 x+452.9\)
(b)

(c) \(76,897.5 \mathrm{ft}^{2}\)
93. Proof

\section*{Section 4.3 (page 278)}
1. \(2 \sqrt{3} \approx 3.464\)
3. 32
5. 0
7. \(\frac{10}{3}\)
9. \(\int_{-1}^{5}(3 x+10) d x\)
11. \(\int_{0}^{3} \sqrt{x^{2}+4} d x\)
13. \(\int_{0}^{4} 5 d x\)
15. \(\int_{-4}^{4}(4-|x|) d x\)
17. \(\int_{-5}^{5}\left(25-x^{2}\right) d x\)
19. \(\int_{0}^{\pi / 2} \cos x d x\)
21. \(\int_{0}^{2} y^{3} d y\)
23.

25.

\(A=12\)
\[
A=8
\]
27.

29.

\[
A=14
\]
\(A=1\)
31

\(A=49 \pi / 2\)
39. 16
41. (a) 13
(b) -10
(c) 0
(d) 30
43. (a) 8
(b) -12
(c) -4
(d) 30
45. \(-48,88\)
47. (a) \(-\pi\) (b) 4
(c) \(-(1+2 \pi)\)
(d) \(3-2 \pi\)
(e) \(5+2 \pi\) (f) \(23-2 \pi\)
49.
(a) 14
(b) 4 (c) 8
(d) 0
51. 81
53. \(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x>\int_{1}^{5} f(x) d x\)
55. No. There is a discontinuity at \(x=4\).
57. a 59. d
61.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 4 & 8 & 12 & 16 & 20 \\
\hline \(\boldsymbol{L}(\boldsymbol{n})\) & 3.6830 & 3.9956 & 4.0707 & 4.1016 & 4.1177 \\
\hline \(\boldsymbol{M}(\boldsymbol{n})\) & 4.3082 & 4.2076 & 4.1838 & 4.1740 & 4.1690 \\
\hline \(\boldsymbol{R}(\boldsymbol{n})\) & 3.6830 & 3.9956 & 4.0707 & 4.1016 & 4.1177 \\
\hline
\end{tabular}
63.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 4 & 8 & 12 & 16 & 20 \\
\hline \(\boldsymbol{L}(\boldsymbol{n})\) & 0.5890 & 0.6872 & 0.7199 & 0.7363 & 0.7461 \\
\hline \(\boldsymbol{M}(\boldsymbol{n})\) & 0.7854 & 0.7854 & 0.7854 & 0.7854 & 0.7854 \\
\hline \(\boldsymbol{R}(\boldsymbol{n})\) & 0.9817 & 0.8836 & 0.8508 & 0.8345 & 0.8247 \\
\hline
\end{tabular}
65. True 67. True
69. False: \(\int_{0}^{2}(-x) d x=-2\)
71. 272
73. Proof
75. No. No matter how small the subintervals, the number of both rational and irrational numbers within each subinterval is infinite and \(f\left(c_{i}\right)=0\) or \(f\left(c_{i}\right)=1\).
77. \(a=-1\) and \(b=1\) maximize the integral.
79. \(\frac{1}{3}\)

Section 4.4 (page 293)
1.


Positive
3.


Zero
5. 12 7. -2 9. \(-\frac{10}{3}\)
11. \(\frac{1}{3}\)
13. \(\frac{1}{2}\)
15. \(\frac{2}{3}\)
17. -4
19. \(-\frac{1}{18}\)
21. \(-\frac{27}{20} \quad\) 23. \(\frac{25}{2}\)
25. \(\frac{64}{3}\)
27. \(\pi+2\)
29. \(\pi / 4\)
31. \(2 \sqrt{3} / 3\)
33. 0
35. \(\frac{1}{6}\)
37. 1
39. \(\frac{52}{3}\)
41. 20
43. \(\frac{32}{3}\)
45. \(3 \sqrt[3]{2} / 2 \approx 1.8899\)
47. \(\frac{1444}{225} \approx 6.4178\)
49. \(\pm \arccos \sqrt{\pi} / 2 \approx \pm 0.4817\)
51. Average value \(=6\)
53. Average value \(=\frac{1}{4}\) \(x= \pm \sqrt{3} \approx \pm 1.7321\)
\[
x=\sqrt[3]{2} / 2 \approx 0.6300
\]
55. Average value \(=2 / \pi\)
57. About 540 ft \(x \approx 0.690, x \approx 2.451\)
59. (a) 8
(b) \(\frac{4}{3}\)
(c) \(\int_{1}^{7} f(x)\)
\(f(x) d x=20\); Average value \(=\frac{10}{3}\)
61. (a) \(F(x)=500 \sec ^{2} x\)
(b) \(1500 \sqrt{3} / \pi \approx 827 \mathrm{~N}\)
63. About 0.5318 L
65. (a) \(v=-0.00086 t^{3}+0.0782 t^{2}-0.208 t+0.10\)
(b)

(c) 2475.6 m
67. \(F(x)=2 x^{2}-7 x\)
\(F(2)=-6\)
\(F(5)=15\)
\(F(8)=72\)
69. \(F(x)=-20 / x+20\)
\(F(2)=10\)
\(F(5)=16\)
\(F(8)=\frac{35}{2}\)
71. \(F(x)=\sin x-\sin 1\)
\(F(2)=\sin 2-\sin 1 \approx 0.0678\)
\(F(5)=\sin 5-\sin 1 \approx-1.8004\)
\(F(8)=\sin 8-\sin 1 \approx 0.1479\)
73. (a) \(g(0)=0, g(2) \approx 7, g(4) \approx 9, g(6) \approx 8, g(8) \approx 5\)
(b) Increasing: \((0,4)\); Decreasing: \((4,8)\)
(c) A maximum occurs at \(x=4\).
(d)

75. \(\frac{1}{2} x^{2}+2 x\)
77. \(\frac{3}{4} x^{4 / 3}-12\)
79. \(\tan x-1\)
81. \(x^{2}-2 x\)
83. \(\sqrt{x^{4}+1}\)
85. \(x \cos x\)
87. 8
89. \(\cos x \sqrt{\sin x}\)
91. \(3 x^{2} \sin x^{6}\)
93.

95. (a) \(C(x)=1000\left(12 x^{5 / 4}+125\right)\)
(b) \(C(1)=\$ 137,000\)
\(C(5) \approx \$ 214,721\)
\(C(10) \approx \$ 338,394\)

An extremum of \(g\) occurs at \(x=2\).
97. (a) \(\frac{3}{2} \mathrm{ft}\) to the right
(b) \(\frac{113}{10} \mathrm{ft}\)
99. (a) 0 ft
(b) \(\frac{63}{2} \mathrm{ft}\)
101. (a) 2 ft to the right (b) 2 ft
103. 28 units
105. 8190 L
107. \(f(x)=x^{-2}\) has a nonremovable discontinuity at \(x=0\).
109. \(f(x)=\sec ^{2} x\) has a nonremovable discontinuity at \(x=\pi / 2\).
111. \(2 / \pi \approx 63.7 \%\) 113. True
115. \(f^{\prime}(x)=\frac{1}{(1 / x)^{2}+1}\left(-\frac{1}{x^{2}}\right)+\frac{1}{x^{2}+1}=0\)

Because \(f^{\prime}(x)=0, f(x)\) is constant.
117. (a) 0
(b) 0
(c) \(x f(x)+\int_{0}^{x} f(t) d t\)
(d) 0

\section*{Section 4.5 (page 306)}
\[
\underline{\int f(g(x)) g^{\prime}(x) d x \quad \underline{u}=g(x) \quad d u=g^{\prime}(x) d x}
\]
1. \(\int\left(8 x^{2}+1\right)^{2}(16 x) d x \quad 8 x^{2}+1 \quad 16 x d x\)
3. \(\int \frac{x}{\sqrt{x^{2}+1}} d x \quad x^{2}+1 \quad 2 x d x\)
5. \(\int \tan ^{2} x \sec ^{2} x d x \quad \tan x \quad \sec ^{2} x d x\)
7. No 9. Yes 11. \(\frac{1}{5}(1+6 x)^{5}+C\)
13. \(\frac{2}{3}\left(25-x^{2}\right)^{3 / 2}+C\)
15. \(\frac{1}{12}\left(x^{4}+3\right)^{3}+C\)
17. \(\frac{1}{15}\left(x^{3}-1\right)^{5}+C\)
19. \(\frac{1}{3}\left(t^{2}+2\right)^{3 / 2}+C\)
21. \(-\frac{15}{8}\left(1-x^{2}\right)^{4 / 3}+C\)
23. \(1 /\left[4\left(1-x^{2}\right)^{2}\right]+C\)
25. \(-1 /\left[3\left(1+x^{3}\right)\right]+C\)
27. \(-\sqrt{1-x^{2}}+C\)
29. \(-\frac{1}{4}(1+1 / t)^{4}+C\)
31. \(\sqrt{2 x}+C\)
33. \(\frac{2}{5} x^{5 / 2}+\frac{10}{3} x^{3 / 2}-16 x^{1 / 2}+C=\frac{1}{15} \sqrt{x}\left(6 x^{2}+50 x-240\right)+C\)
35. \(\frac{1}{4} t^{4}-4 t^{2}+C\)
37. \(6 y^{3 / 2}-\frac{2}{5} y^{5 / 2}+C=\frac{2}{5} y^{3 / 2}(15-y)+C\)
39. \(2 x^{2}-4 \sqrt{16-x^{2}}+C\)
41. \(-1 /\left[2\left(x^{2}+2 x-3\right)\right]+C\)
43. (a) Answers will vary. Example:
45. (a) Answers will vary.
 Example:

(b) \(y=-\frac{1}{3}\left(4-x^{2}\right)^{3 / 2}+2\)
(b) \(y=\frac{1}{2} \sin x^{2}+1\)

47. \(-\cos (\pi x)+C \quad\) 49. \(-\frac{1}{4} \cos 4 x+C \quad\) 51. \(-\sin (1 / \theta)+C\)
53. \(\frac{1}{4} \sin ^{2} 2 x+C\) or \(-\frac{1}{4} \cos ^{2} 2 x+C_{1}\) or \(-\frac{1}{8} \cos 4 x+C_{2}\)
55. \(\frac{1}{5} \tan ^{5} x+C \quad\) 57. \(\frac{1}{2} \tan ^{2} x+C\) or \(\frac{1}{2} \sec ^{2} x+C_{1}\)
59. \(-\cot x-x+C\)
61. \(f(x)=2 \cos (x / 2)+4\)
63. \(f(x)=-\frac{1}{2} \cos 4 x-1\)
65. \(f(x)=\frac{1}{12}\left(4 x^{2}-10\right)^{3}-8\)
67. \(\frac{2}{5}(x+6)^{5 / 2}-4(x+6)^{3 / 2}+C=\frac{2}{5}(x+6)^{3 / 2}(x-4)+C\)
69. \(-\left[\frac{2}{3}(1-x)^{3 / 2}-\frac{4}{5}(1-x)^{5 / 2}+\frac{2}{7}(1-x)^{7 / 2}\right]+C=\) \(-\frac{2}{105}(1-x)^{3 / 2}\left(15 x^{2}+12 x+8\right)+C\)
71. \(\frac{1}{8}\left[\frac{2}{5}(2 x-1)^{5 / 2}+\frac{4}{3}(2 x-1)^{3 / 2}-6(2 x-1)^{1 / 2}\right]+C=\) \((\sqrt{2 x-1} / 15)\left(3 x^{2}+2 x-13\right)+C\)
73. \(-x-1-2 \sqrt{x+1}+C\) or \(-(x+2 \sqrt{x+1})+C_{1}\)
75. \(0 \quad\) 77. \(12-\frac{8}{9} \sqrt{2}\)
79. 2 81. \(\frac{1}{2}\)
83. \(\frac{4}{15} \quad\) 85. \(3 \sqrt{3} / 4\)
87. \(f(x)=\left(2 x^{3}+1\right)^{3}+3\)
89. \(f(x)=\sqrt{2 x^{2}-1}-3\)
91. \(1209 / 28\)
93. 4
95. \(2(\sqrt{3}-1)\)
97. \(\frac{14}{3}\)


101. 9.21

103. \(\frac{272}{15}\)
105. \(\frac{2}{3}\)
107. (a) \(\frac{64}{3}\)
(b) \(\frac{128}{3}\)
(c) \(-\frac{64}{3}\)
(d) 64
109. \(2 \int_{0}^{3}\left(4 x^{2}-6\right) d x=36\)
111. If \(u=5-x^{2}\), then \(d u=-2 x d x\) and \(\int x\left(5-x^{2}\right)^{3} d x=-\frac{1}{2} \int\left(5-x^{2}\right)^{3}(-2 x) d x=-\frac{1}{2} \int u^{3} d u\).
113. 16
115. \(\$ 250,000\)
117. (a) Relative minimum: \((6.7,0.7)\) or July Relative maximum: \((1.3,5.1)\) or February
(b) 36.68 in
(c) 3.99 in .
119. (a


Maximum flow:
\(R \approx 61.713\) at \(t=9.36\).
(b) 1272 thousand gallons
121.
(a) \(P_{0.50,0.75} \approx 35.3 \%\)
(b) \(b \approx 58.6 \%\)
123.
(a) \(\$ 9.17\)
(b) \(\$ 3.14\)
125. (a)

(b) \(g\) is nonnegative because the graph of \(f\) is positive at the beginning, and generally has more positive sections than negative ones.
(c) The points on \(g\) that correspond to the extrema of \(f\) are points of inflection of \(g\).
(d) No, some zeros of \(f\), such as \(x=\pi / 2\), do not correspond to extrema of \(g\). The graph of \(g\) continues to increase after \(x=\pi / 2\) because \(f\) remains above the \(x\)-axis.
(e)


The graph of \(h\) is that of \(g\) shifted 2 units downward.
127. (a) Proof (b) Proof
129. False. \(\int(2 x+1)^{2} d x=\frac{1}{6}(2 x+1)^{3}+C\)
131. True
133. True

135-137. Proofs
139. Putnam Problem A1, 1958

\section*{Section 4.6 (page 316)}
\begin{tabular}{|c|c|c|}
\hline Trapezoidal & Simpson's & Exact \\
\hline 1. 2.7500 & 2.6667 & 2.6667 \\
\hline 3. 4.2500 & 4.0000 & 4.0000 \\
\hline 5. 20.2222 & 20.0000 & 20.0000 \\
\hline 7. 12.6640 & 12.6667 & 12.6667 \\
\hline 9. 0.3352 & 0.3334 & 0.3333 \\
\hline Trapezoidal & Simpson's & Graphing Utility \\
\hline 11. 3.2833 & 3.2396 & 3.2413 \\
\hline 13. 0.3415 & 0.3720 & 0.3927 \\
\hline 15. 0.5495 & 0.5483 & 0.5493 \\
\hline 17. -0.0975 & -0.0977 & -0.0977 \\
\hline 19. 0.1940 & 0.1860 & 0.1858 \\
\hline
\end{tabular}
21. Trapezoidal: Linear (1st-degree) polynomials

Simpson's: Quadratic (2nd-degree) polynomials
23. (a) 1.500
(b) 0.000
25. (a) 0.01
(b) 0.0005
27. (a) 0.1615
(b) 0.0066
29. (a) \(n=366\)
(b) \(n=26\)
31. (a) \(n=77\)
(b) \(n=8\)
33. (a) \(n=287\)
(b) \(n=16\)
35. (a) \(n=130\)
(b) \(n=12\)
37. (a) \(n=643\)
(b) \(n=48\)
39. (a) 24.5 (b) 25.67 41. Answers will vary.
43.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & \(\boldsymbol{L}(\boldsymbol{n})\) & \(\boldsymbol{M}(\boldsymbol{n})\) & \(\boldsymbol{R}(\boldsymbol{n})\) & \(\boldsymbol{T}(\boldsymbol{n})\) & \(\boldsymbol{S}(\boldsymbol{n})\) \\
\hline 4 & 0.8739 & 0.7960 & 0.6239 & 0.7489 & 0.7709 \\
\hline 8 & 0.8350 & 0.7892 & 0.7100 & 0.7725 & 0.7803 \\
\hline 10 & 0.8261 & 0.7881 & 0.7261 & 0.7761 & 0.7818 \\
\hline 12 & 0.8200 & 0.7875 & 0.7367 & 0.7783 & 0.7826 \\
\hline 16 & 0.8121 & 0.7867 & 0.7496 & 0.7808 & 0.7836 \\
\hline 20 & 0.8071 & 0.7864 & 0.7571 & 0.7821 & 0.7841 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { 45. } 0.701 & \text { 47. } 17.476\end{array}\)
49. (a) Trapezoidal Rule: 12.518 ; Simpson's Rule: 12.592
(b) \(y=-1.37266 x^{3}+4.0092 x^{2}-0.620 x+4.28\)
\[
\int_{0}^{2} y d x \approx 12.521
\]
51. 3.14159
53. \(7435 \mathrm{~m}^{2}\)
55. 2.477

\section*{Review Exercises for Chapter 4 (page 318)}
1.

3. \(\frac{4}{3} x^{3}+\frac{1}{2} x^{2}+3 x+C\)
5. \(x^{2} / 2-4 / x^{2}+C\)
7. \(x^{2}+9 \cos x+C\)
9. \(y=1-3 x^{2}\)
11. (a) Answers will vary.
(b) \(y=x^{2}-4 x-2\)

Example:


13. \(240 \mathrm{ft} / \mathrm{sec}\)
15. (a) 3 sec; 144 ft
(b) \(\frac{3}{2} \mathrm{sec}\)
(c) 108 ft
17. \(\sum_{n=1}^{10} \frac{1}{3 n}\)
19. 420
21. 3310
23. (a) \(\sum_{i=1}^{10}(2 i-1)\)
(b) \(\sum_{i=1}^{n} i^{3}\)
(c) \(\sum_{i=1}^{10}(4 i+2)\)
25. \(9.038<\) (Area of region) \(<13.038\)
27. \(A=15\)
29. \(A=12\)


31. \(\frac{27}{2}\)
33. \(\int_{4}^{6}(2 x-3) d x\)
35. \(\int_{-4}^{0}(2 x+8) d x\)
37.

39. (a) 17
(b) 7
(c) 9
(d) 84
\(A=\frac{25}{2}\)
41. 56
43. 0
45. \(\frac{422}{5}\)
49.

\(A=10\)
53.

\(A=\frac{1}{4}\)
57.

\(A=16\)
59. Average value \(=\frac{2}{5}, x=\frac{25}{4}\)

61. \(x^{2} \sqrt{1+x^{3}}\)
63. \(x^{2}+3 x+2\)
65. \(-\frac{1}{7} x^{7}+\frac{9}{5} x^{5}-9 x^{3}+27 x+C\)
67. \(\frac{2}{3} \sqrt{x^{3}+3}+C\)
69. \(-\frac{1}{30}\left(1-3 x^{2}\right)^{5}+C=\frac{1}{30}\left(3 x^{2}-1\right)^{5}+C\)
71. \(\frac{1}{4} \sin ^{4} x+C\)
73. \(-2 \sqrt{1-\sin \theta}+C\)
75. \(\frac{1}{3 \pi}(1+\sec \pi x)^{3}+C\)
77. \(21 / 4\)
79. 2
81. \(28 \pi / 15\)
83. 2
85. (a) Answers will vary.

Example:
(b) \(y=-\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}+5\)


87. \(\frac{468}{7}\)
89. (a) \(\int_{0}^{12}[2.880+2.125 \sin (0.578 t+0.745)] d t \approx 36.63\) in. (b) 2.22 in .
91. Trapezoidal Rule: 0.285

Simpson's Rule: 0.284
Graphing Utility: 0.284
93. Trapezoidal Rule: 0.637

Simpson's Rule: 0.685
Graphing Utility: 0.704

\section*{P.S. Problem Solving (page 321)}
1. (a) \(L(1)=0 \quad\) (b) \(L^{\prime}(x)=1 / x, L^{\prime}(1)=1\)
(c) \(x \approx 2.718\)
(d) Proof
3. (a) \(\lim _{n \rightarrow \infty}\left[\frac{32}{n^{5}} \sum_{i=1}^{n} i^{4}-\frac{64}{n^{4}} \sum_{i=1}^{n} i^{3}+\frac{32}{n^{3}} \sum_{i=1}^{n} i^{2}\right]\)
(b) \(\left(16 n^{4}-16\right) /\left(15 n^{4}\right)\)
(c) \(16 / 15\)
5. (a)

(b)

(c) Relative maxima at \(x=\sqrt{2}, \sqrt{6}\)

Relative minima at \(x=2,2 \sqrt{2}\)
(d) Points of inflection at \(x=1, \sqrt{3}, \sqrt{5}, \sqrt{7}\)
7. (a)


Area \(=36\)
9. (a)

(b)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \(\boldsymbol{F}(\boldsymbol{x})\) & 0 & \(-\frac{1}{2}\) & -2 & \(-\frac{7}{2}\) & -4 & \(-\frac{7}{2}\) & -2 & \(\frac{1}{4}\) & 3 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { (c) } x=4,8 & \text { (d) } x=2\end{array}\)
11. Proof
13.
15. \(1 \leq \int_{0}^{1} \sqrt{1+x^{4}} d x \leq \sqrt{2}\)
17. (a) Proof
(b) Proof
(c) Proof
19. (a) \(R(n), I, T(n), L(n)\)
(b) \(S(4)=\frac{1}{3}[f(0)+4 f(1)+2 f(2)+4 f(3)+f(4)] \approx 5.42\)
21. \(a=-4, b=4\)

\section*{Chapter 5}

\section*{Section 5.1 (page 331)}
1.
\begin{tabular}{|l|c|c|c|c|}
\hline\(x\) & 0.5 & 1.5 & 2 & 2.5 \\
\hline \(\int_{1}^{x}(\mathbf{1} / t) d t\) & -0.6932 & 0.4055 & 0.6932 & 0.9163 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{x}\) & 3 & 3.5 & 4 \\
\hline \(\int_{\mathbf{1}}^{\boldsymbol{x}}(\mathbf{1} / \boldsymbol{t}) \boldsymbol{d t}\) & 1.0987 & 1.2529 & 1.3865 \\
\hline
\end{tabular}
3. (a) 3.8067 (b) \(\ln 45=\int_{1}^{45} \frac{1}{t} d t \approx 3.8067\)
5. (a) -0.2231
(b) \(\ln 0.8=\int_{1}^{0.8} \frac{1}{t} d t \approx-0.2231\)
7.
7.

13.

\[
\text { Domain: } x>0
\]

Domain: \(x>0\)
15.


Domain: \(x>1\)
17.


Domain: \(x>-2\)
19. (a) 1.7917
(b) -0.4055
\(\begin{array}{ll}\text { (c) } 4.3944 & \text { (d) } 0.5493\end{array}\)
21. \(\ln x-\ln 4\)
23. \(\ln x+\ln y-\ln z\)
25. \(\ln x+\frac{1}{2} \ln \left(x^{2}+5\right)\)
27. \(\frac{1}{2}[\ln (x-1)-\ln x]\)
29. \(\ln z+2 \ln (z-1)\)
31. \(\ln \frac{x-2}{x+2}\)
33. \(\ln \sqrt[3]{\frac{x(x+3)^{2}}{x^{2}-1}}\)
35. \(\ln \left(9 / \sqrt{x^{2}+1}\right)\)
37. (a)

39. \(-\infty\) 41. \(\ln 4 \approx 1.3863\)
43. \(y=3 x-3\)
\[
\text { (b) } \begin{aligned}
f(x)=\ln \frac{x^{2}}{4} & =\ln x^{2}-\ln 4 \\
& =2 \ln x-\ln 4 \\
& =g(x)
\end{aligned}
\]
45. \(y=4 x-4\)
47. \(1 / x\)
49. \(2 / x\)
51. \(4(\ln x)^{3} / x\)
53. \(2 /(t+1)\)
55. \(\frac{2 x^{2}-1}{x\left(x^{2}-1\right)}\)
57. \(\frac{1-x^{2}}{x\left(x^{2}+1\right)}\)
59. \(\frac{1-2 \ln t}{t^{3}}\)
61. \(\frac{2}{x \ln x^{2}}=\frac{1}{x \ln x}\)
63. \(\frac{1}{1-x^{2}}\)
65. \(\frac{-4}{x\left(x^{2}+4\right)}\)
67. \(\frac{\sqrt{x^{2}+1}}{x^{2}}\)
69. \(\cot x\)
71. \(-\tan x+\frac{\sin x}{\cos x-1}\)
73. \(\frac{3 \cos x}{(\sin x-1)(\sin x+2)}\)
75. \([\ln (2 x)+1] / x\)
77. (a) \(5 x-y-2=0\)
(b)

79. (a) \(y=\frac{1}{3} x-\frac{1}{12} \pi+\frac{1}{2} \ln \left(\frac{3}{2}\right)\)
(b)

81. (a) \(y=x-1\)
83. \(2 x y /\left(3-2 y^{2}\right)\)
(b)

85. \(\frac{y\left(1-6 x^{2}\right)}{1+y}\)
87. \(y=x-1\)
89. \(x y^{\prime \prime}+y^{\prime}=x\left(-2 / x^{2}\right)+(2 / x)=0\)
91. Relative minimum: \(\left(1, \frac{1}{2}\right)\)
93. Relative minimum: \(\left(e^{-1},-e^{-1}\right)\)
95. Relative minimum: \((e, e)\);Point of inflection: \(\left(e^{2}, e^{2} / 2\right)\)
97. \(P_{1}(x)=x-1 ; P_{2}(x)=x-1-\frac{1}{2}(x-1)^{2}\)


The values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives agree at \(x=1\).
99. \(x \approx 0.567\)
101. \(\left(2 x^{2}+1\right) / \sqrt{x^{2}+1}\)
103. \(\frac{3 x^{3}+15 x^{2}-8 x}{2(x+1)^{3} \sqrt{3 x-2}}\)
105. \(\frac{\left(2 x^{2}+2 x-1\right) \sqrt{x-1}}{(x+1)^{3 / 2}}\)
107. The domain of the natural logarithmic function is \((0, \infty)\) and the range is \((-\infty, \infty)\). The function is continuous, increasing, and one-to-one, and its graph is concave downward. In addition, if \(a\) and \(b\) are positive numbers and \(n\) is rational, then \(\ln (1)=0, \quad \ln (a \cdot b)=\ln a+\ln b, \quad \ln \left(a^{n}\right)=n \ln a, \quad\) and \(\ln (a / b)=\ln a-\ln b\).
109. (a) Yes. If the graph of \(g\) is increasing, then \(g^{\prime}(x)>0\). Since \(f(x)>0\), you know that \(f^{\prime}(x)=g^{\prime}(x) f(x)\) and thus \(f^{\prime}(x)>0\). Therefore, the graph of \(f\) is increasing.
(b) No. Let \(f(x)=x^{2}+1\) (positive and concave up) and let \(g(x)=\ln \left(x^{2}+1\right)\) (not concave up).
111. False; \(\ln x+\ln 25=\ln 25 x\).
113. False; \(\pi\) is a constant, so \(\frac{d}{d x}[\ln \pi]=0\).
115. (a)

(b) \(30 \mathrm{yr} ; \$ 03,434.80\)
(c) \(20 \mathrm{yr} ; \$ 86,685.60\)
(d) When \(x=1398.43, d t / d x \approx-0.0805\).

When \(x=1611.19, d t / d x \approx-0.0287\).
(e) Two benefits of a higher monthly payment are a shorter term and the total amount paid is lower.
117. (a) 350

(c)

(b) \(T^{\prime}(70) \approx 0.97^{\circ} / \mathrm{lb} / \mathrm{in} .^{2}\)
119. (a)

121. (a)


For \(x>4, g^{\prime}(x)>f^{\prime}(x)\).
\(g\) is increasing at a faster rate than \(f\) for large values of \(x\).
\(\lim _{p \rightarrow \infty} T^{\prime}(p)=0\)
Answers will vary.
(b) When \(x=5\),
\(d y / d x=-\sqrt{3}\).
When \(x=9\),
\(d y / d x=-\sqrt{19} / 9\).
(c) \(\lim _{x \rightarrow 10^{-}} \frac{d y}{d x}=0\)
(b)


For \(x>256, g^{\prime}(x)>f^{\prime}(x)\). \(g\) is increasing at a faster rate than \(f\) for large values of \(x\).
\(f(x)=\ln x\) increases very slowly for large values of \(x\).

\section*{Section 5.2 (page 340)}
1. \(5 \ln |x|+C \quad\) 3. \(\ln |x+1|+C \quad\) 5. \(\frac{1}{2} \ln |2 x+5|+C\)
7. \(\frac{1}{2} \ln \left|x^{2}-3\right|+C \quad\) 9. \(\ln \left|x^{4}+3 x\right|+C\)
11. \(x^{2} / 2-\ln \left(x^{4}\right)+C\)
13. \(\frac{1}{3} \ln \left|x^{3}+3 x^{2}+9 x\right|+C\)
15. \(\frac{1}{2} x^{2}-4 x+6 \ln |x+1|+C \quad\) 17. \(\frac{1}{3} x^{3}+5 \ln |x-3|+C\)
19. \(\frac{1}{3} x^{3}-2 x+\ln \sqrt{x^{2}+2}+C\)
21. \(\frac{1}{3}(\ln x)^{3}+C\)
23. \(2 \sqrt{x+1}+C \quad\) 25. \(2 \ln |x-1|-2 /(x-1)+C\)
27. \(\sqrt{2 x}-\ln |1+\sqrt{2 x}|+C\)
29. \(x+6 \sqrt{x}+18 \ln |\sqrt{x}-3|+C\)
31. \(3 \ln \left|\sin \frac{\theta}{3}\right|+C\)
33. \(-\frac{1}{2} \ln |\csc 2 x+\cot 2 x|+C\)
35. \(\frac{1}{3} \sin 3 \theta-\theta+C\)
37. \(\ln |1+\sin t|+C\)
39. \(\ln |\sec x-1|+C\)
41. \(y=4 \ln |x|+C\)

43. \(y=-3 \ln |2-x|+C\)


The graph has a hole at \(x=2\).
45. \(s=-\frac{1}{2} \ln |\cos 2 \theta|+C\)
47. \(f(x)=-2 \ln x+3 x-2\)

49. (a)

(b) \(y=\ln \left(\frac{x+2}{2}\right)+1\)

51. (a)

(b) \(y=\ln x+x+3\)

53. \(\frac{5}{3} \ln 13 \approx 4.275\)
55. \(\frac{7}{3}\)
57. \(-\ln 3 \approx-1.099\)
59. \(\ln \left|\frac{2-\sin 2}{1-\sin 1}\right| \approx 1.929\)
61. \(2[\sqrt{x}-\ln (1+\sqrt{x})]+C\)
63. \(\ln \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+2 \sqrt{x}+C\)
65. \(\ln (\sqrt{2}+1)-\frac{\sqrt{2}}{2} \approx 0.174\)
67. \(1 / x\)
69. \(1 / x\)
71. d
73. \(6 \ln 3\)
75. \(\frac{1}{2} \ln 2\)
77. \(\frac{15}{2}+8 \ln 2 \approx 13.045\)
79. \((12 / \pi) \ln (2+\sqrt{3}) \approx 5.03\)
81. Trapezoidal Rule: 20.2

Simpson's Rule: 19.4667
83. Trapezoidal Rule: 5.3368 Simpson's Rule: 5.3632
85. Power Rule
87. Log Rule
89. \(x=2\)
91. Proof
93. \(-\ln |\cos x|+C=\ln |1 / \cos x|+C=\ln |\sec x|+C\)
95. \(\ln |\sec x+\tan x|+C=\ln \left|\frac{\sec ^{2} x-\tan ^{2} x}{\sec x-\tan x}\right|+C\)
\[
=-\ln |\sec x-\tan x|+C
\]
97. 1 99. \(1 /(e-1) \approx 0.582\)
101. \(P(t)=1000(12 \ln |1+0.25 t|+1) ; P(3) \approx 7715\)
103. \(\$ 68.27\)
105. False. \(\frac{1}{2}(\ln x)=\ln x^{1 / 2}\)
107. True
109. (a)

(b) Answers will vary.

Example:
\(y^{2}=e^{-\ln x+\ln 4}=4 / x\)

(c) Answers will vary.
111. Proof

\section*{Section 5.3 (page 349)}
1. (a) \(f(g(x))=5[(x-1) / 5]+1=x\) \(g(f(x))=[(5 x+1)-1] / 5=x\)
(b)

3. (a) \(f(g(x))=(\sqrt[3]{x})^{3}=x ; g(f(x))=\sqrt[3]{x^{3}}=x\)
(b)

5. (a) \(f(g(x))=\sqrt{x^{2}+4-4}=x\); \(g(f(x))=(\sqrt{x-4})^{2}+4=x\)
(b)

7. (a) \(f(g(x))=\frac{1}{1 / x}=x ; g(f(x))=\frac{1}{1 / x}=x\)
(b)

9.
10. b
11. a
12. d
13.


One-to-one, inverse exists.
15.


Not one-to-one, inverse does not exist.
17.


One-to-one, inverse exists.
21.


One-to-one, inverse exists.
23.
(a) \(f^{-1}(x)=(x+3) / 2\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) : all real numbers Range of \(f\) and \(f^{-1}\) : all real numbers
27. (a) \(f^{-1}(x)=x^{2}, x \geq 0\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) : \(x \geq 0\)
Range of \(f\) and \(f^{-1}\) : \(y \geq 0\)
31. (a) \(f^{-1}(x)=x^{3}+1\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) : all real numbers
Range of \(f\) and \(f^{-1}\) : all real numbers
19.


One-to-one, inverse exists.
25. (a) \(f^{-1}(x)=x^{1 / 5}\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) : all real numbers Range of \(f\) and \(f^{-1}\) : all real numbers
29. (a) \(f^{-1}(x)=\sqrt{4-x^{2}}\), \(0 \leq x \leq 2\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) :
\[
0 \leq x \leq 2
\]

Range of \(f\) and \(f^{-1}\) :
\[
0 \leq y \leq 2
\]
33. (a) \(f^{-1}(x)=x^{3 / 2}, x \geq 0\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) and \(f^{-1}\) : \(x \geq 0\)
Range of \(f\) and \(f^{-1}\) : \(y \geq 0\)
35. (a) \(f^{-1}(x)=\sqrt{7} x / \sqrt{1-x^{2}},-1<x<1\)
(b)

(c) \(f\) and \(f^{-1}\) are symmetric about \(y=x\).
(d) Domain of \(f\) : all real numbers

Domain of \(f^{-1}:-1<x<1\)
Range of \(f:-1<y<1\)
Range of \(f^{-1}\) : all real numbers
37.


39. (a) Proof
(b) \(y=\frac{20}{7}(80-x)\)
\(x\) : total cost
\(y\) : number of pounds of the less expensive commodity
(c) \([62.5,80]\) (d) 20 lb
41. Inverse exists.
43. Inverse does not exist.
45. Inverse exists.
47. \(f^{\prime}(x)=2(x-4)>0\) on \((4, \infty)\)
49. \(f^{\prime}(x)=-8 / x^{3}<0 \quad\) on \((0, \infty)\)
51. \(f^{\prime}(x)=-\sin x<0 \quad\) on \((0, \pi)\)
53. \(f^{-1}(x)= \begin{cases}{\left[1-\sqrt{1+16 x^{2}}\right] /(2 x)} & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}\)


The graph of \(f^{-1}\) is a reflection of the graph of \(f\) in the line \(y=-x\).
55. (a) and (b)

(c) \(f\) is one-to-one and has an inverse function.
57. (a) and (b)

(c) \(g\) is not one-to-one and does not have an inverse function.
59. One-to-one
61. One-to-one
\[
f^{-1}(x)=2-x, x \geq 0
\]
\(f^{-1}(x)=x^{2}+2, x \geq 0\)
63. \(f^{-1}(x)=\sqrt{x}+3, x \geq 0\) (Answer is not unique.)
65. \(f^{-1}(x)=x-3, x \geq 0\) (Answer is not unique.)
67. Inverse exists. Volume is an increasing function, and therefore is one-to-one. The inverse function gives the time \(t\) corresponding to the volume \(V\).
69. Inverse does not exist.
71. \(1 / 27\)
73. \(1 / 5\)
75. \(2 \sqrt{3} / 3\)
77. -2
79. \(1 / 13\)
81. (a) Domain of \(f\) : \((-\infty, \infty)\)
(b) Range of \(f\) : \((-\infty, \infty)\)

Domain of \(f^{-1}: \quad(-\infty, \infty)\)
Range of \(f^{-1}:(-\infty, \infty)\)
(c)

(d) \(f^{\prime}\left(\frac{1}{2}\right)=\frac{3}{4},\left(f^{-1}\right)^{\prime}\left(\frac{1}{8}\right)=\frac{4}{3}\)

Domain of \(f:[4, \infty)\)
Domain of \(f^{-1}: \quad[0, \infty)\)
(c)

85. \(-\frac{1}{1}\)
87. 32
89. 600
91. \(\left(g^{-1} \circ f^{-1}\right)(x)=(x+1) / 2\)
93. \((f \circ g)^{-1}(x)=(x+1) / 2\)
95. Let \(y=f(x)\) be one-to-one. Solve for \(x\) as a function of \(y\). Interchange \(x\) and \(y\) to get \(y=f^{-1}(x)\). Let the domain of \(f^{-1}\) be the range of \(f\). Verify that \(f\left(f^{-1}(x)\right)=x\) and \(f^{-1}(f(x))=x\).
Example: \(f(x)=x^{3} ; y=x^{3} ; x=\sqrt[3]{y} ; y=\sqrt[3]{x} ; f^{-1}(x)=\sqrt[3]{x}\)
97. Many \(x\)-values yield the same \(y\)-value. For example, \(f(\pi)=0=f(0)\). The graph is not continuous at \([(2 n-1) \pi] / 2\) where \(n\) is an integer.
99. \(\frac{1}{4}\)
101. False. Let \(f(x)=x^{2}\).
103. True
105. (a)

\(f\) does not pass the horizontal line test.
107-109. Proofs
111. Proof; concave upward
113. Proof; \(\sqrt{5} / 5\)
115. (a) Proof (b) \(f^{-1}(x)=\frac{b-d x}{c x-a}\)
(c) \(a=-d\), or \(b=c=0, a=d\)

\section*{Section 5.4 (page 358)}
1. \(x=4\)
3. \(x \approx 2.485\)
5. \(x=0\)
7. \(x \approx 0.511\)
9. \(x \approx 8.862\)
11. \(x \approx 7.389\)
13. \(x \approx 10.389\)
15. \(x \approx 5.389\)
17.

19.

21.

23. (a)


Translation two units to the right
(c)

25. c
26. d
27. a
28. b
29.

(b)


Reflection in the \(x\)-axis and a vertical shrink

Reflection in the \(y\)-axis and a translation three units upward
33.

31.

\[
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=e^{0.5}
\]
35. \(2.7182805<e\)
37. (a) \(y=3 x+1\)
(b) \(y=-3 x+1\)
39. \(2 e^{2 x}\)
41. \(e^{\sqrt{x}} /(2 \sqrt{x})\)
43. \(e^{x-4}\)
45. \(e^{x}\left(\frac{1}{x}+\ln x\right)\)
47. \(e^{x}\left(x^{3}+3 x^{2}\right)\)
49. \(3\left(e^{-t}+e^{t}\right)^{2}\left(e^{t}-e^{-t}\right)\)
51. \(2 e^{2 x} /\left(1+e^{2 x}\right)\)
53. \(-2\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)^{2}\)
55. \(-2 e^{x} /\left(e^{x}-1\right)^{2}\)
57. \(2 e^{x} \cos x\)
59. \(\cos (x) / x\)
61. \(y=-x+2\)
63. \(y=-4(x+1)\)
65. \(y=e x\)
67. \(y=(1 / e) x-1 / e\)
69. \(\frac{10-e^{y}}{x e^{y}+3}\)
71. \(y=(-e-1) x+1\)
73. \(3(6 x+5) e^{-3 x}\)
75. \(y^{\prime \prime}-y=0\)
\(4 e^{-x}-4 e^{-x}=0\)
77. \(y^{\prime \prime}-2 y^{\prime}+3 y=0\)
\(e^{x}[-\cos \sqrt{2} x-\sin \sqrt{2} x-2 \sqrt{2} \sin \sqrt{2} x+2 \sqrt{2} \cos \sqrt{2} x]-\)
\(2 e^{x}[-\sqrt{2} \sin \sqrt{2} x+\sqrt{2} \cos \sqrt{2} x+\cos \sqrt{2} x+\sin \sqrt{2} x]+\)
\(3 e^{x}[\cos \sqrt{2} x+\sin \sqrt{2} x]=0\)
\(0=0\)
79. Relative minimum: \((0,1)\)

81. Relative maximum:
\((2,1 / \sqrt{2 \pi})\)
Points of inflection:
\(\left(1, \frac{e^{-0.5}}{\sqrt{2 \pi}}\right),\left(3, \frac{e^{-0.5}}{\sqrt{2 \pi}}\right)\)

83. Relative minimum: \((0,0)\)

Relative maximum: \(\left(2,4 e^{-2}\right)\)
Points of inflection:
\(\left(2 \pm \sqrt{2},(6 \pm 4 \sqrt{2}) e^{-(2 \pm \sqrt{2})}\right)\)

85. Relative maximum: \((-1,1+e)\) Point of inflection: \((0,3)\)

87. \(A=\sqrt{2} e^{-1 / 2}\)
89. \(\left(\frac{1}{2}, e\right)\)

91. (a)

(c) 20,000

(b) When \(t=1, \frac{d V}{d t} \approx-5028.84\).

When \(t=5, \frac{d V}{d t} \approx-406.89\).
93. (a)

(c)

\(\ln P=-0.1499 h+9.3018\)
(b) \(P=10,957.7 e^{-0.1499 h}\)
(d) \(h=5:-776\) \(h=18:-111\)
95. \(P_{1}=1+x ; P_{2}=1+x+\frac{1}{2} x^{2}\)


The values of \(f, P_{1}\), and \(P_{2}\) and their first derivatives agree at \(x=0\).
97. \(12!=479,001,600\)

Stirling's Formula: 12 ! \(\approx 475,687,487\)
99. \(e^{5 x}+C\)
101. \(\frac{1}{2} e^{2 x-1}+C\)
103. \(\frac{1}{3} e^{x^{3}}+C\)
105. \(2 e^{\sqrt{x}}+C\)
107. \(x-\ln \left(e^{x}+1\right)+C_{1}\) or \(-\ln \left(1+e^{-x}\right)+C_{2}\)
109. \(-\frac{2}{3}\left(1-e^{x}\right)^{3 / 2}+C\)
111. \(\ln \left|e^{x}-e^{-x}\right|+C\)
113. \(-\frac{5}{2} e^{-2 x}+e^{-x}+C\)
115. \(\ln \left|\cos e^{-x}\right|+C\)
117. \(\left(e^{2}-1\right) /\left(2 e^{2}\right)\)
119. \((e-1) /(2 e)\)
121. \((e / 3)\left(e^{2}-1\right)\)
123. \(\ln \left(\frac{1+e^{6}}{2}\right)\)
125. \((1 / \pi)\left[e^{\sin \left(\pi^{2} / 2\right)}-1\right]\)
127. \([1 /(2 a)] e^{a x^{2}}+C\)
129. \(f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)\)
131. (a)

(b) \(y=-4 e^{-x / 2}+5\)

133. \(e^{5}-1 \approx 147.413\)

135. \(2\left(1-e^{-3 / 2}\right) \approx 1.554\)

137. Midpoint Rule: \(92.190 ;\) Trapezoidal Rule: 93.837 ; Simpson's Rule: 92.7385
139. The probability that a given battery will last between 48 months and 60 months is approximately \(47.72 \%\)
141. (a) \(t=\frac{1}{2 k} \ln \frac{B}{A}\)
(b) \(x^{\prime \prime \prime}(t)=k^{2}\left(A e^{k t}+B e^{-k t}\right), k^{2}\) is the constant of proportionality.
143. \(f(x)=e^{x}\)

The domain of \(f(x)\) is \((-\infty, \infty)\) and the range of \(f(x)\) is \((0, \infty)\). \(f(x)\) is continuous, increasing, one-to-one, and concave upward on its entire domain.
\(\lim _{x \rightarrow-\infty} e^{x}=0\) and \(\lim _{x \rightarrow \infty} e^{x}=\infty\)
145. (a) Log Rule (b) Substitution
147. \(\int_{0}^{x} e^{t} d t \geq \int_{0}^{x} 1 d t ; e^{x}-1 \geq x ; e^{x} \geq x+1\) for \(x \geq 0\)
149. \(x \approx 0.567\) 151. Proof

\section*{Section 5.5 (page 368)}
1. -3
3. 0
5. (a) \(\log _{2} 8=3\)
(b) \(\log _{3}(1 / 3)=-1\)
7. (a) \(10^{-2}=0.01\) (b) \(\left(\frac{1}{2}\right)^{-3}=8\)
9.

13.

19. (a) \(x=3\)
(b) \(x=-1\)
21. (a) \(x=\frac{1}{3}\)
(b) \(x=\frac{1}{16}\)
23. (a) \(x=-1\),
(b) \(x=\frac{1}{3}\)
25. 1.965
27. -6.288
29. 12.253
31. 33.000
35.

\((-1.059,0)\)
15. d
16. c
17. b
18. a
37.

(2.340, 0)
39.

41. \((\ln 4) 4^{x}\)
43. \((-4 \ln 5) 5^{-4 x}\)
45. \(9^{x}(x \ln 9+1)\)
47. \(t 2^{t}(t \ln 2+2)\)
49. \(-2^{-\theta}[(\ln 2) \cos \pi \theta+\pi \sin \pi \theta]\)
51. \(5 /[(\ln 4)(5 x+1)]\)
53. \(2 /[(\ln 5)(t-4)]\)
55. \(x /\left[(\ln 5)\left(x^{2}-1\right)\right]\)
57. \((x-2) /[(\ln 2) x(x-1)]\)
59. \((3 x-2) /[(2 x \ln 3)(x-1)]\)
61. \(5(1-\ln t) /\left(t^{2} \ln 2\right)\)
63. \(y=-2 x \ln 2-2 \ln 2+2\)
65. \(y=[1 /(27 \ln 3)] x+3-1 / \ln 3\)
67. \(2(1-\ln x) x^{(2 / x)-2}\)
69. \((x-2)^{x+1}[(x+1) /(x-2)+\ln (x-2)]\)
71. \(y=x\)
73. \(y=\frac{\cos e}{e} x-\cos e+1\)
75. \(3^{x} / \ln 3+C\)
77. \(\frac{1}{3} x^{3}-\frac{2^{-x}}{\ln 2}+C\)
79. \([-1 /(2 \ln 5)]\left(5^{-x^{2}}\right)+C\)
81. \(\ln \left(3^{2 x}+1\right) /(2 \ln 3)+C\)
83. \(7 /(2 \ln 2)\)
85. \(4 / \ln 5-2 / \ln 3\)
87. \(26 / \ln 3\)
89. (a)

91. (a) \(x>0\)
(b) \(10^{x}\) (c) \(3 \leq f(x) \leq 4\)
(d) \(0<x<\)
(e) 10
(f) \(100^{n}\)
93.
(a) \(a x^{a-1}\)
(b) \((\ln a) a^{x}\)
(c) \(x^{x}(1+\ln x)\)
(d) 0
95. (a) \(\$ 0.64\)
(b) \(C^{\prime}(1) \approx 0.051 P, C^{\prime}(8) \approx 0.072 P\)
(c) \(\ln 1.05\)
97.
\begin{tabular}{|l|c|c|r|c|}
\hline \(\boldsymbol{n}\) & 1 & 2 & 4 & 12 \\
\hline \(\boldsymbol{A}\) & \(\$ 410.60\) & \(\$ 414.78\) & \(\$ 416.91\) & \(\$ 418.34\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline \(\boldsymbol{n}\) & 365 & Continuous \\
\hline \(\boldsymbol{A}\) & \(\$ 419.04\) & \(\$ 419.07\) \\
\hline
\end{tabular}
99.
\begin{tabular}{|l|c|c|r|c|}
\hline \(\boldsymbol{n}\) & 1 & 2 & 4 & 12 \\
\hline \(\boldsymbol{A}\) & \(\$ 321.94\) & \(\$ 399.79\) & \(\$ 440.21\) & \(\$ 467.74\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \(\boldsymbol{n}\) & \multicolumn{1}{|c|}{365} & Continuous \\
\hline \(\boldsymbol{A}\) & \(\$ 481.23\) & \(\$ 481.69\) \\
\hline
\end{tabular}
101.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 1 & 10 & 20 & 30 \\
\hline \(\boldsymbol{P}\) & \(\$ 5,122.94\) & \(\$ 0,653.07\) & \(\$ 6,787.94\) & \(\$ 2,313.02\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{t}\) & 40 & 50 \\
\hline \(\boldsymbol{P}\) & \(\$ 3,533.53\) & \(\$ 208.50\) \\
\hline
\end{tabular}
103.
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 1 & 10 & 20 & 30 \\
\hline \(\boldsymbol{P}\) & \(\$ 5,132.82\) & \(\$ 0,716.10\) & \(\$ 6,864.45\) & \(\$ 2,382.66\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{t}\) & 40 & 50 \\
\hline \(\boldsymbol{P}\) & \(\$ 3,589.88\) & \(\$ 251.24\) \\
\hline
\end{tabular}
105. c
107. (a) 6.7 million \(\mathrm{ft}^{3} /\) acre
(b) \(t=20: \frac{d V}{d t}=0.073 ; t=60: \frac{d V}{d t}=0.040\)
109. (a)

(b) \(16.7 \%\)
(c) \(x \approx 38.8\) or 38,800 egg masses
(d) \(x \approx 27.75\) or 27,750 egg masses
(b)

(c) When \(d=0.8\), the rate of growth is 41.99 .
When \(d=1.5\), the rate of growth is 160.21 .
113. (a) 5.67;5.67;5.67
(b)

(c) \(f(t)=g(t)=h(t)\). No, because the definite integrals of two functions over a given interval may be equal even though the functions are not equal.
\(\begin{array}{lll}\text { 115. } y=1200\left(0.6^{t}\right) & \text { 117. } e & \text { 119. } e^{2}\end{array}\)
121. False: \(e\) is an irrational number.
123. True
125. True
127. (a) \(\left(2^{3}\right)^{2}=2^{6}=64\)
\[
2^{\left(3^{2}\right)}=2^{9}=512
\]
(b) No. \(f(x)=\left(x^{x}\right)^{x}=x^{\left(x^{2}\right)}\) and \(g(x)=x^{\left(x^{x}\right)}\)
(c) \(f^{\prime}(x)=x^{x^{2}}(x+2 x \ln x)\)
\[
g^{\prime}(x)=x^{x^{x}+x-1}\left[x(\ln x)^{2}+x \ln x+1\right]
\]
129. Proof
131. (a) \(\frac{d y}{d x}=\frac{y^{2}-y x \ln y}{x^{2}-x y \ln x}\)
(b) (i) 1 when \(c \neq 0, c \neq e\)
(ii) -3.1774
(iii) -0.3147
(c) \((e, e)\)
133. Putnam Problem A15, 1940

\section*{Section 5.6 (page 379)}
1. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -1 & -0.8 & -0.6 & -0.4 & -0.2 \\
\hline \(\boldsymbol{y}\) & -1.57 & -0.93 & -0.64 & -0.41 & -0.20 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline \(\boldsymbol{y}\) & 0 & 0.20 & 0.41 & 0.64 & 0.93 & 1.57 \\
\hline
\end{tabular}
(b)

(c)

(d) Intercept: \((0,0)\);

Symmetry: origin
3. \((-\sqrt{2} / 2,3 \pi / 4),(1 / 2, \pi / 3),(\sqrt{3} / 2, \pi / 6)\)
5. \(\pi / 6\)
\(\begin{array}{ll}\text { 7. } \pi / 3 & \text { 9. } \pi / 6\end{array}\)
11. \(-\pi / 4\)
13. 2.50
15. \(\arccos (1 / 1.269) \approx 0.66\)
17. (a) \(3 / 5\)
(b) \(5 / 3\)
19. (a) \(-\sqrt{3}\)
(b) \(-\frac{13}{5} \quad\) 21. \(x\)
23. \(\sqrt{1-x^{2}} / x\)
25. \(1 / x\)
27. \(\sqrt{1-4 x^{2}}\)
29. \(\sqrt{x^{2}-1} / \mid x\)
31. \(\sqrt{x^{2}-9} / 3\)
33. \(\sqrt{x^{2}+2} / x\)
35. (a)

(b) Proof
(c) Horizontal asymptotes:
\[
y=-1, y=1
\]
63. \(y=\frac{1}{3}(4 \sqrt{3} x-2 \sqrt{3}+\pi)\)
65. \(y=\frac{1}{4} x+(\pi-2) / 4\)
67. \(y=(2 \pi-4) x+4\)
69. \(P_{1}(x)=x ; P_{2}(x)=x\)

71. \(P_{1}(x)=\frac{\pi}{6}+\frac{2 \sqrt{3}}{3}\left(x-\frac{1}{2}\right)\)
\(P_{2}(x)=\frac{\pi}{6}+\frac{2 \sqrt{3}}{3}\left(x-\frac{1}{2}\right)+\frac{2 \sqrt{3}}{9}\left(x-\frac{1}{2}\right)^{2}\)

73. Relative maximum: \((1.272,-0.606)\)

Relative minimum: \((-1.272,3.747)\)
75. Relative maximum: \((2,2.214)\)
77.


Maximum: \(\left(2, \frac{\pi}{2}\right)\)
Minimum: \(\left(0,-\frac{\pi}{2}\right)\)
Point of inflection: \((1,0)\)
79.


Maximum: \(\left(-\frac{1}{2}, \pi\right)\)
Minimum: \(\left(\frac{1}{2}, 0\right)\)
Asymptote: \(y=\frac{\pi}{2}\)
81. \(y=-2 \pi x /(\pi+8)+1-\pi^{2} /(2 \pi+16)\)
83. \(y=-x+\sqrt{2}\)
85. If the domains were not restricted, the trigonometric functions would have no inverses because they would not be one-to-one.
87. If \(x>0, y=\operatorname{arccot} x=\arctan \frac{1}{x}\); If \(x<0, y=\arctan \frac{1}{x}+\pi\).
89. (a) \(\arcsin (\arcsin 0.5) \approx 0.551\) \(\arcsin (\arcsin 1)\) does not exist.
(b) \(\sin (-1) \leq x \leq \sin (1)\)
91. False. The range of arccos is \([0, \pi]\).
93. True
95. True
97. (a) \(\theta=\operatorname{arccot}(x / 5)\)
(b) \(x=10: 16 \mathrm{rad} / \mathrm{h} ; x=3: 58.824 \mathrm{rad} / \mathrm{h}\)
99. (a) \(h(t)=-16 t^{2}+256 ; t=4 \mathrm{sec}\)
(b) \(t=1:-0.0520 \mathrm{rad} / \mathrm{sec} ; t=2:-0.1116 \mathrm{rad} / \mathrm{sec}\)
101. \(50 \sqrt{2} \approx 70.71 \mathrm{ft}\)
105. \(k \leq-1\) or \(k \geq 1\)
107. (a)

109. \(c=2\)
111. (a)

(b) Proof

\section*{Section 5.7 (page 387)}
\(\begin{array}{lll}\text { 1. } \arcsin \frac{x}{3}+C & \text { 3. } \frac{7}{4} \arctan \frac{x}{4}+C & \text { 5. } \operatorname{arcsec}|2 x|+C\end{array}\)
7. \(\arcsin (x+1)+C\)
9. \(\frac{1}{2} \arcsin t^{2}+C\)
11. \(\frac{1}{10} \arctan \frac{t^{2}}{5}+C\)
13. \(\frac{1}{4} \arctan \left(e^{2 x} / 2\right)+C\)
15. \(\arcsin \left(\frac{\tan x}{5}\right)+C\)
17. \(\frac{1}{2} x^{2}-\frac{1}{2} \ln \left(x^{2}+1\right)+C\)
19. \(2 \arcsin \sqrt{x}+C\)
21. \(\frac{1}{2} \ln \left(x^{2}+1\right)-3 \arctan x+C\)
23. \(8 \arcsin [(x-3) / 3]\)
\(-\sqrt{6 x-x^{2}}+C\)
25. \(\pi / 6\)
27. \(\pi / 6\)
29. \(\frac{1}{2}(\sqrt{3}-2)\)
31. \(\frac{1}{5} \arctan \frac{3}{5} \approx 0.108\)
33. \(\arctan 5-\frac{\pi}{4} \approx 0.588\)
35. \(\pi / 4\)
37. \(\frac{1}{32} \pi^{2} \approx 0.308\)
39. \(\pi / 2\)
41. \(\ln \left|x^{2}+6 x+13\right|-3 \arctan [(x+3) / 2]+C\)
43. \(\arcsin [(x+2) / 2]+C \quad\) 45. \(-\sqrt{-x^{2}-4 x}+C\)
47. \(4-2 \sqrt{3}+\frac{1}{6} \pi \approx 1.059\)
49. \(\frac{1}{2} \arctan \left(x^{2}+1\right)+C\)
51. \(2 \sqrt{e^{t}-3}-2 \sqrt{3} \arctan \left(\sqrt{e^{t}-3} / \sqrt{3}\right)+C\)
53. \(\pi / 6\)
55. a and b
57. a, b, and c
59. No. This integral does not correspond to any of the basic integration rules.
61. \(y=\arcsin (x / 2)+\pi\)
63. (a)

(b) \(y=3 \arctan x\)

65. (a)

(b) \(y=\frac{1}{2} \operatorname{arcsec}(x / 2)+1\), \(x \geq 2\)

67.

69.

71. \(\pi / 3\)
73. \(\pi / 8\)
75. \(3 \pi / 2\)
77. (a) Proof
(b) \(\ln (\sqrt{6} / 2)+(9 \pi-4 \pi \sqrt{3}) / 36\)
79. (a)

(b) 0.5708
(c) \((\pi-2) / 2\)
81. (a) \(F(x)\) represents the average value of \(f(x)\) over the interval \([x, x+2]\). Maximum at \(x=-1\).
(b) Maximum at \(x=-1\).
83. False. \(\int \frac{d x}{3 x \sqrt{9 x^{2}-16}}=\frac{1}{12} \operatorname{arcsec} \frac{|3 x|}{4}+C\)
85. True 87-89. Proofs
91. (a) \(v(t)=-32 t+500\)

(b) \(s(t)=-16 t^{2}+500 t ; 3906.25 \mathrm{ft}\)
(c) \(v(t)=\sqrt{\frac{32}{k}} \tan \left[\arctan \left(500 \sqrt{\frac{k}{32}}\right)-\sqrt{32 k} t\right]\)
(d)

(e) 1088 ft
(f) When air resistance is taken into account, the maximum height of the object is not as great.
\[
t_{0}=6.86 \mathrm{sec}
\]

\section*{Section 5.8 (page 398)}
1. (a) 10.018
(b) -0.964
3. (a) \(\frac{4}{3}\)
(b) \(\frac{13}{12}\)
5. (a) 1.317
(b) 0.962

7-15. Proofs
17. \(\cosh x=\sqrt{13} / 2 ; \tanh x=3 \sqrt{13} / 13 ; \operatorname{csch} x=2 / 3\); \(\operatorname{sech} x=2 \sqrt{13} / 13 ; \operatorname{coth} x=\sqrt{13} / 3\)
19. \(3 \cosh 3 x\)
21. \(-10 x\left[\operatorname{sech}\left(5 x^{2}\right) \tanh \left(5 x^{2}\right)\right]\)
23. coth \(x\)
25. \(\operatorname{csch} x\)
27. \(\sinh ^{2} x\)
29. \(\operatorname{sech} t\)
31. \(y=-2 x+2\)
33. \(y=1-2 x\)
35. Relative maxima: \(( \pm \pi\), \(\cosh \pi)\);Relative minimum: \((0,-1)\)
37. Relative maximum: \((1.20,0.66)\)

Relative minimum: \((-1.20,-0.66)\)
39. \(y=a \sinh x ; y^{\prime}=a \cosh x ; y^{\prime \prime}=a \sinh x ; y^{\prime \prime \prime}=a \cosh x\); Therefore, \(y^{\prime \prime \prime}-y^{\prime}=0\).
41. \(P_{1}(x)=x ; P_{2}(x)=x\)

43. (a)

(b) 33.146 units; 25 units
(c) \(m=\sinh (1) \approx 1.175\)
45. \(\frac{1}{2} \sinh 2 x+C \quad\) 47. \(-\frac{1}{2} \cosh (1-2 x)+C\)
49. \(\frac{1}{3} \cosh ^{3}(x-1)+C \quad\) 51. \(\ln |\sinh x|+C\)
53. \(-\operatorname{coth}\left(x^{2} / 2\right)+C\)
55. \(\operatorname{csch}(1 / x)+C\)
57. \(\frac{1}{2} \arctan x^{2}+C\)
59. \(\ln (5 / 4)\)
61. \(\frac{1}{5} \ln 3\)
63. \(\pi / 4\)
65. \(3 / \sqrt{9 x^{2}-1}\)
67. \(\frac{1}{2 \sqrt{x}(1-x)}\)
69. \(|\sec x|\)
71. \(\frac{-2 \operatorname{csch}^{-1} x}{|x| \sqrt{1+x^{2}}}\)
73. \(2 \sinh ^{-1}(2 x)\)
75. Answers will vary.
77. \(\cosh x, \operatorname{sech} x\)
79. \(\infty\)
81. 1
83. 0
85. 1
87. \(\frac{\sqrt{3}}{18} \ln \left|\frac{1+\sqrt{3} x}{1-\sqrt{3} x}\right|+C\)
89. \(\ln \left(\sqrt{e^{2 x}+1}-1\right)-x+C\)
91. \(2 \sinh ^{-1} \sqrt{x}+C=2 \ln (\sqrt{x}+\sqrt{1+x})+C\)
93. \(\frac{1}{4} \ln \left|\frac{x-4}{x}\right|+C\)
95. \(\frac{1}{2 \sqrt{6}} \ln \left|\frac{\sqrt{2}(x+1)+\sqrt{3}}{\sqrt{2}(x+1)-\sqrt{3}}\right|+C\)
97. \(\ln \left(\frac{3+\sqrt{5}}{2}\right)\)
99. \(\frac{\ln 7}{12}\)
101. \(\frac{1}{4} \arcsin \left(\frac{4 x-1}{9}\right)+C\)
103. \(-\frac{x^{2}}{2}-4 x-\frac{10}{3} \ln \left|\frac{x-5}{x+1}\right|+C\)
105. \(8 \arctan \left(e^{2}\right)-2 \pi \approx 5.207\)
107. \(\frac{5}{2} \ln (\sqrt{17}+4) \approx 5.237\)
109. (a) \(\ln (\sqrt{3}+2)\) (b) \(\sinh ^{-1} \sqrt{3}\)
111. \(\frac{52}{31} \mathrm{~kg}\) 113. \(-\sqrt{a^{2}-x^{2}} / x \quad\) 115-123. Proofs
125. Putnam Problem 8, 1939

\section*{Review Exercises for Chapter 5 (page 401)}
1.


Vertical asymptote: \(x=0\)
3. \(\frac{1}{5}\left[\ln (2 x+1)+\ln (2 x-1)-\ln \left(4 x^{2}+1\right)\right]\)
5. \(\ln \left(3 \sqrt[3]{4-x^{2}} / x\right) \quad\) 7. \(e^{4}-1 \approx 53.598\)
9. \(1 /(2 x)\) 11. \((1+2 \ln x) /(2 \sqrt{\ln x})\)
13. \(\frac{d y}{d x}=\frac{1}{b^{2}}\left(b-\frac{a b}{a+b x}\right)=\frac{x}{a+b x}\)
15. \(y=-x+1\)
17. \(\frac{1}{7} \ln |7 x-2|+C \quad\) 19. \(-\ln |1+\cos x|+C\)
21. \(3+\ln 2\) 23. \(\ln (2+\sqrt{3})\)
25. (a) \(f^{-1}(x)=2 x+6\)
(b)

(c) Proof
(d) Domain of \(f\) and \(f^{-1}\) : all real numbers Range of \(f\) and \(f^{-1}\) : all real numbers
27. (a) \(f^{-1}(x)=x^{2}-1, \quad x \geq 0\)
(b)

(c) Proof
(d) Domain of \(f: x \geq-1\)

Domain of \(f^{-1}: x \geq 0\)
Range of \(f: y \geq 0\)
Range of \(f^{-1}: y \geq-1\)
29. (a) \(f^{-1}(x)=x^{3}-1\)
(b)

(c) Proof
(d) Domain of \(f\) and \(f^{-1}\) : all real numbers Range of \(f\) and \(f^{-1}\) : all real numbers
31. \(1 /\left[3(\sqrt[3]{-3})^{2}\right] \approx 0.160\)
33. \(3 / 4\)
35. (a) \(f^{-1}(x)=e^{2 x}\)
(b)

(c) Proof
(d) Domain of \(f: x>0\)

Domain of \(f^{-1}\) : all real numbers
Range of \(f\) : all real numbers
Range of \(f^{-1}: y>0\)
37.

41. \(\left(e^{2 x}-e^{-2 x}\right) / \sqrt{e^{2 x}+e^{-2 x}} \quad\) 43. \(x(2-x) / e^{x}\)
45. \(y=-4 x+4 \quad\) 47. \(-y /[x(2 y+\ln x)]\)
49. \(\left(1-e^{-3}\right) / 6 \approx 0.158 \quad\) 51. \(\left(e^{4 x}-3 e^{2 x}-3\right) /\left(3 e^{x}\right)+C\)
53. \(-\frac{1}{2} e^{1-x^{2}}+C \quad\) 55. \(\ln \left(e^{2}+e+1\right) \approx 2.408\)
57. \(y=e^{x}(a \cos 3 x+b \sin 3 x)\)
\(y^{\prime}=e^{x}[(-3 a+b) \sin 3 x+(a+3 b) \cos 3 x]\)
\(y^{\prime \prime}=e^{x}[(-6 a-8 b) \sin 3 x+(-8 a+6 b) \cos 3 x]\)
\(y^{\prime \prime}-2 y^{\prime}+10 y\)
\(=e^{x\{ }\{[(-6 a-8 b)-2(-3 a+b)+10 b] \sin 3 x+\)
\([(-8 a+6 b)-2(a+3 b)+10 a] \cos 3 x\}=0\)
59. \(-\frac{1}{2}\left(e^{-16}-1\right) \approx 0.500\)
61.

63.

65. \(3^{x-1} \ln 3\) 67. \(x^{2 x+1}(2 \ln x+2+1 / x)\)
69. \(-1 /[\ln 3(2-2 x)] \quad\) 71. \(5^{(x+1)^{2}} /(2 \ln 5)+C\)
73. (a) Domain: \(0 \leq h<18,000\)
(b)


Vertical asymptote: \(h=18,000\)
75.

77. (a) \(1 / 2\)
(b) \(\sqrt{3} / 2\)
79. \(\left(1-x^{2}\right)^{-3 / 2}\)
81. \(\frac{x}{|x| \sqrt{x^{2}-1}}+\operatorname{arcsec} x\)
83. \((\arcsin x)^{2}\)
85. \(\frac{1}{2} \arctan \left(e^{2 x}\right)+C\)
87. \(\frac{1}{2} \arcsin x^{2}+C\)
89. \(\frac{1}{4}[\arctan (x / 2)]^{2}+C\)
91. \(\frac{2}{3} \pi+\sqrt{3}-2 \approx 1.826\)
93. \(y=A \sin (t \sqrt{k / m})\)
95. \(y^{\prime}=x\left(\frac{2}{1-4 x^{2}}\right)+\tanh ^{-1} 2 x=\frac{2 x}{1-4 x^{2}}+\tanh ^{-1} 2 x\)
97. \(\frac{1}{3} \tanh x^{3}+C\)

\section*{P.S. Problem Solving (page 403)}
1. \(a \approx 4.7648 ; \theta \approx 1.7263\) or \(98.9^{\circ}\)
3. (a)

5.

\(y=0.5^{x}\) and \(y=1.2^{x}\) intersect the line \(y=x\); \(0<a<e^{1 / e}\)
7. \(e-1\)
9. (a) Area of region \(A=(\sqrt{3}-\sqrt{2}) / 2 \approx 0.1589\)

Area of region \(B=\pi / 12 \approx 0.2618\)
(b) \(\frac{1}{24}[3 \pi \sqrt{2}-12(\sqrt{3}-\sqrt{2})-2 \pi] \approx 0.1346\)
(c) 1.2958
(d) 0.6818
11. Proof
13. \(2 \ln \frac{3}{2} \approx 0.8109\)
15. (a) (i)

(ii)

(iii)

(b) Pattern: \(y_{n}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots\).
\[
y_{4}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}
\]

(c) The pattern implies that \(e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\).

\section*{Chapter 6}

\section*{Section 6.1 (page 411)}
1-11. Proofs
13. Not a solution
15. Solution
17. Solution
19. Solution
21. Not a solution
23. Solution
25. Not a solution
27. Not a solution
29. \(y=3 e^{-x / 2}\)
31. \(4 y^{2}=x^{3}\)
33.

35. \(y=3 e^{-2 x}\)
37. \(y=2 \sin 3 x-\frac{1}{3} \cos 3 x\)
39. \(y=-2 x+\frac{1}{2} x^{3}\)
41. \(2 x^{3}+C\)
43. \(y=\frac{1}{2} \ln \left(1+x^{2}\right)+C\)
45. \(y=x-\ln x^{2}+C\)
47. \(y=-\frac{1}{2} \cos 2 x+C\)
49. \(y=\frac{2}{5}(x-6)^{5 / 2}+4(x-6)^{3 / 2}+C\)
51. \(y=\frac{1}{2} e^{x^{2}}+C\)
53.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -4 & -2 & 0 & 2 & 4 & 8 \\
\hline \(\boldsymbol{y}\) & 2 & 0 & 4 & 4 & 6 & 8 \\
\hline \(\boldsymbol{d} \boldsymbol{y} / \boldsymbol{d} \boldsymbol{x}\) & -4 & Undef. & 0 & 1 & \(\frac{4}{3}\) & 2 \\
\hline
\end{tabular}
55.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -4 & -2 & 0 & 2 & 4 & 8 \\
\hline \(\boldsymbol{y}\) & 2 & 0 & 4 & 4 & 6 & 8 \\
\hline \(\boldsymbol{d y} / \boldsymbol{d} \boldsymbol{x}\) & \(-2 \sqrt{2}\) & -2 & 0 & 0 & \(-2 \sqrt{2}\) & -8 \\
\hline
\end{tabular}
57. b 58. c \(\quad\) 59. d \(\quad 60\). a
61. (a) and (b)
63. (a) and (b)

(c) As \(x \rightarrow \infty, y \rightarrow-\infty\); as \(x \rightarrow-\infty, y \rightarrow-\infty\)

(c) As \(x \rightarrow \infty, y \rightarrow-\infty\); as \(x \rightarrow-\infty, y \rightarrow-\infty\)
(b)


As \(x \rightarrow \infty, y \rightarrow \infty\)
67. (a) and (b)

69. (a) and (b)

71. (a) and (b)

73.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 2 & 2.2 & 2.43 & 2.693 & 2.992 & 3.332 & 3.715 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 7 & 8 & 9 & 10 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 4.146 & 4.631 & 5.174 & 5.781 \\
\hline
\end{tabular}
75.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0 & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 & 0.3 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 3 & 2.7 & 2.438 & 2.209 & 2.010 & 1.839 & 1.693 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 7 & 8 & 9 & 10 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0.35 & 0.4 & 0.45 & 0.5 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 1.569 & 1.464 & 1.378 & 1.308 \\
\hline
\end{tabular}
77.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 1 & 1.1 & 1.212 & 1.339 & 1.488 & 1.670 & 1.900 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 7 & 8 & 9 & 10 \\
\hline \(\boldsymbol{x}_{\boldsymbol{n}}\) & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline \(\boldsymbol{y}_{\boldsymbol{n}}\) & 2.213 & 2.684 & 3.540 & 5.958 \\
\hline
\end{tabular}
79.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
\((\) exact \()\)
\end{tabular} & 3.0000 & 3.6642 & 4.4755 & 5.4664 & 6.6766 & 8.1548 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
\((\boldsymbol{h}=\mathbf{0 . 2})\)
\end{tabular} & 3.0000 & 3.6000 & 4.3200 & 5.1840 & 6.2208 & 7.4650 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
\((\boldsymbol{h}=\mathbf{0 . 1})\)
\end{tabular} & 3.0000 & 3.6300 & 4.3923 & 5.3147 & 6.4308 & 7.7812 \\
\hline
\end{tabular}

\section*{81.}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
(exact)
\end{tabular} & 0.0000 & 0.2200 & 0.4801 & 0.7807 & 1.1231 & 1.5097 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
\((\boldsymbol{h}=\mathbf{0 . 2})\)
\end{tabular} & 0.0000 & 0.2000 & 0.4360 & 0.7074 & 1.0140 & 1.3561 \\
\hline \begin{tabular}{l}
\(\boldsymbol{y}(\boldsymbol{x})\) \\
\((\boldsymbol{h}=\mathbf{0 . 1})\)
\end{tabular} & 0.0000 & 0.2095 & 0.4568 & 0.7418 & 1.0649 & 1.4273 \\
\hline
\end{tabular}
83. (a) \(y(1)=112.7141^{\circ} ; y(2)=96.3770^{\circ} ; y(3)=86.5954^{\circ}\)
(b) \(y(1)=113.2441^{\circ} ; y(2)=97.0158^{\circ} ; y(3)=87.1729^{\circ}\)
(c) Euler's Method: \(y(1)=112.9828^{\circ} ; y(2)=96.6998^{\circ}\);
\[
\text { Exact solution: } \begin{aligned}
& y(3)=86.8863^{\circ} \\
& y(1)=113.2441^{\circ} ; y(2)=97.0158^{\circ} ; \\
& y(3)=87.1729^{\circ}
\end{aligned}
\]

The approximations are better using \(h=0.05\).
85. The general solution is a family of curves that satisfies the differential equation. A particular solution is one member of the family that satisfies given conditions.
87. Begin with a point \(\left(x_{0}, y_{0}\right)\) that satisfies the initial condition \(y\left(x_{0}\right)=y_{0}\). Then, using a small step size \(h\), calculate the point \(\left(x_{1}, y_{1}\right)=\left(x_{0}+h, y_{0}+h F\left(x_{0}, y_{0}\right)\right)\). Continue generating the sequence of points \(\left(x_{n}+h, y_{n}+h F\left(x_{n}, y_{n}\right)\right)\) or \(\left(x_{n+1}, y_{n+1}\right)\).
89. False: \(y=x^{3}\) is a solution of \(x y^{\prime}-3 y=0\), but \(y=x^{3}+1\) is not a solution.
91. True
93. (a)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\
\hline \(\boldsymbol{y}\) & 4 & 2.6813 & 1.7973 & 1.2048 & 0.8076 & 0.5413 \\
\hline \(\boldsymbol{y}_{\boldsymbol{1}}\) & 4 & 2.56 & 1.6384 & 1.0486 & 0.6711 & 0.4295 \\
\hline \(\boldsymbol{y}_{\boldsymbol{2}}\) & 4 & 2.4 & 1.44 & 0.864 & 0.5184 & 0.3110 \\
\hline \(\boldsymbol{e}_{\boldsymbol{1}}\) & 0 & 0.1213 & 0.1589 & 0.1562 & 0.1365 & 0.1118 \\
\hline \(\boldsymbol{e}_{\mathbf{2}}\) & 0 & 0.2813 & 0.3573 & 0.3408 & 0.2892 & 0.2303 \\
\hline \(\boldsymbol{r}\) & & 0.4312 & 0.4447 & 0.4583 & 0.4720 & 0.4855 \\
\hline
\end{tabular}
(b) If \(h\) is halved, then the error is approximately halved because \(r\) is approximately 0.5 .
(c) The error will again be halved.
95. (a)

97. \(\omega= \pm 4\) 99. Putnam Problem 3, Morning Session, 1954

\section*{Section 6.2 (page 420)}
1. \(y=\frac{1}{2} x^{2}+3 x+C\)
3. \(y=C e^{x}-3\)
5. \(y^{2}-5 x^{2}=C\)
7. \(y=C e^{\left(2 x^{3 / 2}\right) / 3} \quad\) 9. \(y=C\left(1+x^{2}\right)\)
11. \(d Q / d t=k / t^{2}\) \(Q=-k / t+C\)
13. \(d N / d s=k(500-s)\)
\[
N=-(k / 2)(500-s)^{2}+C
\]
15. (a)

17. \(y=\frac{1}{4} t^{2}+10\)

19. \(y=10 e^{-t / 2}\)

21. \(d y / d x=k y\)
\[
\begin{aligned}
y & =6 e^{(1 / 4) \ln (5 / 2) x} \approx 6 e^{0.2291 x} \\
y(8) & \approx 37.5
\end{aligned}
\]
23. \(d V / d t=k V\)
\[
\begin{aligned}
V & =20,000 e^{(1 / 4) \ln (5 / 8) t} \approx 20,000 e^{-0.1175 t} \\
V(6) & \approx 9882
\end{aligned}
\]
25. \(y=(1 / 2) e^{[(\ln 10) / 5] t} \approx(1 / 2) e^{0.4605 t}\)
27. \(y=5(5 / 2)^{1 / 4} e^{[\ln (2 / 5) / 4] t} \approx 6.2872 e^{-0.2291 t}\)
29. \(C\) is the initial value of \(y\), and \(k\) is the proportionality constant.
31. Quadrants I and III; \(d y / d x\) is positive when both \(x\) and \(y\) are positive (Quadrant I) or when both \(x\) and \(y\) are negative (Quadrant III).
33. Amount after \(1000 \mathrm{yr}: 12.96 \mathrm{~g}\); Amount after \(10,000 \mathrm{yr}: 0.26 \mathrm{~g}\)
35. Initial quantity: 7.63 g ; Amount after 1000 yr: 4.95 g
37. Amount after \(1000 \mathrm{yr}: 4.43 \mathrm{~g}\); Amount after 10,000 yr: 1.49 g
39. Initial quantity: 2.16 g ; Amount after 10,000 yr: 1.62 g
41. \(95.76 \%\)
43. Time to double: 11.55 yr ;Amount after 10 yr : \(\$ 288.48\)
45. Annual rate: \(8.94, A m o u n t ~ a f t e r ~ 10 ~ y r: ~ \$ 833.67\)
47. Annual rate: \(9.50 \%\) Time to double: 7.30 yr
49. \(\$ 24,174.18\)
51. \(\$ 1,377.75\)
53. (a) 10.24 yr
(b) 9.93 yr
(c) 9.90 yr
(d) 9.90 yr
55. (a) 8.50 yr
(b) 8.18 yr
(c) 8.16 yr
(d) 8.15 yr
57. (a) \(P=2.40 e^{-0.006 t}\) (b) 2.19 million
(c) Because \(k<0\), the population is decreasing.
59. (a) \(P=5.66 e^{0.024 t}\) (b) 8.11 million
(c) Because \(k>0\), the population is increasing.
61. (a) \(P=23.55 e^{0.036 t}\) (b) 40.41 million
(c) Because \(k>0\), the population is increasing.
63. (a) \(N=100.1596(1.2455)^{t}\)
(b) 6.3 h
65. (a) \(N \approx 30\left(1-e^{-0.0502 t}\right)\)
(b) 36 days
67. (a) \(P_{1} \approx 181 e^{0.01245 t} \approx 181(1.01253)^{t}\)
(b) \(P_{2}=182.3248(1.01091)^{t}\)
(c)

\(P_{2}\) is a better approximation.
69. (a) 20 dB
(b) 70 dB
(c) 95 dB
(d) 120 dB
71. \(2024(t=16)\)
73. \(379.2^{\circ} \mathrm{F}\)
75. False. The rate of growth \(d y / d x\) is proportional to \(y\).
77. True

\section*{Section 6.3 (page 431)}
1. \(y^{2}-x^{2}=C\)
3. \(15 y^{2}+2 x^{3}=C\)
5. \(r=C e^{0.75 s}\)
7. \(y=C(x+2)^{3}\)
9. \(y^{2}=C-8 \cos x\)
11. \(y=-\frac{1}{4} \sqrt{1-4 x^{2}}+C\)
13. \(y=C e^{(\ln x)^{2} / 2}\)
15. \(y^{2}=4 e^{x}+5\)
17. \(y=e^{-\left(x^{2}+2 x\right) / 2}\)
19. \(y^{2}=4 x^{2}+3\)
21. \(u=e^{\left(1-\cos v^{2}\right) / 2}\)
23. \(P=P_{0} e^{k t}\)
25. \(4 y^{2}-x^{2}=16\)
27. \(y=\frac{1}{3} \sqrt{x}\)
29. \(f(x)=C e^{-x / 2}\)
31. Homogeneous of degree 3 33. Homogeneous of degree 3
35. Not homogeneous
37. Homogeneous of degree 0
39. \(|x|=C(x-y)^{2}\)
41. \(\left|y^{2}+2 x y-x^{2}\right|=C\)
43. \(y=C e^{-x^{2} /\left(2 y^{2}\right)}\)
45. \(e^{y / x}=1+\ln x^{2}\)
47. \(x=e^{\sin (y / x)}\)
49.

51.

\(y=\frac{1}{2} x^{2}+C\)
\(y=4+C e^{-x}\)
(c) \(y \approx 0.2489\)
53. (a) \(y \approx 0.1602\)
(b) \(y=5 e^{-3 x^{2}}\)
55. (a) \(y \approx 3.0318\)
(b) \(y^{3}-4 y=x^{2}+12 x-13\)
(c) \(y=3\)
57. \(97.9 \% \mathrm{f}\) the original amount
59. (a) \(d y / d x=k(y-4)\)
(b) a
(c) Proof
60. (a) \(d y / d x=k(x-4)\)
(b) b
(c) Proof
61. (a) \(d y / d x=k y(y-4)\)
(b) c
(c) Proof
62. (a) \(d y / d x=k y^{2}\)
(b) d (c) Proof
63. (a) \(w=1200-1140 e^{-0.8 t}\)

\(w=1200-1140 e^{-t}\)

(b) \(1.31 \mathrm{yr}, 1.16 \mathrm{yr} ; 1.05 \mathrm{yr}\)
(c) 1200 lb
65. Circles: \(x^{2}+y^{2}=C\)

Lines: \(y=K x\)
Graphs will vary.

67. Parabolas: \(x^{2}=C y\)

Ellipses: \(x^{2}+2 y^{2}=K\) Graphs will vary.

69. Curves: \(y^{2}=C x^{3}\)

Ellipses: \(2 x^{2}+3 y^{2}=K\)
Graphs will vary.

71. d 72. a
73. b
74. c
75. (a) 0.75
(b) 2100
(c) 70
(d) 4.49 yr
(e) \(d P / d t=0.75 P(1-P / 2100)\)
77. (a) 3
(b) 100
(c) 120
(d) 50
79. \(y=36 /\left(1+8 e^{-t}\right)\)
81. \(y=120 /\left(1+14 e^{-0.8 t}\right)\)
83. (a) \(P=\frac{200}{1+7 e^{-0.2640 t}}\)
(b) 70 panthers
(c) 7.37 yr
(d) \(d P / d t=0.2640 P(1-P / 200) ; 65.6\)
(e) 100 yr
85. Answers will vary.
87. Two families of curves are mutually orthogonal if each curve in the first family intersects each curve in the second family at right angles.
89. Proof
91. False. \(y^{\prime}=x / y\) is separable, but \(y=0\) is not a solution.
93. False: \(f(t x, t y) \neq t^{n} f(x, y)\).
95. Putnam Problem A2, 1988

\section*{Section 6.4 (page 440)}
1. Linear;can be written in the form \(d y / d x+P(x) y=Q(x)\)
3. Not linear;cannot be written in the form \(d y / d x+P(x) y=Q(x)\)
5. \(y=2 x^{2}+x+C / x \quad\) 7. \(y=-16+C e^{x}\)
9. \(y=-1+C e^{\sin x}\)
11. \(y=\left(x^{3}-3 x+C\right) /[3(x-1)]\)
13. \(y=e^{x^{3}}(x+C)\)
15. (a) Answers will vary.
(c)


(b) \(y=\frac{1}{2}\left(e^{x}+e^{-x}\right)\)
17. \(y=1+4 / e^{\tan x} \quad\) 19. \(y=\sin x+(x+1) \cos x\)
21. \(x y=4\)
21. \(x y=4 \quad\) 23. \(y=-2+x \ln |x|+12 x\)
25. \(P=-N / k+\left(N / k+P_{0}\right) e^{k t}\)
27. (a) \(\$, 212,796.94\)
(b) \(\$ 1,424,909.75\)
29. (a) \(\frac{d Q}{d t}=q-k Q\)
(b) \(Q=\frac{q}{k}+\left(Q_{0}-\frac{q}{k}\right) e^{-k t}\)
(c) \(\frac{q}{k}\)
31. Proof
33. (a) \(Q=25 e^{-t / 20}\)
(b) \(-20 \ln \left(\frac{3}{5}\right) \approx 10.2 \min\)
(c) 0
35. (a) \(t=50 \mathrm{~min}\)
(b) \(100-\frac{25}{\sqrt{2}} \approx 82.32 \mathrm{lb}\)
(c) \(t=50 \mathrm{~min} ; 200-\frac{50}{\sqrt{2}} \approx 164.64 \mathrm{lb}\)
37. \(v(t)=-159.47\left(1-e^{-0.2007 t}\right) ;-159.47 \mathrm{ft} / \mathrm{sec}\)
39. \(I=\frac{E_{0}}{R}+C e^{-R t / L}\)
41. \(\frac{d y}{d x}+P(x) y=Q(x) ; u(x)=e^{\int P(x) d x}\)
43. c 44. d 45. a
46. b
47. \(1 / y^{2}=C e^{2 x^{3}}+\frac{1}{3}\)
49. \(y=1 /\left(C x-x^{2}\right)\)
51. \(1 / y^{2}=2 x+C x^{2}\)
53. \(y^{2 / 3}=2 e^{x}+C e^{2 x / 3}\)
55. (a)

(c)

(b) \((-2,4): y=\frac{1}{2} x\left(x^{2}-8\right)\)
\[
(2,8): y=\frac{1}{2} x\left(x^{2}+4\right)
\]
57. (a)

(b) \((1,1): y=(2 \cos 1+\sin 1) \csc x-2 \cot x\) \((3,-1): y=(2 \cos 3-\sin 3) \csc x-2 \cot x\)
(c)

59. \(2 e^{x}+e^{-2 y}=C\)
61. \(y=C e^{-\sin x}+1\)
63. \(x^{3} y^{2}+x^{4} y=C\)
65. \(y=\left[e^{x}(x-1)+C\right] / x^{2}\)
67. \(x^{4} y^{4}-2 x^{2}=C\)
69. \(y=\frac{12}{5} x^{2}+C / x^{3}\)
71. False. \(y^{\prime}+x y=x^{2}\) is linear.

\section*{Review Exercises for Chapter 6 (page 443)}
1. Yes
3. \(y=\frac{4}{3} x^{3}+7 x+C\)
5. \(y=\frac{1}{2} \sin 2 x+C\)
7. \(y=\frac{2}{5}(x-5)^{5 / 2}+\frac{10}{3}(x-5)^{3 / 2}+C \quad\) 9. \(y=-e^{2-x}+C\)
11.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -4 & -2 & 0 & 2 & 4 & 8 \\
\hline \(\boldsymbol{y}\) & 2 & 0 & 4 & 4 & 6 & 8 \\
\hline \(\boldsymbol{d y} / \boldsymbol{d} \boldsymbol{x}\) & -10 & -4 & -4 & 0 & 2 & 8 \\
\hline
\end{tabular}
13. (a) and (b)

17. (a) and (b)
15. (a) and (b)

19. \(y=8 x-\frac{1}{2} x^{2}+C\)

21. \(y=-3-1 /(x+C)\)
23. \(y=C e^{x} /(2+x)^{2}\)
25. \(y \approx \frac{3}{4} e^{0.379 t}\)
27. \(y \approx 5 e^{-0.680 t}\)
29. About 7.79 in.
31. (a) \(S \approx 30 e^{-1.7918 / t}\)
(b) 20,965 units
(c)

33. About 37.5 yr
35. \(y=\frac{1}{5} x^{5}+7 \ln |x|+C\)
37. \(y=C e^{8 x^{2}}\)
39. \(x /\left(x^{2}-y^{2}\right)=C\)
41. Proof; \(y=-2 x+\frac{1}{2} x^{3}\)
43.


Graphs will vary. \(4 x^{2}+y^{2}=C\)
45. (a) 0.55
(b) 5250
(c) 150
(d) 6.41 yr
(e) \(\frac{d P}{d t}=0.55 P\left(1-\frac{P}{5250}\right)\)
47. \(y=\frac{80}{1+9 e^{-t}}\)
49. (a) \(P(t)=\frac{20,400}{1+16 e^{-0.553 t}}\) (b) 17,118 trout (c) 4.94 yr
51. \(y=-10+C e^{x} \quad\) 53. \(y=e^{x / 4}\left(\frac{1}{4} x+C\right)\)
55. \(y=(x+C) /(x-2)\)
57. \(y=C e^{3 x}-\frac{1}{13}(2 \cos 2 x+3 \sin 2 x)\)
59. \(y=e^{5 x} / 10+C e^{-5 x}\)
61. \(y=1 /\left(1+x+C e^{x}\right)\)
63. \(y^{-2}=C x^{2}+2 /(3 x)\)
65. Answers will vary. Sample answer: \(\left(x^{2}+3 y^{2}\right) d x-2 x y d y=0 ; x^{3}=C\left(x^{2}+y^{2}\right)\)
67. Answers will vary. Sample answer: \(x^{3} y^{\prime}+2 x^{2} y=1 ; x^{2} y=\ln |x|+C\)

\section*{P.S. Problem Solving (page 445)}
1. (a) \(y=1 /(1-0.01 t)^{100} ; T=100\)
(b) \(y=1 /\left[\left(\frac{1}{y_{0}}\right)^{\varepsilon}-k \varepsilon t\right]^{1 / \varepsilon}\); Explanations will vary.
3. (a) \(d S / d t=k S(L-S) ; S=100 /\left(1+9 e^{-0.8109 t}\right)\)
(b) 2.7 mo
(c)

(d)

(e) Sales will decrease toward the line \(S=L\).
5. Proof;The graph of the logistics function is just a shift of the graph of the hyperbolic tangent.
7. \(1481.45 \mathrm{sec} \approx 24 \mathrm{~min}, 41 \mathrm{sec}\)
9. \(2575.95 \mathrm{sec} \approx 42 \mathrm{~min}, 56 \mathrm{sec}\)
11. (a) \(s=184.21-C e^{-0.019 t}\)
(b) 400

(c) As \(t \rightarrow \infty, C e^{-0.019 t} \rightarrow 0\), and \(s \rightarrow 184.21\).
13. (a) \(C=0.6 e^{-0.25 t}\)

(b) \(C=0.6 e^{-0.75 t}\)


\section*{Chapter 7}

\section*{Section 7.1 (page 454)}
1. \(-\int_{0}^{6}\left(x^{2}-6 x\right) d x\)
3. \(\int_{0}^{3}\left(-2 x^{2}+6 x\right) d x\)
5. \(-6 \int_{0}^{1}\left(x^{3}-x\right) d x\)
7.

9.

11.

13.

15. d
17. (a) \(\frac{125}{6}\)
(b) \(\frac{125}{6}\)
(c) Integrating with respect to \(y\); Answers will vary.
19.

\(\frac{13}{6}\)
23.

\(\frac{32}{3}\)
27.


1
31.

21.


2
25.

\(\frac{9}{2}\)
29.

\(\frac{4}{3}\)
33.


6
35.

\(10 \ln 5 \approx 16.094\)
39. (a)

(b) \(\frac{64}{3}\)
43. (a)

(b) \(\pi / 2-1 / 3 \approx 1.237\)
47.

\(4 \pi \approx 12.566\)
51.

\((1 / 2)(1-1 / e) \approx 0.316\)
55. (a)

(b) About 1.323
37. (a)

(b) \(\frac{37}{12}\)
41. (a)

(b) 8
45. (a)

(b) \(\approx 1.759\)
49.

\(2(1-\ln 2) \approx 0.614\)
53. (a)

(b) 4
57. (a)

(b) The function is difficult to integrate.
(c) About 4.7721
59. (a)

(b) The intersections are difficult to find.
(c) About 6.3043
61. \(F(x)=\frac{1}{4} x^{2}+x\)
(a) \(F(0)=0\)
(b) \(F(2)=3\)


(c) \(F(6)=15\)

63. \(F(\alpha)=(2 / \pi)[\sin (\pi \alpha / 2)+1]\)
(a) \(F(-1)=0\)
(b) \(F(0)=2 / \pi \approx 0.6366\)


(c) \(F(1 / 2)=(\sqrt{2}+2) / \pi \approx 1.0868\)

65. \(14 \quad\) 67. 16
69. Answers will vary. Sample answers:
(a) About \(966 \mathrm{ft}^{2}\)
(b) About \(1004 \mathrm{ft}^{2}\)
71. \(A=\frac{3 \sqrt{3}}{4}-\frac{1}{2} \approx 0.7990\)
73. \(\int_{-2}^{1}\left[x^{3}-(3 x-2)\right] d x=\frac{27}{4}\)

75. \(\int_{0}^{1}\left[\frac{1}{x^{2}+1}-\left(-\frac{1}{2} x+1\right)\right] d x \approx 0.0354\)
77. Answers will vary. Example: \(x^{4}-2 x^{2}+1 \leq 1-x^{2}\) on \([-1,1]\)
\(\int_{-1}^{1}\left[\left(1-x^{2}\right)-\left(x^{4}-2 x^{2}+1\right)\right] d x=\frac{4}{15}\)
79. Offer 2 is better because the cumulative salary (area under the curve) is greater.
81. (a) The integral \(\int_{0}^{5}\left[v_{1}(t)-v_{2}(t)\right] d t=10\) means that the first car traveled 10 more meters than the second car between 0 and 5 seconds.
The integral \(\int_{0}^{10}\left[v_{1}(t)-v_{2}(t)\right] d t=30\) means that the first car traveled 30 more meters than the second car between 0 and 10 seconds.
The integral \(\int_{20}^{30}\left[v_{1}(t)-v_{2}(t)\right] d t=-5\) means that the second car traveled 5 more meters than the first car between 20 and 30 seconds.
(b) No. You do not know when both cars started or the initial distance between the cars.
(c) The car with velocity \(v_{1}\) is ahead by 30 meters.
(d) Car 1 is ahead by 8 meters.
83. \(b=9(1-1 / \sqrt[3]{4}) \approx 3.330\)
85. \(a=4-2 \sqrt{2} \approx 1.172\)
87. Answers will vary. Sample answer: \(\frac{1}{6}\)

89. (a) \((-2,-11),(0,7) \quad\) (b) \(y=9 x+7\)
(c) 3.2, 6.4,3.2; The area between the two inflection points is the sum of the areas between the other two regions.
91. \(\$ 6.825\) billion
93. (a) \(y=0.0124 x^{2}-0.385 x+7.85\)
(b)

(c)

(d) About 2006.7
95. \(\frac{16}{3}(4 \sqrt{2}-5) \approx 3.503\)
97. (a) About \(6.031 \mathrm{~m}^{2}\)
(b) About \(12.062 \mathrm{~m}^{3}\)
(c) \(60,310 \mathrm{lb}\)
99. True
101. False. Let \(f(x)=x\) and \(g(x)=2 x-x^{2} . f\) and \(g\) intersect at \((1,1)\), the midpoint of \([0,2]\), but
\[
\int_{a}^{b}[f(x)-g(x)] d x=\int_{0}^{2}\left[x-\left(2 x-x^{2}\right)\right] d x=\frac{2}{3} \neq 0 .
\]
103. \(\sqrt{3} / 2+7 \pi / 24+1 \approx 2.7823\)
105. Putnam Problem A1, 1993

\section*{Section 7.2 (page 465)}
1. \(\pi \int_{0}^{1}(-x+1)^{2} d x=\frac{\pi}{3} \quad\) 3. \(\pi \int_{1}^{4}(\sqrt{x})^{2} d x=\frac{15 \pi}{2}\)
5. \(\pi \int_{0}^{1}\left[\left(x^{2}\right)^{2}-\left(x^{5}\right)^{2}\right] d x=\frac{6 \pi}{55} \quad\) 7. \(\pi \int_{0}^{4}(\sqrt{y})^{2} d y=8 \pi\)
9. \(\pi \int_{0}^{1}\left(y^{3 / 2}\right)^{2} d y=\frac{\pi}{4}\)
11. (a) \(9 \pi / 2\)
(b) \((36 \pi \sqrt{3}) / 5\)
(c) \((24 \pi \sqrt{3}) / 5\)
(d) \((84 \pi \sqrt{3}) / 5\)
13. (a) \(32 \pi / 3\) (b) \(64 \pi / 3 \quad\) 15. \(18 \pi\)
17. \(\pi\left(48 \ln 2-\frac{27}{4}\right) \approx 83.318\)
19. \(124 \pi / 3\)
21. \(832 \pi / 15\)
23. \(\pi \ln 5\)
25. \(2 \pi / 3\)
27. \((\pi / 2)\left(1-1 / e^{2}\right) \approx 1.358\)
29. \(277 \pi / 3\)
31. \(8 \pi\)
33. \(\pi^{2} / 2 \approx 4.935\)
35. \((\pi / 2)\left(e^{2}-1\right) \approx 10.036\) 37. 1.969
39. 15.4115
41. \(\pi / 3\)
43. \(2 \pi / 15\)
45. \(\pi / 2\)
47. \(\pi / 6\)
49. (a) The area appears to be close to 1 and therefore the volume (area squared \(\times \pi\) ) is near 3 .
51. A sine curve on \([0, \pi / 2]\) revolved about the \(x\)-axis
53. The parabola \(y=4 x-x^{2}\) is a horizontal translation of the parabola \(y=4-x^{2}\). Therefore, their volumes are equal.
55. (a) This statement is true. Explanations will vary.
(b) This statement is false. Explanations will vary.
57. \(18 \pi\)
59. Proof
61. \(\pi r^{2} h\left[1-(h / H)+h^{2} /\left(3 H^{2}\right)\right]\)
63.

\(\pi / 30\)
67. (a) \(V=\pi\left(4 b^{2}-\frac{64}{3} b+\frac{512}{15}\right)\)
(b)

(c) \(b=\frac{8}{3} \approx 2.67\)
\[
b \approx 2.67
\]
69. (a) ii; right circular cylinder of radius \(r\) and height \(h\)
(b) iv; ellipsoid whose underlying ellipse has the equation
\((x / b)^{2}+(y / a)^{2}=1\)
(c) iii; sphere of radius \(r\)
(d) i; right circular cone of radius \(r\) and height \(h\)
(e) v ; torus of cross-sectional radius \(r\) and other radius \(R\)
71. (a) \(\frac{81}{10}\)
(b) \(\frac{9}{2}\)
73. \(\frac{16}{3} r^{3}\)
75. \(V=\frac{4}{3} \pi\left(R^{2}-r^{2}\right)^{3 / 2}\)
77. 19.7443
79. (a) \(\frac{2}{3} r^{3}\)
(b) \(\frac{2}{3} r^{3} \tan \theta\); As \(\theta \rightarrow 90^{\circ}, V \rightarrow \infty\).

\section*{Section 7.3 (page 474)}
1. \(2 \pi \int_{0}^{2} x^{2} d x=\frac{16 \pi}{3}\)
3. \(2 \pi \int_{0}^{4} x \sqrt{x} d x=\frac{128 \pi}{5}\)
5. \(2 \pi \int_{0}^{3} x^{3} d x=\frac{81}{2} \pi\)
7. \(2 \pi \int_{0}^{2} x\left(4 x-2 x^{2}\right) d x=\frac{16 \pi}{3}\)
9. \(2 \pi \int_{0}^{2} x\left(x^{2}-4 x+4\right) d x=\frac{8 \pi}{3}\)
11. \(2 \pi \int_{2}^{4} x \sqrt{x-2} d x=\frac{128 \pi}{15} \sqrt{2}\)
13. \(2 \pi \int_{0}^{1} x\left(\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right) d x=\sqrt{2 \pi}\left(1-\frac{1}{\sqrt{e}}\right) \approx 0.986\)
15. \(2 \pi \int_{0}^{2} y(2-y) d y=\frac{8 \pi}{3}\)
17. \(2 \pi\left[\int_{0}^{1 / 2} y d y+\int_{1 / 2}^{1} y\left(\frac{1}{y}-1\right) d y\right]=\frac{\pi}{2}\)
19. \(2 \pi\left[\int_{0}^{8} y^{4 / 3} d y\right]=\frac{768 \pi}{7}\)
21. \(2 \pi \int_{0}^{2} y(4-2 y) d y=16 \pi / 3\)
23. \(64 \pi\)
25. \(16 \pi\)
27. Shell method;it is much easier to put \(x\) in terms of \(y\) rather than vice versa.
29. (a) \(128 \pi / 7\)
(b) \(64 \pi / 5\)
(c) \(96 \pi / 5\)
31. (a) \(\pi a^{3} / 15\)
(b) \(\pi a^{3} / 15\)
(c) \(4 \pi a^{3} / 15\)
33. (a)

(b) 1.506
35. (a)

(b) 187.25
37. d 39. \(\mathrm{a}, \mathrm{c}, \mathrm{b}\)
41. Both integrals yield the volume of the solid generated by revolving the region bounded by the graphs of \(y=\sqrt{x-1}\), \(y=0\), and \(x=5\) about the \(x\)-axis.
43. (a) The rectangles would be vertical.
(b) The rectangles would be horizontal.
45. Diameter \(=2 \sqrt{4-2 \sqrt{3}} \approx 1.464 \quad\) 47. \(4 \pi^{2}\)
49. (a) Region bounded by \(y=x^{2}, y=0, x=0, x=2\)
(b) Revolved about the \(y\)-axis
51. (a) Region bounded by \(x=\sqrt{6-y}, y=0, x=0\)
(b) Revolved about \(y=-2\)
53. (a) Proof
(b) (i) \(V=2 \pi\)
(ii) \(V=6 \pi^{2}\)
55. Proof
57. (a) \(R_{1}(n)=n /(n+1)\)
(b) \(\lim _{n \rightarrow \infty} R_{1}(n)=1\)
(c) \(V=\pi a b^{n+2}[n /(n+2)] ; R_{2}(n)=n /(n+2)\)
(d) \(\lim _{n \rightarrow \infty} R_{2}(n)=1\)
(e) As \(n \rightarrow \infty\), the graph approaches the line \(x=b\).
59. (a) and (b) About \(121,475 \mathrm{ft}^{3} \quad\) 61. \(c=2\)
63. (a) \(64 \pi / 3\)
(b) \(2048 \pi / 35\)
(c) \(8192 \pi / 105\)

\section*{Section 7.4 (page 485)}
1. (a) and (b) 17 3. \(\frac{5}{3} \quad\) 5. \(\frac{2}{3}(2 \sqrt{2}-1) \approx 1.219\)
7. \(5 \sqrt{5}-2 \sqrt{2} \approx 8.352 \quad\) 9. 309.3195
11. \(\ln [(\sqrt{2}+1) /(\sqrt{2}-1)] \approx 1.763\)
13. \(\frac{1}{2}\left(e^{2}-1 / e^{2}\right) \approx 3.627 \quad\) 15. \(\frac{76}{3}\)
17. (a)

(b) \(\int_{0}^{2} \sqrt{1+4 x^{2}} d x\)
(c) About 4.647
19. (a)

(b) \(\int_{1}^{3} \sqrt{1+\frac{1}{x^{4}}} d x\)
(c) About 2.147
21. (a)

(b) \(\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x\)
(c) About 3.820
25. (a)

23. (a)

(b) \(\int_{0}^{2} \sqrt{1+e^{-2 y}} d y\)
\[
=\int_{e^{-2}}^{1} \sqrt{1+\frac{1}{x^{2}}} d x
\]
(c) About 2.221
(b) \(\int_{0}^{1} \sqrt{1+\left(\frac{2}{1+x^{2}}\right)^{2}} d x\)
(c) About 1.871
27. b
29. (a) 64.125
(b) 64.525
(c) 64.666
(d) 64.672
31. \(20[\sinh 1-\sinh (-1)] \approx 47.0 \mathrm{~m} \quad\) 33. About 1480
35. \(3 \arcsin \frac{2}{3} \approx 2.1892\)
37. \(2 \pi \int_{0}^{3} \frac{1}{3} x^{3} \sqrt{1+x^{4}} d x=\frac{\pi}{9}(82 \sqrt{82}-1) \approx 258.85\)
39. \(2 \pi \int_{1}^{2}\left(\frac{x^{3}}{6}+\frac{1}{2 x}\right)\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) d x=\frac{47 \pi}{16} \approx 9.23\)
41. \(2 \pi \int_{-1}^{1} 2 d x=8 \pi \approx 25.13\)
43. \(2 \pi \int_{1}^{8} x \sqrt{1+\frac{1}{9 x^{4 / 3}}} d x=\frac{\pi}{27}(145 \sqrt{145}-10 \sqrt{10}) \approx 199.48\)
45. \(2 \pi \int_{0}^{2} x \sqrt{1+\frac{x^{2}}{4}} d x=\frac{\pi}{3}(16 \sqrt{2}-8) \approx 15.318\)
47. 14.424
49. A rectifiable curve is a curve with a finite arc length.
51. The integral formula for the area of a surface of revolution is derived from the formula for the lateral surface area of the frustum of a right circular cone. The formula is \(S=2 \pi r L\), where \(r=\frac{1}{2}\left(r_{1}+r_{2}\right)\), which is the average radius of the frustum, and \(L\) is the length of a line segment on the frustum. The representative element is \(2 \pi f\left(d_{i}\right) \sqrt{1+\left(\Delta y_{i} / \Delta x_{i}\right)^{2}} \Delta x_{i}\).
53. (a)

55. \(20 \pi\)
57. \(6 \pi(3-\sqrt{5}) \approx 14.40\)
59. (a) Answers will vary. Sample answer: 5207.62 in. \({ }^{3}\)
(b) Answers will vary. Sample answer: 1168.64 in. \(^{2}\)
(c) \(r=0.0040 y^{3}-0.142 y^{2}+1.23 y+7.9\)

61. (a) \(\pi(1-1 / b) \quad\) (b) \(2 \pi \int_{1}^{b} \sqrt{x^{4}+1} / x^{3} d x\)
(c) \(\lim _{b \rightarrow \infty} V=\lim _{b \rightarrow \infty} \pi(1-1 / b)=\pi\)
(d) Because \(\frac{\sqrt{x^{4}+1}}{x^{3}}>\frac{\sqrt{x^{4}}}{x^{3}}=\frac{1}{x}>0\) on \([1, b]\), you have \(\int_{1}^{b} \frac{\sqrt{x^{4}+1}}{x^{3}} d x>\int_{1}^{b} \frac{1}{x} d x=[\ln x]_{1}^{b}=\ln b\) and \(\lim _{b \rightarrow \infty} \ln b \rightarrow \infty\). So, \(\lim _{b \rightarrow \infty} 2 \pi \int_{1}^{b} \frac{\sqrt{x^{4}+1}}{x^{3}} d x=\infty\).
63. (a)

(c) You cannot evaluate this definite integral because the integrand is not defined at \(x=3\). Simpson's Rule will not work for the same reason.
65. Fleeing object: \(\frac{2}{3}\) unit

Pursuer: \(\frac{1}{2} \int_{0}^{1} \frac{x+1}{\sqrt{x}} d x=\frac{4}{3}=2\left(\frac{2}{3}\right)\)
67. \(384 \pi / 5\)
69. Proof
71. Proof

\section*{Section 7.5 (page 495)}
1. \(2000 \mathrm{ft}-\mathrm{lb}\) 3. \(896 \mathrm{~N}-\mathrm{m}\)
5. \(40.833 \mathrm{in} .-\mathrm{lb} \approx 3.403 \mathrm{ft}-\mathrm{lb} \quad\) 7. \(8750 \mathrm{~N}-\mathrm{cm}=87.5 \mathrm{~N}-\mathrm{m}\)
9. \(160 \mathrm{in} .-\mathrm{lb} \approx 13.3 \mathrm{ft}-\mathrm{lb} \quad\) 11. \(37.125 \mathrm{ft}-\mathrm{lb}\)
13. (a) 487.805 mile-tons \(\approx 5.151 \times 10^{9} \mathrm{ft}-\mathrm{lb}\)
(b) 1395.349 mile-tons \(\approx 1.473 \times 10^{10} \mathrm{ft}-\mathrm{lb}\)
15. (a) \(2.93 \times 10^{4}\) mile-tons \(\approx 3.10 \times 10^{11} \mathrm{ft}-\mathrm{lb}\)
(b) \(3.38 \times 10^{4}\) mile-tons \(\approx 3.57 \times 10^{11} \mathrm{ft}-\mathrm{lb}\)
17. (a) \(2496 \mathrm{ft}-\mathrm{lb}\)
(b) \(9984 \mathrm{ft}-\mathrm{lb}\)
19. \(470,400 \pi \mathrm{~N}-\mathrm{m}\)
21. \(2995.2 \pi \mathrm{ft}-\mathrm{lb}\)
23. \(20,217.6 \pi \mathrm{ft}-\mathrm{lb}\)
25. \(2457 \pi \mathrm{ft}-\mathrm{lb}\)
27. \(600 \mathrm{ft}-\mathrm{lb}\)
29. \(450 \mathrm{ft}-\mathrm{lb}\)
31. \(168.75 \mathrm{ft}-\mathrm{lb}\)
33. If an object is moved a distance \(D\) in the direction of an applied constant force \(F\), then the work \(W\) done by the force is defined as \(W=F D\).
35. The situation in part (a) requires more work. There is no work required for part (b) because the distance is 0 .
37. (a) \(54 \mathrm{ft}-\mathrm{lb}\)
(b) \(160 \mathrm{ft}-\mathrm{lb}\)
(c) \(9 \mathrm{ft}-\mathrm{lb}\)
(d) \(18 \mathrm{ft}-\mathrm{lb}\)
39. \(2000 \ln (3 / 2) \approx 810.93 \mathrm{ft}-\mathrm{lb}\)
41. \(3 \mathrm{k} / 4\)
43. \(3249.4 \mathrm{ft}-\mathrm{lb}\)
45. \(10,330.3 \mathrm{ft}-\mathrm{lb}\)

\section*{Section 7.6 (page 506)}
1. \(\bar{x}=-\frac{4}{3}\)
3. \(\bar{x}=12\)
5. (a) \(\bar{x}=16\)
(b) \(\bar{x}=-2\)
7. \(x=6 \mathrm{ft}\)
9. \((\bar{x}, \bar{y})=\left(\frac{10}{9},-\frac{1}{9}\right)\)
11. \((\bar{x}, \bar{y})=\left(2, \frac{48}{25}\right)\)
13. \(M_{x}=\rho / 3, M_{y}=4 \rho / 3, \quad(\bar{x}, \bar{y})=(4 / 3,1 / 3)\)
15. \(M_{x}=4 \rho, M_{y}=64 \rho / 5, \quad(\bar{x}, \bar{y})=(12 / 5,3 / 4)\)
17. \(M_{x}=\rho / 35, M_{y}=\rho / 20, \quad(\bar{x}, \bar{y})=(3 / 5,12 / 35)\)
19. \(M_{x}=99 \rho / 5, M_{y}=27 \rho / 4, \quad(\bar{x}, \bar{y})=(3 / 2,22 / 5)\)
21. \(M_{x}=192 \rho / 7, M_{y}=96 \rho, \quad(\bar{x}, \bar{y})=(5,10 / 7)\)
23. \(M_{x}=0, M_{y}=256 \rho / 15, \quad(\bar{x}, \bar{y})=(8 / 5,0)\)
25. \(M_{x}=27 \rho / 4, M_{y}=-27 \rho / 10, \quad(\bar{x}, \bar{y})=(-3 / 5,3 / 2)\)
27. \(A=\int_{0}^{2}\left(2 x-x^{2}\right) d x=\frac{4}{3}\)
\(M_{x}=\int_{0}^{2}\left(\frac{2 x+x^{2}}{2}\right)\left(2 x-x^{2}\right) d x=\frac{32}{15}\)
\(M_{y}=\int_{0}^{2} x\left(2 x-x^{2}\right) d x=\frac{4}{3}\)
29. \(A=\int_{0}^{3}(2 x+4) d x=21\)
\(M_{x}=\int_{0}^{3}\left(\frac{2 x+4}{2}\right)(2 x+4) d x=78\)
\(M_{y}=\int_{0}^{3} x(2 x+4) d x=36\)
31.

\((\bar{x}, \bar{y})=(3.0,126.0)\)
33.

\((\bar{x}, \bar{y})=(0,16.2)\)
35. \((\bar{x}, \bar{y})=\left(\frac{b}{3}, \frac{c}{3}\right) \quad\) 37. \((\bar{x}, \bar{y})=\left(\frac{(a+2 b) c}{3(a+b)}, \frac{a^{2}+a b+b^{2}}{3(a+b)}\right)\)
39. \((\bar{x}, \bar{y})=(0,4 b /(3 \pi))\)
41. (a)

(b) \(\bar{x}=0\) by symmetry
(c) \(M_{y}=\int_{-\sqrt{b}}^{\sqrt{b}} x\left(b-x^{2}\right) d x=0\) because \(x\left(b-x^{2}\right)\) is an odd function.
(d) \(\bar{y}>b / 2\) because the area is greater for \(y>b / 2\).
(e) \(\bar{y}=(3 / 5) b\)
43. (a) \((\bar{x}, \bar{y})=(0,12.98)\)
(b) \(y=\left(-1.02 \times 10^{-5}\right) x^{4}-0.0019 x^{2}+29.28\)
(c) \((\bar{x}, \bar{y})=(0,12.85)\)

\((\bar{x}, \bar{y})=\left(\frac{4+3 \pi}{4+\pi}, 0\right)\)
47.

\((\bar{x}, \bar{y})=\left(0, \frac{135}{34}\right)\)
49. \((\bar{x}, \bar{y})=\left(\frac{2+3 \pi}{2+\pi}, 0\right)\)
51. \(160 \pi^{2} \approx 1579.14\)
53. \(128 \pi / 3 \approx 134.04\)
55. The center of mass \((\bar{x}, \bar{y})\) is \(\bar{x}=M_{y} / m\) and \(\bar{y}=M_{x} / m\), where:
1. \(m=m_{1}+m_{2}+\cdots+m_{n}\) is the total mass of the system.
2. \(M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}\) is the moment about the \(y\)-axis.
3. \(M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}\) is the moment about the \(x\)-axis.
57. See Theorem 7.1 on page 505.
59. \((\bar{x}, \bar{y})=(0,2 r / \pi)\)
61. \((\bar{x}, \bar{y})=\left(\frac{n+1}{n+2}, \frac{n+1}{4 n+2}\right)\); As \(n \rightarrow \infty\), the region shrinks toward the line segments \(y=0\) for \(0 \leq x \leq 1\) and \(x=1\) for \(0 \leq y \leq 1 ;(\bar{x}, \bar{y}) \rightarrow\left(1, \frac{1}{4}\right)\).

\section*{Section 7.7 (page 513)}
1. 1497.6 lb
3. 4992 lb
5. 748.8 lb
7. 1123.2 lb
9. 748.8 lb
11. 1064.96 lb
13. \(117,600 \mathrm{~N}\)
15. \(2,381,400 \mathrm{~N}\)
17. 2814 lb
19. 6753.6 lb
21. 94.5 lb
23. Proof
25. Proof
27. 960 lb
29. Answers will vary. Sample answer (using Simpson's Rule): 3010.8 lb
31. 8213.0 lb
33. \(3 \sqrt{2} / 2 \approx 2.12 \mathrm{ft}\); The pressure increases with increasing depth.
35. Because you are measuring total force against a region between two depths.

\section*{Review Exercises for Chapter 7 (page 515)}
1.

\(4 / 5\)
5.

\(\frac{1}{2}\)
3.

\[
\pi / 2
\]
7.

\[
e^{2}+1
\]
9.

11.

\(\frac{512}{3}\)
\(2 \sqrt{2}\)
13.

15. \(\int_{0}^{2}\left[0-\left(y^{2}-2 y\right)\right] d y=\int_{-1}^{0} 2 \sqrt{x+1} d x=\frac{4}{3}\)
17. \(\int_{0}^{2}\left[1-\left(1-\frac{x}{2}\right)\right] d x+\int_{2}^{3}[1-(x-2)] d x\) \(=\int_{0}^{1}[(y+2)-(2-2 y)] d y=\frac{3}{2}\)
19. (a) \(9920 \mathrm{ft}^{2}\)
(b) \(10,413 \frac{1}{3} \mathrm{ft}^{2}\)
21. (a) \(9 \pi\)
(b) \(18 \pi\)
(c) \(9 \pi \quad\) (d) \(36 \pi\)
23. (a) \(64 \pi\)
(b) \(48 \pi\)
25. \(\pi^{2} / 4\)
27. \((4 \pi / 3)(20-9 \ln 3) \approx 42.359\)
29. (a) \(\frac{4}{15}\)
(b) \(\frac{\pi}{12}\)
(c) \(\frac{32 \pi}{105}\)
31. 1.958 ft
33. \(\frac{8}{15}(1+6 \sqrt{3}) \approx 6.076 \quad\) 35. 4018.2 ft
37. \(15 \pi\)
39. \(62.5 \mathrm{in} .-\mathrm{lb} \approx 5.208 \mathrm{ft}-\mathrm{lb}\)
41. \(122,980 \pi \mathrm{ft}-\mathrm{lb} \approx 193.2\) foot-tons
43. \(200 \mathrm{ft}-\mathrm{lb}\)
45. \(a=15 / 4\)
47. \((\bar{x}, \bar{y})=(a / 5, a / 5)\)
49. \((\bar{x}, \bar{y})=\left(0,2 a^{2} / 5\right)\)
51. \((\bar{x}, \bar{y})=\left(\frac{2(9 \pi+49)}{3(\pi+9)}, 0\right)\)
53. Let \(D=\) surface of liquid; \(\rho=\) weight per cubic volume.
\[
\begin{aligned}
& F=\rho \int_{c}^{d}(D-y)[f(y)-g(y)] d y \\
& =\rho\left[\int_{c}^{d} D[f(y)-g(y)] d y-\int_{c}^{d} y[f(y)-g(y)] d y\right] \\
& =\rho\left[\int_{c}^{d}[f(y)-g(y)] d y\left[D-\frac{\int_{c}^{d} y[f(y)-g(y)] d y}{\int_{c}^{d}[f(y)-g(y)] d y}\right]\right. \\
& =\rho(\text { area })(D-\bar{y}) \\
& =\rho(\text { area })(\text { depth of centroid }) \\
& \xrightarrow{c}
\end{aligned}
\]

\section*{P.S. Problem Solving (page 517)}
1. \(3 \quad\) 3. \(y=0.2063 x\)
5.

7. \(V=2 \pi\left[d+\frac{1}{2} \sqrt{w^{2}+l^{2}}\right] l w\)
9. \(f(x)=2 e^{x / 2}-2\)
11. \(89.3 \%\)
13.

(a) \((\bar{x}, \bar{y})=\left(\frac{63}{43}, 0\right)\)
(b) \((\bar{x}, \bar{y})=\left(\frac{3 b(b+1)}{2\left(b^{2}+b+1\right)}, 0\right)\)
(c) \(\left(\frac{3}{2}, 0\right)\)
15. Consumer surplus: \(1600 ;\) Producer surplus:400
17. Wall at shallow end: 9984 lb

Wall at deep end: \(39,936 \mathrm{lb}\)
Side wall: \(19,968+26,624=46,592 \mathrm{lb}\)

\section*{Chapter 8}

\section*{Section 8.1 (page 524)}
1. \(b\) 3. \(c\)
5. \(\int \begin{aligned} & u^{n} d u \\ & u=5 x-3, n=4\end{aligned}\)
7. \(\int \frac{d u}{u}\)
\(u=1-2 \sqrt{x}\)
9. \(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}\) \(u=t, a=1\)
11. \(\int \begin{aligned} & \sin u d u \\ & u=t^{2}\end{aligned}\)
13. \(\int e^{u} d u\)
\[
u=\sin x
\]
15. \(2(x-5)^{7}+C\)
17. \(-7 /\left[6(z-10)^{6}\right]+C\)
19. \(\frac{1}{2} v^{2}-1 /\left[6(3 v-1)^{2}\right]+C\)
21. \(-\frac{1}{3} \ln \left|-t^{3}+9 t+1\right|+C\)
23. \(\frac{1}{2} x^{2}+x+\ln |x-1|+C\)
25. \(\ln \left(1+e^{x}\right)+C\)
27. \(\frac{x}{15}\left(48 x^{4}+200 x^{2}+375\right)+C\)
29. \(\sin \left(2 \pi x^{2}\right) /(4 \pi)+C\)
31. \(-(1 / \pi) \csc \pi x+C\)
33. \(\frac{1}{11} e^{11 x}+C\)
35. \(2 \ln \left(1+e^{x}\right)+C\)
37. \((\ln x)^{2}+C\)
39. \(-\ln (1-\sin x)+C=\ln |\sec x(\sec x+\tan x)|+C\)
41. \(\csc \theta+\cot \theta+C=(1+\cos \theta) / \sin \theta+C\)
43. \(-\frac{1}{4} \arcsin (4 t+1)+C\)
45. \(\frac{1}{2} \ln |\cos (2 / t)|+C\)
47. \(6 \arcsin [(x-5) / 5]+C\)
49. \(\frac{1}{4} \arctan [(2 x+1) / 8]+C\)
51. \(\arcsin [(x+2) / \sqrt{5}]+C\)
53. (a)

(b) \(\frac{1}{2} \arcsin t^{2}-\frac{1}{2}\)

55.
(a)

57. \(y=4 e^{0.8 x}\)

61. \(r=10 \arcsin e^{t}+C\)
63. \(y=\frac{1}{2} \arctan (\tan x / 2)+C\)
65.
67. \(\frac{1}{2}\left(1-e^{-1}\right) \approx 0.316\)
69. 8
71. \(\pi / 18\)
73. \(18 \sqrt{6} / 5 \approx 8.82\)
75. \(\frac{3}{2} \ln \left(\frac{34}{9}\right)+\frac{2}{3} \arctan \left(\frac{5}{3}\right) \approx 2.68\)
77. \(\frac{4}{3} \approx 1.333\)
79. \(\frac{1}{3} \arctan \left[\frac{1}{3}(x+2)\right]+C\) Graphs will vary. Example:


One graph is a vertical translation of the other.
81. \(\tan \theta-\sec \theta+C\)

Graphs will vary.
Example:


One graph is a vertical translation of the other.
83. Power Rule: \(\int u^{n} d u=\frac{u^{n+1}}{n+1}+C\); \(u=x^{2}+1, n=3\)
85. Log Rule: \(\int \frac{d u}{u}=\ln |u|+C\); \(u=x^{2}+1\)
87. \(a=\sqrt{2}, b=\frac{\pi}{4} ;-\frac{1}{\sqrt{2}} \ln \left|\csc \left(x+\frac{\pi}{4}\right)+\cot \left(x+\frac{\pi}{4}\right)\right|+C\)
89. \(a=\frac{1}{2}\)
91.


Negative; more area below the \(x\) axis than above
93. a
95. (a)

(b)

(c)

97. (a) \(\pi\left(1-e^{-1}\right) \approx 1.986\)
(b) \(b=\sqrt{\ln \left(\frac{3 \pi}{3 \pi-4}\right)} \approx 0.743\)
99. \(\ln (\sqrt{2}+1) \approx 0.8814\)
101. \((8 \pi / 3)(10 \sqrt{10}-1) \approx 256.545\)
103. \(\frac{1}{3} \arctan 3 \approx 0.416\)
105. About 1.0320
107. (a) \(\frac{1}{3} \sin x\left(\cos ^{2} x+2\right)\)
(b) \(\frac{1}{15} \sin x\left(3 \cos ^{4} x+4 \cos ^{2} x+8\right)\)
(c) \(\frac{1}{35} \sin x\left(5 \cos ^{6} x+6 \cos ^{4} x+8 \cos ^{2} x+16\right)\)
(d) \(\int \cos ^{15} x d x=\int\left(1-\sin ^{2} x\right)^{7} \cos x d x\)

You would expand \(\left(1-\sin ^{2} x\right)^{7}\).
109. Proof

\section*{Section 8.2 (page 533)}
1. \(u=x, d v=e^{2 x} d x \quad\) 3. \(u=(\ln x)^{2}, d v=d x\)
5. \(u=x, d v=\sec ^{2} x d x \quad\) 7. \(\frac{1}{16} x^{4}(4 \ln x-1)+C\)
9. \(\frac{1}{9} \sin 3 x-\frac{1}{3} x \cos 3 x+C\)
11. \(-\frac{1}{16 e^{4 x}}(4 x+1)+C\)
13. \(e^{x}\left(x^{3}-3 x^{2}+6 x-6\right)+C\)
15. \(\frac{1}{3} e^{x^{3}}+C \quad\) 17. \(\frac{1}{4}\left[2\left(t^{2}-1\right) \ln |t+1|-t^{2}+2 t\right]+C\)
19. \(\frac{1}{3}(\ln x)^{3}+C \quad\) 21. \(e^{2 x} /[4(2 x+1)]+C\)
23. \((x-1)^{2} e^{x}+C \quad\) 25. \(\frac{2}{15}(x-5)^{3 / 2}(3 x+10)+C\)
27. \(x \sin x+\cos x+C\)
29. \(\left(6 x-x^{3}\right) \cos x+\left(3 x^{2}-6\right) \sin x+C\)
31. \(-t \csc t-\ln |\csc t+\cot t|+C\)
33. \(x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)+C\)
35. \(\frac{1}{5} e^{2 x}(2 \sin x-\cos x)+C\)
37. \(\frac{1}{5} e^{-x}(2 \sin 2 x-\cos 2 x)+C\)
39. \(y=\frac{1}{2} e^{x^{2}}+C\)
41. \(y=\frac{2}{5} t^{2} \sqrt{3+5 t}-\frac{8 t}{75}(3+5 t)^{3 / 2}+\frac{16}{1875}(3+5 t)^{5 / 2}+C\)
\[
=\frac{2}{625} \sqrt{3+5 t}\left(25 t^{2}-20 t+24\right)+C
\]
43. \(\sin y=x^{2}+C\)
45. (a)

47.

(b) \(2 \sqrt{y}-\cos x-x \sin x=3\)

49. \(2 e^{3 / 2}+4 \approx 12.963\)
51. \(\frac{\pi}{8}-\frac{1}{4} \approx 0.143\)
53. \((\pi-3 \sqrt{3}+6) / 6 \approx 0.658\)
55. \(\frac{1}{2}[e(\sin 1-\cos 1)+1] \approx 0.909\)
57. \(\frac{4}{3} \sqrt{2} \ln 2-\frac{8}{9} \sqrt{2}+\frac{4}{9} \approx 0.494\)
59. \(8 \operatorname{arcsec} 4+\sqrt{3} / 2-\sqrt{15} / 2-2 \pi / 3 \approx 7.380\)
61. \(\left(e^{2 x} / 4\right)\left(2 x^{2}-2 x+1\right)+C\)
63. \(\left(3 x^{2}-6\right) \sin x-\left(x^{3}-6 x\right) \cos x+C\)
65. \(x \tan x+\ln |\cos x|+C \quad\) 67. \(2(\sin \sqrt{x}-\sqrt{x} \cos \sqrt{x})+C\)
69. \(\frac{128}{15}\) 71. \(\frac{1}{2}\left(x^{4} e^{x^{2}}-2 x^{2} e^{x^{2}}+2 e^{x^{2}}\right)+C\)
73. \(\frac{1}{2} x[\cos (\ln x)+\sin (\ln x)]+C\)
75. Product Rule
77. In order for the integration by parts technique to be efficient, you want \(d v\) to be the most complicated portion of the integrand and you want \(u\) to be the portion of the integrand whose derivative is a function simpler than \(u\). If you let \(u=\sin x\), then \(d u\) is not a simpler function.
79. (a) \(-\left(e^{-4 t} / 128\right)\left(32 t^{3}+24 t^{2}+12 t+3\right)+C\)
(b) Graphs will vary. Example:
(c) One graph is a vertical translation of the other.

81. (a) \(\frac{1}{13}\left(2 e^{-\pi}+3\right) \approx 0.2374\)
(b) Graphs will vary. Example:

(c) One graph is a vertical translation of the other.
83. \(\frac{2}{5}(2 x-3)^{3 / 2}(x+1)+C\)
85. \(\frac{1}{3} \sqrt{4+x^{2}}\left(x^{2}-8\right)+C\)
87. \(n=0: x(\ln x-1)+C\)
\(n=1: \frac{1}{4} x^{2}(2 \ln x-1)+C\)
\(n=2: \frac{1}{9} x^{3}(3 \ln x-1)+C\)
\(n=3: \frac{1}{16} x^{4}(4 \ln x-1)+C\)
\(n=4: \frac{1}{25} x^{5}(5 \ln x-1)+C\)
\(\int x^{n} \ln x d x=\frac{x^{n+1}}{(n+1)^{2}}[(n+1) \ln x-1]+C\)
89-93. Proofs
95. \(\frac{1}{36} x^{6}(6 \ln x-1)+C\)
99.

\(2-\frac{8}{e^{3}} \approx 1.602\)
97. \(\frac{1}{13} e^{2 x}(2 \cos 3 x+3 \sin 3 x)+C\)
101.

\(\frac{\pi}{1+\pi^{2}}\left(\frac{1}{e}+1\right) \approx 0.395\)
103. (a)
(b) \(\pi(e-2) \approx 2.257\)
(c) \(\frac{1}{2} \pi\left(e^{2}+1\right) \approx 13.177\)
(d) \(\left(\frac{e^{2}+1}{4}, \frac{e-2}{2}\right) \approx(2.097,0.359)\)
105. In Example 6, we showed that the centroid of an equivalent region was \((1, \pi / 8)\). By symmetry, the centroid of this region is \((\pi / 8,1)\).
107. \([7 /(10 \pi)]\left(1-e^{-4 \pi}\right) \approx 0.223 \quad\) 109. \(\$ 31,265\)
111. Proof
113. \(b_{n}=\left[8 h /(n \pi)^{2}\right] \sin (n \pi / 2)\)
115. Shell: \(V=\pi\left[b^{2} f(b)-a^{2} f(a)-\int_{a}^{b} x^{2} f^{\prime}(x) d x\right]\)

Disk: \(V=\pi\left[b^{2} f(b)-a^{2} f(a)-\int_{f(a)}^{f(b)}\left[f^{-1}(y)\right]^{2} d y\right]\)
Both methods yield the same volume because \(x=f^{-1}(y)\), \(f^{\prime}(x) d x=d y\), if \(y=f(a)\) then \(x=a\), and if \(y=f(b)\) then \(x=b\).
117. (a) \(y=\frac{1}{4}(3 \sin 2 x-6 x \cos 2 x)\)
(b)

(c) You obtain the following points.
\begin{tabular}{|c|c|c|}
\hline \(\boldsymbol{n}\) & \(\boldsymbol{x}_{\boldsymbol{n}}\) & \(\boldsymbol{y}_{\boldsymbol{n}}\) \\
\hline 0 & 0 & 0 \\
\hline 1 & 0.05 & 0 \\
\hline 2 & 0.10 & \(7.4875 \times 10^{-4}\) \\
\hline 3 & 0.15 & 0.0037 \\
\hline 4 & 0.20 & 0.0104 \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) \\
\hline 80 & 4.00 & 1.3181 \\
\hline
\end{tabular}

(d) You obtain the following points.
\begin{tabular}{|c|c|c|}
\hline \(\boldsymbol{n}\) & \(\boldsymbol{x}_{\boldsymbol{n}}\) & \(\boldsymbol{y}_{\boldsymbol{n}}\) \\
\hline 0 & 0 & 0 \\
\hline 1 & 0.1 & 0 \\
\hline 2 & 0.2 & 0.0060 \\
\hline 3 & 0.3 & 0.0293 \\
\hline 4 & 0.4 & 0.0801 \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) \\
\hline 40 & 4.0 & 1.0210 \\
\hline
\end{tabular}
119. The graph of \(y=x \sin x\) is below the graph of \(y=x\) on \([0, \pi / 2]\).

\section*{Section 8.3 (page 542)}
\(\begin{array}{llll}\text { 1. c 2. a } & \text { 3. d } & \text { 4. b } & \text { 5. }-\frac{1}{6} \cos ^{6} x+C\end{array}\)
7. \(\frac{1}{16} \sin ^{8} 2 x+C \quad\) 9. \(-\frac{1}{3} \cos ^{3} x+\frac{1}{5} \cos ^{5} x+C\)
11. \(-\frac{1}{3}(\cos 2 \theta)^{3 / 2}+\frac{1}{7}(\cos 2 \theta)^{7 / 2}+C\)
13. \(\frac{1}{12}(6 x+\sin 6 x)+C\)
15. \(\frac{3}{8} \alpha+\frac{1}{12} \sin 6 \alpha+\frac{1}{96} \sin 12 \alpha+C\)
17. \(\frac{1}{8}\left(2 x^{2}-2 x \sin 2 x-\cos 2 x\right)+C\)
19. \(\frac{16}{35}\)
21. \(63 \pi / 512\)
23. \(5 \pi / 32\)
25. \(\frac{1}{7} \ln |\sec 7 x+\tan 7 x|+C\)
27. \(\frac{1}{15} \tan 5 x\left(3+\tan ^{2} 5 x\right)+C\)
29. \((\sec \pi x \tan \pi x+\ln |\sec \pi x+\tan \pi x|) /(2 \pi)+C\)
31. \(\frac{1}{2} \tan ^{4}(x / 2)-\tan ^{2}(x / 2)-2 \ln |\cos (x / 2)|+C\)
33. \(\frac{1}{2} \tan ^{2} x+C\)
35. \(\frac{1}{3} \tan ^{3} x+\frac{1}{5} \tan ^{5} x+C\)
37. \(\frac{1}{24} \sec ^{6} 4 x+C\)
39. \(\frac{1}{7} \sec ^{7} x-\frac{1}{5} \sec ^{5} x+C\)
41. \(\ln |\sec x+\tan x|-\sin x+C\)
43. \((12 \pi \theta-8 \sin 2 \pi \theta+\sin 4 \pi \theta) /(32 \pi)+C\)
45. \(y=\frac{1}{9} \sec ^{3} 3 x-\frac{1}{3} \sec 3 x+C\)
47. (a)

49.

(b) \(y=\frac{1}{2} x-\frac{1}{4} \sin 2 x\)

51. \(\frac{1}{16}(2 \sin 4 x+\sin 8 x)+C\)
53. \(\frac{1}{12}(3 \cos 2 x-\cos 6 x)+C\)
55. \(\frac{1}{8}(2 \sin 2 \theta-\sin 4 \theta)+C\)
57. \(\frac{1}{4}\left(\ln \left|\csc ^{2} 2 x\right|-\cot ^{2} 2 x\right)+C\)
59. \(-\frac{1}{2} \cot 2 x-\frac{1}{6} \cot ^{3} 2 x+C\)
61. \(\ln |\csc t-\cot t|+\cos t+C\)
63. \(\ln |\csc x-\cot x|+\cos x+C\)
65. \(t-2 \tan t+C\)
67. \(\pi\)
69. \(3(1-\ln 2)\)
71. \(\ln 2\)
73. 4
75. \(\frac{1}{16}(6 x+8 \sin x+\sin 2 x)+C\)

Graphs will vary. Example:

77. \(\left[\sec ^{3} \pi x \tan \pi x+\right.\)
\(\left.\frac{3}{2}(\sec \pi x \tan \pi x+\ln |\sec \pi x+\tan \pi x|)\right] /(4 \pi)+C\)
Graphs will vary. Example:

79. \(\left(\sec ^{5} \pi x\right) /(5 \pi)+C\)
81. \(2 \sqrt{2} / 7\)
83. \(3 \pi / 16\)

Graphs will vary. Example:

85. (a) Save one sine factor and convert the remaining factors to cosines. Then expand and integrate.
(b) Save one cosine factor and convert the remaining factors to sines. Then expand and integrate.
(c) Make repeated use of the power reducing formulas to convert the integrand to odd powers of the cosine. Then proceed as in part (b).
87. (a) \(\frac{1}{2} \sin ^{2} x+C\)
(b) \(-\frac{1}{2} \cos ^{2} x+C\)
(c) \(\frac{1}{2} \sin ^{2} x+C\)
(d) \(-\frac{1}{4} \cos 2 x+C\)

The answers are all the same, they are just written in different forms. Using trigonometric identities, you can rewrite each answer in the same form.
89. (a) \(\frac{1}{18} \tan ^{6} 3 x+\frac{1}{12} \tan ^{4} 3 x+C_{1}, \frac{1}{18} \sec ^{6} 3 x-\frac{1}{12} \sec ^{4} 3 x+C_{2}\)
(b)

(c) Proof
91. \(\frac{1}{3} \quad\) 93. \(1 \quad\) 95. \(2 \pi(1-\pi / 4) \approx 1.348\)
97. (a) \(\pi^{2} / 2\) (b) \((\bar{x}, \bar{y})=(\pi / 2, \pi / 8) \quad 99-101\). Proofs
103. \(-\frac{1}{15} \cos x\left(3 \sin ^{4} x+4 \sin ^{2} x+8\right)+C\)
105. \(\frac{5}{6 \pi} \tan \frac{2 \pi x}{5}\left(\sec ^{2} \frac{2 \pi x}{5}+2\right)+C\)
107. (a) \(H(t) \approx 57.72-23.36 \cos (\pi t / 6)-2.75 \sin (\pi t / 6)\)
(b) \(L(t) \approx 42.04-20.91 \cos (\pi t / 6)-4.33 \sin (\pi t / 6)\)
(c)


The maximum difference is at \(t \approx 4.9\), or late spring.
109. Proof

\section*{Section 8.4 (page 551)}
1. \(x=3 \tan \theta \quad\) 3. \(x=4 \sin \theta \quad\) 5. \(x /\left(16 \sqrt{16-x^{2}}\right)+C\)
7. \(4 \ln \left|\left(4-\sqrt{16-x^{2}}\right) / x\right|+\sqrt{16-x^{2}}+C\)
9. \(\ln \left|x+\sqrt{x^{2}-25}\right|+C\)
11. \(\frac{1}{15}\left(x^{2}-25\right)^{3 / 2}\left(3 x^{2}+50\right)+C\)
13. \(\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C \quad\) 15. \(\frac{1}{2}\left[\arctan x+x /\left(1+x^{2}\right)\right]+C\)
17. \(\frac{1}{2} x \sqrt{9+16 x^{2}}+\frac{9}{8} \ln \left|4 x+\sqrt{9+16 x^{2}}\right|+C\)
19. \(\frac{25}{4} \arcsin (2 x / 5)+\frac{1}{2} x \sqrt{25-4 x^{2}}+C\)
21. \(\sqrt{x^{2}+36}+C \quad\) 23. \(\arcsin (x / 4)+C\)
25. \(4 \arcsin (x / 2)+x \sqrt{4-x^{2}}+C \quad\) 27. \(\ln \left|x+\sqrt{x^{2}-4}\right|+C\)
29. \(-\frac{\left(1-x^{2}\right)^{3 / 2}}{3 x^{3}}+C\)
31. \(-\frac{1}{3} \ln \left|\frac{\sqrt{4 x^{2}+9}+3}{2 x}\right|+C\)
33. \(3 / \sqrt{x^{2}+3}+C\)
35. \(\frac{1}{3}\left(1+e^{2 x}\right)^{3 / 2}+C\)
37. \(\frac{1}{2}\left(\arcsin e^{x}+e^{x} \sqrt{1-e^{2 x}}\right)+C\)
39. \(\frac{1}{4}\left[x /\left(x^{2}+2\right)+(1 / \sqrt{2}) \arctan (x / \sqrt{2})\right]+C\)
41. \(x \operatorname{arcsec} 2 x-\frac{1}{2} \ln \left|2 x+\sqrt{4 x^{2}-1}\right|+C\)
43. \(\arcsin [(x-2) / 2]+C\)
45. \(\sqrt{x^{2}+6 x+12}-3 \ln \left|\sqrt{x^{2}+6 x+12}+(x+3)\right|+C\)
47. (a) and (b) \(\sqrt{3}-\pi / 3 \approx 0.685\)
49. (a) and (b) \(9(2-\sqrt{2}) \approx 5.272\)
51. (a) and (b) \(-(9 / 2) \ln (2 \sqrt{7} / 3-4 \sqrt{3} / 3-\sqrt{21} / 3+8 / 3)\)
\[
+9 \sqrt{3}-2 \sqrt{7} \approx 12.644
\]
53. \(\sqrt{x^{2}-9}-3 \arctan \left(\sqrt{x^{2}-9} / 3\right)+1\)
55. \(\frac{1}{2}(x-15) \sqrt{x^{2}+10 x+9}\)
\[
+33 \ln \left|\sqrt{x^{2}+10 x+9}+(x+5)\right|+C
\]
57. \(\frac{1}{2}\left(x \sqrt{x^{2}-1}+\ln \left|x+\sqrt{x^{2}-1}\right|\right)+C\)
59. (a) Let \(u=a \sin \theta, \sqrt{a^{2}-u^{2}}=a \cos \theta\), where \(-\pi / 2 \leq \theta \leq \pi / 2\).
(b) Let \(u=a \tan \theta, \sqrt{a^{2}+u^{2}}=a \sec \theta\), where \(-\pi / 2<\theta<\pi / 2\).
(c) Let \(u=a \sec \theta, \sqrt{u^{2}-a^{2}}=\tan \theta\) if \(u>a\) and \(\sqrt{u^{2}-a^{2}}=-\tan \theta\) if \(u<-a\), where \(0 \leq \theta<\pi / 2\) or \(\pi / 2<\theta \leq \pi\).
61. Trigonometric substitution: \(x=\sec \theta\)
63. True
65. False: \(\int_{0}^{\sqrt{3}} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}=\int_{0}^{\pi / 3} \cos \theta d \theta\)
67. \(\pi a b\)
69. (a) \(5 \sqrt{2}\)
(b) \(25(1-\pi / 4)\)
(c) \(r^{2}(1-\pi / 4)\)
71. \(6 \pi^{2}\)
73. \(\ln \left[\frac{5(\sqrt{2}+1)}{\sqrt{26}+1}\right]+\sqrt{26}-\sqrt{2} \approx 4.367\)
75. Length of one arch of sine curve: \(y=\sin x, y^{\prime}=\cos x\)
\(L_{1}=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x\)
Length of one arch of cosine curve: \(y=\cos x, y^{\prime}=-\sin x\)
\(L_{2}=\int_{-\pi / 2}^{\pi / 2} \sqrt{1+\sin ^{2} x} d x\) \(=\int_{-\pi / 2}^{\pi / 2} \sqrt{1+\cos ^{2}(x-\pi / 2)} d x, \quad u=x-\pi / 2, d u=d x\) \(=\int_{-\pi}^{0} \sqrt{1+\cos ^{2} u} d u=\int_{0}^{\pi} \sqrt{1+\cos ^{2} u} d u=L_{1}\)
77. (a)

(c) \(100 \sqrt{2}+50 \ln [(\sqrt{2}+1) /(\sqrt{2}-1)] \approx 229.559\)
79. \((0,0.422) \quad\) 81. \((\pi / 32)[102 \sqrt{2}-\ln (3+2 \sqrt{2})] \approx 13.989\)
83. (a) \(187.2 \pi \mathrm{lb} \quad\) (b) \(62.4 \pi d \mathrm{lb}\)
85. Proof 87. \(12+9 \pi / 2-25 \arcsin (3 / 5) \approx 10.050\)
89. Putnum Problem A5, 2005

\section*{Section 8.5 (page 561)}
1. \(\frac{A}{x}+\frac{B}{x-8}\)
3. \(\frac{A}{x}+\frac{B x+C}{x^{2}+10}\)
5. \(\frac{A}{x}+\frac{B}{x-6}\)
7. \(\frac{1}{6} \ln |(x-3) /(x+3)|+C \quad\) 9. \(\ln |(x-1) /(x+4)|+C\)
11. \(\frac{3}{2} \ln |2 x-1|-2 \ln |x+1|+C\)
13. \(5 \ln |x-2|-\ln |x+2|-3 \ln |x|+C\)
15. \(x^{2}+\frac{3}{2} \ln |x-4|-\frac{1}{2} \ln |x+2|+C\)
17. \(1 / x+\ln \left|x^{4}+x^{3}\right|+C\)
19. \(2 \ln |x-2|-\ln |x|-3 /(x-2)+C\)
21. \(\ln \left|\left(x^{2}+1\right) / x\right|+C\)
23. \(\frac{1}{6}[\ln |(x-2) /(x+2)|+\sqrt{2} \arctan (x / \sqrt{2})]+C\)
25. \(\frac{1}{16} \ln \left|\left(4 x^{2}-1\right) /\left(4 x^{2}+1\right)\right|+C\)
27. \(\ln |x+1|+\sqrt{2} \arctan [(x-1) / \sqrt{2}]+C\)
29. \(\ln 3\)
31. \(\frac{1}{2} \ln (8 / 5)-\pi / 4+\arctan 2 \approx 0.557\)
33. \(y=5 \ln |x-5|-5 x /(x-5)+30\)

35. \(y=(\sqrt{2} / 2) \arctan (x / \sqrt{2})-1 /\left[2\left(x^{2}+2\right)\right]+5 / 4\)

37. \(y=\ln |x-2|+\frac{1}{2} \ln \left|x^{2}+x+1\right|\)
\(-\sqrt{3} \arctan [(2 x+1) / \sqrt{3}]-\frac{1}{2} \ln 13\)
\(+\sqrt{3} \arctan (7 / \sqrt{3})+10\)

39. \(y=\frac{1}{10} \ln |(x-5) /(x+5)|+\frac{1}{10} \ln 6+2\)

41. \(\ln \left|\frac{\cos x}{\cos x-1}\right|+C\)
43. \(\ln \left|\frac{\sin x}{1+\sin x}\right|+C\)
45. \(\ln \left|\frac{\tan x+2}{\tan x+3}\right|+C\)
47. \(\frac{1}{5} \ln \left|\frac{e^{x}-1}{e^{x}+4}\right|+C\)
49. \(2 \sqrt{x}+2 \ln \left|\frac{\sqrt{x}-2}{\sqrt{x}+2}\right|+C\)

51-53. Proofs
55. \(y=\frac{3}{2} \ln \left|\frac{2+x}{2-x}\right|+3\)
57. First divide \(x^{3}\) by \((x-5)\).

59. \(12 \ln \left(\frac{9}{8}\right) \approx 1.4134\)
61. \(6-\frac{7}{4} \ln 7 \approx 2.5947\)
63. 4.90 or \(\$ 90,000\)
65. \(V=2 \pi\left(\arctan 3-\frac{3}{10}\right) \approx 5.963 ;(\bar{x}, \bar{y}) \approx(1.521,0.412)\)
67. \(x=n\left[e^{(n+1) k t}-1\right] /\left[n+e^{(n+1) k t}\right]\)
69. \(\pi / 8\)

\section*{Section 8.6 (page 567)}
1. \(-\frac{1}{2} x(10-x)+25 \ln |5+x|+C\)
3. \(\frac{1}{2}\left[e^{x} \sqrt{e^{2 x}+1}+\ln \left(e^{x}+\sqrt{e^{2 x}+1}\right)\right]+C\)
5. \(-\sqrt{1-x^{2}} / x+C\)
7. \(\frac{1}{24}\left(3 x+\sin 3 x \cos 3 x+2 \cos ^{3} 3 x \sin 3 x\right)+C\)
9. \(-2(\cot \sqrt{x}+\csc \sqrt{x})+C\)
11. \(x-\frac{1}{2} \ln \left(1+e^{2 x}\right)+C\)
13. \(\frac{1}{64} x^{8}(8 \ln x-1)+C\)
15. (a) and (b) \(\frac{1}{27} e^{3 x}\left(9 x^{2}-6 x+2\right)+C\)
17. (a) and (b) \(\ln |(x+1) / x|-1 / x+C\)
19. \(\frac{1}{2}\left[\left(x^{2}+1\right) \operatorname{arccsc}\left(x^{2}+1\right)+\ln \left(x^{2}+1+\sqrt{x^{4}+2 x^{2}}\right)\right]+C\)
21. \(\sqrt{x^{2}-4} /(4 x)+C \quad\) 23. \(\frac{4}{25}[\ln |2-5 x|+2 /(2-5 x)]+C\)
25. \(e^{x} \arccos \left(e^{x}\right)-\sqrt{1-e^{2 x}}+C\)
27. \(\frac{1}{2}\left(x^{2}+\cot x^{2}+\csc x^{2}\right)+C\)
29. \((\sqrt{2} / 2) \arctan [(1+\sin \theta) / \sqrt{2}]+C\)
31. \(-\sqrt{2+9 x^{2}} /(2 x)+C\)
33. \(\frac{1}{4}(2 \ln |x|-3 \ln |3+2 \ln | x| |)+C\)
35. \((3 x-10) /\left[2\left(x^{2}-6 x+10\right)\right]+\frac{3}{2} \arctan (x-3)+C\)
37. \(\frac{1}{2} \ln \left|x^{2}-3+\sqrt{x^{4}-6 x^{2}+5}\right|+C\)
39. \(-\frac{1}{3} \sqrt{4-x^{2}}\left(x^{2}+8\right)+C\)
41. \(2 /\left(1+e^{x}\right)-1 /\left[2\left(1+e^{x}\right)^{2}\right]+\ln \left(1+e^{x}\right)+C\)
43. \(\frac{1}{2}(e-1) \approx 0.8591 \quad\) 45. \(\frac{32}{5} \ln 2-\frac{31}{25} \approx 3.1961\)
47. \(\pi / 2\) 49. \(\pi^{3} / 8-3 \pi+6 \approx 0.4510\) 51-55. Proofs
57. \(y=-2 \sqrt{1-x} / \sqrt{x}+7\)

59. \(y=\frac{1}{2}\left[(x-3) /\left(x^{2}-6 x+10\right)+\arctan (x-3)\right]\)

61. \(y=-\csc \theta+\sqrt{2}+2\)

63. \(\frac{1}{\sqrt{5}} \ln \left|\frac{2 \tan (\theta / 2)-3-\sqrt{5}}{2 \tan (\theta / 2)-3+\sqrt{5}}\right|+C \quad\) 65. \(\ln 2\)
67. \(\frac{1}{2} \ln (3-2 \cos \theta)+C\)
69. \(-2 \cos \sqrt{\theta}+C\)
71. \(4 \sqrt{3}\)
73. (a) \(\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C\)
\(\int x^{2} \ln x d x=\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C\)
\(\int x^{3} \ln x d x=\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C\)
(b) \(\int x^{n} \ln x d x=x^{n+1} \ln x /(n+1)-x^{n+1} /(n+1)^{2}+C\)
75. False. Substitutions may first have to be made to rewrite the integral in a form that appears in the table.
77. \(32 \pi^{2}\)
79. \(1919.145 \mathrm{ft}-\mathrm{lb}\)
81. (a) \(V=80 \ln (\sqrt{10}+3) \approx 145.5 \mathrm{ft}^{3}\)
\[
W=11,840 \ln (\sqrt{10}+3) \approx 21,530.4 \mathrm{lb}
\]
(b) \((0,1.19)\)
83. (a) \(k=30 / \ln 7 \approx 15.42\)
85. Putnam Problem A3, 1980
(b)


\section*{Section 8.7 (page 576)}
1. \begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 1.3177 & 1.3332 & 1.3333 & 1.3333 & 1.3332 & 1.3177 \\
\hline
\end{tabular}
3.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 1 & 10 & \(10^{2}\) & \(10^{3}\) & \(10^{4}\) & \(10^{5}\) \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.9900 & \(90,483.7\) & \(3.7 \times 10^{9}\) & \(4.5 \times 10^{10}\) & 0 & 0 \\
\hline
\end{tabular}
5. \(\frac{3}{8}\)
7. \(\frac{1}{8} \quad\) 9. \(\frac{5}{3}\)
11. 4
13. 0
15. 2
17. \(\infty\)
19. \(\frac{11}{4}\)
21. \(\frac{3}{5}\)
23. 1
25. \(\frac{5}{4}\)
27. \(\infty\)
29. 0
31. 1
33. 0
35. 0
37. \(\infty\)
39. \(\frac{5}{9}\)
41. 1
43. \(\infty\)
45. (a) Not indeterminate
(b) \(\infty\)
(c)

47. (a) \(0 \cdot \infty\)
(b) 1
(c)

49. (a) Not indeterminate
(b) 0
(c)

51. (a) \(\infty^{0}\)
(b) 1
(c)

53.
(c)
(b) \(e\)

55. (a) \(0^{0}\)
(b) 3
(c)

57. (a) \(0^{0} \quad\) (b) 1
(c)

59. (a) \(\infty-\infty\)
(b) \(-\frac{3}{2}\)
(c)

(b) \(\infty\)
(c)

65. (a)

(b) \(\frac{5}{2}\)
69. Answers will vary. Examples:
(a) \(f(x)=x^{2}-25, g(x)=x-5\)
(b) \(f(x)=(x-5)^{2}, g(x)=x^{2}-25\)
(c) \(f(x)=x^{2}-25, g(x)=(x-5)^{3}\)
71.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 10 & \(10^{2}\) & \(10^{4}\) & \(10^{6}\) & \(10^{8}\) & \(10^{10}\) \\
\hline\(\frac{(\ln \boldsymbol{x})^{4}}{\boldsymbol{x}}\) & 2.811 & 4.498 & 0.720 & 0.036 & 0.001 & 0.000 \\
\hline
\end{tabular}
73. 0
75. 0
77. 0
79. Horizontal asymptote: \(y=1\)
Relative maximum: \(\left(e, e^{1 / e}\right)\)

81. Horizontal asymptote: \(y=0\) Relative maximum: (1,2/e)

83. Limit is not of the form \(0 / 0\) or \(\infty / \infty\).
85. Limit is not of the form \(0 / 0\) or \(\infty / \infty\).
87. Limit is not of the form \(0 / 0\) or \(\infty / \infty\).
89. (a) \(\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}\)

Applying L'Hôpital's Rule twice results in the original limit, so L'Hôpital's Rule fails.
(b) 1
(c)

91.


As \(x \rightarrow 0\), the graphs get closer together (they both approach 0.75 ).
By L'Hôpital's Rule, \(\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 4 x}=\lim _{x \rightarrow 0} \frac{3 \cos 3 x}{4 \cos 4 x}=\frac{3}{4}\).
93. \(v=32 t+v_{0}\)
95. Proof
97. \(c=\frac{2}{3}\)
99. \(c=\pi / 4\)
101. False:L'Hôpital's Rule does not apply,
103. True because \(\lim \left(x^{2}+x+1\right) \neq 0\).
105. \(\frac{3}{4}\)
107. \({ }^{x \rightarrow 0} 3\)
109. \(a=1, b= \pm 2\)
111. Proof
113.

115. (a) \(0 \cdot \infty \quad\) (b) 0
117. Proof
119. (a)-(c) 2
\(g^{\prime}(0)=0\)
121. (a)

(b) \(\lim _{x \rightarrow \infty} h(x)=1\)
(c) No
123. Putnam Problem A1, 1956

\section*{Section 8.8 (page 587)}
1. Improper; \(0 \leq \frac{3}{5} \leq 1 \quad\) 3. Not improper;continuous on \([0,1]\)
5. Not improper;continuous on \([0,2]\)
7. Improper;infinite limits of integration
9. Infinite discontinuity at \(x=0 ; 4\)
11. Infinite discontinuity at \(x=1\); diverges
13. Infinite limit of integration; \(\frac{1}{4}\)
15. Infinite discontinuity at \(x=0\); diverges
17. Infinite limit of integration;converges to 1
19. \(\frac{1}{2}\)
21. Diverges
23. Diverges
25. 2 27. \(\frac{1}{2}\)
29. \(1 /\left[2(\ln 4)^{2}\right]\)
31. \(\pi \quad\) 33. \(\pi / 4\)
35. Diverges
37. Diverges
39. 6
41. \(-\frac{1}{4}\)
43. Diverges
45. \(\pi / 3\)
47. \(\ln (2+\sqrt{3})\)
49. 0
51. \(\pi / 6\)
53. \(2 \pi \sqrt{6} / 3\)
55. \(p>1\)
57.
. Proof
59. Diverges
61. Converges
63. Converges
65. Diverges
67. Diverges
69. Converges
71. An integral with infinite integration limits, an integral with an infinite discontinuity at or between the integration limits
73. The improper integral diverges.
75. \(e \quad\) 77. \(\pi\)
79. (a) 1
(b) \(\pi / 2\)
(c) \(2 \pi\)
81.

83. \(8 \pi^{2}\)
85. (a) \(W=20,000\) mile-tons
(b) 4000 mi
87. (a) Proof
(b) \(P=43.53 \%\)
(c) \(E(x)=7\)
89. (a) \(\$ 57,992.41\)
(b) \(837,995.15\)
(c) \(\$, 066,666.67\)
91. \(P=\left[2 \pi N I\left(\sqrt{r^{2}+c^{2}}-c\right)\right] /\left(k r \sqrt{r^{2}+c^{2}}\right)\)
93. False. Let \(f(x)=1 /(x+1)\). 95. True
97. (a) and (b) Proofs
(c) The definition of the improper integral \(\int_{-\infty}^{\infty}\) is not \(\lim _{a \rightarrow \infty} \int_{-a}^{a}\) but rather if you rewrite the integral that diverges, you can find that the integral converges.
99. (a) \(\int_{1}^{\infty} \frac{1}{x^{n}} d x\) will converge if \(n>1\) and diverge if \(n \leq 1\).
(b)

(c) Converges
101. (a) \(\Gamma(1)=1, \Gamma(2)=1, \Gamma(3)=2\)
(b) Proof
(c) \(\Gamma(n)=(n-1)\) !
\(\begin{array}{lll}\text { 103. } 1 / s, s>0 & \text { 105. } 2 / s^{3}, s>0 & \text { 107. } s /\left(s^{2}+a^{2}\right), s>0\end{array}\)
109. \(s /\left(s^{2}-a^{2}\right), s>|a|\)
111. (a)

(b) About 0.2525
(c) 0.2525 ;same by symmetry
113. \(c=1 ; \ln (2)\)
115. \(8 \pi\left[(\ln 2)^{2} / 3-(\ln 4) / 9+2 / 27\right] \approx 2.01545\)
117. \(\int_{0}^{1} 2 \sin \left(u^{2}\right) d u ; 0.6278\)
119. (a)

(b) Proof

\section*{Review Exercises for Chapter 8 (page 591)}
1. \(\frac{1}{3}\left(x^{2}-36\right)^{3 / 2}+C\)
3. \(\frac{1}{2} \ln \left|x^{2}-49\right|+C\)
5. \(\ln (2)+\frac{1}{2} \approx 1.1931\)
7. \(100 \arcsin (x / 10)+C\)
9. \(\frac{1}{9} e^{3 x}(3 x-1)+C\)
11. \(\frac{1}{13} e^{2 x}(2 \sin 3 x-3 \cos 3 x)+C\)
13. \(\frac{2}{15}(x-1)^{3 / 2}(3 x+2)+C\)
15. \(-\frac{1}{2} x^{2} \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+C\)
17. \(\frac{1}{16}\left[\left(8 x^{2}-1\right) \arcsin 2 x+2 x \sqrt{1-4 x^{2}}\right]+C\)
19. \(\sin (\pi x-1)\left[\cos ^{2}(\pi x-1)+2\right] /(3 \pi)+C\)
21. \(\frac{2}{3}\left[\tan ^{3}(x / 2)+3 \tan (x / 2)\right]+C \quad\) 23. \(\tan \theta+\sec \theta+C\)
25. \(3 \pi / 16+\frac{1}{2} \approx 1.0890\)
27. \(3 \sqrt{4-x^{2}} / x+C\)
29. \(\frac{1}{3}\left(x^{2}+4\right)^{1 / 2}\left(x^{2}-8\right)+C\)
31. \(\pi\)
33. (a), (b), and (c) \(\frac{1}{3} \sqrt{4+x^{2}}\left(x^{2}-8\right)+C\)
35. \(6 \ln |x+3|-5 \ln |x-4|+C\)
37. \(\frac{1}{4}\left[6 \ln |x-1|-\ln \left(x^{2}+1\right)+6 \arctan x\right]+C\)
39. \(x-\frac{64}{11} \ln |x+8|+\frac{9}{11} \ln |x-3|+C\)
41. \(\frac{1}{25}[4 /(4+5 x)+\ln |4+5 x|]+C\)
43. \(1-\sqrt{2} / 2\)
45. \(\frac{1}{2} \ln \left|x^{2}+4 x+8\right|-\arctan [(x+2) / 2]+C\)
47. \(\ln |\tan \pi x| / \pi+C\)
49. Proof
51. \(\frac{1}{8}(\sin 2 \theta-2 \theta \cos 2 \theta)+C\)
53. \(\frac{4}{3}\left[x^{3 / 4}-3 x^{1 / 4}+3 \arctan \left(x^{1 / 4}\right)\right]+C\)
55. \(2 \sqrt{1-\cos x}+C \quad\) 57. \(\sin x \ln (\sin x)-\sin x+C\)
59. \(\frac{5}{2} \ln |(x-5) /(x+5)|+C\)
61. \(y=x \ln \left|x^{2}+x\right|-2 x+\ln |x+1|+C \quad\) 63. \(\frac{1}{5}\)
65. \(\frac{1}{2}(\ln 4)^{2} \approx 0.961\)
67. \(\pi \quad\) 69. \(\frac{128}{15}\)
71. \((\bar{x}, \bar{y})=(0,4 /(3 \pi))\)
73. 3.82
75. 0
77. \(\infty\)
79. 1
81. \(1000 e^{0.09} \approx 1094.17\)
83. Converges; \(\frac{32}{3}\)
85. Diverges
87. Converges; 1
89. Converges; \(\pi / 4\)
91. (a) \(\$, 321,205.59\) (b) \(\$ 0,000,000\)
93. (a) 0.4581
(b) 0.0135

\section*{P.S. Problem Solving (page 593)}
1.
a) \(\frac{4}{3}, \frac{16}{15}\)
(b) Proof
3. \(\ln 3\)
5. Proof
7. (a)

(b) \(\ln 3-\frac{4}{5}\)
(c) \(\ln 3-\frac{4}{5}\)
\[
\text { Area } \approx 0.2986
\]
9. \(\ln 3-\frac{1}{2} \approx 0.5986\) 11. Proof 13. About 0.8670
15. (a) \(\infty\)
(b) 0
(c) \(-\frac{2}{3}\)

The form \(0 \cdot \infty\) is indeterminant.
17. \(\frac{1 / 12}{x}+\frac{1 / 42}{x-3}+\frac{1 / 10}{x-1}+\frac{111 / 140}{x+4}\)
19. Proof 21. About 0.0158

\section*{Chapter 9}

\section*{Section 9.1 (page 604)}
\(\begin{array}{ll}\text { 1. } 3,9,27,81,243 & \text { 3. }-\frac{1}{4}, \frac{1}{16},-\frac{1}{64}, \frac{1}{256},-\frac{1}{1024}\end{array}\)
5. \(1,0,-1,0,1\)
7. \(-1,-\frac{1}{4}, \frac{1}{9}, \frac{1}{16},-\frac{1}{25}\)
9. \(5, \frac{19}{4}, \frac{43}{9}, \frac{77}{16}, \frac{121}{25}\)
11. \(3,4,6,10,18\)
13. \(32,16,8,4,2\)
15.
16. a
17. d
18. b
19. b
20. c
21. a 22. d
23. 14, 17;add 3 to preceding term
25. 80,160 ;multiply preceding term by 2 .
27. \(\frac{3}{16},-\frac{3}{32}\); multiply preceding term by \(-\frac{1}{2}\)
29. \(11 \cdot 10 \cdot 9=990\)
31. \(n+1\)
33. \(1 /[(2 n+1)(2 n)]\)
35. 5
37. 2
39. 0
41.


Converges to 1
43.


Diverges
45. Converges to -1 47. Converges to 0
49. Diverges
51. Converges to \(\frac{3}{2}\)
53. Converges to 0
55. Converges to 0
57. Converges to 0
59. Converges to 0
61. Diverges
63. Converges to 0
65. Converges to 0
67. Converges to 1
69. Converges to \(e^{k}\)
71. Converges to 0
73. Answers will vary. Sample answer: \(3 n-2\)
75. Answers will vary. Sample answer: \(n^{2}-2\)
77. Answers will vary. Sample answer: \((n+1) /(n+2)\)
79. Answers will vary. Sample answer: \((n+1) / n\)
81. Answers will vary. Sample answer: \(n /[(n+1)(n+2)]\)
83. Answers will vary. Sample answer:
\[
\frac{(-1)^{n-1}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}=\frac{(-1)^{n-1} 2^{n} n!}{(2 n)!}
\]
85. Answers will vary. Sample answer: \((2 n)\) !
87. Monotonic, bounded
89. Monotonic, bounded
91. Not monotonic, bounded
93. Monotonic, bounded
95. Not monotonic, bounded
97. Not monotonic, bounded
99. (a) \(\left|5+\frac{1}{n}\right| \leq 6 \Longrightarrow\) bounded
\(a_{n}>a_{n+1} \Rightarrow\) monotonic
So, \(\left\{a_{n}\right\}\) converges.


Limit \(=5\)
101. (a) \(\left|\frac{1}{3}\left(1-\frac{1}{3^{n}}\right)\right|<\frac{1}{3} \Rightarrow\) bounded \(a_{n}<a_{n+1} \Rightarrow\) monotonic So, \(\left\{a_{n}\right\}\) converges.
(b)

103. \(\left\{a_{n}\right\}\) has a limit because it is bounded and monotonic; since \(2 \leq a_{n} \leq 4,2 \leq L \leq 4\).
105. (a) No; \(\lim _{n \rightarrow \infty} A_{n}\) does not exist.
(b)
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 1 & 2 & 3 & 4 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & \(\$ 0,045.83\) & \(\$ 0,091.88\) & \(\$ 0,138.13\) & \(\$ 0,184.60\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 6 & 7 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & \(\$ 0,231.28\) & \(\$ 0,278.17\) & \(\$ 0,325.28\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \(\boldsymbol{n}\) & 8 & 9 & 10 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & \(\$ 0,372.60\) & \(\$ 0,420.14\) & \(\$ 0,467.90\) \\
\hline
\end{tabular}
107. No. A sequence is said to converge when its terms approach a real number.
109. The graph on the left represents a sequence with alternating signs because the terms alternate from being above the \(x\)-axis to being below the \(x\)-axis.
111. (a) \(\$ 4,500,000,000(0.8)^{n}\)
(b)
\begin{tabular}{|l|c|c|}
\hline Year & 1 & 2 \\
\hline Budget & \(\$ 3,600,000,000\) & \(\$ 2,880,000,000\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline Year & 3 & 4 \\
\hline Budget & \(\$ 2,304,000,000\) & \(\$ 1,843,200,000\) \\
\hline
\end{tabular}
(c) Converges to 0
113. (a) \(a_{n}=-5.364 n^{2}+608.04 n+4998.3\)

(b) \(\$ 11,522.4\) billion
115. (a) \(a_{9}=a_{10}=1,562,500 / 567\)
(b) Decreasing
(c) Factorials increase more rapidly than exponentials.
117. 1, 1.4142, 1.4422, 1.4142, 1.3797, 1.3480; Converges to 1
119. True
121. True
123. True
125. (a) \(1,1,2,3,5,8,13,21,34,55,89,144\)
(b) \(1,2,1.5,1.6667,1.6,1.6250,1.6154,1.6190\), \(1.6176,1.6182\)
(c) Proof (d) \(\rho=(1+\sqrt{5}) / 2 \approx 1.6180\)
127. (a) \(1.4142,1.8478,1.9616,1.9904,1.9976\)
(b) \(a_{n}=\sqrt{2+a_{n-1}}\)
(c) \(\lim _{n \rightarrow \infty} a_{n}=2\)
129. (a) Proof
(b) Proof
(c) \(\lim _{n \rightarrow \infty} a_{n}=(1+\sqrt{1+4 k}) / 2\)
131. (a) Proof
(b) Proof
133. (a) Proof
(b)


> (c) Proof \(\quad\) (d) Proof (e) \(\frac{\sqrt[20]{20!}}{20} \approx 0.4152 ;\) \(\frac{\sqrt[50]{50!}}{50} \approx 0.3897 ;\) \(\frac{100}{100} \approx 0.3799\)
135. Proof
137. Answers will vary. Sample answer: \(a_{n}=(-1)^{n}\)
139. Proof 141. Putnam Problem A1, 1990

\section*{Section 9.2 (page 614)}
1. \(1,1.25,1.361,1.424,1.464\)
3. \(3,-1.5,5.25,-4.875,10.3125\)
5. \(3,4.5,5.25,5.625,5.8125\)
7. \(\left\{a_{n}\right\}\) converges, \(\sum a_{n}\) diverges
9. Geometric series: \(r=\frac{7}{6}>1\)
11. Geometric series: \(r=1.055>1\)
13. \(\lim _{n \rightarrow \infty} a_{n}=1 \neq 0\)
15. \(\lim _{n \rightarrow \infty} a_{n}=1 \neq 0\)
17. \(\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2} \neq 0\)
19. c; 3
20. b; 3
21. a; 3
22. d; 3
23. \(\mathrm{f} ; \frac{34}{9}\)
24. e; \(\frac{5}{3}\)
25. Geometric series: \(r=\frac{5}{6}<1\)
27. Geometric series: \(r=0.9<1\)
29. Telescoping series: \(a_{n}=1 / n-1 /(n+1)\); Converges to 1 .
31. (a) \(\frac{11}{3}\)
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 5 & 10 & 20 & 50 & 100 \\
\hline\(S_{n}\) & 2.7976 & 3.1643 & 3.3936 & 3.5513 & 3.6078 \\
\hline
\end{tabular}
(c)

(d) The terms of the series decrease in magnitude relatively slowly, and the sequence of partial sums approaches the sum of the series relatively slowly.
33. (a) 20
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 20 & 50 & 100 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 8.1902 & 13.0264 & 17.5685 & 19.8969 & 19.9995 \\
\hline
\end{tabular}
(c)

(d) The terms of the series decrease in magnitude relatively slowly, and the sequence of partial sums approaches the sum of the series relatively slowly.
35. (a) \(\frac{40}{3}\)
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 20 & 50 & 100 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 13.3203 & 13.3333 & 13.3333 & 13.3333 & 13.3333 \\
\hline
\end{tabular}
(c)

(d) The terms of the series decrease in magnitude relatively rapidly, and the sequence of partial sums approaches the sum of the series relatively rapidly.
37. \(2 \quad\) 39. \(\frac{3}{4}\)
41. \(\frac{3}{4}\)
43. 4
45. \(\frac{10}{9}\)
47. \(\frac{9}{4}\)
49. \(\frac{1}{2}\)
51. \(\frac{\sin (1)}{1-\sin (1)}\)
53. (a) \(\sum_{n=0}^{\infty} \frac{4}{10}(0.1)^{n}\)
(b) \(\frac{4}{9}\)
55. (a) \(\sum_{n=0}^{\infty} \frac{81}{100}(0.01)^{n}\)
(b) \(\frac{9}{11}\)
57. (a) \(\sum_{n=0}^{\infty} \frac{3}{40}(0.01)\)
(b) \(\frac{5}{66}\)
59. Diverges
61. Diverges
63. Converges
65. Converges
67. Diverges
69. Converges
71. Diverges
73. Diverges
75. Diverges
77. See definitions on page 608.
79. The series given by
\(\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots, a \neq 0\)
is a geometric series with ratio \(r\). When \(0<|r|<1\), the series converges to the sum \(\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}\).
81. The series in (a) and (b) are the same. The series in (c) is different unless \(a_{1}=a_{2}=\cdots=a\) is constant.
83. \(-2<x<2 ; x /(2-x)\)
85. \(0<x<2 ;(x-1) /(2-x)\)
87. \(-1<x<1 ; 1 /(1+x)\)
89. \(x\) : \((-\infty,-1) \cup(1, \infty) ; x /(x-1)\)
91. \(c=(\sqrt{3}-1) / 2\)
93. Neither statement is true. The formula is valid for \(-1<x<1\).
95. (a) \(x\)
(b) \(f(x)=1 /(1-x)\),
(c)

97.


Horizontal asymptote: \(y=6\)
The horizontal asymptote is the sum of the series.
99. The required terms for the two series are \(n=100\) and \(n=5\), respectively. The second series converges at a higher rate.
101. \(160,000\left(1-0.95^{n}\right)\) units
103. \(\sum_{i=0}^{\infty} 200(0.75)^{i}\); Sum \(=\$ 00\) million
105. 152.42 feet
107. \(\frac{1}{8} ; \sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{n}=\frac{1 / 2}{1-1 / 2}=1\)
109. (a) \(-1+\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=-1+\frac{a}{1-r}=-1+\frac{1}{1-1 / 2}=1\)
(b) No
(c) 2
111. (a) 126 in. \(^{2}\) (b) 128 in. \(^{2}\)
113. The \(\$, 000,000\) sweepstakes has a present value of \(\$, 146,992.12\). After accruing interest over the 20 -year period, it attains its full value.
115. (a) \(\$, 368,709.11\) (b) \(\$ 0,737,418.23\) (c) \(\$ 1,474,836.47\)
117. (a) \(\$ 4,773.59\)
(b) \(\$ 4,779.65\)
119. (a) \(\$ 1,373.09\)
(b) \(\$ 1,503.32\)
121. \(\$, 751,275.79\)
123. False. \(\lim _{n \rightarrow \infty} \frac{1}{n}=0\), but \(\sum_{n=1}^{\infty} \frac{1}{n}\) diverges.
125. False. \(\sum_{n=1}^{\infty} a r^{n}=\left(\frac{a}{1-r}\right)-a\) The formula requires that the geometric series begins with \(n=0\).
127. True
129. Proof
131. Answers will vary. Example: \(\sum_{n=0}^{\infty} 1, \sum_{n=0}^{\infty}(-1)\)

133-137. Proofs
139. (a)



(b) \(\int_{0}^{1}(1-x) d x=\frac{1}{2}\)
\[
\begin{aligned}
& \int_{0}^{1}\left(x-x^{2}\right) d x=\frac{1}{6} \\
& \int_{0}^{1}\left(x^{2}-x^{3}\right) d x=\frac{1}{12}
\end{aligned}
\]
(c) \(a_{n}=\frac{1}{n}-\frac{1}{n+1}\) and \(\sum_{n=1}^{\infty} a_{n}=1\); The sum of all the shaded regions is the area of the square, 1.
141. \(H=\) half-life of the drug
\(n=\) number of equal doses
\(P=\) number of units of the drug
\(t=\) equal time intervals
The total amount of the drug in the patient's system at the time the last dose is given is
\(T_{n}=P+P e^{k t}+P e^{2 k t}+\cdots+P e^{(n-1) k t}\)
where \(k=-(\ln 2) / H\). One time interval after the last dose is administered is given by
\(T_{n+1}=P e^{k t}+P e^{2 k t}+P e^{3 k t}+\cdots+P e^{n k t}\)
and so on. Because \(k<0, T_{n+s} \rightarrow 0\) as \(s \rightarrow \infty\).
143. Putnam Problem A1, 1966

\section*{Section 9.3 (page 622)}
1. Diverges
3. Converges
5. Converges
7. Converges
9. Diverges
11. Diverges
13. Diverges
15. Converges
17. Converges
19. Converges
21. Diverges
23. Diverges
25. Diverges
27. \(f(x)\) is not positive for \(x \geq 1\).
29. \(f(x)\) is not always decreasing.
31. Converges
33. Diverges
35. Diverges
37. Diverges
39. Converges
41. Converges
43. c;diverges
44. f;diverges
45. b;converges
46. a;diverges
47. d;converges
48. e;converges
49. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 5 & 10 & 20 & 50 & 100 \\
\hline\(S_{n}\) & 3.7488 & 3.75 & 3.75 & 3.75 & 3.75 \\
\hline
\end{tabular}


The partial sums approach the sum 3.75 very quickly.
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 20 & 50 & 100 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 1.4636 & 1.5498 & 1.5962 & 1.6251 & 1.635 \\
\hline
\end{tabular}


The partial sums approach the sum \(\pi^{2} / 6 \approx 1.6449\) more slowly than the series in part (a).
51. See Theorem 9.10 on page 619. Answers will vary. For example, convergence or divergence can be determined for the series \(\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}\).
53. No. Because \(\sum_{n=1}^{\infty} \frac{1}{n}\) diverges, \(\sum_{n=10,000}^{\infty} \frac{1}{n}\) also diverges. The convergence or divergence of a series is not determined by the first finite number of terms of the series.
55.

57. \(p>1\)
59. \(p>1\)
61. \(p>1\)
63. Diverges
65. Converges 67. Proof
69. \(S_{6} \approx 1.0811\)
71. \(S_{10} \approx 0.9818\)
\(R_{6} \approx 0.0015 \quad R_{10} \approx 0.0997\)
73. \(S_{4} \approx 0.4049\)
\(R_{4} \approx 5.6 \times 10^{-8}\)
75. \(N \geq 7\)
77. \(N \geq 2\)
79. \(N \geq 1000\)
81. (a) \(\sum_{n=2}^{\infty} \frac{1}{n^{1.1}}\) converges by the \(p\)-Series Test because \(1.1>1\). \(\sum_{n=2}^{\infty} \frac{1}{n \ln n}\) diverges by the Integral Test because \(\int_{2}^{\infty} \frac{1}{x \ln x} d x\) diverges.
(b) \(\sum_{n=2}^{\infty} \frac{1}{n^{1.1}}=0.4665+0.2987+0.2176+0.1703\)
\[
+0.1393+\cdots
\]
\(\sum_{n=2}^{\infty} \frac{1}{n \ln n}=0.7213+0.3034+0.1803+0.1243\)
\[
+0.0930+\cdots
\]
(c) \(n \geq 3.431 \times 10^{15}\)
83. (a) Let \(f(x)=1 / x\). \(f\) is positive, continuous, and decreasing on \([1, \infty)\).
\(S_{n}-1 \leq \int_{1}^{n} \frac{1}{x} d x=\ln n\)
\(S_{n} \geq \int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)\) So, \(\ln (n+1) \leq S_{n} \leq 1+\ln n\).
(b) \(\ln (n+1)-\ln n \leq S_{n}-\ln n \leq 1\).

Also, \(\ln (n+1)-\ln n>0\) for \(n \geq 1\). So, \(0 \leq S_{n}-\ln n \leq 1\), and the sequence \(\left\{a_{n}\right\}\) is bounded.
(c) \(a_{n}-a_{n+1}=\left[S_{n}-\ln n\right]-\left[S_{n+1}-\ln (n+1)\right]\)
\[
=\int_{n}^{n+1} \frac{1}{x} d x-\frac{1}{n+1} \geq 0
\]

So, \(a_{n} \geq a_{n+1}\).
(d) Because the sequence is bounded and monotonic, it converges to a limit, \(\gamma\).
(e) 0.5822
85. (a) Diverges (b) Diverges
(c) \(\sum_{n=2}^{\infty} x^{\ln n}\) converges for \(x<1 / e\).
87. Diverges
89. Converges
91. Converges
93. Diverges
95. Diverges
97. Converges

\section*{Section 9.4 (page 630)}
1. (a)

(b) \(\sum_{n=1}^{\infty} \frac{6}{n^{3 / 2}}\); Converges
(c) The magnitudes of the terms are less than the magnitudes of the terms of the \(p\)-series. Therefore, the series converges.
(d) The smaller the magnitudes of the terms, the smaller the magnitudes of the terms of the sequence of partial sums.
3. Converges
5. Diverges
7. Converges
9. Diverges
11. Converges
13. Converges
15. Diverges
17. Diverges
19. Converges
21. Converges
23. Converges
25. Diverges
27. Diverges
29. Diverges; \(p\)-Series Test
31. Converges; Direct Comparison Test with \(\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}\)
33. Diverges; \(n\) th-Term Test
35. Converges; Integral Test
37. \(\lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n}=\lim _{n \rightarrow \infty} n a_{n}\)
\(\lim _{n \rightarrow \infty} n a_{n} \neq 0\), but is finite.
The series diverges by the Limit Comparison Test.
39. Diverges 41. Converges
43. \(\lim _{n \rightarrow \infty} n\left(\frac{n^{3}}{5 n^{4}+3}\right)=\frac{1}{5} \neq 0\)

So, \(\sum_{n=1}^{\infty} \frac{n^{3}}{5 n^{4}+3}\) diverges.
45. Diverges 47. Converges
49. Convergence or divergence is dependent on the form of the general term for the series and not necessarily on the magnitudes of the terms.
51. See Theorem 9.13 on page 628. Answers will vary. For example, \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}\) diverges because \(\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n-1}}{1 / \sqrt{n}}=1\) and \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}\) diverges ( \(p\)-series).
53. (a) Proof
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 20 & 50 & 100 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 1.1839 & 1.2087 & 1.2212 & 1.2287 & 1.2312 \\
\hline
\end{tabular}
(c) 0.1226
(d) 0.0277
55. False. Let \(a_{n}=1 / n^{3}\) and \(b_{n}=1 / n^{2}\).
57. True
59. True
61. Proof
63. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \sum_{n=1}^{\infty} \frac{1}{n^{3}}\)

65-71. Proofs 73. Putnam Problem B4, 1988

\section*{Section 9.5 (page 638)}
7. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 1 & 2 & 3 & 4 & 5 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 1.0000 & 0.6667 & 0.8667 & 0.7238 & 0.8349 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 6 & 7 & 8 & 9 & 10 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 0.7440 & 0.8209 & 0.7543 & 0.8131 & 0.7605 \\
\hline
\end{tabular}
(b)

(c) The points alternate sides of the horizontal line \(y=\pi / 4\) that represents the sum of the series. The distances between the successive points and the line decrease.
(d) The distance in part (c) is always less than the magnitude of the next term of the series.
9. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 1 & 2 & 3 & 4 & 5 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 1.0000 & 0.7500 & 0.8611 & 0.7986 & 0.8386 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 6 & 7 & 8 & 9 & 10 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 0.8108 & 0.8312 & 0.8156 & 0.8280 & 0.8180 \\
\hline
\end{tabular}
(b)

(c) The points alternate sides of the horizontal line \(y=\pi^{2} / 12\) that represents the sum of the series. The distances between the successive points and the line decrease.
(d) The distance in part (c) is always less than the magnitude of the next term of the series.
11. Converges
13. Converges
15. Diverges
17. Converges
19. Diverges
21. Converges
23. Diverges
25. Diverges
27. Diverges
29. Converges
31. Converges
33. Converges
35. Converges
37. \(0.7305 \leq S \leq 0.7361\)
39. \(2.3713 \leq S \leq 2.4937\)
41. (a) 7 terms (Note that the sum begins with \(n=0\).)
(b) 0.368
43. (a) 3 terms (Note that the sum begins with \(n=0\).)
(b) 0.842
45. (a) 1000 terms
(b) 0.693
47. 10
49. 7
51. Converges absolutely
53. Converges absolutely
55. Converges absolutely
57. Converges conditionally
59. Diverges
61. Converges conditionally
63. Converges absolutely
65. Converges absolutely
67. Converges conditionally
69. Converges absolutely
71. An alternating series is a series whose terms alternate in sign.
73. \(\left|S-S_{N}\right|=\left|R_{N}\right| \leq a_{N+1}\)
75. Graph (b). The partial sums alternate above and below the horizontal line representing the sum.
77. True 79. \(p>0\)
81. Proof;The converse is false. For example: Let \(a_{n}=1 / n\).
83. \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\) converges, hence so does \(\sum_{n=1}^{\infty} \frac{1}{n^{4}}\).
85. (a) No; \(a_{n+1} \leq a_{n}\) is not satisfied for all \(n\).For example, \(\frac{1}{9}<\frac{1}{8}\). (b) Yes; 0.5
87. Converges; \(p\)-SeriesTest 89. Diverges; \(n\) th-TermTest
91. Converges;Geometric Series Test
93. Converges;Integral Test
95. Converges;Alternating Series Test
97. The first term of the series is 0 , not 1 . You cannot regroup series terms arbitrarily.
99. Putnam Problem 2, afternoon session, 1954

\section*{Section 9.6 (page 647)}
1-3. Proofs
5. d 6. c
7. f
8. b
9. a
10. e
11. (a) Proof
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 5 & 10 & 15 & 20 & 25 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 9.2104 & 16.7598 & 18.8016 & 19.1878 & 19.2491 \\
\hline
\end{tabular}
(c)

(d) 19.26
(e) The more rapidly the terms of the series approach 0 , the more rapidly the sequence of partial sums approaches the sum of the series.
13. Converges
15. Diverges
17. Diverges
19. Converges
21. Diverges
23. Converges
25. Diverges
27. Converges
29. Converges
31. Diverges
33. Converges
35. Converges
37. Converges
39. Diverges
41. Converges
43. Diverges
45. Converges
47. Converges
49. Converges
51. Converges;

Converges
53. Converges; p-Series Test
55. Diverges; \(n\) th-Term Test
57. Diverges; Geometric Series Test
59. Converges; Limit Comparison Test with \(b_{n}=1 / 2^{n}\)
61. Converges; Direct Comparison Test with \(b_{n}=1 / 3^{n}\)
63. Converges; Ratio Test
65. Converges; Ratio Test
67. Converges; Ratio Test
69. a and c
71. a and b
73. \(\sum_{n=0}^{\infty} \frac{n+1}{7^{n+1}}\)
75. (a) 9
(b) -0.7769
77. Diverges; \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1\)
79. Converges; \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1\)
81. Diverges; \(; \lim a_{n} \neq 0\)
83. Converges
85. Converges
87. \((-3,3)\)
89. \((-2,0]\)
91. \(x=0\)
93. See Theorem 9.17 on page 641 .
95. No;the series \(\sum_{n=1}^{\infty} \frac{1}{n+10,000}\) diverges.
97. Absolutely;by Theorem 9.17

99-105. Proofs
107. (a) Diverges
(b) Converges
(c) Converges
(d) Converges for all integers \(x \geq 2\)
109. Answers will vary.
111. Putnam Problem 7, morning session, 1951

\section*{Section 9.7 (page 658)}
1. d 2. c
3. a 4. b
5. \(P_{1}=-\frac{1}{2} x+6\)

\(P_{1}\) is the first-degree Taylor polynomial for \(f\) at 4 .
9.

\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.8 & 0.9 & 1 & 1.1 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & Error & 4.4721 & 4.2164 & 4.0000 & 3.8139 \\
\hline \(\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{x})\) & 7.5000 & 4.4600 & 4.2150 & 4.0000 & 3.8150 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{x}\) & 1.2 & 2 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 3.6515 & 2.8284 \\
\hline \(\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{x})\) & 3.6600 & 3.5000 \\
\hline
\end{tabular}
11. (a)

(b) \(f^{(2)}(0)=-1\)
\(P_{2}^{(2)}(0)=-1\)
\(f^{(4)}(0)=1\)
\(P_{4}^{(4)}(0)=1\)
\(f^{(6)}(0)=-1\)
\(P_{6}^{(6)}(0)=-1\)
(c) \(f^{(n)}(0)=P_{n}^{(n)}(0)\)
13. \(1+3 x+\frac{9}{2} x^{2}+\frac{9}{2} x^{3}+\frac{27}{8} x^{4}\)
15. \(1-\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{48} x^{3}+\frac{1}{384} x^{4}\)
17. \(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5} \quad\) 19. \(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}\)
21. \(1-x+x^{2}-x^{3}+x^{4}-x^{5}\)
23. \(1+\frac{1}{2} x^{2}\)
25. \(2-2(x-1)+2(x-1)^{2}-2(x-1)^{3}\)
27. \(2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}\)
29. \(\ln 2+\frac{1}{2}(x-2)-\frac{1}{8}(x-2)^{2}+\frac{1}{24}(x-2)^{3}-\frac{1}{64}(x-2)^{4}\)
31. (a) \(P_{3}(x)=\pi x+\frac{\pi^{3}}{3} x^{3}\)
(b)
\(Q_{3}(x)=1+2 \pi\left(x-\frac{1}{4}\right)+2 \pi^{2}\left(x-\frac{1}{4}\right)^{2}+\frac{8 \pi^{3}}{3}\left(x-\frac{1}{4}\right)^{3}\)

33. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
\hline \(\sin \boldsymbol{x}\) & 0 & 0.2474 & 0.4794 & 0.6816 & 0.8415 \\
\hline \(\boldsymbol{P}_{\mathbf{1}}(\boldsymbol{x})\) & 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
\hline \(\boldsymbol{P}_{\mathbf{3}}(\boldsymbol{x})\) & 0 & 0.2474 & 0.4792 & 0.6797 & 0.8333 \\
\hline \(\boldsymbol{P}_{\mathbf{5}}(\boldsymbol{x})\) & 0 & 0.2474 & 0.4794 & 0.6817 & 0.8417 \\
\hline
\end{tabular}
(b)

(c) As the distance increases, the polynomial approximation becomes less accurate.
35. (a) \(P_{3}(x)=x+\frac{1}{6} x^{3}\)
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & -0.75 & -0.50 & -0.25 & 0 & 0.25 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & -0.848 & -0.524 & -0.253 & 0 & 0.253 \\
\hline \(\boldsymbol{P}_{\mathbf{3}}(\boldsymbol{x})\) & -0.820 & -0.521 & -0.253 & 0 & 0.253 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \(\boldsymbol{x}\) & 0.50 & 0.75 \\
\hline \(\boldsymbol{f}(\boldsymbol{x})\) & 0.524 & 0.848 \\
\hline \(\boldsymbol{P}_{\mathbf{3}}(\boldsymbol{x})\) & 0.521 & 0.820 \\
\hline
\end{tabular}
(c)

37.

41. 4.3984
43. 0.7419
45. \(R_{4} \leq 2.03 \times 10^{-5} ; 0.000001\)
47. \(R_{3} \leq 7.82 \times 10^{-3} ; 0.00085\)
49. 3
51. 5
39.

53. \(n=9 ; \ln (1.5) \approx 0.4055\)
55. \(n=16 ; e^{-\pi(1.3)} \approx 0.01684\)
57. \(-0.3936<x<0\)
59. \(-0.9467<x<0.9467\)
61. The graph of the approximating polynomial \(P\) and the elementary function \(f\) both pass through the point \((c, f(c))\), and the slope of the graph of \(P\) is the same as the slope of the graph of \(f\) at the point \((c, f(c)\) ). If \(P\) is of degree \(n\), then the first \(n\) derivatives of \(f\) and \(P\) agree at \(c\). This allows for the graph of \(P\) to resemble the graph of \(f\) near the point \((c, f(c))\).
63. See Definitions of \(n\) thTaylor Polynomial and \(n\) thMaclaurin Polynomial'on page 652.
65. As the degree of the polynomial increases, the graph of the Taylor polynomial becomes a better and better approximation of the function within the interval of convergence. Therefore, the accuracy is increased.
67. (a) \(f(x) \approx P_{4}(x)=1+x+(1 / 2) x^{2}+(1 / 6) x^{3}+(1 / 24) x^{4}\)
\[
g(x) \approx Q_{5}(x)=x+x^{2}+(1 / 2) x^{3}+(1 / 6) x^{4}+(1 / 24) x^{5}
\]
\[
Q_{5}(x)=x P_{4}(x)
\]
(b) \(g(x) \approx P_{6}(x)=x^{2}-x^{4} / 3!+x^{6} / 5!\)
(c) \(g(x) \approx P_{4}(x)=1-x^{2} / 3!+x^{4} / 5!\)
69. (a) \(Q_{2}(x)=-1+\left(\pi^{2} / 32\right)(x+2)^{2}\)
(b) \(R_{2}(x)=-1+\left(\pi^{2} / 32\right)(x-6)^{2}\)
(c) No. Horizontal translations of the result in part (a) are possible only at \(x=-2+8 n\) (where \(n\) is an integer) because the period of \(f\) is 8 .
71. Proof
73. As you move away from \(x=c\), the Taylor polynomial becomes less and less accurate.

\section*{Section 9.8 (page 668)}
1. \(0 \quad\) 3. 2
5. \(R=1\)
7. \(R=\frac{1}{4}\)
9. \(R=\infty\)
11. \((-4,4)\)
13. \((-1,1]\)
15. \((-\infty, \infty)\)
17. \(x=0\)
19. \((-4,4)\)
21. \((-5,13]\)
23. \((0,2]\)
25. \((0,6)\)
27. \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
29. \((-\infty, \infty)\)
31. \((-1,1)\)
33. \(x=3\)
35. \(R=c\)
37. \((-k, k)\)
39. \((-1,1)\)
41. \(\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}\)
43. \(\sum_{n=1}^{\infty} \frac{x^{2 n-1}}{(2 n-1)!}\)
45. (a) \((-3,3)\)
(b) \((-3,3)\)
(c) \((-3,3)\)
(d) \([-3,3)\)
47. (a) \((0,2]\)
(b) \((0,2)\)
(c) \((0,2)\)
(d) \([0,2]\)
49. c; \(S_{1}=1, S_{2}=1.33\)
50. a; \(S_{1}=1, S_{2}=1.67\)
51. b;diverges
52. d;alternating
53. b 54. c
55. d
56. a
57. A series of the form
\[
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots \\
& \quad+a_{n}(x-c)^{n}+\cdots
\end{aligned}
\]
is called a power series centered at \(c\), where \(c\) is a constant.
59. 1. A single point 2. An interval centered at \(c\)
3. The entire real line
61. Answers will vary.
63. (a) For \(f(x):(-\infty, \infty)\);For \(g(x):(-\infty, \infty)\)
(b) Proof
(c) Proof
(d) \(f(x)=\sin x ; g(x)=\cos x\)

65-69. Proofs
71.
(c)

73.

\(f(x)=\cos x\)
77. (a) \(\frac{8}{3}\)

75.

\(f(x)=1 /(1+x)\)
(b) \(\frac{8}{13}\)

(c) The alternating series converges more rapidly. The partial sums of the series of positive terms approach the sum from below. The partial sums of the alternating series alternate sides of the horizontal line representing the sum.
(d)
\begin{tabular}{|l|c|c|c|c|}
\hline \(\boldsymbol{M}\) & 10 & 100 & 1000 & 10,000 \\
\hline \(\boldsymbol{N}\) & 5 & 14 & 24 & 35 \\
\hline
\end{tabular}
79. False. Let \(a_{n}=(-1)^{n} /\left(n 2^{n}\right)\)
81. True
83. Proof
85. (a) \((-1,1)\)
(b) \(f(x)=\left(c_{0}+c_{1} x+c_{2} x^{2}\right) /\left(1-x^{3}\right)\)
87. Proof

\section*{Section 9.9 (page 676)}
1. \(\sum_{n=0}^{\infty} \frac{x^{n}}{4^{n+1}}\)
3. \(\sum_{n=0}^{\infty} \frac{3(-1)^{n} x^{n}}{4^{n+1}}\)
5. \(\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n+1}}\)
7. \(\sum_{n=0}^{\infty}(3 x)^{n}\)
\((-1,3)\)
\(\left(-\frac{1}{3}, \frac{1}{3}\right)\)
9. \(-\frac{5}{9} \sum_{n=0}^{\infty}\left[\frac{2}{9}(x+3)\right]^{n}\)
11. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1} x^{n}}{3^{n+1}}\) \(\left(-\frac{15}{2}, \frac{3}{2}\right)\)
\[
\left(-\frac{3}{2}, \frac{3}{2}\right)
\]
13. \(\sum_{n=0}^{\infty}\left[\frac{1}{(-3)^{n}}-1\right] x^{n}\) \((-1,1)\)
15. \(\sum_{n=0}^{\infty} x^{n}\left[1+(-1)^{n}\right]=2 \sum_{n=0}^{\infty} x^{2 n}\)
\[
(-1,1)
\]
17. \(2 \sum_{n=0}^{\infty} x^{2 n}\)
19. \(\sum_{n=1}^{\infty} n(-1)^{n} x^{n-1}\)
21. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}\)
\((-1,1)\)
\((-1,1)\)
25. \(\begin{aligned} \sum_{n=0}^{\infty}(-1)^{n}(2 x)^{2 n} \\ \left(-\frac{1}{2}, \frac{1}{2}\right)\end{aligned}\) \((-1,1)\)
27.

\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\hline \(\boldsymbol{S}_{\mathbf{2}}\) & 0.000 & 0.180 & 0.320 & 0.420 & 0.480 & 0.500 \\
\hline \(\boldsymbol{\operatorname { l n } ( \boldsymbol { x } + \mathbf { 1 } )}\) & 0.000 & 0.182 & 0.336 & 0.470 & 0.588 & 0.693 \\
\hline \(\boldsymbol{S}_{\mathbf{3}}\) & 0.000 & 0.183 & 0.341 & 0.492 & 0.651 & 0.833 \\
\hline
\end{tabular}
29. (a)

(b) \(\ln x, 0<x \leq 2, R=1\)
(c) -0.6931
(d) \(\ln (0.5)\); The error is approximately 0 .
31. c
32. d
33. a
34. b
35. 0.245
37. 0.125
39. \(\sum_{n=1}^{\infty} n x^{n-1},-1<x<1\)
41. \(\sum_{n=0}^{\infty}(2 n+1) x^{n},-1<x<1\)
43. \(E(n)=2\). Because the probability of obtaining a head on a single toss is \(\frac{1}{2}\), it is expected that, on average, a head will be obtained in two tosses.
45. Because \(\frac{1}{1+x}=\frac{1}{1-(-x)}\), substitute \((-x)\) into the geometric series.
47. Because \(\frac{5}{1+x}=5\left(\frac{1}{1-(-x)}\right)\), substitute \((-x)\) into the geometric series and then multiply the series by 5 .
49. Proof
51. (a) Proof
(b) 3.14
53. \(\ln \frac{3}{2} \approx 0.4055\); See Exercise 21 .
55. \(\ln \frac{7}{5} \approx 0.3365\); See Exercise 53 .
57. \(\arctan \frac{1}{2} \approx 0.4636\); See Exercise 56 .
59. \(f(x)=\arctan x\) is an odd function (symmetric to the origin).
61. The series in Exercise 56 converges to its sum at a lower rate because its terms approach 0 at a much lower rate.
63. The series converges on the interval \((-5,3)\) and perhaps also at one or both endpoints.
65. \(\sqrt{3} \pi / 6\)
67. \(S_{1}=0.3183098862,1 / \pi \approx 0.3183098862\)

\section*{Section 9.10 (page 687)}
1. \(\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!} \quad\) 3. \(\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n+1) / 2}}{n!}\left(x-\frac{\pi}{4}\right)^{n}\)
5. \(\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \quad\) 7. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+1}}{n+1}\)
9. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x)^{2 n+1}}{(2 n+1)!} \quad\) 11. \(1+x^{2} / 2!+5 x^{4} / 4!+\cdots\)

13-15. Proofs
17. \(\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}\)
19. \(1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) x^{n}}{2^{n} n!}\)
21. \(\frac{1}{2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdot \cdot(2 n-1) x^{2 n}}{2^{3 n} n!}\right]\)
23. \(1+\frac{x}{2}+\sum_{n=2}^{\infty} \frac{(-1)^{n+1} 1 \cdot 3 \cdot 5 \cdots(2 n-3) x^{n}}{2^{n} n!}\)
25. \(1+\frac{x^{2}}{2}+\sum_{n=2}^{\infty} \frac{(-1)^{n+1} 1 \cdot 3 \cdot 5 \cdots(2 n-3) x^{2 n}}{2^{n} n!}\)
27. \(\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}\)
29. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}\)
31. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x)^{2 n+1}}{(2 n+1)!}\)
33. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}\)
35. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{(2 n)!}\)
37. \(\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}\)
39. \(\frac{1}{2}\left[1+\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}\right]\)
41. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+1)!}\)
43. \(\left\{\begin{array}{rr}\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}, & x \neq 0 \\ 1, & x=0\end{array}\right.\)
45. Proof
47. \(P_{5}(x)=x+x^{2}+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\)

49. \(P_{5}(x)=x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\)

51. \(P_{4}(x)=x-x^{2}+\frac{5}{6} x^{3}-\frac{5}{6} x^{4}\)

53. \(\mathrm{c} ; f(x)=x \sin x\)
54. \(\mathrm{d} ; f(x)=x \cos x\)
55. a; \(f(x)=x e^{x}\)
56. \(\mathrm{b} ; f(x)=x^{2}\left(\frac{1}{1+x}\right)\)
57. \(\sum_{n=0}^{\infty} \frac{(-1)^{(n+1)} x^{2 n+3}}{(2 n+3)(n+1)!}\)
59. 0.6931
61. 7.3891
63. \(0 \quad 65.1\)
67. 0.8075
69. 0.9461
71. 0.4872
73. 0.2010
75. 0.7040
77. 0.3412
79. \(P_{5}(x)=x-2 x^{3}+\frac{2}{3} x^{5}\)

\(\left[-\frac{3}{4}, \frac{3}{4}\right]\)
81. \(P_{5}(x)=(x-1)-\frac{1}{24}(x-1)^{3}+\frac{1}{24}(x-1)^{4}-\frac{71}{1920}(x-1)^{5}\)

\(\left[\frac{1}{4}, 2\right]\)
83. See Guidelines for Finding a Taylor Series"on page 682.
85. The binomial series is given by
\((1+x)^{k}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots\).
The radius of convergence is \(R=1\).
87. Proof
89. (a)

91. Proof
93. 10
97. \(\sum_{n=0}^{\infty}\binom{k}{n} x^{n}\)
99. Proof
95. -0.0390625

\section*{Review Exercises for Chapter 9 (page 690)}
1. \(a_{n}=1 /(n!+1)\)
3. a
4. c
5.
6. b
7.


Converges to 5
9. Converges to 3
11. Diverge
13. Converges to 0
15. Converges to 0
17. Converges to 0
19. (a)
\begin{tabular}{|l|c|c|r|c|}
\hline\(n\) & 1 & 2 & 3 & 4 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & \(\$ 100.00\) & \(\$ 201.25\) & \(\$ 303.77\) & \(\$ 407.56\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|r|c|}
\hline \(\boldsymbol{n}\) & 5 & 6 & 7 & 8 \\
\hline \(\boldsymbol{A}_{\boldsymbol{n}}\) & \(\$ 512.66\) & \(\$ 619.07\) & \(\$ 726.80\) & \(\$ 835.89\) \\
\hline
\end{tabular}
(b) \(\$ 3,148.96\)
21. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(n\) & 5 & 10 & 15 & 20 & 25 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 13.2 & 113.3 & 873.8 & 6648.5 & \(50,500.3\) \\
\hline
\end{tabular}
(b)

23. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 15 & 20 & 25 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 0.4597 & 0.4597 & 0.4597 & 0.4597 & 0.4597 \\
\hline
\end{tabular}
(b)

25. 3
27. 5.5
29. (a) \(\sum_{n=0}^{\infty}(0.09)(0.01)^{n}\)
(b) \(\frac{1}{11}\)
31. Diverges
33. Diverges
35. \(45 \frac{1}{3} \mathrm{~m}\)
37. \(\$ 630.70\)
39. Converges
41. Diverges
43. Diverges
45. Converges
47. Diverges
49. Converges
51. Converges
53. Diverges
55. Diverges
57. Converges
59. Diverges
61. (a) Proof
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{n}\) & 5 & 10 & 15 & 20 & 25 \\
\hline \(\boldsymbol{S}_{\boldsymbol{n}}\) & 2.8752 & 3.6366 & 3.7377 & 3.7488 & 3.7499 \\
\hline
\end{tabular}
(c)

(d) 3.75
63. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(N\) & 5 & 10 & 20 & 30 & 40 \\
\hline\(\sum_{n=1}^{N} \frac{\mathbf{1}}{\boldsymbol{n}^{2}}\) & 1.4636 & 1.5498 & 1.5962 & 1.6122 & 1.6202 \\
\hline \(\int_{N}^{\infty} \frac{\mathbf{1}}{\boldsymbol{x}^{2}} \boldsymbol{d x}\) & 0.2000 & 0.1000 & 0.0500 & 0.0333 & 0.0250 \\
\hline
\end{tabular}
(b)
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(N\) & 5 & 10 & 20 & 30 & 40 \\
\hline\(\sum_{n=1}^{N} \frac{\mathbf{1}}{n^{5}}\) & 1.0367 & 1.0369 & 1.0369 & 1.0369 & 1.0369 \\
\hline \(\int_{N}^{\infty} \frac{\mathbf{1}}{\boldsymbol{x}^{5}} d x\) & 0.0004 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}

The series in part (b) converges more rapidly. This is evident from the integrals that give the remainders of the partial sums.
65. \(P_{3}(x)=1-3 x+\frac{9}{2} x^{2}-\frac{9}{2} x^{3} \quad\) 67. \(0.996 \quad\) 69. 0.559
71. (a) 4
(b) 6
(c) 5
(d) 10
73. \((-10,10)\)
75. [1, 3] 77. Converges only at \(x=2\)
79. Proof
81. \(\sum_{n=0}^{\infty} \frac{2}{3}\left(\frac{x}{3}\right)^{n}\)
83. \(\sum_{n=0}^{\infty} \frac{2}{9}(n+1)\left(\frac{x}{3}\right)^{n}\)
85. \(f(x)=\frac{3}{3-2 x},\left(-\frac{3}{2}, \frac{3}{2}\right)\)
87. \(\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n+1) / 2}}{n!}\left(x-\frac{3 \pi}{4}\right)^{n}\)
89. \(\sum_{n=0}^{\infty} \frac{(x \ln 3)^{n}}{n!}\)
91. \(-\sum_{n=0}^{\infty}(x+1)^{n}\)
93. \(1+x / 5-2 x^{2} / 25+6 x^{3} / 125-21 x^{4} / 625+\cdots \cdot\)
95. \(\ln \frac{5}{4} \approx 0.2231\)
97. \(e^{1 / 2} \approx 1.6487\)
99. \(\cos \frac{2}{3} \approx 0.7859\)
101. The series in Exercise 45 converges to its sum at a lower rate because its terms approach 0 at a lower rate.
103. (a)-(c) \(1+2 x+2 x^{2}+\frac{4}{3} x^{3}\)
105. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)(2 n+1)!} \quad\) 107. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{(n+1)^{2}}\)
109. 0

\section*{P.S. Problem Solving (page 693)}
1. (a) 1 (b) Answers will vary. Example: \(0, \frac{1}{3}, \frac{2}{3}\) (c) 0
3. Proof 5. (a) Proof (b) Yes (c) Any distance
7. For \(a=b\), the series converges conditionally. For no values of \(a\) and \(b\) does the series converge absolutely.
9. 665,280
11. (a) Proof
(b) Diverges
13. Proof
15. (a) Proof
(b) Proof
17. (a) The height is infinite. (b) The surface area is infinite.
(c) Proof

\section*{Chapter 10}

\section*{Section 10.1 (page 706)}
1. h 2. a 3. e 4. b
5. f
6. g 7. c
8. d
9. Vertex: \((0,0)\)

Focus: \((-2,0)\)
Directrix: \(x=2\)

13. Vertex: \((-1,2)\)

Focus: \((0,2)\)
Directrix: \(x=-2\)

17. Vertex: \(\left(\frac{1}{4},-\frac{1}{2}\right)\)

Focus: \(\left(0,-\frac{1}{2}\right)\)
Directrix: \(x=\frac{1}{2}\)

11. Vertex: \((-5,3)\)

Focus: \(\left(-\frac{21}{4}, 3\right)\)
Directrix: \(x=-\frac{19}{4}\)

15. Vertex: \((-2,2)\)

Focus: \((-2,1)\)
Directrix: \(y=3\)

19. Vertex: \((-1,0)\)

Focus: \((0,0)\)
Directrix: \(x=-2\)

21. \(y^{2}-8 y+8 x-24=0\)
23. \(x^{2}-32 y+160=0\)
25. \(x^{2}+y-4=0\)
29. Center: \((0,0)\)

Foci: \((0, \pm \sqrt{15})\)
Vertices: \((0, \pm 4)\)
\(e=\sqrt{15} / 4\)

27. \(5 x^{2}-14 x-3 y+9=0\)
31. Center: \((3,1)\)

Foci: \((3,4),(3,-2)\)
Vertices: \((3,6),(3,-4)\) \(e=\frac{3}{5}\)

33. Center: \((-2,3)\)

Foci: \((-2,3 \pm \sqrt{5})\)
Vertices: \((-2,6),(-2,0)\)
\(e=\sqrt{5} / 3\)

35. Center: \(\left(\frac{1}{2},-1\right)\)

Foci: \(\left(\frac{1}{2} \pm \sqrt{2},-1\right)\)
Vertices: \(\left(\frac{1}{2} \pm \sqrt{5},-1\right)\)
To obtain the graph, solve for \(y\) and get

\(y_{1}=-1+\sqrt{\left(57+12 x-12 x^{2}\right) / 20}\) and \(y_{2}=-1-\sqrt{\left(57+12 x-12 x^{2}\right) / 20}\).
Graph these equations in the same viewing window.
37. Center: \(\left(\frac{3}{2},-1\right)\)

Foci: \(\left(\frac{3}{2} \pm \sqrt{2},-1\right)\)
Vertices: \(\left(-\frac{1}{2},-1\right),\left(\frac{7}{2},-1\right)\)
To obtain the graph, solve for \(y\) and get

\(y_{1}=-1+\sqrt{\left(7+12 x-4 x^{2}\right) / 8}\) and
\(y_{2}=-1-\sqrt{\left(7+12 x-4 x^{2}\right) / 8}\).
Graph these equations in the same viewing window.
39. \(x^{2} / 36+y^{2} / 11=1\)
41. \((x-3)^{2} / 9+(y-5)^{2} / 16=1\)
43. \(x^{2} / 16+7 y^{2} / 16=1\)
45. Center: \((0,0)\)

Foci: \((0, \pm \sqrt{10})\)
Vertices: \((0, \pm 1)\)

47. Center: \((1,-2)\)

Foci: \((1 \pm \sqrt{5},-2)\)
Vertices: \((-1,-2),(3,-2)\)

49. Center: \((2,-3)\)

Foci: \((2 \pm \sqrt{10},-3)\)
Vertices: \((1,-3),(3,-3)\)

51. Degenerate hyperbola Graph is two lines \(y=-3 \pm \frac{1}{3}(x+1)\) intersecting at \((-1,-3)\).

53. Center: \((1,-3)\)

Foci: \((1,-3 \pm 2 \sqrt{5})\)
Vertices: \((1,-3 \pm \sqrt{2})\)
Asymptotes:
\(y=\frac{1}{3} x-\frac{1}{3}-3\);
\(y=-\frac{1}{3} x+\frac{1}{3}-3\)

55. Center: \((1,-3)\)

Foci: \((1 \pm \sqrt{10},-3)\)
Vertices: \((-1,-3),(3,-3)\)
Asymptotes:
\(y=\sqrt{6} x / 2-\sqrt{6} / 2-3\);
\(y=-\sqrt{6} x / 2+\sqrt{6} / 2-3\)

57. \(x^{2} / 1-y^{2} / 25=1\)
59. \(y^{2} / 9-(x-2)^{2} /(9 / 4)=1\)
61. \(y^{2} / 4-x^{2} / 12=1\)
63. \((x-3)^{2} / 9-(y-2)^{2} / 4=1\)
65. (a) \((6, \sqrt{3}): 2 x-3 \sqrt{3} y-3=0\)
\[
(6,-\sqrt{3}): 2 x+3 \sqrt{3} y-3=0
\]
(b) \((6, \sqrt{3}): 9 x+2 \sqrt{3} y-60=0\)
\((6,-\sqrt{3}): 9 x-2 \sqrt{3} y-60=0\)
67. Ellipse
69. Parabola
71. Circle
73. Circle
75. Hyperbola
77. (a) A parabola is the set of all points \((x, y)\) that are equidistant from a fixed line and a fixed point not on the line.
(b) For directrix \(y=k-p:(x-h)^{2}=4 p(y-k)\)

For directrix \(x=h-p:(y-k)^{2}=4 p(x-h)\)
(c) If \(P\) is a point on a parabola, then the tangent line to the parabola at \(P\) makes equal angles with the line passing through \(P\) and the focus, and with the line passing through \(P\) parallel to the axis of the parabola.
79. (a) A hyperbola is the set of all points \((x, y)\) for which the absolute value of the difference between the distances from two distinct fixed points is constant.
(b) Transverse axis is horizontal: \(\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1\)

Transverse axis is vertical: \(\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1\)
(c) Transverse axis is horizontal:
\(y=k+(b / a)(x-h)\) and \(y=k-(b / a)(x-h)\)
Transverse axis is vertical:
\[
y=k+(a / b)(x-h) \text { and } y=k-(a / b)(x-h)
\]
81. \(\frac{9}{4} \mathrm{~m}\) 83. \(y=2 a x_{0} x-a x_{0}^{2}\) 85. (a) Proof (b) Proof
87. \(x_{0}=2 \sqrt{3} / 3\); Distance from hill: \(2 \sqrt{3} / 3-1\)
89. \([16(4+3 \sqrt{3}-2 \pi)] / 3 \approx 15.536 \mathrm{ft}^{2}\)
91. (a) \(y=(1 / 180) x^{2}\)
(b) \(10\left[2 \sqrt{13}+9 \ln \left(\frac{2+\sqrt{13}}{3}\right)\right] \approx 128.4 \mathrm{~m}\)
93.

95. (a) \(L=2 a\)
(b) The thumbtacks are located at the foci, and the length of string is the constant sum of distances from the foci.
97.

99. Proof
101. \(e \approx 0.1776\)
103. \(e \approx 0.9671 \quad\) 105. \(\left(0, \frac{25}{3}\right)\)
107. Minor-axis endpoints: \((-6,-2),(0,-2)\)

Major-axis endpoints: \((-3,-6),(-3,2)\)
109. (a) Area \(=2 \pi\)
(b) Volume \(=8 \pi / 3\)

Surface area \(=[2 \pi(9+4 \sqrt{3} \pi)] / 9 \approx 21.48\)
(c) Volume \(=16 \pi / 3\)

Surface area \(=\frac{4 \pi[6+\sqrt{3} \ln (2+\sqrt{3})]}{3} \approx 34.69\)
111. 37.96
113. 40
115. \((x-6)^{2} / 9-(y-2)^{2} / 7=1\)
117.

121. \(x=(-90+96 \sqrt{2}) / 7 \approx 6.538\) \(y=(160-96 \sqrt{2}) / 7 \approx 3.462\)
123. There are four points of intersection.

At \(\left(\frac{\sqrt{2} a c}{\sqrt{2 a^{2}-b^{2}}}, \frac{b^{2}}{\sqrt{2} \sqrt{2 a^{2}-b^{2}}}\right)\), the slopes of the tangent lines are \(y_{e}^{\prime}=-c / a\) and \(y^{\prime}{ }_{h}=a / c\).
Because the slopes are negative reciprocals, the tangent lines are perpendicular. Similarly, the curves are perpendicular at the other three points of intersection.
125. False. See the definition of a parabola.
127. True
129. True 131. Putnam Problem B4, 1976

\section*{Section 10.2 (page 718)}
1. (a)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\boldsymbol{t}\) & 0 & 1 & 2 & 3 & 4 \\
\hline \(\boldsymbol{x}\) & 0 & 1 & \(\sqrt{2}\) & \(\sqrt{3}\) & 2 \\
\hline \(\boldsymbol{y}\) & 3 & 2 & 1 & 0 & -1 \\
\hline
\end{tabular}
(b) and (c)

(d) \(y=3-x^{2}, x \geq 0\)


As \(p\) increases, the graph of \(x^{2}=4 p y\) gets wider.
3.

\(3 x-2 y+11=0\)
7.

\[
y=\frac{1}{2} x^{2 / 3}
\]
9.

\[
y=x^{2}-5, \quad x \geq 0
\]
13.

\[
y=|x-4| / 2
\]
17.

\[
y=1 / x, \quad|x| \geq 1
\]
21.

\[
\frac{x^{2}}{36}+\frac{y^{2}}{16}=1
\]
5.

\[
y=(x-1)^{2}
\]
25.

27.

\(\frac{x^{2}}{16}-\frac{y^{2}}{9}=1\)
29.

\(y=\ln x\)

\(y=1 / x^{3}, \quad x>0\)
11.

\[
y=(x+3) / x
\]
15.

\(y=x^{3}+1, \quad x>0\)
19.

\[
x^{2}+y^{2}=64
\]
23.

\(\frac{(x-4)^{2}}{4}+\frac{(y+1)^{2}}{1}=1\)
33. Each curve represents a portion of the line \(y=2 x+1\).
\begin{tabular}{lll} 
(a) \(\frac{\text { Domain }}{-\infty<x<\infty}\) & \(\frac{\text { Orientation }}{\text { Up }}\) & \(\frac{\text { Smooth }}{\text { Yes }}\) \\
(b) \(-1 \leq x \leq 1\) & Oscillates & No, \(\frac{d x}{d \theta}=\frac{d y}{d}=0\)
\end{tabular}
(c) \(0<x<\infty\)
Down
(d) \(0<x<\infty\)
Up
when \(\theta=0, \pm \pi, \pm 2 \pi, \ldots\).
Yes
Yes
35. (a) and (b) represent the parabola \(y=2\left(1-x^{2}\right)\) for \(-1 \leq x \leq 1\). The curve is smooth. The orientation is from right to left in part (a) and in part (b).
37. (a)


(b) The orientation is reversed.
(c) The orientation is reversed.
(d) Answers will vary. For example,
\(x=2 \sec t \quad x=2 \sec (-t)\)
\(y=5 \sin t \quad y=5 \sin (-t)\)
have the same graphs, but their orientations are reversed.
39. \(y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)\)
41. \(\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1\)
43. \(x=4 t\)
\(y=-7 t\)
(Solution is not unique.)
47. \(x=10 \cos \theta\)
\(y=6 \sin \theta\)
(Solution is not unique.)
51. \(x=t\)
\(y=6 t-5\);
\(x=t+1\)
\(y=6 t+1\)
(Solution is not unique.)
55. \(x=t+3, y=2 t+1\)
45. \(x=3+2 \cos \theta\)
\(y=1+2 \sin \theta\)
(Solution is not unique.)
49. \(x=4 \sec \theta\)
\(y=3 \tan \theta\)
(Solution is not unique.)
53. \(x=t\)
\(y=t^{3} ;\)
\(x=\tan t\)
\(y=\tan ^{3} t\)
(Solution is not unique.)
57. \(x=t, y=t^{2}\)


Not smooth at \(\theta=2 n \pi\)
63.


Not smooth at \(\theta=\frac{1}{2} n \pi\)
61.


Smooth everywhere
65.


Smooth everywhere
67. Each point \((x, y)\) in the plane is determined by the plane curve \(x=f(t), y=g(t)\). For each \(t\), plot \((x, y)\). As \(t\) increases, the curve is traced out in a specific direction called the orientation of the curve.
69. \(x=a \theta-b \sin \theta ; y=a-b \cos \theta\)
71. False. The graph of the parametric equations is the portion of the line \(y=x\) when \(x \geq 0\).
73. True
75. (a) \(x=\left(\frac{440}{3} \cos \theta\right) t ; y=3+\left(\frac{440}{3} \sin \theta\right) t-16 t^{2}\)
(b)

Not a home run
(c)

Home run
(d) \(19.4^{\circ}\)

\section*{Section 10.3 (page 727)}
\(\begin{array}{ll}\text { 1. }-3 / t & \text { 3. }-1\end{array}\)
5. \(\frac{d y}{d x}=\frac{3}{4}, \frac{d^{2} y}{d x^{2}}=0\); Neither concave upward nor concave downward
7. \(d y / d x=2 t+3, d^{2} y / d x^{2}=2\)

At \(t=-1, d y / d x=1, d^{2} y / d x^{2}=2\); Concave upward
9. \(d y / d x=-\cot \theta, d^{2} y / d x^{2}=-(\csc \theta)^{3} / 4\)

At \(\theta=\pi / 4, d y / d x=-1, d^{2} y / d x^{2}=-\sqrt{2} / 2\);
Concave downward
11. \(d y / d x=2 \csc \theta, d^{2} y / d x^{2}=-2 \cot ^{3} \theta\)

At \(\theta=\pi / 6, d y / d x=4, d^{2} y / d x^{2}=-6 \sqrt{3}\);
Concave downward
13. \(d y / d x=-\tan \theta, d^{2} y / d x^{2}=\sec ^{4} \theta \csc \theta / 3\)

At \(\theta=\pi / 4, d y / d x=-1, d^{2} y / d x^{2}=4 \sqrt{2} / 3\);
Concave upward
15. \((-2 / \sqrt{3}, 3 / 2): 3 \sqrt{3} x-8 y+18=0\)
\((0,2): y-2=0\)
\((2 \sqrt{3}, 1 / 2): \sqrt{3} x+8 y-10=0\)
17. \((0,0): 2 y-x=0\)
\((-3,-1): y+1=0\)
\((-3,3): 2 x-y+9=0\)
19. (a) and (d)

(b) At \(t=1, d x / d t=6\), \(d y / d t=2\), and \(d y / d x=1 / 3\).
(c) \(y=\frac{1}{3} x+3\)
21. (a) and (d)


(c) \(y=2\)
23. \(y= \pm \frac{3}{4} x \quad\) 25. \(y=3 x-5\) and \(y=1\)
27. Horizontal: \((1,0),(-1, \pi),(1,-2 \pi)\)

Vertical: \((\pi / 2,1),(-3 \pi / 2,-1),(5 \pi / 2,1)\)
29. Horizontal: \((4,0)\)

Vertical: None
33. Horizontal: \((0,3),(0,-3)\) Vertical: \((3,0),(-3,0)\)
37. Horizontal: None Vertical: \((1,0),(-1,0)\)
39. Concave downward: \(-\infty<t<0\)

Concave upward: \(0<t<\infty\)
41. Concave upward: \(t>0\)
43. Concave downward: \(0<t<\pi / 2\)

Concave upward: \(\pi / 2<t<\pi\)
45. \(\int_{1}^{3} \sqrt{4 t^{2}-3 t+9} d t \quad\) 47. \(\int_{-2}^{2} \sqrt{e^{2 t}+4} d t\)
49. \(4 \sqrt{13} \approx 14.422\)
51. \(70 \sqrt{5} \approx 156.525\)
53. \(\sqrt{2}\left(1-e^{-\pi / 2}\right) \approx 1.12\)
55. \(\frac{1}{12}[\ln (\sqrt{37}+6)+6 \sqrt{37}] \approx 3.24\)
57. \(6 a\)
59. \(8 a\)
31. Horizontal: \((5,-2),(3,2)\)

Vertical: None
35. Horizontal: \((5,-1),(5,-3)\)

Vertical: \((8,-2),(2,-2)\)
(b) 219.2 ft
(c) 230.8 ft
61. (a)

63. (a)

65. (a)

(b) The average speed of the particle on the second path is twice the average speed of the particle on the first path.
(c) \(4 \pi\)
67. \(S=2 \pi \int_{0}^{4} \sqrt{10}(t+2) d t=32 \pi \sqrt{10} \approx 317.907\)
69. \(S=2 \pi \int_{0}^{\pi / 2}\left(\sin \theta \cos \theta \sqrt{4 \cos ^{2} \theta+1}\right) d \theta=\frac{(5 \sqrt{5}-1) \pi}{6}\)
\[
\approx 5.330
\]
71. (a) \(27 \pi \sqrt{13}\)
(b) \(18 \pi \sqrt{13}\)
73. \(50 \pi\)
75. \(12 \pi a^{2} / 5\)
77. See Theorem 10.7, Parametric Form of the Derivative, on page 721.
79. 6
81. (a) \(S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t\)
(b) \(S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t\)
83. Proof
85. \(3 \pi / 2\)
87. d
88. b
89. f
90. c
91. a 92. e
93. \(\left(\frac{3}{4}, \frac{8}{5}\right)\)
95. \(288 \pi\)
97. (a) \(d y / d x=\sin \theta /(1-\cos \theta) ; d^{2} y / d x^{2}=-1 /\left[a(\cos \theta-1)^{2}\right]\)
(b) \(y=(2+\sqrt{3})\left[x-a\left(\pi / 6-\frac{1}{2}\right)\right]+a(1-\sqrt{3} / 2)\)
(c) \((a(2 n+1) \pi, 2 a)\)
(d) Concave downward on \((0,2 \pi),(2 \pi, 4 \pi)\), etc.
(e) \(s=8 a\)
99. Proof
101. (a)

(b) Circle of radius 1 and center at \((0,0)\) except the point \((-1,0)\)
(c) As \(t\) increases from -20 to 0 , the speed increases, and as \(t\) increases from 0 to 20, the speed decreases.
103. False: \(\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{g^{\prime}(t)}{f^{\prime}(t)}\right]}{f^{\prime}(t)}=\frac{f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\).
105. About 982 ft

\section*{Section 10.4 (page 738)}
1.

\((0,8)\)
5.

\((-1.004,0.996)\)
3.

\((2 \sqrt{2}, 2 \sqrt{2}) \approx(2.828,2.828)\)
7.

9.

11.

13.

\((5,2.214),(-5,5.356)\)
\((2,4 \pi / 3),(-2, \pi / 3)\)
17. \((3.606,-0.588)\)
19. \((3.052,0.960)\)
21. (a)

23. c 24. b
25. a
26. d
(b)

27. \(r=3\)

31. \(r=8 \csc \theta\)
33. \(r=\frac{-2}{3 \cos \theta-\sin \theta}\)

35. \(r=9 \csc ^{2} \theta \cos \theta\)
37. \(x^{2}+y^{2}=16\)



39. \(x^{2}+y^{2}-3 y=0\)

43. \(x-3=0\)

47.

\[
0 \leq \theta<2 \pi
\]
51.

\(-\pi<\theta<\pi\)
55.

\(0 \leq \theta<\pi / 2\)
59. \(\sqrt{17}\) 61. About 5.6
63. \(\frac{d y}{d x}=\frac{2 \cos \theta(3 \sin \theta+1)}{6 \cos ^{2} \theta-2 \sin \theta-3}\)
\((5, \pi / 2): d y / d x=0\)
\((2, \pi): d y / d x=-2 / 3\)
\((-1,3 \pi / 2): d y / d x=0\)
65. (a) and (b)

(c) \(d y / d x=-1\)
41. \(\sqrt{x^{2}+y^{2}}=\arctan (y / x)\)

45. \(x^{2}-y=0\)

49.

\(0 \leq \theta<2 \pi\)
53.

\(0 \leq \theta<4 \pi\)
57. \((x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}\) Radius: \(\sqrt{h^{2}+k^{2}}\)
Center: \((h, k)\)
69. Horizontal: \((2,3 \pi / 2),\left(\frac{1}{2}, \pi / 6\right),\left(\frac{1}{2}, 5 \pi / 6\right)\)

Vertical: \(\left(\frac{3}{2}, 7 \pi / 6\right),\left(\frac{3}{2}, 11 \pi / 6\right)\)
71. \((5, \pi / 2),(1,3 \pi / 2)\)
73.

\((0,0),(1.4142,0.7854)\),
(1.4142, 2.3562)
77.

\(\theta=0\)
79.

\[
\theta=\pi / 2
\]
81.

83.


87.
\(\theta=0, \pi / 2\)

89.

91.

93.

95.

97.

99.

101. The rectangular coordinate system is a collection of points of the form \((x, y)\), where \(x\) is the directed distance from the \(y\)-axis to the point and \(y\) is the directed distance from the \(x\)-axis to the point. Every point has a unique representation.
The polar coordinate system is a collection of points of the form \((r, \theta)\), where \(r\) is the directed distance from the origin \(O\) to a point \(P\) and \(\theta\) is the directed angle, measured counterclockwise, from the polar axis to the segment \(\overline{O P}\). Polar coordinates do not have unique representations.
103. Slope of tangent line to graph of \(r=f(\theta)\) at \((r, \theta)\) is \(\frac{d y}{d x}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}\).
If \(f(\alpha)=0\) and \(f^{\prime}(\alpha) \neq 0\), then \(\theta=\alpha\) is tangent at the pole.
105. (a)

(b)

(c)

107. Proof
109. (a) \(r=2-\sin (\theta-\pi / 4)\)
(b) \(r=2+\cos \theta\)
\[
=2-\frac{\sqrt{2}(\sin \theta-\cos \theta)}{2}
\]


(c) \(r=2+\sin \theta\)

(d) \(r=2-\cos \theta\)

111. (a)

(b)

113.

\[
\psi=\pi / 2
\]
117.

\[
\psi=\pi / 3,60^{\circ}
\]

\section*{Section 10.5 (page 747)}
1. \(8 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \quad\) 3. \(\frac{1}{2} \int_{\pi / 2}^{3 \pi / 2}(3-2 \sin \theta)^{2} d \theta \quad\) 5. \(9 \pi\)
7. \(\pi / 3\)
9. \(\pi / 8\)
11. \(3 \pi / 2\)
13. \(27 \pi\)
15. 4
115.

\[
\psi=\arctan \frac{1}{3} \approx 18.4^{\circ}
\]
17.

\[
(2 \pi-3 \sqrt{3}) / 2
\]
21.

\[
\pi+3 \sqrt{3}
\]
19.

23.

25. \((1, \pi / 2),(1,3 \pi / 2),(0,0)\)
27. \(\left(\frac{2-\sqrt{2}}{2}, \frac{3 \pi}{4}\right),\left(\frac{2+\sqrt{2}}{2}, \frac{7 \pi}{4}\right),(0,0)\)
29. \(\left(\frac{3}{2}, \frac{\pi}{6}\right),\left(\frac{3}{2}, \frac{5 \pi}{6}\right),(0,0)\)
31. \((2,4),(-2,-4)\)
33. \((1, \pi / 12),(1,5 \pi / 12),(1,7 \pi / 12),(1,11 \pi / 12)\),
\[
(1,13 \pi / 12),(1,17 \pi / 12),(1,19 \pi / 12),(1,23 \pi / 12)
\]
35.

\((-0.581, \pm 2.607)\), ( \(2.581, \pm 1.376\) )
39.

\(\frac{4}{3}(4 \pi-3 \sqrt{3})\)
43.

\(\frac{2}{3}(4 \pi-3 \sqrt{3})\)
37.

\((0,0),(0.935,0.363)\),
\((0.535,-1.006)\)
The graphs reach the pole at different times ( \(\theta\)-values).
41.

\(11 \pi-24\)
45.

\(\pi / 3+\sqrt{3} / 2\)
47. \(5 \pi a^{2} / 4 \quad\) 49. \(\left(a^{2} / 2\right)(\pi-2)\)
51. (a) \(\left(x^{2}+y^{2}\right)^{3 / 2}=a x^{2}\)
(b)

(c) \(15 \pi / 2\)
53. The area enclosed by the function is \(\pi a^{2} / 4\) if \(n\) is odd and is \(\pi a^{2} / 2\) if \(n\) is even.
\begin{tabular}{l} 
55. \(16 \pi \quad\) 57. \(4 \pi\) \\
61. 59.8 \\
\hline
\end{tabular}
About 4.16
65.


About 4.39
69. \(\frac{2 \pi \sqrt{1+a^{2}}}{1+4 a^{2}}\left(e^{\pi a}-2 a\right)\)
63.


About 0.71
67. \(36 \pi\)
71. 21.87
73. You will only find simultaneous points of intersection. There may be intersection points that do not occur with the same coordinates in the two graphs.
75. (a) \(S=2 \pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta\)
(b) \(S=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta\)
77. \(40 \pi^{2}\)
79. (a) \(16 \pi\)
(b)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{\theta}\) & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\
\hline \(\boldsymbol{A}\) & 6.32 & 12.14 & 17.06 & 20.80 & 23.27 & 24.60 & 25.08 \\
\hline
\end{tabular}
(c) and (d) For \(\frac{1}{4}\) of area \((4 \pi \approx 12.57): 0.42\)

For \(\frac{1}{2}\) of area \((8 \pi \approx 25.13): 1.57(\pi / 2)\)
For \(\frac{3}{4}\) of area ( \(12 \pi \approx 37.70\) ): 2.73
(e) No. The results do not depend on the radius. Answers will vary.
81. Circle
83. (a)


The graph becomes larger and more spread out. The graph is reflected over the \(y\)-axis.
(b) \((a n \pi, n \pi)\) where \(n=1,2,3, \ldots\)
(c) About 21.26
(d) \(4 / 3 \pi^{3}\)
85. \(r=\sqrt{2} \cos \theta\)
87. False. The graphs of \(f(\theta)=1\) and \(g(\theta)=-1\) coincide.
89. Proof

\section*{Section 10.6 (page 755)}
1.

(a) Parabola
(b) Ellipse
(c) Hyperbola
3.

(a) Parabola (b) Ellipse
(c) Hyperbola
5. (a)


Ellipse
As \(e \rightarrow 1^{-}\), the ellipse
becomes more elliptical, and
as \(e \rightarrow 0^{+}\), it becomes more circular.
(c)


Hyperbola
As \(e \rightarrow 1^{+}\), the hyperbola opens more slowly, and as \(e \rightarrow \infty\), it opens more rapidly.
7. c
8.
10. e
11. b
12. d
13. \(e=1\)

Distance \(=1\)


Parabola
17. \(e=\frac{1}{2}\)

Distance \(=6\)


Ellipse
21. \(e=2\)

Distance \(=\frac{5}{2}\)


Hyperbola
25. \(e=\frac{1}{2}\)

Distance \(=50\)


Ellipse
29.


Parabola
\(e=1\)
33.

31.


Rotated \(\pi / 4\) radian counterclockwise.
35. \(r=\frac{8}{8+5 \cos \left(\theta+\frac{\pi}{6}\right)}\)

Rotated \(\pi / 6\) radian clockwise.
37. \(r=3 /(1-\cos \theta) \quad\) 39. \(r=1 /(2+\sin \theta)\)
41. \(r=2 /(1+2 \cos \theta)\)
43. \(r=2 /(1-\sin \theta)\)
45. \(r=16 /(5+3 \cos \theta)\)
47. \(r=9 /(4-5 \sin \theta)\)
49. \(r=4 /(2+\cos \theta)\)
51. If \(0<e<1\), the conic is an ellipse.

If \(e=1\), the conic is a parabola.
If \(e>1\), the conic is a hyperbola.
53. If the foci are fixed and \(e \rightarrow 0\), then \(d \rightarrow \infty\). To see this, compare the ellipses
\(r=\frac{1 / 2}{1+(1 / 2) \cos \theta}, e=\frac{1}{2}, d=1\) and
\(r=\frac{5 / 16}{1+(1 / 4) \cos \theta}, e=\frac{1}{4}, d=\frac{5}{4}\).
55. Proof
57. \(r^{2}=\frac{9}{1-(16 / 25) \cos ^{2} \theta}\)
59. \(r^{2}=\frac{-16}{1-(25 / 9) \cos ^{2} \theta}\)
61. About 10.88
63. 3.37
65. \(\frac{7979.21}{1-0.9372 \cos \theta} ; 11,015 \mathrm{mi}\)
67. \(r=\frac{149,558,278.0560}{1-0.0167 \cos \theta}\)

Perihelion: 147,101,680 km
Aphelion: 152,098,320 km
69. \(r=\frac{4,497,667,328}{1-0.0086 \cos \theta}\)

Per ihelion: 4,459,317,200 km
Aphelion: 4,536,682,800 km
71. Answers will vary. Sample answers:
(a) \(3.591 \times 10^{18} \mathrm{~km}^{2} ; 9.322 \mathrm{yr}\)
(b) \(\alpha \approx 0.361+\pi\); Larger angle with the smaller ray to generate an equal area
(c) Part (a): \(1.583 \times 10^{9} \mathrm{~km}, 1.698 \times 10^{8} \mathrm{~km} / \mathrm{yr}\) Part (b): \(1.610 \times 10^{9} \mathrm{~km} \quad 1.727 \times 10^{8} \mathrm{~km} / \mathrm{yr}\)
73. Proof
75. Let \(r_{1}=e d /(1+\sin \theta)\) and \(r_{2}=e d /(1-\sin \theta)\).

The points of intersection of \(r_{1}\) and \(r_{2}\) are \((e d, 0)\) and \((e d, \pi)\). The slopes of the tangent lines to \(r_{1}\) are -1 at \((e d, 0)\) and 1 at \((e d, \pi)\). The slopes of the tangent lines to \(r_{2}\) are 1 at \((e d, 0)\) and -1 at \((e d, \pi)\). Therefore, at \((e d, 0), m_{1} m_{2}=-1\), and at \((e d, \pi)\), \(m_{1} m_{2}=-1\), and the curves intersect at right angles.

\section*{Review Exercises for Chapter 10 (page 758)}
1. e 2. c 3. b 4. d 5. a 6. f
7. Circle

Center: \(\left(\frac{1}{2},-\frac{3}{4}\right)\)
9. Hyperbola

Radius: 1


Vertices: \((-4 \pm \sqrt{2}, 3)\)

11. Ellipse

Center: \((2,-3)\)
Vertices: \((2,-3 \pm \sqrt{2} / 2)\)

13. \(y^{2}-4 y-12 x+4=0\)
15. \((x-1)^{2} / 36+y^{2} / 20=1\)
17. \(x^{2} / 49-y^{2} / 32=1\)
19. About 15.87
21. \(4 x+4 y-7=0\)
23. (a)
25.

27.

\[
x+2 y-7=0
\]
\[
y=(x+1)^{3}, x>-1
\]
29.

\(x^{2}+y^{2}=36\)
31.

\[
(x-2)^{2}-(y-3)^{2}=1
\]
33. Answers will vary. Sample answer:
\[
x=5 t-2
\]
\[
y=6-4 t
\]
35. \(x=4 \cos \theta-3\)
\(y=4+3 \sin \theta\)
37.

39. (a) \(d y / d x=-\frac{4}{5}\); Horizontal tangents: None
(b) \(y=(-4 x+13) / 5\)
(c)

41. (a) \(d y / d x=-2 t^{2}\); Horizontal tangents: None
(b) \(y=3+2 / x\)
(c)

43. (a) \(\frac{d y}{d x}=\frac{(t-1)(2 t+1)^{2}}{t^{2}(t-2)^{2}}\);

Horizontal tangent: \(\left(\frac{1}{3},-1\right)\)
(b) \(y=\frac{4 x^{2}}{(5 x-1)(x-1)}\)
(c)

45. (a) \(\frac{d y}{d x}=-4 \cot \theta\);

Horizontal tangents: \((5,7),(5,-1)\)
(b) \((x-5)^{2}+\frac{(y-3)^{2}}{16}=1\)
(c)

47. (a) \(\frac{d y}{d x}=-4 \tan \theta\);

\section*{Horizontal tangents: None}
(b) \(x^{2 / 3}+(y / 4)^{2 / 3}=1\)
(c)

49. Horizontal: \((5,0)\)

Vertical: None
51. Horizontal: \((2,2),(2,0)\)

Vertical: \((4,1),(0,1)\)
53. (a) and (c)

(b) \(d x / d \theta=-4, d y / d \theta=1, d y / d x=-\frac{1}{4}\)
55. \(\frac{1}{2} \pi^{2} r\)
57. (a) \(s=12 \pi \sqrt{10} \approx 119.215\)
59. \(A=3 \pi\)
(b) \(s=4 \pi \sqrt{10} \approx 39.738\)
61.

63.


Rectangular: \((0,-5)\)
Rectangular: \((0.0187,1.7320)\)
65.

67.

\(\left(4 \sqrt{2}, \frac{7 \pi}{4}\right),\left(-4 \sqrt{2}, \frac{3 \pi}{4}\right) \quad(\sqrt{10}, 1.89),(-\sqrt{10}, 5.03)\)
69. \(x^{2}+y^{2}-3 x=0\)
71. \(\left(x^{2}+y^{2}+2 x\right)^{2}=4\left(x^{2}+y^{2}\right)\)
73. \(\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}\)
75. \(y^{2}=x^{2}[(4-x) /(4+x)]\)
77. \(r=a \cos ^{2} \theta \sin \theta\)
79. \(r^{2}=a^{2} \theta^{2}\)
81. Circle

83. Line

85. Cardioid

87. Limaçon

89. Rose curve

93.

91. Rose curve

95.

97. (a) \(\theta= \pm \pi / 3\)
(b) Vertical: \((-1,0),(3, \pi),\left(\frac{1}{2}, \pm 1.318\right)\)

Horizontal: \((-0.686, \pm 0.568),(2.186, \pm 2.206)\)
(c)

99. Proof
101. \(\frac{9 \pi}{20}\)
103. \(\frac{9 \pi}{2}\)
105. 4
107. \(\left(1+\frac{\sqrt{2}}{2}, \frac{3 \pi}{4}\right),\left(1-\frac{\sqrt{2}}{2}, \frac{7 \pi}{4}\right),(0,0)\)
109.

\[
A=2\left(\frac{1}{2}\right) \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta \approx 0.10
\]
111.

\(A=2\left[\frac{1}{2} \int_{0}^{\pi / 12} 18 \sin 2 \theta+\frac{1}{2} \int_{\pi / 12}^{5 \pi / 12} 9 d \theta+\frac{1}{2} \int_{5 \pi / 12}^{\pi / 2} 18 \sin 2 \theta d \theta\right]\)
\[
\approx 1.2058+9.4248+1.2058=11.8364
\]
113. \(4 a\)
115. \(S=2 \pi \int_{0}^{\pi / 2}(1+4 \cos \theta) \sin \theta \sqrt{17+8 \cos \theta} d \theta\)
\[
=34 \pi \sqrt{17} / 5 \approx 88.08
\]
117. Parabola

121. Hyperbola

125. \(r=4 /(1-\cos \theta)\)
127. \(r=5 /(3-2 \cos \theta)\)

\section*{P.S. Problem Solving (page 761)}
1. (a)

(b) and (c) Proofs
(a) \(r=2 a \tan \theta \sin \theta\)
(b) \(x=2 a t^{2} /\left(1+t^{2}\right)\)
\(y=2 a t^{3} /\left(1+t^{2}\right)\)
(c) \(y^{2}=x^{3} /(2 a-x)\)
7. (a) \(y^{2}=x^{2}[(1-x) /(1+x)]\)
(b) \(r=\cos 2 \theta \cdot \sec \theta\)
(c)

(d) \(y=x, y=-x\)
(e) \(\left(\frac{\sqrt{5}-1}{2}, \pm \frac{\sqrt{5}-1}{2} \sqrt{-2+\sqrt{5}}\right)\)
9. (a)

11. \(A=\frac{1}{2} a b\)
13. \(r^{2}=2 \cos 2 \theta\)
15. (a) First plane: \(x_{1}=\cos 70^{\circ}(150-375 t)\)
\[
y_{1}=\sin 70^{\circ}(150-375 t)
\]
\[
\text { Second plane: } x_{2}=\cos 45^{\circ}(450 t-190)
\]
\[
y_{2}=\sin 45^{\circ}(190-450 t)
\]
(b) \(\left\{\left[\cos 45^{\circ}(450 t-190)-\cos 70^{\circ}(150-375 t)\right]^{2}\right.\)
\[
\left.+\left[\sin 45^{\circ}(190-450 t)-\sin 70^{\circ}(150-375 t)\right]^{2}\right\}^{1 / 2}
\]
(c)

17.






\(n=1,2,3,4,5\) produce bells,' \(n=-1,-2,-3,-4,-5\) produce liearts."

\section*{Index}

\section*{A}

Abel, Niels Henrik (1802-1829), 232
Absolute convergence, 636
Absolute maximum of a function, 164
Absolute minimum of a function, 164
Absolute value, 50
derivative involving, 330
function, 22
Absolute Value Theorem, 600
Absolute zero, 74
Absolutely convergent series, 636
Acceleration, 125
Accumulation function, 288
Additive Interval Property, 276
Agnesi, Maria Gaetana (1718-1799), 201
Algebraic function(s), 24, 25, 378
derivatives of, 136
Alternating series, 633
geometric, 633
harmonic, 634, 636, 638
Alternating Series Remainder, 635
Alternating Series Test, 633
Alternative form
of the derivative, 101, A7
of Log Rule for Integration, 334
of Mean Value Theorem, 175
Angle
of incidence, 698
of reflection, 698
Antiderivative, 248
of \(f\) with respect to \(x, 249\)
finding by integration by parts, 527
general, 249
notation for, 249
representation of, 248
Antidifferentiation, 249
of a composite function, 297
Aphelion, 708, 757
Apogee, 708
Applied minimum and maximum problems, guidelines for solving, 219
Approximating zeros
bisection method, 78
Intermediate Value Theorem, 77
Newton's Method, 229
Approximation,
linear, 235
Padé, 333
polynomial, 650
Stirling's, 529
tangent line, 235
Two-point Gaussian Quadrature, 321
Arc length, 478, 479
in parametric form, 724
of a polar curve, 745
Arccosecant function, 373
Arccosine function, 373
Arccotangent function, 373
Archimedes (287-212 b.c.), 261
Principle, 518
spiral of, 725, 733, 749
Arcsecant function, 373
Arcsine function, 373
series for, 684
Arctangent function, 373
series for, 684
Area
found by exhaustion method, 261
in polar coordinates, 741
problem, 45, 46
of a rectangle, 261
of a region between two curves, 449
of a region in the plane, 265
of a surface of revolution, 483
in parametric form, 726
in polar coordinates, 746
Astroid, 146
Asymptote(s)
horizontal, 199
of a hyperbola, 703
slant, 211
vertical, 84,85, A7
Average rate of change, 12
Average value of a function on an interval, 286
Average velocity, 113
Axis
conjugate, of a hyperbola, 703
major, of an ellipse, 699
minor, of an ellipse, 699
of a parabola, 697
polar, 731
of revolution, 458
transverse, of a hyperbola, 703

\section*{B}

Barrow, Isaac (1630-1677), 145
Base(s), 327, 362
of the natural exponential function, 362
of a natural logarithm, 327
other than \(e\),
derivatives for, 364
exponential function, 362
logarithmic function, 363
Basic differentiation rules for elementary
functions, 378

Basic equation obtained in a partial fraction decomposition, 556
guidelines for solving, 560
Basic integration rules, 250, 385, 522
procedures for fitting integrands to, 523
Basic limits, 59
Basic types of transformations, 23
Bernoulli equation, 438
general solution of, 439
Bernoulli, James (1654-1705), 717
Bernoulli, John (1667-1748), 554
Bessel function, 669, 670
Bifolium, 146
Binomial series, 683
Bisection method, 78
Bose-Einstein condensate, 74
Bounded
above, 603
below, 603
monotonic sequence, 603
sequence, 603
Brachistochrone problem, 717
Breteuil, Emilie de (1706-1749), 490
Bullet-nose curve, 138

\section*{C}

Cantor set, 693
Cardioid, 736, 737
Carrying capacity, 427, 429
Catenary, 393
Cauchy, Augustin-Louis (1789-1857), 75
Cavalieri's Theorem, 468
Center
of an ellipse, 699
of gravity, 500, 501
of a one-dimensional system, 500
of a two-dimensional system, 501
of a hyperbola, 703
of mass, 499, 500, 501
of a one-dimensional system, 499, 500
of a planar lamina, 502
of a two-dimensional system, 501
of a power series, 661
Centered at \(c, 650\)
Centroid, 503
Chain Rule, 130, 131, 136, A8
and trigonometric functions, 135
Change in \(x, 97\)
Change in \(y, 97\)
Change of variables, 300
for definite integrals, 303
guidelines for making, 301
for homogeneous equations, 426

Charles, Jacques (1746-1823), 74
Charles's Law, 74
Circle, 146, 696, 737
Circle of curvature, 161
Circumscribed rectangle, 263
Cissoid, 146
of Diocles, 761
Classification of conics by eccentricity, 750, A19
Coefficient, 24
correlation, 31
leading, 24
Collinear, 17
Combinations of functions, 25
Common logarithmic function, 363
Common types of behavior associated with nonexistence of a limit, 51
Comparison Test
Direct, 626
for improper integrals, 588
Limit, 628
Completeness, 77, 603
Completing the square, 383
Composite function, 25
antidifferentiation of, 297
continuity of, 75
derivative of, 130
limit of, 61, A4
Composition of functions, 25
Compound interest formulas, 366
Compounding, continuous, 366
Concave downward, 190, A9
Concave upward, 190, A9
Concavity, 190, A9
test for, 191, A9
Conditional convergence, 636
Conditionally convergent series, 636
Conic(s), 696
circle, 696
classification by eccentricity, 750, A19
degenerate, 696
directrix of, 750
eccentricity, 750
ellipse, 696, 699
focus of, 750
hyperbola, 696, 703
parabola, 696, 697
polar equations of, 751
Conic section, 696
Conjugate axis of a hyperbola, 703
Constant
Euler's, 625
force, 489
function, 24
of integration, 249
Multiple Rule, 110, 136
differential form, 238
Rule, 107, 136
spring, 34
term of a polynomial function, 24
Continued fraction expansion, 693
Continuity
on a closed interval, 73
of a composite function, 75
differentiability implies, 103
and differentiability of inverse functions, 347, A13
implies integrability, 273
properties of, 75, A6
Continuous, 70
at \(c, 59,70\)
on the closed interval [ \(a, b\) ], 73
compounding, 366
everywhere, 70
from the left and from the right, 73
on an open interval \((a, b), 70\)
Continuously differentiable, 478
Converge, 231, 597, 608
Convergence
absolute, 636
conditional, 636
endpoint, 664
of a geometric series, 610
of improper integral with infinite discontinuities, 583
integration limits, 580
interval of, 662, 666, A18
of Newton's Method, 231, 232
of a power series, 662, A18
of \(p\)-series, 621
radius of, 662, 666, A18
of a sequence, 597
of a series, 608
of Taylor series, 680
tests for series
Alternating Series Test, 633
Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
p-series, 621
Ratio Test, 641
Root Test, 644
summary, 646
Convergent power series, form of, 678
Convergent series, limit of \(n\)th term of, 612
Convex limaçon, 737
Coordinate conversion
polar to rectangular, 732
rectangular to polar, 732
Coordinate system, polar, 731
Coordinates, polar, 731
area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739
Coordinates, rectangular, converting to
polar, 732
Copernicus, Nicolaus (1473-1543), 699
Cornu spiral, 761
Correlation coefficient, 31
Cosecant function
derivative of, 123, 136
integral of, 339
inverse of, 373
derivative of, 376
Cosine function, 22
derivative of, 112, 136
integral of, 339
inverse of, 373
derivative of, 376, A15
series for, 684
Cotangent function
derivative of, 123, 136
integral of, 339
inverse of, 373
derivative of, 376
Coulomb's Law, 491
Critical number(s)
of a function, 166
relative extrema occur only at, 166
Cruciform, 146
Cubic function, 24
Cubing function, 22
Curtate cycloid, 719
Curvature, circle of, 161
Curve
astroid, 146
bifolium, 146
bullet-nose, 138
cissoid, 146
cruciform, 146
equipotential, 428
folium of Descartes, 146, 749
isothermal, 428
kappa, 145, 147
lemniscate, 40, 144, 147, 737
logistic, 429, 562
plane, 711
pursuit, 395, 397
rectifiable, 478
rose, 734, 737
smooth, 478,716
piecewise, 716
Curve sketching, summary of, 209
Cycloid, 716, 720
curtate, 719
prolate, 723

\section*{D}

Darboux's Theorem, 245
Decay model, exponential, 416
Decomposition of \(N(x) / D(x)\) into partial fractions, 555
Decreasing function, 179
test for, 179

Definite integral(s), 273
approximating
Midpoint Rule, 269, 313
Simpson's Rule, 314
Trapezoidal Rule, 312
as the area of a region, 274
change of variables, 303
properties of, 277
two special, 276
Degenerate conic, 696
line, 696
point, 696
two intersecting lines, 696
Degree of a polynomial function, 24
Demand, 18
Density, 502
Dependent variable, 19
Derivative(s)
of algebraic functions, 136
alternative form, 101, A7
Chain Rule, 130, 131, 136, A8
of a composite function, 130
Constant Multiple Rule, 110, 136
Constant Rule, 107, 136
of cosecant function, 123, 136
of cosine function, 112, 136
of cotangent function, 123, 136
Difference Rule, 111, 136
of an exponential function, base \(a, 364\)
of a function, 99
General Power Rule, 132, 136
higher-order, 125
of hyperbolic functions, 392
implicit, 142
of an inverse function, 347, A14
of inverse trigonometric functions, 376, A15
involving absolute value, 330
from the left and from the right, 101
of a logarithmic function, base \(a, 364\)
of the natural exponential function, 354
of the natural logarithmic function, 328
notation, 99
parametric form, 721
Power Rule, 108, 136
Product Rule, 119, 136
Quotient Rule, 121, 136
of secant function, 123, 136
second, 125
Simple Power Rule, 108, 136
simplifying, 134
of sine function, 112, 136
Sum Rule, 111, 136
of tangent function, 123, 136
third, 125
of trigonometric functions, 123, 136
Descartes, René (1596-1650), 2
Difference quotient, 20, 97
Difference Rule, 111, 136
differential form, 238
Difference of two functions, 25
Differentiability
implies continuity, 103
and continuity of inverse functions, 347, A13
Differentiable at \(x, 99\)
Differentiable, continuously, 478
Differentiable function
on the closed interval \([a, b], 101\)
on an open interval \((a, b), 99\)
Differential, 236
of \(x, 236\)
of \(y, 236\)
Differential equation, 249, 406
Bernoulli equation, 438
doomsday, 445
Euler's Method, 410
first-order linear, 434, 440
general solution of, 249, 406
Gompertz, 445
homogeneous, 425
change of variables, 426
initial condition, 253, 407
integrating factor, 434
logistic, 245, 429
order of, 406
particular solution of, 253, 407
separable, 423
separation of variables, 415, 423
singular solution of, 406
solution of, 406
summary of first-order, 440
Differential form, 236
Differential formulas, 238
constant multiple, 238
product, 238
quotient, 238
sum or difference, 238
Differentiation, 99
basic rules for elementary functions, 378
implicit, 141
guidelines for, 142
involving inverse hyperbolic functions, 396
logarithmic, 329
numerical, 103
of power series, 666
Differentiation rules
basic, 378
Chain, 130, 131, 136, A8
Constant, 107, 136
Constant Multiple, 110, 136
cosecant function, 123, 136
cosine function, 112, 136
cotangent function, 123, 136
Difference, 111, 136
general, 136
General Power, 132, 136

Power, 108, 136
for Real Exponents, 365
Product, 119, 136
Quotient, 121, 136
secant function, 123, 136
Simple Power, 108, 136
sine function, 112, 136
Sum, 111, 136
summary of, 136
tangent function, 123, 136
Diminishing returns, point of, 227
Dimpled limaçon, 737
Direct Comparison Test, 626
Direct substitution, 59, 60
Directed distance, 501
Direction field, 256, 325, 408
Directrix
of a conic, 750
of a parabola, 697
Dirichlet, Peter Gustav (1805-1859), 51
Dirichlet function, 51
Discontinuity, 71
infinite, 580
nonremovable, 71
removable, 71
Disk, 458
method, 459
compared to shell, 471
Displacement of a particle, 291, 292
Distance
directed, 501
total, traveled on [a, b], 292
Distance Formula in polar coordinates, 739
Diverge, 597, 608
Divergence
of improper integral with infinite discontinuities, 583
integration limits, 580
of a sequence, 597
of a series, 608
tests for series
Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
\(n\) th-Term Test, 612
p-series, 621
Ratio Test, 641
Root Test, 644
summary, 646
Divide out like factors, 63
Domain
feasible, 218
of a function, 19
explicitly defined, 21
implied, 21
of a power series, 662
Doomsday equation, 445

Dummy variable, 275
Dyne, 489

\section*{E}
\(e\), the number, 327
limit involving, 366, A15
Eccentricity, 750, A19
classification of conics by, 750, A19
of an ellipse, 701
of a hyperbola, 704
Eight curve, 161
Elementary function(s), 24, 378
basic differentiation rules for, 378
polynomial approximation of, 650
power series for, 684
Eliminating the parameter, 713
Ellipse, 696, 699
center of, 699
eccentricity of, 701
foci of, 699
major axis of, 699
minor axis of, 699
reflective property of, 701
rotated, 146
standard equation of, 699
vertices of, 699
Elliptic integral, 317
Endpoint convergence, 664
Endpoint extrema, 164
Epicycloid, 719, 720, 724
Epsilon-delta, \(\varepsilon-\delta\), definition of limit, 52
Equation(s)
basic, 556
guidelines for solving, 560
Bernoulli, 438
of conics, polar, 751
doomsday, 445
of an ellipse, 699
general second-degree, 696
Gompertz, 445
graph of, 2
of a hyperbola, 703
of a line
general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
summary, 14
vertical, 14
of a parabola, 697
parametric, 711
finding, 715
graph of, 711
primary, 218, 219
related-rate, 149
secondary, 219
separable, 423
solution point of, 2
Equilibrium, 499

Equipotential curves, 428
Error
in approximating a Taylor polynomial, 656
in measurement, 237
percent error, 237
propagated error, 237
relative error, 237
in Simpson's Rule, 315
in Trapezoidal Rule, 315
Escape velocity, 94
Euler, Leonhard (1707-1783), 24
Euler's
constant, 625
Method, 410
Evaluate a function, 19
Even function, 26
integration of, 305
test for, 26
Everywhere continuous, 70
Existence
of an inverse function, 345
of a limit, 73
theorem, 77, 164
Expanded about \(c\), approximating polynomial, 650
Explicit form of a function, 19, 141
Explicitly defined domain, 21
Exponential decay, 416
Exponential function, 24
to base \(a, 362\) derivative of, 364
integration rules, 356
natural, 352
derivative of, 354
properties of, 353
operations with, 353, A15
series for, 684
Exponential growth and decay model, 416
initial value, 416
proportionality constant, 416
Exponentiate, 353
Extended Mean Value Theorem, 245, 570, A16
Extrema
endpoint, 164
of a function, 164
guidelines for finding, 167
relative, 165
Extreme Value Theorem, 164
Extreme values of a function, 164

\section*{F}

Factorial, 599
Family of functions, 273
Famous curves
astroid, 146
bifolium, 146
bullet-nose curve, 138
circle, 146, 696, 737
cissoid, 146
cruciform, 146
eight curve, 161
folium of Descartes, 146, 749
kappa curve, 145, 147
lemniscate, 40, 144, 147, 737
parabola, 2, 146, 696, 697
pear-shaped quartic, 161
rotated ellipse, 146
rotated hyperbola, 146
serpentine, 127
top half of circle, 138
witch of Agnesi, 127, 146, 201
Feasible domain, 218
Fermat, Pierre de (1601-1665), 166
Fibonacci sequence, 606, 617
Field
direction, 256, 325, 408
slope, \(256,306,325,408\)
Finite Fourier series, 544
First Derivative Test, 181
First-order differential equations
linear, 434, 440
solution of, 435
summary of, 440
Fitting integrands to basic rules, 523
Fixed point, 233
Fluid(s)
force, 510
pressure, 509
weight-densities of, 509
Focal chord of a parabola, 697
Focus
of a conic, 750
of an ellipse, 699
of a hyperbola, 703
of a parabola, 697
Folium of Descartes, 146, 749
Force, 489
constant, 489
exerted by a fluid, 510
variable, 490
Form of a convergent power series, 678
Fourier, Joseph (1768-1830), 671
Fourier series, finite, 544
Fourier Sine Series, 535
Fraction expansion, continued, 693
Fractions, partial, 554
decomposition of \(N(x) / D(x)\) into, 555
method of, 554
Fresnel function, 321
Function(s), 6, 19
absolute maximum of, 164
absolute minimum of, 164
absolute value, 22
acceleration, 125
accumulation, 288
addition of, 25
algebraic, 24, 25, 378
antiderivative of, 248
arc length, 478, 479
arccosecant, 373
arccosine, 373
arccotangent, 373
arcsecant, 373
arcsine, 373
arctangent, 373
average value of, 286
Bessel, 669, 670
combinations of, 25
common logarithmic, 363
composite, 25
composition of, 25
concave downward, 190, A9
concave upward, 190, A9
constant, 24
continuous, 70
continuously differentiable, 478
cosine, 22
critical number of, 166
cubic, 24
cubing, 22
decreasing, 179
test for, 179
defined by power series, properties of, 666
derivative of, 99
difference of, 25
differentiable, 99, 101
Dirichlet, 51
domain of, 19
elementary, 24,378
algebraic, 24,25
exponential, 24
logarithmic, 24
trigonometric, 24
evaluate, 19
even, 26
explicit form, 19, 141
exponential to base \(a, 362\)
extrema of, 164
extreme values of, 164
family of, 273
feasible domain of, 218
Fresnel, 321
Gamma, 578, 590
global maximum of, 164
global minimum of, 164
graph of, guidelines for analyzing, 209
greatest integer, 72
Gudermannian, 404
Heaviside, 39
homogeneous, 425, 931
hyperbolic, 390
identity, 22
implicit form, 19
implicitly defined, 141
increasing, 179
test for, 179
inner product of two, 544
integrable, 273
inverse, 343
inverse hyperbolic, 394
inverse trigonometric, 373
involving a radical, limit of, 60, A4
jerk, 162
limit of, 48
linear, 24
local extrema of, 165
local maximum of, 165
local minimum of, 165
logarithmic, 324
to base \(a, 363\)
logistic growth, 367
natural exponential, 352
natural logarithmic, 324
notation, 19
odd, 26
one-to-one, 21
onto, 21
orthogonal, 544
point of inflection, 192, 193
polynomial, 24, 60
position, 32, 113
product of, 25
pulse, 94
quadratic, 24
quotient of, 25
range of, 19
rational, 22, 25
real-valued, 19
relative extrema of, 165
relative maximum of, 165
relative minimum of, 165
representation by power series, 671
Riemann zeta, 625
signum, 82
sine, 22
sine integral, 322
square root, 22
squaring, 22
standard normal probability density, 355
step, 72
strictly monotonic, 180, 345
sum of, 25
that agree at all but one point, 62 , A5
transcendental, 25, 378
transformation of a graph of, 23
horizontal shift, 23
reflection about origin, 23
reflection about \(x\)-axis, 23
reflection about \(y\)-axis, 23
reflection in the line \(y=x, 344\)
vertical shift, 23
trigonometric, 24
unit pulse, 94
Vertical Line Test, 22
zero of, 26
approximating with Newton's Method, 229
Fundamental Theorem of Calculus, 282
guidelines for using, 283
Second, 289

\section*{G}

Gabriel's Horn, 586
Galilei, Galileo (1564-1642), 378
Galois, Evariste (1811-1832), 232
Gamma Function, 578, 590
Gauss, Carl Friedrich (1777-1855), 260
Gaussian Quadrature Approximation, twopoint, 321
General antiderivative, 249
General differentiation rules, 136
General form
of the equation of a line, 14
of a second-degree equation, 694
General harmonic series, 621
General partition, 272
General Power Rule
for differentiation, 132, 136
for Integration, 302
General second-degree equation, 696
General solution
of the Bernoulli equation, 439
of a differential equation, 249, 406
Geometric power series, 671
Geometric series, 610
alternating, 633
convergence of, 610
divergence of, 610
Global maximum of a function, 164
Global minimum of a function, 164
Golden ratio, 606
Gompertz equation, 445
Graph(s)
of absolute value function, 22
of cosine function, 22
of cubing function, 22
of an equation, 2
of a function
guidelines for analyzing, 209
transformation of, 23
of hyperbolic functions, 391
of identity function, 22
intercept of, 4
of inverse hyperbolic functions, 395
of inverse trigonometric functions, 374
orthogonal, 147
of parametric equations, 711
polar, 733
points of intersection, 743
special polar graphs, 737
of rational function, 22
of sine function, 22
of square root function, 22
of squaring function, 22
symmetry of, 5
Greatest integer function, 72
Gregory, James (1638-1675), 666
Gudermannian function, 404
Guidelines
for analyzing the graph of a function, 209
for evaluating integrals involving secant and tangent, 539
for evaluating integrals involving sine and cosine, 536
for finding extrema on a closed interval, 167
for finding intervals on which a function is increasing or decreasing, 180
for finding an inverse function, 346
for finding limits at infinity of rational functions, 201
for finding a Taylor series, 682
for implicit differentiation, 142
for integration, 337
for integration by parts, 527
for making a change of variables, 301
for solving applied minimum and maximum problems, 219
for solving the basic equation, 560
for solving related-rate problems, 150
for testing a series for convergence or divergence, 645
for using the Fundamental Theorem of Calculus, 283

\section*{H}

Half-life, 362, 417
Harmonic series, 621
alternating, 634, 636, 638
Heaviside, Oliver (1850-1925), 39
Heaviside function, 39
Herschel, Caroline (1750-1848), 705
Higher-order derivative, 125
Homogeneous of degree \(n, 425\)
Homogeneous differential equation, 425
change of variables for, 426
Homogeneous function, 425
Hooke's Law, 491
Horizontal asymptote, 199
Horizontal line, 14
Horizontal Line Test, 345
Horizontal shift of a graph of a function, 23
Huygens, Christian (1629-1795), 478
Hypatia (370-415 A.D.), 696
Hyperbola, 696, 703
asymptotes of, 703
center of, 703
conjugate axis of, 703
eccentricity of, 704
foci of, 703
rotated, 146
standard equation of, 703
transverse axis of, 703
vertices of, 703
Hyperbolic functions, 390
derivatives of, 392
graphs of, 391
identities, 391, 392
integrals of, 392
inverse, 394
differentiation involving, 396
graphs of, 395
integration involving, 396
Hyperbolic identities, 391, 392
Hypocycloid, 720

\section*{I}

Identities, hyperbolic, 391, 392
Identity function, 22
If and only if, 14
Image of \(x\) under \(f, 19\)
Implicit derivative, 142
Implicit differentiation, 141
guidelines for, 142
Implicit form of a function, 19
Implicitly defined function, 141
Implied domain, 21
Improper integral, 580
comparison test for, 588
with infinite discontinuities, 583
convergence of, 583
divergence of, 583
with infinite integration limits, 580
convergence of, 580
divergence of, 580
special type, 586
Incidence, angle of, 698
Increasing function, 179
test for, 179
Indefinite integral, 249
pattern recognition, 297
Indefinite integration, 249
Independent variable, 19
Indeterminate form, \(63,85,200,214,569\), 572
Index of summation, 259
Inductive reasoning, 601
Inequality
Napier's, 342
preservation of, 278, A11
Infinite discontinuities, 580
improper integrals with, 583
convergence of, 583
divergence of, 583
Infinite integration limits, 580
improper integrals with, 580
convergence of, 580
divergence of, 580
Infinite interval, 198
Infinite limit(s), 83
at infinity, 204
from the left and from the right, 83
properties of, 87
Infinite series (or series), 608
absolutely convergent, 636
alternating, 633
geometric, 633
harmonic, 634, 636
remainder, 635
conditionally convergent, 636
convergence of, 608
convergent, limit of \(n\)th term, 612
divergence of, 608
\(n\)th term test for, 612
geometric, 610
guidelines for testing for convergence or divergence of, 645
harmonic, 621
alternating, 634, 636, 638
\(n\)th partial sum, 608
properties of, 612
p-series, 621
rearrangement of, 637
sum of, 608
telescoping, 609
terms of, 608
Infinity
infinite limit at, 204
limit at, 198, 199, A10
Inflection point, 192, 193
Initial condition(s), 253, 407
Initial value, 416
Inner product of two functions, 544
Inner radius of a solid of revolution, 461
Inscribed rectangle, 263
Instantaneous velocity, 114
Integrability and continuity, 273
Integrable function, 273
Integral(s)
definite, 273
properties of, 277
two special, 276
elliptic, 317
of hyperbolic functions, 392
improper, 580
indefinite, 249
involving inverse trigonometric functions, 382
involving secant and tangent, guidelines for evaluating, 539
involving sine and cosine, guidelines for evaluating, 536
Mean Value Theorem, 285
of \(p(x)=A x^{2}+B x+C, 313\)
of the six basic trigonometric functions, 339
trigonometric, 536
Integral Test, 619
Integrand(s), procedures for fitting to basic rules, 523

Integrating factor, 434
Integration
as an accumulation process, 453
Additive Interval Property, 276
basic rules of, 250, 385, 522
change of variables, 300
guidelines for, 301
constant of, 249
of even and odd functions, 305
guidelines for, 337
indefinite, 249
pattern recognition, 297
involving inverse hyperbolic functions, 396
Log Rule, 334
lower limit of, 273
of power series, 666
preservation of inequality, 278, A11
rules for exponential functions, 356
upper limit of, 273
Integration by parts, 527
guidelines for, 527
summary of common integrals using, 532
tabular method, 532
Integration by tables, 563
Integration formulas
reduction formulas, 565
special, 549
Integration rules
basic, 250, 385, 522
General Power Rule, 302
Power Rule, 250
Integration techniques
basic integration rules, 250, 385, 522
integration by parts, 527
method of partial fractions, 554
substitution for rational functions of sine and cosine, 566
tables, 563
trigonometric substitution, 545
Intercept(s), 4
\(x\)-intercept, 4
\(y\)-intercept, 4
Interest formulas, summary of, 366
Intermediate Value Theorem, 77
Interpretation of concavity, 190, A9
Interval of convergence, 662, A18
Interval, infinite, 198
Inverse function, 343
continuity and differentiability of, 347, A13
derivative of, 347, A14
existence of, 345
guidelines for finding, 346
Horizontal Line Test, 345
properties of, 363
reflective property of, 344
Inverse hyperbolic functions, 394
differentiation involving, 396
graphs of, 395
integration involving, 396
Inverse trigonometric functions, 373
derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375
Isobars, 148
Isothermal curves, 428
Iteration, 229
\(i\) th term of a sum, 259

\section*{J}

Jerk function, 162

\section*{K}

Kappa curve, 145, 147
Kepler, Johannes, (1571-1630), 753
Kepler's Laws, 753
Kirchhoff's Second Law, 438

\section*{L}

Lagrange, Joseph-Louis (1736-1813), 174
Lagrange form of the remainder, 656
Lambert, Johann Heinrich (1728-1777), 390
Lamina, planar, 502
Laplace Transform, 590
Latus rectum, of a parabola, 697
Leading coefficient
of a polynomial function, 24
test, 24
Least squares regression, 7
Least upper bound, 603
Left-hand limit, 72
Leibniz, Gotffried Wilhelm (1646-1716), 238
Leibniz notation, 238
Lemniscate, 40, 144, 147, 737
Length
of an arc, 478, 479
parametric form, 724
polar form, 745
of the moment arm, 499
L'Hôpital, Guillaume (1661-1704), 570
L'Hôpital's Rule, 570, A17
Limaçon, 737
convex, 737
dimpled, 737
with inner loop, 737
Limit(s), 45, 48
basic, 59
of a composite function, 61, A4
definition of, 52
\(\varepsilon-\delta\) definition of, 52
evaluating
direct substitution, 59, 60
divide out like factors, 63
rationalize the numerator, 63
existence of, 73
of a function involving a radical, \(60, \mathrm{~A} 4\)
indeterminate form, 63
infinite, 83
from the left and from the right, 83
properties of, 87
at infinity, 198, 199, A10
infinite, 204
of a rational function, guidelines for finding, 201
of integration
lower, 273
upper, 273
involving \(e, 366\), A15
from the left and from the right, 72
of the lower and upper sums, 265
nonexistence of, common types of behavior, 51
of \(n\)th term of a convergent series, 612
one-sided, 72
of polynomial and rational functions, 60
properties of, 59, A2
of a sequence, 597
properties of, 598
strategy for finding, 62
of trigonometric functions, 61
two special trigonometric, 65
Limit Comparison Test, 628
Line(s)
as a degenerate conic, 696
equation of
general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
summary, 14
vertical, 14
moment about, 499
at a point, 147
parallel, 14
perpendicular, 14
radial, 731
secant, 45, 97
slope of, 10
tangent, 45, 97
approximation, 235
at the pole, 736
with slope \(m, 97\)
vertical, 99
Linear approximation, 235
Linear function, 24
Local maximum, 165
Local minimum, 165
Locus, 696
Log Rule for Integration, 334
Logarithmic differentiation, 329
Logarithmic function, 24, 324
to base \(a, 363\)
derivative of, 364
common, 363
natural, 324
derivative of, 328
properties of, 325, A12
Logarithmic properties, 325
Logarithmic spiral, 749
Logistic curve, 429, 562
Logistic differential equation, 245, 429
carrying capacity, 429
Logistic growth function, 367
Lorenz curves, 456
Lower bound of a sequence, 603
Lower bound of summation, 259
Lower limit of integration, 273
Lower sum, 263
limit of, 265
Lune, 553

\section*{M}

Macintyre, Sheila Scott (1910-1960), 536
Maclaurin, Colin, (1698-1746), 678
Maclaurin polynomial, 652
Maclaurin series, 679
Major axis of an ellipse, 699
Mass, 498
center of, 499, 500, 501
of a one-dimensional system, 499, 500
of a planar lamina, 502
of a two-dimensional system, 501
pound mass, 498
total, 500, 501
of a one-dimensional system, 500
of a two-dimensional system, 501
Mathematical model, 7
Mathematical modeling, 33
Maximum
absolute, 164
of \(f\) on \(I, 164\)
global, 164
local, 165
relative, 165
Mean Value Theorem, 174
alternative form of, 175
Extended, 245, 570, A16
for Integrals, 285
Measurement, error in, 237
Mechanic's Rule, 233
Method of partial fractions, 554
Midpoint Rule, 269, 313
Minimum
absolute, 164
of \(f\) on \(I, 164\)
global, 164
local, 165
relative, 165
Minor axis of an ellipse, 699
Model
exponential growth and decay, 416
mathematical, 7
Modeling, mathematical, 33

Moment(s)
about a line, 499
about the origin, 499, 500
about a point, 499
about the \(x\)-axis
of a planar lamina, 502
of a two-dimensional system, 501
about the \(y\)-axis
of a planar lamina, 502
of a two-dimensional system, 501
arm, length of, 499
of a one-dimensional system, 500
of a planar lamina, 502
Monotonic sequence, 602
bounded, 603
Monotonic, strictly, 180, 345
Mutually orthogonal, 428

\section*{\(N\)}
\(n\) factorial, 599
Napier, John (1550-1617), 324
Napier's Inequality, 342
Natural exponential function, 352
derivative of, 354
integration rules, 356
operations with, 353 , A15
properties of, 353
series for, 684
Natural logarithmic base, 327
Natural logarithmic function, 324
base of, 327
derivative of, 328
properties of, 325, A12
series for, 684
Net change, 291
Net Change Theorem, 291
Newton, Isaac (1642-1727), 96, 229
Newton's Law of Cooling, 419
Newton's Law of Gravitation, 1059
Newton's Law of Universal Gravitation, 491
Newton's Method for approximating the zeros of a function, 229
convergence of, 231, 232
iteration, 229
Newton's Second Law of Motion, 437
Nonexistence of a limit, common types of behavior, 51
Nonremovable discontinuity, 71
Norm of a partition, 272
Normal line at a point, 147
Normal probability density function, 355
Notation
antiderivative, 249
derivative, 99
function, 19
Leibniz, 238
sigma, 259
\(n\)th Maclaurin polynomial for \(f\) at \(c, 652\)
\(n\)th partial sum, 608
\(n\)th Taylor polynomial for \(f\) at \(c, 652\)
\(n\)th term
of a convergent series, 612
of a sequence, 596
\(n\) th-Term Test for Divergence, 612
Number, critical, 166
Number e, 327
limit involving, 366, A15
Numerical differentiation, 103

\section*{o}

Odd function, 26
integration of, 305
test for, 26
Ohm's Law, 241
One-dimensional system
center of gravity of, 500
center of mass of, 499, 500
moment of, 499, 500
total mass of, 500
One-sided limit, 72
One-to-one function, 21
Onto function, 21
Open interval
continuous on, 70
differentiable on, 99
Operations
with exponential functions, 353, A15
with power series, 673
Order of a differential equation, 406
Orientation of a plane curve, 712
Origin
moment about, 499, 500
of a polar coordinate system, 731
reflection about, 23
symmetry, 5
Orthogonal
functions, 544
graphs, 147
trajectory, 147, 428
Outer radius of a solid of revolution, 461

\section*{P}

Padé approximation, 333
Pappus
Second Theorem of, 508
Theorem of, 505
Parabola, 2, 146, 696, 697
axis of, 697
directrix of, 697
focal chord of, 697
focus of, 697
latus rectum of, 697
reflective property of, 698
standard equation of, 697
vertex of, 697
Parabolic spandrel, 507

Parallel lines, 14
Parameter, 711
eliminating, 713
Parametric equations, 711
finding, 715
graph of, 711
Parametric form
of arc length, 724
of the area of a surface of revolution, 726
of the derivative, 721
Partial fractions, 554
decomposition of \(N(x) / D(x)\) into, 555
method of, 554
Partial sums, sequence of, 608
Particular solution of a differential equation, 253, 407
Partition
general, 272
norm of, 272
regular, 272
Pascal, Blaise (1623-1662), 509
Pascal's Principle, 509
Pear-shaped quartic, 161
Percent error, 237
Perigee, 708
Perihelion, 708, 757
Perpendicular lines, 14
Piecewise smooth curve, 716
Planar lamina, 502
center of mass of, 502
moment of, 502
Plane curve, 711
orientation of, 712
Plane region, area of, 265
Point
as a degenerate conic, 696
of diminishing returns, 227
fixed, 233
of inflection, 192, 193
of intersection, 6
of polar graphs, 743
moment about, 499
Point-slope equation of a line, 11, 14
Polar axis, 731
Polar coordinate system, 731
polar axis of, 731
pole (or origin), 731
Polar coordinates, 731
area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739
Polar curve, arc length of, 745
Polar equations of conics, 751
Polar form of slope, 735
Polar graphs, 733
cardioid, 736, 737
circle, 737
convex limaçon, 737
dimpled limaçon, 737
lemniscate, 737
limaçon with inner loop, 737
points of intersection, 743
rose curve, 734, 737
Pole, 731
tangent lines at, 736
Polynomial
Maclaurin, 652
Taylor, 161, 652
Polynomial approximation, 650
centered at \(c, 650\)
expanded about \(c, 650\)
Polynomial function, 24, 60
constant term of, 24
degree of, 24
leading coefficient of, 24
limit of, 60
zero, 24
Position function, 32, 113, 125
Pound mass, 498
Power Rule
for differentiation, 108, 136
for integration, 250, 302
for Real Exponents, 365
Power series, 661
centered at \(c, 661\)
convergence of, 662, A18
convergent, form of, 678
differentiation of, 666
domain of, 662
for elementary functions, 684
endpoint convergence, 664
geometric, 671
integration of, 666
interval of convergence, 662, A18
operations with, 673
properties of functions defined by, 666
interval of convergence of, 666
radius of convergence of, 666
radius of convergence, 662, A18
representation of functions by, 671
Preservation of inequality, 278, A11
Pressure, fluid, 509
Primary equation, 218, 219
Probability density function, 355
Procedures for fitting integrands to basic rules, 523
Product Rule, 119, 136
differential form, 238
Product of two functions, 25
inner, 544
Prolate cycloid, 723
Propagated error, 237
Properties
of continuity, 75, A6
of definite integrals, 277
of functions defined by power series, 666
of infinite limits, 87
of infinite series, 612
of inverse functions, 363
of inverse trigonometric functions, 375
of limits, 59, A2
of limits of sequences, 598
logarithmic, 325
of the natural exponential function, 325 , 353
of the natural logarithmic function, 325, A12
Proportionality constant, 416
p-series, 621
convergence of, 621
divergence of, 621
harmonic, 621
Pulse function, 94
unit, 94
Pursuit curve, 395, 397

\section*{\(Q\)}

Quadratic function, 24
Quotient, difference, 20, 97
Quotient Rule, 121, 136
differential form, 238
Quotient of two functions, 25

\section*{R}

Radial lines, 731
Radical, limit of a function involving a, 60, A4
Radicals, solution by, 232
Radioactive isotopes, half-lives of, 417
Radius
of convergence, 662, A18
inner, 461
outer, 461
Ramanujan, Srinivasa (1887-1920), 675
Range of a function, 19
Raphson, Joseph (1648-1715), 229
Rate of change, 12
average, 12
instantaneous, 12
Ratio, 12
golden, 606
Ratio Test, 641
Rational function, 22, 25
guidelines for finding limits at infinity of, 201
limit of, 60
Rationalize the numerator, 63
Real Exponents, Power Rule, 365
Real numbers, completeness of, 77, 603
Real-valued function \(f\) of a real variable \(x, 19\)
Reasoning, inductive, 601
Rectangle
area of, 261
circumscribed, 263
inscribed, 263
representative, 448
Rectangular coordinates, converting to polar, 732
Rectifiable curve, 478
Recursively defined sequence, 596
Reduction formulas, 565
Reflection
about the origin, 23
about the \(x\)-axis, 23
about the \(y\)-axis, 23
angle of, 698
in the line \(y=x, 344\)
Reflective property
of an ellipse, 701
of inverse functions, 344
of a parabola, 698
Reflective surface, 698
Refraction, 226
Region in the plane
area of, 265
between two curves, 449
centroid of, 503
Regression, least squares, 7
Regular partition, 272
Related-rate equation, 149
Related-rate problems, guidelines for solving, 150
Relation, 19
Relative error, 237
Relative extrema
First Derivative Test for, 181
of a function, 165
occur only at critical numbers, 166
Second Derivative Test for, 194
Relative maximum
at \((c, f(c)), 165\)
First Derivative Test for, 181
of a function, 165
Second Derivative Test for, 194
Relative minimum
at \((c, f(c)), 165\)
First Derivative Test for, 181
of a function, 165
Second Derivative Test for, 194
Remainder
alternating series, 635
of a Taylor polynomial, 656
Removable discontinuity, 71
Representation of antiderivatives, 248
Representative element, 453
disk, 458
rectangle, 448
shell, 469
washer, 461
Return wave method, 544
Review
of basic differentiation rules, 378
of basic integration rules, 385, 522
Revolution
axis of, 458
solid of, 458
surface of, 482
area of, 483, 726, 746
volume of solid of
disk method, 458
shell method, 469,470
washer method, 461
Riemann, Georg Friedrich Bernhard (1826-1866), 272, 638
Riemann sum, 272
Riemann zeta function, 625
Right-hand limit, 72
Rolle, Michel (1652-1719), 172
Rolle's Theorem, 172
Root Test, 644
Rose curve, 734, 737
Rotated ellipse, 146
Rotated hyperbola, 146

\section*{\(S\)}

Secant function
derivative of, 123, 136
integral of, 339
inverse of, 373
derivative of, 376
Secant line, 45, 97
Second-degree equation, general, 696
Second derivative, 125
Second Derivative Test, 194
Second Fundamental Theorem of Calculus, 289
Second Theorem of Pappus, 508
Secondary equation, 219
Separable differential equation, 423
Separation of variables, 415, 423
Sequence, 596
Absolute Value Theorem, 600
bounded, 603
bounded above, 603
bounded below, 603
bounded monotonic, 603
convergence of, 597
divergence of, 597
Fibonacci, 606, 617
least upper bound of, 603
limit of, 597
properties of, 598
lower bound of, 603
monotonic, 602
\(n\)th term of, 596
of partial sums, 608
pattern recognition for, 600
recursively defined, 596
Squeeze Theorem, 599
terms of, 596
upper bound of, 603
Series, 608
absolutely convergent, 636
alternating, 633
geometric, 633
harmonic, 634, 636, 638
Alternating Series Test, 633
binomial, 683
conditionally convergent, 636
convergence of, 608
convergent, limit of \(n\)th term, 612
Direct Comparison Test, 626
divergence of, 608
\(n\)th term test for, 612
finite Fourier, 544
Fourier Sine, 535
geometric, 610
alternating, 633
convergence of, 610
divergence of, 610
guidelines for testing for convergence or divergence, 645
harmonic, 621
alternating, 634, 636, 638
infinite, 608
properties of, 612
Integral Test, 619
Limit Comparison Test, 628
Maclaurin, 679
\(n\)th partial sum, 608
\(n\)th term of convergent, 612
power, 661
p-series, 621
Ratio Test, 641
rearrangement of, 637
Root Test, 644
sum of, 608
summary of tests for, 646
Taylor, 678, 679
telescoping, 609
terms of, 608
Serpentine, 127
Shell method, 469, 470
and disk method, comparison of, 471
Shift of a graph
horizontal, 23
vertical, 23
Sigma notation, 259
index of summation, 259
\(i\) th term, 259
lower bound of summation, 259
upper bound of summation, 259
Signum function, 82
Simple Power Rule, 108, 136
Simpson's Rule, 314
error in, 315
Sine function, 22
derivative of, 112, 136
integral of, 339
inverse of, 373
derivative of, 376, A15
series for, 684

Sine integral function, 322
Sine Series, Fourier, 535
Singular solution, differential equation, 406
Slant asymptote, 211
Slope(s)
field, 256, 306, 325, 408
of the graph of \(f\) at \(x=c, 97\)
of a line, 10
of a tangent line, 97
parametric form, 721
polar form, 735
Slope-intercept equation of a line, 13, 14
Smooth
curve, 478, 716
piecewise, 716
Snell's Law of Refraction, 226
Solid of revolution, 458
volume of
disk method, 458
shell method, 469, 470
washer method, 461
Solution
curves, 407
of a differential equation, 406
Bernoulli, 439
Euler's Method, 410
first-order linear, 435
general, 249, 406
particular, 253, 407
singular, 406
point of an equation, 2
by radicals, 232
Some basic limits, 59
Spandrel, parabolic, 507
Special integration formulas, 549
Special polar graphs, 737
Special type of improper integral, 586
Speed, 114
Spiral
of Archimedes, 725, 733, 749
cornu, 761
logarithmic, 749
Spring constant, 34
Square root function, 22
Squaring function, 22
Squeeze Theorem, 65, A5
for Sequences, 599
Standard equation of an ellipse, 699
a hyperbola, 703
a parabola, 697
Standard form of the equation of an ellipse, 699
a hyperbola, 703
a parabola, 697
Standard form of a first-order linear differential equation, 434
Standard normal probability density function, 355

Step function, 72
Stirling's approximation, 529
Stirling's Formula, 360
Strategy for finding limits, 62
Strictly monotonic function, 180, 345
Strophoid, 761
Substitution for rational functions of sine and cosine, 566
Sum(s)
\(i\) th term of, 259
lower, 263
limit of, 265
\(n\)th partial, 608
Riemann, 272
Rule, 111, 136
differential form, 238
sequence of partial, 608
of a series, 608
of two functions, 25
upper, 263
limit of, 265
Summary
of common integrals using integration by parts, 532
of compound interest formulas, 366
of curve sketching, 209
of differentiation rules, 136
of equations of lines, 14
of first-order differential equations, 440
of tests for series, 646
Summation
formulas, 260, A10
index of, 259
lower bound of, 259
upper bound of, 259
Surface, reflective, 698
Surface of revolution, 482
area of, 483
parametric form, 726
polar form, 746
Symmetry
tests for, 5
with respect to the origin, 5
with respect to the point \((a, b), 403\)
with respect to the \(x\)-axis, 5
with respect to the \(y\)-axis, 5

\section*{\(T\)}

Table of values, 2
Tables, integration by, 563
Tabular method for integration by parts, 532
Tangent function
derivative of, 123, 136
integral of, 339
inverse of, 373
derivative of, 376
Tangent line(s), 45, 97
approximation of \(f\) at \(c, 235\)
at the pole, 736
problem, 45
slope of, 97
parametric form, 721
polar form, 735
with slope \(m, 97\)
vertical, 99
Tautochrone problem, 717
Taylor, Brook (1685-1731), 652
Taylor polynomial, 161, 652
error in approximating, 656
remainder, Lagrange form of, 656
Taylor series, 678, 679
convergence of, 680
guidelines for finding, 682
Taylor's Theorem, 656, A17
Telescoping series, 609
Terms
of a sequence, 596
of a series, 608
Test(s)
comparison, for improper integrals, 588
for concavity, 191, A9
for convergence
Alternating Series, 633
Direct Comparison, 626
geometric series, 610
guidelines, 645
Integral, 619
Limit Comparison, 628
p-series, 621
Ratio, 641
Root, 644
summary, 646
for even and odd functions, 26
First Derivative, 181
Horizontal Line, 345
for increasing and decreasing functions, 179
Leading Coefficient, 24
Second Derivative, 194
for symmetry, 5
Vertical Line, 22
Theorem
Absolute Value, 600
of Calculus, Fundamental, 282
guidelines for using, 283
of Calculus, Second Fundamental, 289
Cavalieri's, 468
Darboux's, 245
existence, 77, 164
Extended Mean Value, 245, 570, A16
Extreme Value, 164
Intermediate Value, 77
Mean Value, 174
alternative form, 175
Extended, 245, 570, A16
for Integrals, 285
Net Change, 291
of Pappus, 505

Second, 508
Rolle's, 172
Squeeze, 65, A5
for sequences, 599
Taylor's, 656, A17
Third derivative, 125
Top half of circle, 138
Torque, 500
Torricelli's Law, 445
Total distance traveled on [a, b], 292
Total mass, 500, 501
of a one-dimensional system, 500
of a two-dimensional system, 501
Tractrix, 333, 395, 396
Trajectories, orthogonal, 147, 428
Transcendental function, 25, 378
Transformation, 23
Transformation of a graph of a function, 23
basic types, 23
horizontal shift, 23
reflection about origin, 23
reflection about \(x\)-axis, 23
reflection about \(y\)-axis, 23
reflection in the line \(y=x, 344\)
vertical shift, 23
Transverse axis of a hyperbola, 703
Trapezoidal Rule, 312
error in, 315
Trigonometric function(s), 24
and the Chain Rule, 135
cosine, 22
derivative of, 123, 136
integrals of the six basic, 339
inverse, 373
derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375
limit of, 61
sine, 22
Trigonometric integrals, 536
Trigonometric substitution, 545
Two-dimensional system
center of gravity of, 501
center of mass of, 501
moment of, 501
total mass of, 501
Two-Point Gaussian Quadrature Approximation, 321
Two special definite integrals, 276
Two special trigonometric limits, 65

\section*{\(\boldsymbol{U}\)}

Unit pulse function, 94
Universal Gravitation, Newton's Law, 491
Upper bound
least, 603
of a sequence, 603
of summation, 259
Upper limit of integration, 273
Upper sum, 263
limit of, 265
\(u\)-substitution, 297

\section*{V}

Value of \(f\) at \(x, 19\)
Variable
dependent, 19
dummy, 275
force, 490
independent, 19
Velocity, 114
average, 113
escape, 94
function, 125
instantaneous, 114
potential curves, 428
Vertéré, 201
Vertex
of an ellipse, 699
of a hyperbola, 703
of a parabola, 697
Vertical asymptote, 84, 85, A7
Vertical line, 14
Vertical Line Test, 22
Vertical shift of a graph of a function, 23
Vertical tangent line, 99
Volume of a solid
disk method, 459
with known cross sections, 463
shell method, 469, 470
washer method, 461

\section*{W}

Wallis, John (1616-1703), 538
Wallis's Formulas, 538, 544
Washer, 461
Washer method, 461
Weight-densities of fluids, 509
Wheeler, Anna Johnson Pell (1883-1966), 435
Witch of Agnesi, 127, 146, 201
Work, 489
done by a constant force, 489
done by a variable force, 490

\section*{X}
\(x\)-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional system, 501
reflection about, 23
symmetry, 5
\(x\)-intercept, 4

\section*{Y}
\(y\)-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional system, 501
reflection about, 23
symmetry, 5
\(y\)-intercept, 4
Young, Grace Chisholm (1868-1944), 45

\section*{Z}

Zero factorial, 599
Zero of a function, 26
approximating
bisection method, 78
Intermediate Value Theorem, 77
with Newton's Method, 229
Zero polynomial, 24```


[^0]:    NOTE There are two important points that should be made concerning the Trapezoidal Rule (or the Midpoint Rule). First, the approximation tends to become more accurate as $n$ increases. For instance, in Example 1, if $n=16$, the Trapezoidal Rule yields an approximation of 1.994 Second, although you could have used the Fundamental Theorem to evaluate the integral in Example 1, this theorem cannot be used to evaluate an integral as simple as $\int_{0}^{\pi} \sin x^{2} d x$ because $\sin x^{2}$ has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to estimate this integral. o

